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A B S T R A C T

The development of new data analytical methods remains a crucial factor in the combat against insurance fraud.
Methods rooted in the research field of anomaly detection are considered as promising candidates for this
purpose. Commonly, a fraud data set contains both numeric and nominal attributes, where, due to the ease of
expressiveness, the latter often encodes valuable expert knowledge. For this reason, an anomaly detection
method should be able to handle a mixture of different data types, returning an anomaly score meaningful in the
context of the business application.

We propose the iForestCAD approach that computes conditional anomaly scores, useful for fraud detection.
More specifically, anomaly detection is performed conditionally on well-defined data partitions that are created
on the basis of selected numeric attributes and distinct combinations of values of selected nominal attributes. In
this way, the resulting anomaly scores are computed with respect to a reference group of interest, thus re-
presenting a meaningful score for domain experts. Given that anomaly detection is performed conditionally, this
approach allows detecting anomalies that would otherwise remain undiscovered in unconditional anomaly
detection.

Moreover, we present a case study in which we demonstrate the usefulness of our proposed approach on real-
world workers' compensation claims received from a large European insurance organization. As a result, the
iForestCAD approach is greatly accepted by domain experts for its effective detection of fraudulent claims.

1. Introduction

Across all lines of insurance, it is conservatively estimated that fraud
causes a monetary damage of $80 billion a year [1]. Given this esti-
mate, it is self-evident that insurance fraud is a major problem that
adversely affects our society [2]. Among the various insurance lines, the
Insurance Information Institute [3] (or short III), reported that the
majority of industry experts (69%) believes in an increase of workers'
compensation (WC) insurance fraud. WC is an insurance policy to cover
costs that emerge when employees sustain an injury or become ill on
the job. Fraudsters view the deprivation of money from insurance or-
ganization as a low-risk, high-reward game, since it is far safer than other
money earning, serious crimes such as armed robbery or drug traf-
ficking [1, 4]. It should therefore be of no surprise that even when
considering WC insurance alone, the total loss caused by WC fraud can
easily reach tens of millions of dollars [5]. Taking these points into
consideration, it is therefore strongly advised by the III [6] to invest in

the advances of analytical technology to protect the insurance organi-
zation and their honest clients against the ever-changing nature of in-
creasingly intricate fraud practices.

In this paper, we propose a novel analytical approach, called
iForestCAD, that performs isolation-based anomaly detection con-
ditionally on reference groups (i.e., data partitions) meaningful to do-
main experts. The resulting iForestCAD anomaly scores are then lever-
aged for fraud detection. Data partitions are defined by distinct
combinations of values of selected nominal attributes, thereby in-
tegrating a mixture of nominal and numeric attributes in a meaningful
way. Based on the observation that fraud data sets usually consist of
both nominal and numeric attributes [7], our proposed iForestCAD ap-
proach aims to fulfill the strong desire to make use of all available in-
formation in the combat against fraud.

Moreover, we present a case study in which we apply our iForestCAD
approach on a data set of real-world WC claims received from a large
European insurance organization. For the study, we collaborated with
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the insurer's special investigation unit (SIU) to fruitfully incorporate
valuable expert knowledge of the private investigators (PIs) to enhance
the automatic detection of fraudulent WC claims. One of the most im-
portant project goals in order to reach acceptance among the PIs is that
the fraud detection approach satisfies the following major requirement:

Interestingness: It is to be ensured that suspected fraud cases reported
to the PIs are interesting. This implies that the reported claims
should conform with the PIs' expert knowledge (i.e, detection
of fraudulent claims in line with known fraud patterns). Yet,
the reported claims should also have some element of novelty
and surprise (i.e., discovery of previously unseen fraud pat-
terns).

The implications for the data scientist of the main requirement can
be stated as follows:

1. Integration of expert knowledge: The inclusion of accumulated
expert knowledge into the fraud detection mechanisms plays an
essential role in order for the data science application to be accepted
by the PIs.

2. Accuracy: Due to scarce resources, an efficient deployment of PIs to
check and invest suspicious claims is required. Hence, the fraud
detection model should be accurate in its predictions so that the PIs
first focus their attention to the truly fraudulent claims.

3. Explainability: The data scientist must be able to explain to the PIs
why the classification model predicts a claim as fraudulent.

4. Novelty: To reach acceptance among the PIs, the fraud detection
approach should return fraudulent claims according to known pat-
terns, but also detect novel ones that comply with the expertise of
the PIs.

Since the PIs ultimately decide whether or not an in-depth in-
vestigation has to be conducted, it is crucial that the fraud detection
approach fulfills the aforementioned criteria. In particular, special at-
tention needs to be dedicated to the first criterion, because it is often
beneficial to inject expert knowledge into the data analytical approach
(see, e.g., [8-10]).

According to the PIs, given the type of injury and other information,
an “unusual long” recovery time (or, equivalently, disproportional
duration of incapacity), is a strong indicator of a WC claim being
fraudulent. To capture this insight in a data-driven manner, one needs
to answer the following questions: How to decide when a recovery time is
too long (without requiring human judgment)? How can valuable expert
knowledge be integrated into the decision model construction?

With an interesting real-world case study on WC fraud, we present a
fraud detection approach (Fig. 1) that allows detecting claims with a
disproportional recovery time in a fully data-driven manner by which
information of mixed type attributes is processed in a way meaningful
to the PIs.

We thereby leverage the well-established anomaly detection algo-
rithm called isolation forest (iForest), introduced by [11, 12]. The ap-
plication of anomaly detection plays a crucial role as it allows for the
automatic detection of disproportional recovery times. The iForest al-
gorithm is a key component of our proposed approach which we favor
over other anomaly detectors for reasons we elaborate on in
Section 2.2. It is important to note that the anomaly scores of the ob-
servations are computed conditionally on data partitions, which are
defined based on the distinct combination of values of selected nominal
attributes. Thus, the name of our proposed approach, iForestCAD, roots
in the fact that a conditional anomaly detection (CAD) is performed
with the aid of the iForest. The created iForestCAD scores are combined
with the remaining attributes which then serve as an input for training
a supervised classification model. In this way, we exploit the benefits of
both supervised and unsupervised learning. The iForestCAD scores
proved to be indeed of high importance for the detection of suspicious

claims in our case study.
Our research contributions can be summarized as follows:

• We propose the iForestCAD method that computes anomaly scores
conditionally on given reference groups (i.e., well-defined data
partitions). In this way, iForestCAD is capable of identifying “hidden”
anomalies, which we demonstrate in Section 3.4.

• Our approach allows processing a mixture of nominal and numeric
attributes, returning a condensed score that is meaningful in the
context of the business application. The scores produced by
iForestCAD can be used not only for conditional anomaly detection
but also as a new numeric input attribute for a predictive model.

• We demonstrate the application of anomaly detection and predictive
analytics in the scope of a real-world case study on WC insurance
fraud. To the best of our knowledge, the practical application of
primarily machine learning techniques to combat WC fraud has not
yet been presented in the literature.

The remainder of this paper is structured as follows. The next sec-
tion provides more background information on WC insurance fraud,
discusses anomaly detection and methods, as well as explains the inner
workings of the iForest algorithm. Section 3 formally introduces the
concepts of our proposed approach with particular focus on the creation
of iForestCAD scores. Additionally, in Section 3.4, we provide an ex-
ample that showcases the detection of hidden anomalies. Section 4
presents the case study in which we demonstrate the usefulness of the
iForestCAD scores for the detecting of fraudulent WC claims. In the same
section, we elaborate on the effectiveness of applying conditional
anomaly detection and how our proposed approach is applied to meet
the most important requirement of interestingness. Section 5 sum-
marizes the main findings of our work and highlights potential research
directions.

2. Preliminaries

2.1. Workers' compensation fraud

Workers' compensation (WC) insurance provides a cost coverage in
case employees sustain a work-related injury or disease that occur as a
result of performing their occupational duties [3, 13]. For example, in
the USA, coverage may be required for costs such as wage replacement,
medical care and rehabilitation, and death benefits for the dependents
if the employee deceased in work-related accidents (including terrorist
attacks) [3].

According to the latest issue update on insurance fraud [6], it is
believed that WC is one of the most vulnerable insurance lines to fraud.
Further, III reported that 69% of industry experts forecast an increase in
WC fraud. This strongly suggests initiating appropriate measures in
order to protect insurance organizations and their honest clients against
fraudsters. To do so, III pointed out that advances in analytical tech-
nology are a crucial factor in order to be able to keep up with the ever-
changing nature of increasingly complex and sophisticated fraud
schemes.

Viaene and Dedene [4] characterized insurance fraud by the pre-
sence of (at least) the following elements: (1) Misrepresentation of
circumstances or material facts in the form of lie, falsification, or con-
cealment, (2) deliberate plan of deception, and (3) purpose to gain
unauthorized benefits. The authors further classified insurance fraud
into three broad categories: (1) internal versus external, (2) under-
writing versus claim, and (3) soft versus hard.

The first category (internal versus external) attempts to distinguish
between the various types of perpetrators. Internal fraud is committed
from within the insurance organization, e.g., by insurers, agents, and
insurer employee. External fraud is perpetrated by individuals outside
the organization, e.g., by applicants, policyholders, and claimants. The
distinction sometimes becomes blurry in situations that involve a
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collusion between internal and external parties.
The second category (underwriting versus claim) aims to address the

various types of fraud, where it is of particular importance to distin-
guish between perpetrating fraud at underwriting and at claim time.
The former refers, for example, to fraudulent activities at the time of the
renewal of the insurance contract or the misrepresentation of in-
formation during the application (application fraud) with the aim to
attain either coverage or a lower premium (premium fraud). On the
other hand, the latter type of insurance fraud is typically more promi-
nent and refers to claim fraud in which claims are deliberately inflated,
false, or fictitious.

The final category (soft versus hard) aims to provide an indication of
the degree of intent by assigning labels to the severity of the committed
fraud. Soft fraud, often also referred to as opportunistic fraud, describes
the cases in which, for example, the claimant seizes the opportunity to
exaggerate the damage of an otherwise legitimate claim (claim pad-
ding). In contrast, hard fraud is typically associated with carefully
planned and well-executed scams. Clearly, hard fraud refers to well-
organized crime executed by cunning individuals with malicious intent
or sophisticated fraud rings (e.g., deliberately filing bogus claims).

Information asymmetry is the natural fertilizer for fraud [4]. The
party with the information advantage has the upper hand in the busi-
ness relationship which fraudsters leverage to their advantage to re-
ceive a more beneficial business deal. In case of WC, claimants are
naturally in an advantageous position when filing the claim, since the
insurer has often no other option than to trust the provided information
filed in the claim. Here, fraud can range, for example, from the ex-
aggeration of a minor injury (i.e., opportunistic fraud) to more severe
scenarios such as staging an accident (i.e., hard fraud).

Unlike other social insurances, WC benefits essentially compensate
individuals for not working [13]. Research studies have shown that the
number of filed claims will generally increase as benefits increase [13-
16], as well as that economic incentives significantly affect the claim
duration [16-18]. In this sense, fraudsters will constantly try to find
ways to outwit the system. Once, they are in the position of receiving
benefits, they likely attempt to unduly prolong the period of compen-
sation [19].

Additionally, Bolduc et al. [19] showed that, under certain as-
sumptions, the level of WC benefits has a stronger impact on the
probability of reporting a hard-to-diagnose injury (e.g., back-related
injuries, sprains, strains, and stress-related problems) than on the

probability of reporting an easy-to-diagnose injury (e.g., contusion,
fracture, and friction burn). Lower back pain in particular is a common
medical problem that is hard to diagnose. Its challenging characteristics
are, for example, discussed by [20]. Hard-to-diagnose injuries makes it
easier for fraudsters, as insurers have more difficulties to verify the true
nature of the injury [19].

A conviction requires hard evidence that proves fraudulent behavior
“beyond reasonable doubt,” but this comes at a high price since much
effort and time have to be put into the procurement of definitive
proof [4]. Taken all together, this makes WC fraud an interesting and
challenging problem for both business and data science.

2.2. Anomaly detection and related work

Anomaly detection is widely used in a large variety of research and
application domains such as health care, security, law enforcement,
image processing, and text mining. It is, for example, utilized for the
detection of network intrusion, malware, industrial damage, novelty, or
fraud. Note that the terms anomaly and outlier are often used inter-
changeably, as well as that anomaly and outlier detection is closely
related to novelty detection. In Hawkins's often quoted words [21]: “An
outlier is an observation which deviates so much from the other ob-
servations as to arouse suspicions that it was generated by a different
mechanism.” Thus, outliers or anomalies are generally considered to be
exceptions or peculiarities in the data that do not conform to the normal
or expected behavior of the majority. Therefore, the task of an anomaly
detection method is to learn the characteristics of a data set in order to
be sufficiently capable of distinguishing anomalous data points from
normal ones [7]. The choice of the anomaly detection method thereby
strongly depends on the type of data. An important distinction to make
is between record data or point data, where no relationship is assumed
among the data instances, and complex data such as sequence, spatial, or
graph data that express the interrelation between observations in some
way [7]. It comes with no surprise that there exists an abundance of
proposed methods for various application domains and types of data.
Accordingly, many scientific works have been published in the past
years that summarize methods for anomaly detection from very general
to very specific applications and types of data (see, e.g., [7] and[22-
33]).

In this paper, we apply anomaly detection in order to detect frau-
dulent WC claims. To this end, we make use of an anomaly detection

Fig. 1. Operating principle of the proposed iForestCAD approach to perform conditional anomaly detection and leveraging anomaly scores for fraud detection. Steps 1
to 3 involve the creation of the iForestCAD anomaly scores based on a selection of mixed type attributes. Thus, the iForestCAD approach is capable of processing a
mixture of nominal and numeric attributes in a meaningful way. Step 4 encompasses the training of a binary classifier in which the scores created in the previous step
serve as an input.
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method that can operate on record data. Yet, the sheer volume of
proposed anomaly detection methods makes it impossible to survey all
techniques, as it is also not the purpose of this work. Nevertheless, we
view it as necessary to briefly describe some state-of-the-art as well as
some well-established anomaly detection methods in academic litera-
ture (Table 1). The table also lists techniques related to our work.

Ultimately, an anomaly detection method aims to capture a notion
of similarity or dissimilarity between data points, which in turn allows
it to identify anomalies. There are several ways to capture that notion.
Popular approaches for anomaly detection operate via a distance or
density measure (e.g., ORCA or LOF), use a data analytical model (e.g.,
one-class SVM), a clustering technique (e.g., DBSCAN), or apply the
state-of-the-art concept of isolation (e.g., isolation forest). In what

follows, we compare the anomaly detection methods merely on the high
level, rather than on the level of the individual techniques, and moti-
vate our choice for the isolation forest (iForest) [11, 12].

The advantage of distance and density measures is that they have an
intuitive interpretation. Anomalous data points are more likely to have
large distances to their neighbors, as they are generated—according to
Hawkins—by a different mechanism. Density measures are often de-
rived from distances, indicating whether an instance is surrounded by
many neighbors (high-density region) or by a few to none neighbors
(low-density region). However, it immediately becomes clear that
pairwise calculations between instances have to be carried out, and
hence the computational complexity increases nonlinearly with the
sample size. Additional clever algorithmic mechanisms are required

Table 1
Overview of common, state-of-the-art, and related anomaly detection methods.

Method Measure Description

kNN distance [48] Distance Computes a kNN outlier score for each observation, which has an intuitive interpretation. That is, data points with large distances to
their nearest neighbors are more likely to be anomalous. Being a kNN-based method, it can handle multidimensional data.

Method by [49] Distance Is a kNN-based method combined with a partition-based algorithm, which makes the algorithm computationally more efficient and
scalable. Note: Study performed only on data with numeric attributes.

ORCA [50] Distance Is a kNN-based method that uses sample randomization together with a pruning rule. The calculation of kNN distances is
computationally intensive with non-linear complexity. ORCA reduces it to near linear time. Next to k, an additional parameter, which
determines how many anomalies to report, needs to be set manually.

Method by [51] Distance Computes a proposed distance measure for data with mixed type attributes in which links are defined between two observations by the
distance for nominal and numeric attributes separately. It can handle a mixture of nominal and numeric attributes, by maintaining a
covariance matrix for each itemset.

LOF [52] Density Computes a LOF value for each observation, which in turn indicates the sparseness of a data point with regard to its k nearest neighbors.
In this way, it accounts for local density variation among data points. Observations with a high LOF value are viewed as anomalies.

COF [53] Density A variation of LOF in which the k neighborhood for each observation is computed differently. More specifically, the k neighborhood
(i.e., a set of instances) of a given observation is created by incrementally including the instance that has the minimal distance to any
member of the given set of instances (until k is reached). On the basis this k neighborhood, the outlier score is computed as in LOF.

DBSCAN [54, 55] Clustering Is a density-based clustering algorithm in which instances are grouped together that have many nearby neighbors. This allows the
algorithm to find clusters of arbitrarily shape. By design, it accounts for noise and is robust to outliers. Hence, an instance with its
nearest neighbors being too far away so that it does not belong to a cluster (i.e., lies in a low-density region) is regarded as an outlier. It
does not require to set the number of clusters a priori as, for example, in the k-means algorithm.

HDBSCAN* [56, 57] Clustering Inspired by DBSCAN, it generates a complete density-based clustering hierarchy, a composition of all possible density-based clusters,
that can effectively be used for cluster analysis and outlier detection. As for outlier detection, the method computes the so-called
GLOSH (Global-Local Outlier Scores from Hierarchies) scores, which allows the simultaneous detection of both global and local types of
outliers.

OC-SVM [58, 59] ML model Constructs a decision boundary around the normal observations. Any instance falling outside the boundary is regarded as an anomaly.
The incorporation of nominal attributes is straightforward (e.g., through dummy variables). Yet, it has one or more hyperparameter(s)
that require(s) tuning. Also, it is computationally much more demanding than other methods as, for example, iForest.

RFPM [60] ML model Since RF is a supervised learner, synthetic data are generated as the alternative class by uniformly sampling in the domain of each
attribute. Next, the learned RF is used to construct a matrix that contains a proximity measure for every pair of instances. An
observation is viewed as anomalous when its proximities to all other instances are small. Thanks to the use of RF, mixed type attributes
can be handled in a straightforward manner. However, maintaining the proximity matrices comes with a large memory requirement.

EXPoSE [61, 62] ML model Applies a kernel embedding of distributions that maps a probability measure into a reproducing kernel Hilbert space in order to
manipulated it there efficiently. This allows estimating the similarity between a new unseen instance and the distribution data under
normal conditions. Thanks to the kernel embedding representation, no parametric assumptions or explicit description of the probability
measure are made. The algorithm is designed for large-scale anomaly detection problems. However, as of the time of writing, no
publicly accessible software implementation is available.

Method by [63] Statistical model Is a GMM-based algorithm for conditional anomaly detection in which two sets of multivariate Gaussians are modeled that correspond
to the environmental and indicator attributes, as well as a dependence structure between the two sets of Gaussians. It computes the
likelihood of the occurrence of an observation's indicator values given the values of its environmental attributes. Main disadvantage of
using a GMM is that as the dimensionality increases calculations become intractable. Note: Study performed only on data with numeric
attributes.

iForest [11, 12] Isolation First to propose an unsupervised, tree-based ensemble method that applies the novel concept of isolation. Authors showed that isolation
is a better indicator for anomaly detection than distance and density. iForest is designed to directly model anomalies. It is a
computationally very efficient and competitive algorithm. The recommended default values perform well on a multitude of data sets.
iForest is less effective in the presence of local and/or clustered anomalies. Note: Study performed only on data with numeric attributes.

iForestext [44] Isolation As iForest but maps values of nominal attributes to numeric ones. Mapping of nominal values to numeric ones is arbitrary, hence
conceptionally inadequate. Refer to the discussion surrounding Fig. 4.

SCiForest [64] Isolation An anomaly detector that works in a similar manner as iForest but is capable of detecting local clustered anomalies through the use of
hyperplanes. It detects local clustered anomalies effectively, even when close to normal points. It is less computationally efficient than
iForest due to the computation of hyperplanes. Note: Study performed only on data with numeric attributes.

iNNE [65] Isolation An anomaly detector that operates in a similar way as iForest, yet applies an efficient isolation-based kNN method. It is computationally
more efficient than distance or density-based anomaly detection algorithms. It can detect local anomalies. Yet, it is less computationally
efficient than iForest due to the computation of hyperspheres. Note: Study performed only on data with numeric attributes.

Abbreviations: Connectivity-based Outlier Factor (COF), EXPected Similarity Estimation (EXPoSE), Gaussian Mixture Model (GMM), isolation Forest (iForest), ex-
tended iForest (iForestext), isolation Forest with Split-selection Criterion (SCiForest), isolation using Nearest Neighbour Ensemble (iNNE), k Nearest Neighbors (kNN),
Local Outlier Factor (LOF), Machine Learning (ML), One-Class Support Vector Machine (OC-SVM), Random Forest (RF), Random Forest with Proximity Matrices
(RFPM).
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(e.g., sampling, pruning, or partitioning) in order to achieve a near
linear complexity.

Another strategy to detect anomalies is by first modeling the normal
data, then identifying those data points that are not regarded as normal.
Most model-based methods that were first designed for other purposes
(e.g., classification) operate in this way. This is especially also true for
clustering-based methods. These methods detect anomalies as a by-
product, and hence are usually not optimized for anomaly detec-
tion [7]. Consider cluster analysis, for example. A clustering algorithm
is designed to find groups of data points that lie relatively close to each
other. If anomalies form clusters by themselves, however, a clustering
algorithm will not be able to detect such anomalies [7]. On top of it,
several clustering algorithms, as for example k-means, force every in-
stance to belong to some cluster. Hence, they are more likely to over-
look anomalies.

In contrast to the other approaches, isolation-based methods aim to
directly model anomalies. These methods apply the notion of isolation
in which the anomaly detector attempts to separate instances in a
specific way. Under the assumption that anomalies are few and different,
instances that are easier to isolate from the rest are more likely to be
anomalies. In fact, in a simple example, [11] and[12] showed that
isolation is a better indicator for anomaly detection than distance and
density. That is, in the example, normal data points close to the dense
anomaly cluster exhibit a larger distance or lower density than the
anomalous points, which is the opposite of the desired outcome,
whereas the isolation-based method consistently assigned reasonable
values to the anomalous and normal points, effectively identifying the
anomalies. It is important to note that, in the isolation-based methods,
no assumptions are made about the distribution of the data.

Compared to most other anomaly detection algorithm, the isolation-
based methods are computationally very efficient and scalable, which is
an important property for an anomaly detector, in particular when
working with large data sets. Consider iForest for example, it has been
empirically proven that its detection performance, especially when the
number of instances is larger than 1000, is superior to state-of-the-art
anomaly detectors [11, 12]. With iForest being a highly competitive
and scalable anomaly detection algorithm, it is no surprise that, within
the last years, it has quickly established itself well in the academic
literature and has often become the anomaly detector of choice (see,
e.g., [34])

We favor the iForest over other anomaly detection methods as it is a
scalable algorithm designed for the sole purpose of anomaly detection.
Moreover, iForest is publicly available through the well-known Python
library for machine learning: scikit-learn [35, 36]. Since we make
iForest our anomaly detector of choice, we next describe the iForest
algorithm in greater detail.

2.3. Isolation forest

The isolation forest (iForest) is an unsupervised, tree-based en-
semble method that applies the novel concept of isolation to anomaly
detection [11, 12]. Isolation refers to the separation of each instance
from the rest. Solely the tree structures of the learned ensemble are
required to generate anomaly scores, hence this method avoids calcu-
lating computationally expensive distance or density measures.

The base learning algorithm of iForest is called isolation tree (iTree),
which constructs a proper binary tree in a completely random manner
based on a subsample of size ψ ∈ℕ≥2 taken from the training data
without replacement (proposed default value: ψ=256). In a divide-
and-conquer fashion, iTree recursively splits the input space into pro-
gressively smaller, axis-parallel rectangles with the aim to isolate in-
stances. Ideally, there remains only one instance in each leaf node.
Given their properties of being few and different, anomalies are thereby
more susceptible to isolation, and therefore tend to be closer to the root
of an iTree than normal instances (Fig. 2).

An iTree node is created by randomly selecting an attribute along

with a randomly drawn split value, which lies between the minimum
and maximum of the selected attribute. Note that the application of
iTrees is therefore only meaningful on numeric attributes. The fact that
an iTree is built in a random fashion on a subsample makes iForest so
computationally and memory efficient. When a test instance passes
through an iTree, at each non-leaf node, the respective attribute value is
retrieved and tested against the split value in order to decide its tra-
versal to either the left or right child node.

To determine the anomaly score for a given instance x ∈ℝd with d
∈ℕ1 representing the number of attribute measurements, iForest solely
leverages the learned tree structures of the ntrees ∈ℕ1 iTrees. Since
anomalies are more susceptible to isolation, an anomalous instance is
expected to have a shorter path length than a normal instance when it
traverses an iTree from root to leaf. Given an isolation tree ht, the path
length = + ∈ −h e c n ψx( ) ( ) [1, 1]t leaf for instance x is derived by
counting the number of edges ∈ … −e ψ{1, 2, , 1} from the root to the
leaf node x falls into. To account for the possibility that the isolation of
a set of instances at the leaf node did not fully succeed, the following
adjustment is added to e as a function of the leaf node size nleaf ∈ℕ1 [12,
37]:

=
⎧

⎨
⎪

⎩⎪

− − − >
=c n

H n n n n
n( )

2 ( 1) 2( 1)/ if 2,
1 if 2,
0 otherwise,

leaf

leaf leaf leaf leaf

leaf

(1)

where H(⋅) is the harmonic number that can be approximated by

≈ +H a a( ) ln( ) 0.5772156649 (Euler's constant).

Since an iTree is structurally equivalent to a Binary Search Tree
(BST), the adjustment is derived from unsuccessful searches in BST and
aims to account for the average path length of a random sub-tree that
could be built given the leaf node size [11, 12]. The average path length
of instance x can be computed by utilizing the collection of ntrees con-
structed iTrees:

∑=
=

E h
n

hx x( ( )) 1 ( ),
t

n

t
trees 1

trees

(2)

where ht(x) is the path length of x derived from the tth isolation tree.
Liu et al. [11, 12] empirically showed that already at a moderate en-
semble size (proposed default value: ntrees= 100), the average path
length stabilizes quickly and tends to be much lower for anomalous
instances.

Finally, the anomaly score s(x,ψ) for instance x can be computed as
follows [11, 12]:

= −s ψx( , ) 2 ,
E h

c ψ
x( ( ))

( ) (3)

where E(h(x)) is defined as in Eq.(2) and c(ψ) serves as a normalization
factor to make a suitable comparison of models with different sub-
sample sizes ψ. The latter is regarded to be the average path length of
traversing a random tree that was constructed based on a sample of size
ψ [38]. The final mapping step in Eq.(3) ensures that the anomaly score
lies in the interval (0,1), which allows for a more intuitive interpreta-
tion [11, 12]:

• If E(h(x))⟶0,s⟶1. If the average path length of x is close to zero,
the anomaly score will be close to one, hence x can be regarded as
an anomalous instance.

• If E(h(x))⟶ψ− 1,s⟶0. If the average path length of x is close to
the absolute maximum depth of a binary tree given ψ, the anomaly
score will be close to zero, hence x can be regarded as a normal
instance.

• If E(h(x))⟶c(ψ),s⟶0.5. If the average path length of x is close to
the average path length of a random tree given ψ, the anomaly score
will be close to 0.5. If all instances have an anomaly score close to
0.5, then there are no distinct anomalies in the data.
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In this paper, we utilize the Python implementation of iForest
available in the scikit-learn library [35, 36], and, throughout the
paper, anomaly scores are computed as follows:

= − = −−s ψ s ψx x( , ) ( , ) 0.5 2 0.5.skl

E h
c ψ

x( ( ))
( ) (4)

Consequently, the anomaly scores become centered around zero
with interval (−0.5, 0.5). It still applies that an instance with a score
close to the upper bound is regarded as an anomaly.

iForest is a nonparametric anomaly detection method since it does
not make any assumptions about the data distribution. Despite the very
simple design, the iForest algorithm is very competitive both in detec-
tion performance and time efficiency. The creators of iForest showed
that their algorithm outperforms several other state-of-the-art anomaly
detectors on various real-world data sets. Regarding iForest's scal-
ability, complexity analysis performed by [12] revealed that its worst-
case time complexities for training and evaluation are O(ψ2ntrees) and O
(nψntrees) respectively, which amounts to a total time complexity of O
(ψ(n+ ψ)ntrees). It is important to note that the training complexity does
not involve any data-dependent variables, since the training complexity
of iForest solely depends on its invariant and known input parameters.
The space complexity of the isolation forest equals O(ψntrees). In sum-
mary, iForest is a very scalable algorithm, and even when dealing with
large data sets, it possesses a low linear time complexity (i.e., ψ2ntrees ≪
n) with a low memory requirement [12].

3. Methodology

3.1. Proposed approach: iForestCAD

As fraud data sets typically contain mixed type attributes [7], it is often
desired to include all available information in the construction of the
analytical fraud detection model. The proposed iForestCAD approach aims
to achieve this by combining information of nominal and numeric attri-
butes into anomaly scores which in turn are leveraged in the construction
of a fraud classifier.1 In this respect, iForestCAD can be used for conditional

anomaly detection and for the semi-automatic creation of new attributes.
For the former, the scores produced by iForestCAD can be utilized for
ranking observations and detecting anomalies. As for the latter, in ma-
chine learning, feature engineering is a difficult and domain-specific task
that is often key for a successful data science application, and it is there-
fore considered to be more important than the choice of the classification
model [9]. With iForestCAD, new numeric attributes can be created that
integrate expert knowledge into the predictive model. For this reason,
expert knowledge drives the selection of attributes in iForestCAD in order to
obtain scores that are meaningful to the domain experts. From a high-level
perspective, the proposed approach performs the following steps:

1. Selection: Select nominal and numeric attributes that should un-
dergo the transformation. The selection is driven by expert knowl-
edge in order to obtain meaningful scores.

2. Partitioning: Determine all distinct combinations of values of se-
lected nominal attributes and split the data set according to these
combinations.

3. Conditional anomaly detection: Train iForest on each data parti-
tion and compute the anomaly scores of all instances across all
partitions.

4. Classifier training: Replace the selected attributes with the
anomaly scores and train a binary classifier.

A more rigorous and formal description of the iForestCAD approach
is given in the following paragraphs. Table 2 provides an overview of
the mathematical notation.

3.1.1. Learning phase
3.1.1.1. Data definition. Suppose a sample of n ∈ℕ>1 instance-label
pairs = =D yx{( , )}i i i

n
1 is given with yi ∈{0,1} being the observed class

label of instance i and its mixed type attribute measurements are
bundled in a d-tuple = = …∀ ∈x x xx ( ) ( , , )i ij j J i id1 , where d ∈ℕ1 is the
number of attributes and = …J d{1, 2, , } is the index set over the
attributes. Additionally, let = …I n{1, 2, , } be the index set over the
observations. Note that xij denotes the value of the attribute j of
observation i. Likewise, for example, (xij)∀j∈{1,2,3} = (xi1,xi2,xi3) would
be a triple holding the values of the 1st, 2nd, and 3rd attribute of
observation i.

Fig. 2. Example of an isolation tree (iTree) on fabricated data. The red triangle represents an anomalous data point. Blue dashed lines correspond to the data
partitions made by the iTree shown on the right. The anomaly ( ) falls into the leaf node directly under the root, thus it is separated (isolated) faster than the normal
data points ( ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1 A software implementation of iForestCAD is available at https://github.com/
estripling/iForestCAD.
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3.1.1.2. Selection. Attributes are selected by their indices which are
contained in the index set ∅ ≠ ⊆S J . The selection of attributes is
driven by expert knowledge. Smust comprise indices that correspond to
nominal and numeric attributes, i.e., = ∪S S Snom num and

∩ = ∅S Snom num , where the two subsets ∅ ≠ ⫋S Snom and ∅ ≠ ⫋S Snum
hold the indices of the selected nominal and numeric attributes,
respectively.

3.1.1.3. Partitioning. Denote V s={xis}∀i∈I as the value set of the
attribute corresponding to index s ∈ S. The number of distinct values
of attribute s is defined by the cardinality of its value set |V s|. The set K
of distinct combinations of values of selected nominal attributes is
obtained by computing the Cartesian product. The outcome of the
Cartesian product is a set of ordered |Snom|-tuples. To formally define
this operation, an additional index set = …R S{1, 2, , | |}nom over the
elements of Snom is introduced, since Snom is a set that can contain any
elements of J. Hence, the Cartesian product of |R| value sets is defined
as

∏= = ×⋯×

= … ∀ ∈ ∈ ∧ ∈

=

( ) ( )[ ]

K V V V

v v r R s S v V{ , , }.

r

R

s s s

R r nom r s

1

| |

1 | |

r R

r

1 | |

(5)

The number of distinct combinations of values of selected nominal
attributes is equal to the cardinality of K, i.e., = ∏ ∈K V| | | |s S snom

. It is
important to note that the number of distinct combinations must be
smaller than the sample size, i.e., |K|< n, in order to have a sufficiently
high number of instances in each partition when training the anomaly
detector in the next step. As iForest is the anomaly detector of choice,
“sufficiently high” refers to its subsample size parameter ψ (a formal
description is given in the next paragraph). If one or more selected
nominal attributes have too many distinct values, binning or grouping
of the nominal attribute values should be performed either through the
use of categorization methods (see, e.g., [39, p. 60 ff.], [40, Chapter
9.2.4]) or under the guidance of expert knowledge.

The data set D is then split into nonempty, disjoint subsets according
to all distinct combinations k ∈ K, and only the selected numeric at-
tributes of the instances are elected. Formally, denote such subset as

= ∃ ∈ = ∀ ∈∀ ∈ ∀ ∈D x k K k x i I{( ) ( ! )[ ( ) ]} ( ).k is s S is s Snum nom (6)
2

In other words, for a given distinct combination k ∈ K, Dk is a set of
|Snum|-tuples, where each tuple contains the values of the selected nu-
meric attributes, of those observations in the data set for which the
combination of their values of the selected nominal attribute equals k.
Moreover, let ∅ ≠ ⫋I Ik be the set of observation indices that are
members of Dk for a given k ∈ K. Recall it is important for training the
anomaly detector in the next step that each data partition Dk has a
sufficiently high number of instances, i.e., ∀ ∈ ≿k K D ψ, | |k , where ψ is
the subsample size parameter of iForest. If this condition is not met, a
categorization method as mentioned previously must be applied. In any
case, it must hold that |Dk|> 0 for all k ∈ K.

3.1.1.4. Conditional anomaly detection. Train iForest on each data
partition Dk to obtain M={mk= iForest(Dk)}∀k∈K. Once all anomaly
detectors are trained, compute the anomaly scores with the
corresponding trained iForest mk:

�= = ∈ ∈ ∧ ∀ ∈ = ∀

∈
∀ ∈A a m t m M i I t x k

K

{ ( ) ( )[ ( ) ]} (

)
k i k i k k i is s Snum

(7)

such that ⋃ =∈ ∀ ∈A a{ }k K k i i I .

3.1.1.5. Classifier training. Remove the values of the selected attributes,
(xis)∀s∈S, from the observation tuple i and append it with the
corresponding anomaly score ai for all i ∈ I. In other words,
reconstruct the data set such that

=′ ′
=D yx{( , )} ,i i i

n
1

where

=′
∀ ∈ ′x ax (( ) , )i ij j J i

with

= ∖ = ∈ ∉′J J S j J j S{ }

is a tuple with +′J| | 1 elements containing the values of attributes that
were not selected in the first step and the conditional anomaly score of
observation i. Note that, if = ∅′J , this results in an empty tuple, hence

= =′ a ax ((), ) ( )i i i becomes a singleton containing only the anomaly
score.

Finally, given a binary classification learning algorithm A , train a
classifier on the newly constructed data set: A= ′g D( ).

3.1.2. Prediction phase
Next to model construction, it is also relevant to compute the pre-

dicted value for a given test instance = ∀ ∈′ ′( )xxi i j j J . Note that the index
′i is applied to indicate that the instance was not used for the con-
struction of the models. To make a prediction with the iForestCAD ap-
proach, the following steps are applied:

(i) identify the distinct combination k ∈ K the test instance belongs
to, = ∀ ∈′( )k xi s s Snom, (ii) retrieve the corresponding trained iForest mk ∈
M and compute the anomaly score =′ ′a m t( )i k i with = ∀ ∈′ ′( )t xi i s s Snum,
(iii) remove the values of the nonselected attributes and append the
anomaly score: =′

∀ ∈′ ′ ′ ′( )x ax ( , )
i i j j J i , and finally (iv) compute the pre-

dicted value ′ŷi of the test instance using the trained classifier:
= ′′ ′ŷ g x( )i i

.
Note that, depending on the classifier, the predicted value can either

be an estimated class label or a score expressing the confidence of the
classifier to assign the test instance to a class. Either way, the predicted
values should be processed appropriately to obtain meaningful results.

Table 2
Overview of mathematical notation.

Symbol Description

{ar}r∈R Abbreviated notation for a set in which the elements ar are indexed by r
given some index set R. Similarly for a tuple: (ar)r∈R

d Number of attributes, d ∈ℕ1

J Index set over attributes, = …J d{1, 2, , }
j Attributes are indexed by j, where j ∈ J
n Number of observations or instances, n ∈ℕ>1

I Index set over observations, = …I n{1, 2, , }
i Observations are indexed by i, where i ∈ I
xij Value of the jth attribute of observation i
xi Observation or instance i: = = …∀ ∈x x x xx ( ) ( , , , )i ij j J i i id1 2

yi Observed class label of observation i
ŷi Predicted value of observation i
V j Value set of the jth attribute, V j={xij}∀i∈I with j ∈ J
D Data set: sample of n instance-label pairs, = =D yx{( , )}i i i

n
1

S Set of indices of selected mixed type attributes,
∅ ≠ ⊆ = ∪S J S S S: nom num

Snom Set of indices of selected nominal attributes, ∅ ≠ ⫋S Snom

Snum Set of indices of selected numeric attributes, ∅ ≠ ⫋S Snum

K Set of distinct combinations of values of selected nominal attributes
k One distinct combination: distinct tuple of nominal attribute values, k ∈

K
A Binary classification learning algorithm

2 The general rule to check equality of two m-tuples is … = …a a a b b b( , , , ) ( , , , )m m1 2 1 2 if
and only if = = … =a b a b a b, , , m m1 1 2 2 .
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3.2. Considered designs for the incorporation of anomaly scores

There are two straightforward ways how the anomaly scores can be
incorporated into the final classifier training step. The first way in-
volves the removal of the selected attributes and the appending of the
anomaly scores, as described in Section 3.1. The second way is to
augment the data set with the anomaly scores without removing any
attributes. Formally, the observation tuple i in the reconstructed data
set is expressed as

=′
∀ ∈x ax (( ) , ),i ij j J i

having |J|+ 1 elements.
In the WC fraud detection use case, we tried both options and found

no considerable difference in detection performance. We decided in
favor of the first option to incorporate it into the final iForestCAD ap-
proach, since it showed a higher appreciation among the PIs and seems
to allow for an easier communication. This is mainly due to di-
mensionality reduction benefit, which requires to explain less numbers
of attributes to the PIs. Additionally, what is important for data scien-
tists, the dimensionality reduction speeds up the training time of all
classification models.

3.3. Strengths and limitations of iForestCAD

The iForest algorithm, as described in Section 2.3, is devised to di-
rectlymodel anomalies by means of using the novel concept of isolation.
By design, iForest is a global anomaly detector and is as such usually
applied on the entire data set (unconditional anomaly detection).

The aim of the proposed iForestCAD approach is to inject expert
knowledge into the modeling process through the incorporation of in-
formation of nominal attributes meaningful to domain experts. This is
achieved by splitting up the data set into meaningful partitions in order
to perform anomaly detection conditionally on a set of instances that
share the same nominal characteristics (conditional anomaly detection).
Hence, anomalies are detected with respect to the given partition,
where the respective instances form their own “group-specific baseline”
or “reference group.” This way allows detecting anomalies that other-
wise would be concealed when performing anomaly detection on all
instances. These “hidden anomalies” can particularly be interesting to
domain experts since the reference groups are defined by the distinct
combinations of values of nominal attributes that are meaningful to
them. Thus, iForestCAD integrates a mixture of nominal and numeric
attributes in a meaningful way.

Performing the transformation according to iForestCAD has the ad-
ditional benefit to ease the interpretation. That is, when knowing an
instance exhibits a high anomaly score, this instance is an anomaly
within its respective reference group without having to know the re-
ference group itself. In other words, for a given instance, information
from a set of attributes is compressed into a single, meaningful score.
These scores can be leveraged as an input attribute, as we demonstrate
it for the detection of fraudulent WC claims. A byproduct of the in-
formation compression is the dimensionality reduction, meaning that
instead of the original |J| only +′J| | 1 (with + <′J J| | 1 | |) attributes are
used for training the classifier.

A clear bottleneck of iForestCAD is the computation of the Cartesian
product in Eq.(5), as the number of resulting data partitions grows
quickly with the distinct combinations of values of selected nominal
attributes. Hence, the selection of nominal attributes for iForestCAD may
be limited. Blindly selecting all nominal attributes for iFor-
estCAD—which is not recommended—most likely prohibits the algo-
rithm from producing scores, since the Cartesian product becomes
quickly very large and hence many data partitions likely have (near)
zero instances. Because of this reason, it is recommended that the se-
lection of attributes is driven by expert knowledge, and if necessary
apply categorization methods as pointed out in the previous section.

However, if it is meaningful to domain experts, iForestCAD can be exe-
cuted more than once on the same data set but based on different
subsets of attributes.

3.4. Proof of concept

In this subsection, the proposed iForestCAD approach is showcased
on an artificial yet realistic data set. In particular, we look at intuitive
attributes that are typically found in a life insurance data set. Important
factors for life insurance organizations to determine the rate class are
height, weight, and gender of a person. Fortunately, research literature
provides parameter estimates for data distributions, making the crea-
tion of artificial values of these three attributes straightforward. More
specifically, a representative sample from accurate bivariate distribu-
tions for height and weight of men and women in the US is generated,
where distribution parameters were inferred from a large population
survey [41]. Note that [42] and[43], for example, also used the same
generative model to produce such artificial data. Table 3 shows a
glimpse of a realization of 200 randomly drawn instances each with
three attribute measurements for gender (nominal), weight in kilo-
grams (numeric), and height in centimeters (numeric).3

Clearly, in this demonstration, it is assumed that these three attri-
butes are meaningful to users in the context of a life insurance business
application.

Plotting the data reveals that the data distributions of male and
female heavily overlap (Fig. 3a). For example, observation 156 (128) is
the tallest woman (the shortest man), and may be considered as an
interesting peculiarity to the user, yet when data are viewed in their
entirety, this observation does not strike as a peculiarity since it is
concealed by the data of the other gender. This is also evident in the
anomaly scores produced by the iForest trained in the conventional
way, meaning that nominal attributes are discarded and no particular
data partitioning is performed in the anomaly detection exercise
(Fig. 3b).

However, in settings such as fraud, one desires to also include in-
formation of nominal attributes in a meaningful way with the aim to
further improve the detection performance and present anomalies to
users that might be more interesting to them. In particular, we de-
monstrate how iForestCAD enables users to detect hidden anomalies
leveraging information of the nominal gender attribute. To enable the
detection of such instances, we carry out the first three steps of pro-
posed iForestCAD approach with Snom={1} and Snum={2,3}. Hence,
there is only one relevant value set, namely V 1= {female,male}. The
Cartesian product then becomes a set of two 1-tuples: K={(female),
(male)}, which results in two data partitions split according to female
and male with |D(female)|= 104 and |D(male)|= 96. Next, conditional

Table 3
Representative sample from bivariate distributions for height and weight of
men and women in the US.

j=1 j=2 j=3
Gender Weight [kg] Height [cm]

i=1 Female 58.9 157.7
i=2 Male 82.5 173.4
⋮ ⋮ ⋮ ⋮
i=199 Male 77.1 177.8
i=200 Female 80.2 173.7

3 It should be noted that this demonstration focuses on the detection of hidden
anomalies by performing step 1 to step 3 of the proposed iForestCAD approach. Hence, it
merely performs conditional anomaly detection. The final step of classifier training is
omitted due to the fact that arbitrary assignment of fraud labels to instances is inevitable
for this illustrative data set, ergo pointless to demonstrate it. Also, for a better compar-
ison, the number of instances in every data partition will be smaller than iForest's default
value of ψ=256. This merely means that iForest does not apply sub-sampling and is
fitted on the complete data (partition).

E. Stripling et al. Decision Support Systems xxx (xxxx) xxx–xxx

8



anomaly detection is performed by training an iForest on each data
partition and examining the anomaly scores. Evidently, the emerged
pattern deviates from the previous analysis, which now clearly identi-
fies instance 156 (128) as an outlying observation (Fig. 3c and d).

The comparison of the anomaly scores, as well as the resulting
ranks, further substantiates that the inclusion of nominal attributes, as
in the iForestCAD approach, is highly beneficial to detect anomalies
which would otherwise remain undetected (Table 4). For example,
observation 156 (128) has an anomaly score of − 0.0709 (− 0.0067)
and receives a rank of 120 (41) with the regular iForest. Thus, these
observations would likely be regarded as normal rather than anom-
alous. On the other hand, the proposed iForestCAD approach (anomaly
scores in the gray area) shows strong indication that this observation is

anomalous and moves its rank from 120 (41) upwards to 5 (3). This
discrepancy in scores and ranks evidently demonstrates that such
hidden anomalies would have likely remained undetected with the
regular iForest. Yet, it is also important to note that anomaly scores and
ranks of the global anomalies stay more or less unchanged, see, for
instance, observation 3 (the tallest man) and 143 (the shortest woman).
Despite performing a conditional anomaly detection, the iForestCAD
anomaly scores continue to coherently reflect global anomalies, there-
fore one may argue that our proposed iForestCAD approach extends the
detection capabilities of the regular iForest.

An alternative approach to incorporate nominal attributes into the
anomaly detection is to establish an arbitrary ordering and map nom-
inal values to numeric ones, as proposed by [44]. The authors called it

Fig. 3. Conditional anomaly detection. (a) Representative sample (n=200) from bivariate distributions for height and weight of men ( ) and women ( ) in the US
with superimposed contour lines of the density estimation for each gender. (b) Anomaly scores of iForest trained according to the conventional approach. A lighter
color implies a higher anomaly indication. (c) Anomaly scores of iForest trained on data of men only (|D(male)| = 96). (d) Anomaly scores of iForest trained on data of
women only (|D(female)| = 104). The depicted numbers in the plots are the indices of the instances. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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the extended isolation forest, which we abbreviate as iForestext. Thus,
following this approach, the values “female” and “male” in our example
may be mapped to the numeric values 0 and 1, respectively. The out-
come of this analysis for selected instances is shown in the iForestext
column of Table 4. It can be noted that this method assigns more or less
similar ranks to most of the selected instances as iForestCAD, except for
the two hidden anomalies i=23 and i=148 the ranks are almost twice
as large.

Despite that an outcome is obtained similar to iForestCAD on this
particular data set, we argue that the iForestext method by [44] for
incorporating nominal attributes is inadequate on the conceptional
level. Recall that an attribute is chosen randomly at each node in the
construction of an iTree. Hence, when considering the current example,
the information that data are generated from different distributions is
not properly processed since the iTree will make splits that are de-
termined from both male and female data when a numeric attribute is
selected. Thus, the extended isolation forest [44] can be viewed as a
compromise between the iForest (only numeric attributes) and iFor-
estCAD (strict distinction between nominal values). Due to the separate
anomaly detection on nonoverlapping data partitions in iForestCAD,
anomalies are detected strictly with respect to their own reference
group; whereas the iForestext stochastically jumps across the mapped
values of the nominal attribute and thus blurs the relationship to the
reference group. Undoubtedly, this has an influence on the construction
of iTrees, and hence on the resulting anomaly scores. An undesired
consequence of such simple nominal-to-numeric mapping is that in-
stances which are assigned the lowest or highest mapped value receive
a higher anomaly score merely because of the value arrangement in
space (Fig. 4). This is, of course, inadequate on the conceptual level
since the mapping from nominal to numeric values is arbitrary.

Thus, we can conclude the proof of concept example with iForestCAD
enabling users to identify hidden anomalies by means of conditional
anomaly detection, thereby processing nominal attributes in an ade-
quate manner.

4. Case study: workers' compensation fraud detection

In this section, we empirically evaluate iForestCAD on real-world WC
claims received from a large European insurance organization. In par-
ticular, we describe the incorporation of nominal attributes according

to iForestCAD that is meaningful to the special investigation unit (SIU) in
order to enhance the detection of fraudulent WC claims.

4.1. Workers' compensation insurance claim data

The data set consists of n=9572 real-world WC insurance claims
from 2011 to 2015 with d=23 predictor attributes and a binary re-
sponse variable indicating whether or not a claim is fraudulent
(Table 5).

Due to confidentiality reasons, only three attributes are discussed
that one would expect to find in a data set given the nature of the

Table 4
Anomaly scores of selected instances.

Note: Anomaly scores lie in [−0.5, 0.5]. An instance with a score close to the upper bound is regarded as an anomaly. The ranks of the instances are in
parentheses.The iForestext, an alternative approach proposed in the literature, is built on three numeric attributes, where “female” and “male” are mapped to 0 and 1,
respectively. The gray area indicates the outcome of the proposed iForestCAD approach. A large deviation in scores (ranks) evidently shows that the proposed
approach identifies instances that would otherwise remain undetected (marked as hidden anomaly) with the regular iForest.

Fig. 4. Arbitrary mapping of values of two nominal attributes, each with five
values, to numeric values {0,1,2,3,4}, where instances are uniformly dis-
tributed over the space. Instances at the corners receive a higher anomaly scores
(lighter color) merely because of the spatial arrangement. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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insurance, i.e., type of injury the claimant sustained from the work
accident (X1), industry sector of the policyholder (X2), and the duration
of incapacity registered in the WC system (X3).4

The former two are nominal attributes, where X1 has values such
asfractionand concussion, and X2 exhibits values such as constructionand
manufacturing. The latter attribute, X3, is a metric measure for the time
period the claimant is declared to be incapable of resuming work (i.e.,
the estimated time required to recovery from the injury registered in
the WC system). Needless to say, this is the time period in which the
claimant receives WC benefits.

Discussions with the SIU revealed the challenging nature of proving
a WC claim fraudulent. Definitive proof is required in order to prose-
cute fraudster in lengthy court proceedings. Hence, the SIU can only in
a few number of cases be absolutely certain that a claim is fraudulent.
Of course, the insurance company is highly interested in detecting and
preventing fraud as early as possible. For this reason, claims with a high
suspicion to be fraudulent have been assigned a fraud label by the SIU.
Yet, the target variable Y still remains highly unbalanced. On top of this,
the sheer amount of claims filed in a given time period makes it very
challenging for the SIU to check each claim. One may be fairly certain
that the assignment of fraud labels is nearly flawless, but this is not
necessarily true for the assignment of non-fraud labels. In other words,
it is possible that there is a number of claims in which fraudsters
managed to stay undetected, and thus incorrect labels are assigned to
those claims. We refer to this situation as noise in the fraud labels,
which can similarly be observed in other lines of insurance (see,
e.g., [45] and[46]).

4.2. Motivation for conditional anomaly detection

This subsection describes the first three steps of the proposed
iForestCAD approach in order to motivate the choices made under the
guidance of expert knowledge. The accumulated knowledge of the
private investigators (PIs) strongly suggests that the recovery time (i.e.,
X3 in Table 5) is often a good indicator, in combination with other
information, for suspicious behavior. In particular, it is believed that
people working in some sectors are more inclined to perpetrate fraud
than in others, as well as fraudsters unduly prolong the recovery period
in which they receive WC benefits. This is in line with findings reported
in the literature (see Section 2.1).

Hence, the task that poses upon the data scientist can be stated as
follows: Identify the WC claims that exhibit an abnormal recovery time
given the injury type and sector in which the claimant performs his or her
occupational duties. This task can be broken down in several subtasks:

• Determine whether a given recovery time is anomalous in an auto-
matic, data-driven manner.

• Take thereby into account the type of injury, since some injuries
require a longer recovery time than others.

• Adjust for the injury type prevalence across the various sectors.

Our proposed iForestCAD approach equips the data scientist with a
methodology that allows him or her to successfully fulfill this task.
More specifically, we carry out the first three steps of iForestCAD with
Snom={1,2} and Snum={3} to perform conditional anomaly detection.
This allows for a data-driven determination of whether a claim pos-
sesses an anomalous duration of incapacity given its reference groups
(e.g., all claimants that reported a fraction and work in construction).
Note that, under the guidance of expert knowledge, we regrouped the
values of the nominal attributes, X1 and X2, such that the number of
instances in each data partition is sufficiently high, i.e., ≿D ψ| |k with
ψ=256 for all k ∈ K.

4.3. Preparation for WC fraud detection study

For this study, we consider the following common binary classifi-
cation methods: logistic regression, decision tree (CART), random
forest, SVM with linear kernel, and SVM with radial basis function
(RBF) kernel. Data preparations are tailored to the specific classifier.
That is, attributes are processed appropriately for machine learning
methods such as SVM, which require standardized input (i.e., attributes
with zero mean and unit variance). Weights inversely proportional to
the class frequencies in the input data are assigned to address the class
imbalance problem, as it can be activated for each classifier in the
scikit-learn library.

Detection performance is measured by means of the area under the
ROC curve (AUROC) and the area under the Precision-Recall curve
(AUPR) through a stratified 10-fold cross-validation (CV) procedure.
We made sure that the performances are evaluated on the exact same
resamples for all classification models. For classifiers like SVM that
require hyperparameter tuning, the stratified 10-fold CV procedure in
combination with grid search is applied to find the optimal hy-
perparameter values in terms of the respective classification perfor-
mance measure.

4.4. Results

Out of 20, 16 of the AUROC values are at the level of 80% or above
(Table 6). There is a tendency that the black box models (i.e., random
forest, linear SVM, and RBF SVM) possess a higher predictive power,
yet the difference to the white box logistic model is marginal in each
condition. For the given fraud data set, there is no clear indication that
applying weighting helps to cope with the class imbalance. A clear
pattern emerges when classifiers are trained with different attribute sets
(marked as ① and ② in Table 6), where the difference between attribute
set ① and ② is that the latter contains the conditional anomaly score
attribute produced according to the proposed iForestCAD approach.
When trained with set ①, the AUROC performance is higher within the
classifiers compared to when trained with attribute set ②. For the latter,
the numeric attribute holding the iForestCAD anomaly scores is identi-
fied to have the highest discriminative power according to all classifiers
that inherently provide indication for variable importance.

A similar result is obtained when considering the AUPR perfor-
mance (Table 7), except that RBF SVM's performance is practically
constant no matter under what condition it is trained. It is also inter-
esting that CART is consistently the worst model in terms of AUROC,
yet, at the same time, it is the second best model in terms of AUPR in
three out of four cases. However, as it can be expected from an unstable
learner, CART has the largest standard error in all scenarios.

4.5. Discussion

The AUROC values presented in Table 6 are relatively high for most
classifiers, indicating a good detection performance of fraudulent WC
claims. However, mere AUROC performance should not be the only

Table 5
WC insurance claim data.

Variable Type Description

X1 Nominal Type of injury
X2 Nominal Policyholder's industry sector
X3 Numeric Registered duration of incapacity
X4–X23 Numeric Claim-related data, personal data, sociodemographic data
Y Binary Target variable

Note: Data set with n=9572 real-world WC insurance claims (2011–2015)
received from a large European insurance organization. Due to confidentiality
reasons, detailed claim-related, personal, and sociodemographic data (i.e.,
X4–X23) are not disclosed.

4 Note that, for the same reason, the presentation of results in subsequent subsections is
limited.
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evaluation criterion to assess the fraud detection approach. Other
evaluation criteria are, for example, the ease of interpretation and the
acceptance of the modeling approach by stakeholders. These criteria
are less straightforward to quantify numerically.

Close collaboration with the insurer's SIU showed that the proposed
iForestCAD approach finds a higher appreciation among the PIs. That is
mainly because of the core idea of detecting anomalous behavior within
reference groups that are meaningful and interesting to them. The
iForestCAD approach was ultimately validated in a practical setting by
using the elected classifier to predict fraudulent WC claims. The pre-
dictions were in turn evaluated by the PIs to assess the quality of the
fraud leads. No detailed information can be revealed about the exact
performance, but a large proportion of previously undetected, suspi-
cious claims were identified. Additionally, the study outcome con-
firmed that the fraud labels are indeed noisy. That is, some WC claims
managed to stay undetected and thus were assigned the incorrect label

of non-fraud.
To relate back to the results in Table 6, an explanation of the lower

AUROC performance of iForestCAD is likely due to the different ranking
result. Note that the statistical interpretation of the AUROC is as fol-
lows [47]: “the [area under the ROC curve] of a classifier is equivalent
to the probability that the classifier will rank a randomly chosen posi-
tive instance higher than a randomly chosen negative instance.” In this
study, a positive instance is a WC claim with a fraud label. The cor-
nerstone of the iForestCAD approach is the creation of a new attribute
that assigns more granular anomaly scores to instances which conse-
quently affects the inner construction mechanisms of the classifiers. As
demonstrated in the proof of concept example, observations marked as
hidden anomalies have very different anomaly scores. When taken the
iForestCAD anomaly scores as input and keeping the noise in the fraud
labels in mind, it is likely that more claims with a non-fraud label, but
are intrinsically suspicious or anomalous, are ranked higher by the
classifier. As a result, the classification performance receives a lower
AUROC value, because for those claims the incorrect label is assigned.

As for the AUPR, it represents the average precision of a classifier
across different classification thresholds. The advantage of using AUPR
over common measures such as precision, recall, and the F-measure is
that it is a threshold independent performance measure (like AUROC).
With the AUPR performance in Table 7, we observe a similar perfor-
mance decrease as with the AUROC due to the same reason of claim
ranking and noisy fraud labels. However, as confirmed by the SIU, the
practical application of iForestCAD exhibits a high detection perfor-
mance of suspicious claims that previously remained undetected, which
contributes to the novelty criterion defined in Section 1. Recall that
iForest is an unsupervised anomaly detection algorithm, meaning that it
does not require label information for model construction. Thus, our
proposed iForestCAD approach has a built-in unsupervised component
combined with powerful supervised classification techniques. The
combination of both supervised and unsupervised learning concepts
provides an explanation for the high fraud detection rate when the
proposed approach was put into practice.

5. Conclusions and future work

In this paper, we presented a case study on WC insurance fraud in
which we analyzed real-world claims received from a large European
insurance organization. Accumulated expert knowledge strongly sug-
gests that disproportional duration of incapacity is often a strong in-
dicator for fraudulent behavior. It is evident that the recovery time
depends on the type of injury, but also that the prevalence of certain
injuries which varies across the industry sectors.

We presented an isolation-based conditional anomaly detection
approach, iForestCAD, that integrates expert knowledge by processing
information stored in nominal attributes in a meaningful way. In par-
ticular, the proposed approach allows zooming in to specific subgroups
(e.g., people working in construction and sustained a fraction) and
apply iForest to detect abnormally long durations conditional on a
group of people that share the same (nominal) characteristics. The re-
turned iForestCAD anomaly scores of our proposed approach permit a
straightforward interpretation that is easy to communicate to stake-
holders. By using the iForestCAD anomaly scores as input for training a
binary classifier, we consistently found that the score attribute was
selected to be the most important predictor variable for the detection of
fraudulent WC claims. The usage of powerful supervised classification
models resulted in high AUROC values of at least 80% for most clas-
sifiers. Additionally, in Section 3.4, we demonstrated that our proposed
iForestCAD approach is capable of detecting hidden anomalies.

In the collaboration with the insurer's SIU, it has been confirmed
that the fraud labels are noisy, meaning that fraudulent claims were
assigned a non-fraud label. However, with the aid of the iForestCAD
anomaly scores, these claims were ranked higher on the suspicion list to
be fraudulent. As it turned out in the case study, an acceptable large

Table 6
Cross-validated AUROC performances.

① Without iForestCAD anomaly
scores

② With iForestCAD anomaly
scores

Classifier Without
weights

With weights Without
weights

With weights

Logistic 0.8766
(0.0225)

0.8612
(0.0233)

0.8068
(0.0199)

0.8030
(0.0190)

CART 0.7569
(0.0409)

0.8019
(0.0358)

0.7237
(0.0233)

0.6305
(0.0428)

Random
forest

0.8705
(0.0232)

0.8725
(0.0188)

0.8027
(0.0213)

0.8100
(0.0158)

Linear SVM 0.8772
(0.0225)

0.8584
(0.0235)

0.8075
(0.0192)

0.8038
(0.0190)

RBF SVM 0.8375
(0.0230)

0.8721
(0.0204)

0.7798
(0.0174)

0.8174
(0.0175)

Note: Average AUROC performances (standard errors in parentheses) computed
based on the stratified 10-fold CV procedure. Two sets of attributes are used to
train the classifiers: ① corresponds to the set in which no attribute transfor-
mation is performed according to the proposed iForestCAD approach; whereas ②
corresponds to the set in which it is performed. Weighting is used to cope with
the class imbalance problem, where weights are inversely proportional to the
class frequencies in the input data. A bold (italic) number indicates the best
(second best) performance within a condition.

Table 7
Cross-validated AUPR performances.

① Without iForestCAD anomaly
scores

② With iForestCAD anomaly
scores

Classifier Without
weights

With weights Without
weights

With weights

Logistic 0.1286
(0.0354)

0.1245
(0.0341)

0.0361
(0.0095)

0.0388
(0.0094)

CART 0.1338
(0.0394)

0.2616
(0.0466)

0.0671
(0.0265)

0.0956
(0.0295)

Random
forest

0.1451
(0.0356)

0.1166
(0.0360)

0.0313
(0.0061)

0.0489
(0.0181)

Linear SVM 0.1290
(0.0360)

0.1236
(0.0341)

0.0365
(0.0097)

0.0382
(0.0089)

RBF SVM 0.5032
(0.0001)

0.5038
(0.0001)

0.5031
(0.0001)

0.5031
(0.0001)

Note: Average AUPR performances (standard errors in parentheses) computed
based on the stratified 10-fold CV procedure. Two sets of attributes are used to
train the classifiers: ① corresponds to the set in which no attribute transfor-
mation is performed according to the proposed iForestCAD approach; whereas ②
corresponds to the set in which it is performed. Weighting is used to cope with
the class imbalance problem, where weights are inversely proportional to the
class frequencies in the input data. A bold (italic) number indicates the best
(second best) performance within a condition.
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proportion of claims proved to be new and interesting to the PIs.
Other data science projects might not have the luxury of an easy

access to supporting domain experts. For future work, we therefore
intend to develop strategies for the automatic selection of attributes,
create appropriate categorization strategies, as well as investigate sui-
table data clustering/partitioning methods for iForestCAD. Once such
automatic mechanisms are in place, we plan to perform a complexity
analysis and study the scalability aspects of the algorithm.
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