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Abstract

In credit scoring, feature selection aims at removing irrelevant data to improve the performance of the scorecard and its inter-
pretability. Standard techniques treat feature selection as a single-objective task and rely on statistical criteria such as correlation.
Recent studies suggest that using profit-based indicators may improve the quality of scoring models for businesses. We extend
the use of profit measures to feature selection and develop a multi-objective wrapper framework based on the NSGA-II genetic
algorithm with two fitness functions: the Expected Maximum Profit (EMP) and the number of features. Experiments on multiple
credit scoring data sets demonstrate that the proposed approach develops scorecards that can yield a higher expected profit using
fewer features than conventional feature selection strategies.
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1. Introduction

Credit scoring refers to the use of statistical models that guide
managerial decisions in the retail credit sector [11]. This sector
has gained a considerable economic value: in 2017, consumer
credit outstandings reached AC1,195 billion in EU1. In the US,
the total outstanding consumer credit amount exceeded $3,831
billion2. At the same time, the delinquency rate on consumer
loans by commercial banks experienced a growth of more than
11% since 20153. The rise of default rates emphasizes the im-
portance of accurately deciding upon loan provisioning, which
is a task of credit scoring. To distinguish defaulters and non-
defaulters, financial institutions deploy binary scoring models
(i.e., scorecards) that predict the probability of default (PD) –
an applicant’s willingness and ability to repay debt.

Data-driven models, which are used to score applicants, re-
quire financial institutions to face costs of gathering and stor-
ing large amounts of data on customer behavior. At the same
time, companies are required to comply with regulations (i.e.,
the Basel Accords and IFRS 9) that enforce comprehensible
scoring models. By removing irrelevant and redundant features,
feature selection can reduce costs and improve the model per-
formance and its comprehensibility (interpretability).

Feature selection can be considered as a multi-objective
problem with conflicting goals. In credit scoring, these goals
are: increasing the model profitability, reducing the data acqui-
sition costs and improving the interpretability of the model. Yet,

1Source: https://www.ca-consumerfinance.com/en/Espaces/Press-
corner/Panorama-du-credit-a-la-consommation-en-Europe/Overview-
of-consumer-credit-in-Europe-in-2016-Strong-growth-in-the-European-
consumer-credit-market

2Source: https://www.federalreserve.gov/releases/g19/current/
3Source: https://fred.stlouisfed.org/series/DRCLACBS

most existing approaches in machine learning literature treat
feature selection as a single-objective task [5, 10, 39].

Standard feature selection techniques use statistical criteria
to identify the optimal subset of features. Recent credit scor-
ing literature criticized a widespread practice of using standard
performance measures such as area under the receiver operating
characteristic curve (AUC) for evaluating scoring models [17]
and call for profit-based performance indicators [14, 36]. This
finding stresses the importance of using value-oriented feature
selection strategies that identify the optimal subset of features
in a profit-maximizing manner.

The goal of this paper is to design a feature selection frame-
work for credit scoring that overcomes some of the draw-
backs of traditional feature selection techniques. The proposed
method selects features in a profit-maximizing manner rather
than relying on statistical measures and addresses both prof-
itability and comprehensibility with multi-criteria optimiza-
tion. We use the recently developed Expected Maximum Profit
(EMP) measure to evaluate the model profitability [36]. We
also consider the number of features as an indicator of model
comprehensibility and data-related costs: minimizing the num-
ber of features reduces costs on data acquisition and storage
and makes the model more comprehensible [28]. To simultane-
ously address both objectives, we employ a multi-objective fea-
ture selection framework based on the non-dominated sorting-
based genetic algorithm (NSGA-II) [12] with two fitness func-
tions: EMP and the number of features. The proposed method
generates a frontier of non-dominated solutions, which repre-
sents a trade-off between two objectives and can, therefore, aid
decision-makers in selecting a suitable solution. To validate
the effectiveness of our approach, we conduct empirical exper-
iments on ten real-world credit scoring data sets.

The contribution of this paper is three-fold. First, we intro-
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duce a profit maximization framework to the feature selection
stage by using the EMP measure as a fitness function. Sec-
ond, we employ a multi-objective feature selection approach
based on the NSGA-II algorithm that was not previously con-
sidered in the credit scoring literature. Third, we provide em-
pirical evidence that the proposed multi-objective feature selec-
tion method identifies feature subsets that deliver the same or
higher expected profit using fewer features than conventional
feature selection strategies. The results of our study imply that
the standard practice of using single-objective feature selection
methods misses promising solutions that can be identified by
the suggested multi-criteria feature selection framework.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related literature on feature selection methods
and describes previous work on profit-driven credit scoring. In
Section 3, we present and explain the proposed multi-objective
feature selection framework. Section 4 describes our experi-
mental setup and presents the empirical results. In Section 5,
we discuss the main conclusions of our study.

2. Theoretical Background

2.1. Feature Selection

Feature selection is a dimensionality reduction technique that
aims at selecting a subset of features from the input data by
removing irrelevant, redundant or noisy features while main-
taining the model performance [15]. Feature selection methods
split into three groups: filters, wrappers and embedded methods
[16].

Filters perform feature selection based on some general data
characteristics before training the model. On the first stage,
all features are ranked according to a certain criterion that de-
scribes the relevance of a particular feature. Popular measures
include feature-to-target correlation [5], information gain [10],
Fisher score [8] and others. In the second stage, a certain per-
centage of the top-ranked features is selected, whereas features
with lower importance are dropped from the model. Compared
to other feature selection strategies, filters are fast and efficient.
However, they were shown to perform poorly in benchmark
studies [16].

Wrappers are algorithms that iteratively process different fea-
ture subsets and select the optimal subset based on the model
performance. Since evaluating all possible feature combina-
tions is computationally expensive, research has suggested mul-
tiple heuristic search strategies. Popular approaches are sequen-
tial forward selection (SFS) and sequential backward selection
(SBS) [16]. SFS starts with an empty model and iteratively adds
features, selecting the one which brings the largest performance
gain, whereas SBS starts with a full set of features and elim-
inates those contributing the least to the model performance.
The search is continued until there is no further improvement.
Another strategy relies on evolutionary algorithms such as ge-
netic algorithms (GA), particle swarm optimization (PSO) and
others [40]. GAs operate on a population of individuals, where
each individual represents a model with binary genes indicat-
ing the inclusion of specific features. At each generation, a

new population is created by selecting individuals according to
their fitness (model performance), recombining them together
and undergoing mutation. The model with the highest fitness is
selected after running the algorithm for multiple generations.

Embedded methods conduct feature selection simultaneously
with the model training. One of the popular approaches is L1-
regularized regression that performs feature selection by assign-
ing zero coefficients to irrelevant features in the process of the
model development [37]. The main drawback of embedded
methods is that they can only be applied within a specific model
class.

Most existing feature selection techniques consider feature
selection as a single-objective task. However, conflicting goals
of feature selection (optimizing the model performance and
minimizing the number of selected features) suggest that it can
be treated as a multi-objective optimization problem. The liter-
ature on multi-objective feature selection is limited compared to
the research on conventional single-objective techniques. Nev-
ertheless, there exists a number of attempts to employ the multi-
criteria optimization frameworks.

One of the approaches to perform multi-criteria feature se-
lection is to convert a problem into a single-objective task by
aggregating the weighted objectives into a single fitness func-
tion. For instance, Boln-Canedo and colleagues propose adding
a new term to the evaluation function of well-known filter
methods such as correlation-based feature selection, Minimal-
Redundancy-Maximal-Relevance and RelieF [6, 7]. The new
term represents a number of features or their cost, which en-
sures that two objectives are included in the fitness function. A
major downside of this approach is the requirement to explicitly
assign weights to objectives, which is a challenging task given
uncertainty and different scales of the objectives.

Another approach to account for multiple objectives is to
consider a single-objective optimization problem with a bud-
get constraint. In some studies, researchers suggest minimiz-
ing the number of features given that a certain level of perfor-
mance is achieved [3, 29], whereas others optimize predictive
performance under the budget constraint for the cost of included
features [26]. Both these directions require setting a specific
threshold to introduce a budget constraint, either for the model
performance or for the number of used features. Therefore, the
application of this approach is problematic in cases with no hard
budget constraints.

A more promising strategy is to consider objectives sepa-
rately and look for a set of non-dominated solutions that are
optimal in terms of multiple objectives instead of focusing on a
single solution. The set of non-dominated points is also known
as the Pareto efficient frontier and represents points, for which
one can not improve on one objective without decreasing the
other. Literature proposed multi-objective modifications of the
well-known evolutionary algorithms such as GA and PSO that
rely on multiple fitness functions to perform a search of the non-
dominated solutions. Emmanouilidis et al. used a two-objective
genetic algorithm to perform feature selection that minimizes
the number of features and optimizes the error rate or RMSE for
classification and regression on different data sets [13]. More
recent studies use modified versions of multi-objective genetic
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algorithms including the Strength Pareto Evolutionary Algo-
rithm (SEPA-II) and the Non-Dominated Sorting Genetic Al-
gorithm (NSGA-II) [32, 19] to perform feature selection with
the same objectives. Research has also suggested using other
evolutionary algorithms such as PSO [38] and Artificial Bee
Colony (ABC) [18].

To the best of our knowledge, research on value-driven fea-
ture selection in credit scoring is currently limited to a single-
objective embedded regularization framework for support vec-
tor machines (SVM) [23, 24]. Recent benchmarking studies in
credit scoring have shown that SVM performs poorly in com-
parison with other classifiers [21]. Given these results, develop-
ing a profit-driven feature selection approach that is not limited
to SVM and optimizes both profitability and model comprehen-
sibility contributes to the literature.

2.2. Profit-Oriented Credit Scoring

The credit scoring task is commonly expressed as a classi-
fication problem, where a predictive model learns to differen-
tiate between bad risks (defaulters) and good risks (repayers).
Traditional machine learning algorithms are designed to opti-
mize statistical measures such as mean squared error. In re-
cent years, credit scoring literature proposed different strategies
to introduce the profit maximization to the scorecard develop-
ment. One approach is to modify the target variable to reflect
profitability. For instance, Serrano-Cinca et al. suggest using
the internal rate of return based on the loan interest [30]. Fin-
lay proposes estimating a contribution of each applicant to the
profit of the financial institution [14]. Both these measures im-
ply replacing a binary default indicator by a continuous target
variable and therefore transform a classification problem into a
regression task.

Another approach toward profit scoring is based on using
profit-related performance measures for model selection. Re-
cently, Verbraken and colleagues suggested the Expected Max-
imum Profit (EMP) measure [36]. The calculation of EMP is
based on costs and benefits that arise as a result of the actions
the company undertakes. To illustrate the calculation process,
we follow their notation and label defaulters as class 0 and non-
defaulters as class 1. The scorecard assigns a score to each
applicant that expresses the probability of default. Applicants
are then considered as bad risks and rejected if the estimated
credit score exceeds a cutoff value t. Table 1 provides a con-
fusion matrix with the corresponding class probabilities, where
πi are prior probabilities of good and bad loans, and Fi(t) are
predicted cumulative density functions of the scores of class i.

The EMP measure assumes that in the basic scenario no
scoring mechanism is implemented and therefore all loans are
granted. Hence, if an applicant is predicted as a good risk, no
additional costs or benefits are observed. In contrast, if an ap-
plicant is predicted to be a defaulter, the company faces cost C
in case of an incorrect prediction and gets benefit B from an ac-
curate prediction. The methodology to calculate parameters B
and C was developed by [9].

Parameter B is the benefit from correctly identifying a bad
risk. By not providing a loan to a defaulter, the company saves

Table 1
Confusion Matrix with Costs

Predicted Label
Actual Label Bad risk Good risk

Bad risk
π0F0(t) π0(1 − F0(t))

benefit: B cost: 0

Good risk
π1F1(t) π1(1 − F1(t))
cost: C cost: 0

money that would be lost in case of issuing the loan. This
amount is the expected loss in case of default:

B =
LGD · EAD

A
, (1)

where LGD refers to the loss given default, EAD is the ex-
posure at default, and A is the principal of the loan [25]. Since
recovery rates for defaulted loans vary heavily [31], B is con-
sidered as a random variable, which can take values between 0
and 1. The following probability distribution is assumed:

• B = 0 with probability p0 (a customer repays the entire
loan)

• B = 1 with probability p1 (a customer defaults on the en-
tire loan)

• B follows a uniform distribution in (0, 1) with F(B) = 1 −
p0 − p1

Parameter C is the cost of the incorrect classification of good
risks. By rejecting a good customer, the company looses money
that could be earned as return on investment:

C = ROI =
I
A
, (2)

where I is the total interest. Verbraken et al. [36] treat pa-
rameter C as constant and that we follow their approach in this
paper. Given these parameters, the EMP measure can be com-
puted as:

EMP =

∫ 1

0

[
B · π0F0(t) −C · π1F1(t)

]
f (B)d(B) (3)

EMP can be interpreted as the incremental profit from de-
ciding on credit applications using a scorecard compared to a
baseline scenario where credits are granted without screening.
In this paper, we use the EMP criterion to measure the scorecard
profitability and rely on it as one of the optimization objectives.

The literature on profit-oriented credit scoring focuses on
model selection and parameter estimation but does not consider
the feature selection stage. Current research on profit-driven
feature selection in credit scoring is limited to embedded regu-
larization framework for SVMs [23, 24]. This paper proposes
a model-agnostic profit-driven feature selection approach that
optimizes both profitability and model comprehensibility.
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3. Proposed Profit-Driven Feature Selection Approach

We treat feature selection as a multi-objective problem with
two goals: a) maximizing the performance of the scorecard; b)
minimizing the number of used features used by the model. We
propose a wrapper method based on the binary multi-objective
nondominated sorting based genetic algorithm (NSGA-II) with
two fitness functions: EMP and number of features. The sug-
gested approach addresses two issues with traditional feature
selection techniques in credit scoring: it relies on a profit-driven
indicator rather than statistical performance measures and ad-
dresses both profitability and model comprehensibility by em-
ploying multi-objective optimization.

NSGA-II is a multi-objective evolutionary algorithm devel-
oped by [12] to address disadvantages of the previous version of
NSGA [33]. NSGA-II is designed to solve multi-objective opti-
mization problems by finding a set of non-dominated solutions
which form the efficient Pareto frontier. Experiments on differ-
ent test problems have shown that NSGA-II is able to maintain
a better spread of solutions and convergence compared to some
other multi-objective optimizers [12].

NSGA-II consists of three main stages: fast non-dominated
sorting, diversity preservation and population update. First, the
initial population of n individuals is generated with random
gene values. In the case of feature selection, each individual
represents a set of features included in the predictive model.
We code a population of individuals with a set of binary genes
with each gene representing the inclusion of a certain feature in
the scorecard.

Second, we compute fitness values for the considered objec-
tive functions. For each individual in the current population, we
construct a scoring model with a different set of features, which
is defined by the gene values of these individuals. We evalu-
ate the performance of the scorecard in terms of EMP and store
EMP and the number of selected features as two fitness values.

On the next stage, the population goes through the usual ge-
netic operators: selection, crossover and mutation. The selec-
tion is performed with a binary tournament method based on the
crowded comparison operator. First, we sort the population by
a non-domination rank – the number of individuals dominated
by a given solution in terms of the considered objective func-
tions. Next, individuals with the same non-domination ranks
are sorted by their crowding distance – the average distance of
two solutions on either side of this individual along each of the
objectives. Next, one-point crossover is applied to the remain-
ing population. Gene values of the child are computed as a
weighted average of the gene values of the parents. In a bi-
nary NSGA-II, which is the focus of this paper, a one-point
crossover operator simply copies parents’ genes if they are the
same and randomly chooses a binary value for the conflicting
genes. Finally, each gene of the child is flipped with a mutation
probability m. These operations are performed until the size of
the offspring population reaches n.

After applying all genetic operations, both parents and chil-
dren are merged into the new population of size 2n to ensure
elitism. The population is again sorted according to the non-
domination and crowding distance. After the sorting is com-

Table 2
Credit Scoring Data Sets

Data Label Sample Size Num. Features∗ Default Rate
australian 690 42 0.4449
german 1,000 61 0.3000
thomas 1,225 28 0.2637
bene1 3,123 83 0.3333
hmeq 5,960 20 0.1995
bene2 7,190 28 0.3000
uk 30,000 51 0.0400
lending club 43,344 206 0.1351
pakdd 50,000 373 0.2608
gmsc 150,000 68 0.0668
∗ Number of features after data preprocessing (see Section 4.2)

plete, only the top n individuals are selected to proceed to the
next stage. This approach helps the algorithm to construct a uni-
formly spread-out Pareto-optimal frontier by eliminating solu-
tions that are either dominated or located in the crowded regions
of the frontier.

The NSGA-II algorithm was previously used for feature se-
lection in fields not related to credit risk. The fitness functions
considered in the literature are the number of features and statis-
tical performance measures such as error rate or mean squared
error [19, 27, 32]. In this paper, we rely on the NSGA-II al-
gorithm to perform multi-objective feature selection for credit
scoring. The central novelty of our framework is the use of a
profit measure as one of the fitness functions as well as the area
of application.

4. Experimental Results

4.1. Data Description

The empirical evaluations are based on ten retail credit scor-
ing data sets coming from different sources. Data sets aus-
tralian and german stem from the UCI Repository [22]. The
data sets pakdd, lending club and gmsc were provided by dif-
ferent companies for the data mining competitions on PAKDD
and Kaggle platforms. Data sets bene1, bene2 and uk were col-
lected from financial institutions in the Benelux and UK [1].
The thomas data set is provided by [34]. Finally, hmeq is a data
set on home equity loans collected by [2].

Each of the data sets has a unique set of features describing
the loan applicant (e.g., gender, income) and loan characteris-
tics (e.g., amount, duration). Some data sets also include infor-
mation on previous loans of the applicant. The target variable is
a binary indicator of whether the customer has repaid the loan
or not. Table 2 summarizes the main characteristics of the data
sets.

As suggested by Table 2, most of the data sets are imbal-
anced: default rate fluctuates between 4% and 44%. The sam-
ple size and number of features varies significantly across the
data sets, which suggests that we use a heterogeneous data li-
brary for further analysis.
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Table 3
Parameter Grid

Method* Parameter Candidate values
LR − −

L1 cost 2−10, 2−9.5, 2−9, ... , 210

XG
nrounds 10, 25, 50, 100, 250, 500, 1000, 2500
eta 0.01, 0.03, 0.05
max. depth 1, 3, 5

∗ Abbreviations: LR = logistic regression, L1 = L1-regularized LR,
XG = extreme gradient boosting

4.2. Experimental Setup

Our modeling pipeline consists of several stages. First, each
data set is pre-processed in the same way. We impute miss-
ing values with means for continuous features and with most
frequent values for categorical features. Next, we encode all
categorical features with k − 1 dummies, where k is the number
of unique categories.

After preprocessing, the data sets are randomly partitioned
into two subsets: training sample (70% cases) and holdout sam-
ple (30%). On the training set, we use 4-fold cross-validation
to perform feature selection. Next, we use the whole training
set to train scorecards with the identified feature subsets and
evaluate their performance on the holdout data.

Before performing feature selection, we use a subset of the
training data to tune meta-parameters of the base classifiers. For
each of the considered classification algorithms, we perform a
learning curve analysis to select a suitable sample size by grad-
ually increasing the percentage of the training sample until the
model performance in terms of EMP stops improving. Next, we
use the corresponding subset to perform parameter tuning using
grid search [4]. The full parameter grid is presented in Table 3.

As base classifiers, we use three algorithms: logistic re-
gression, L1-regularized logistic regression and extreme gra-
dient boosting. This allows us to check the robustness of fea-
ture selection results across different predictive algorithms and
see whether internal feature selection in models such as L1-
regularized regression diminishes the value of the proposed
wrapper approach.

After identifying suitable parameter values, we perform fea-
ture selection with the suggested multi-objective framework.
The parameters of NSGA-II (number of generations and pop-
ulation size) were set to 200 based on experiments on subsets
of training data. To evaluate the performance of the proposed
algorithm, we compare it to three traditional feature selection
strategies: SFS, SBS and single-objective GA. We also use a
scorecard that relies on a full set of features as a benchmark. To
ensure a fair comparison, we set the number of generations and
number of individuals for the simple GA to the same values as
for the NSGA-II. All three single-objective benchmarks use the
EMP measure as a fitness function. We only consider wrapper
methods as benchmarks because of their superior performance
compared to other feature selection strategies [16].

4.3. Empirical Results

Figure 1 presents the graph matrix with the performance of
the considered feature selection methods on all ten data sets.
The Pareto frontier identified by the NSGA-II algorithm is
depicted with red markers, whereas blue points represent the
single-objective benchmarks. The black cross marks the base-
line solution which is based on a full model without feature se-
lection. In this section, we focus on the results of experiments
where logistic regression is used as a base model for all meth-
ods. Logistic regression is still widely used in practice [20]
despite that other algorithms have been shown to predict credit
risks more accurately [21]. Results for other base classifiers are
given in Figures A.1 – B.1 in the Appendix.

Results indicate that the size of the NSGA-II Pareto fron-
tier varies across the data library from having just 2 solutions
(thomas and bene1) to 20 feature subsets (pakdd). The small
size of the Pareto frontier can be explained by two reasons: first,
no candidate solutions with a larger number of features demon-
strate better performance during cross-validation; second, some
solutions become dominated when evaluating their quality on
the holdout data and are therefore dropped from the frontier.
Hence, NSGA-II frontiers are likely to contain fewer solutions
on data sets with lower dimensionality and stronger differences
in data distribution between the training and holdout samples.

Overall, the points on NSGA-II frontiers usually populate re-
gions with a smaller number of features compared to bench-
marks. Single-objective methods optimize predictive perfor-
mance but do not account for the number of features. This
does not motivate the algorithm to select smaller feature sub-
sets. Nevertheless, sequential forward selection chooses fewer
features compared to sequential backward elimination on all ten
data sets.

To evaluate the quality of the frontiers and compare them
with the single objective benchmarks, we look at the perfor-
mance of the considered feature selection methods in Table 4.
To facilitate comparison, on each of the Pareto frontiers we se-
lect one solution that achieves the best performance in terms
of EMP (the upper-right point). Then, we compare this solu-
tion with single-objective benchmarks in terms of EMP and k
(number of features).

As Table 4 suggests, the best-performing NSGA-II solution
is based on fewer features compared to the single-objective so-
lutions in 7 out of 10 cases and achieves a higher expected profit
in half of the data sets. There is only one data set where one
of the benchmarks identifies a solution which has both higher
EMP and a lower complexity (gmsc). Tables with the perfor-
mance of feature selection methods using other base classifiers
produce similar results (see Appendix).

To further extend the comparison, consider the example
Pareto frontier depicted in Figure 2. Here, the task is to mini-
mize objective I while maximizing objective II. The frontier is
represented by points A to E, whereas points F, G and H are ex-
ternal solutions. Point H is dominated by points A to D on the
Pareto frontier because they perform better in two objectives.
Points F and G demonstrate better performance in terms of ob-
jective II compared to the best solution from the Pareto frontier
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Table 4
Performance of Feature Selection Methods∗

Data NSGA-II∗∗ GA SBS SFS Full Model
EMP k∗∗∗ EMP k EMP k EMP k EMP k

australian 0.0990 6 0.0953 18 0.0974 40 0.0989 11 0.0974 42
german 0.0477 12 0.0465 24 0.0433 57 0.0443 17 0.0430 61
thomas 0.1730 1 0.1729 14 0.1728 24 0.1728 13 0.1728 28
bene1 0.1457 1 0.1458 40 0.1458 78 0.1458 9 0.1458 83
hmeq 0.0235 12 0.0231 15 0.0232 19 0.0224 11 0.0236 20
bene2 0.1587 2 0.1584 5 0.1583 26 0.1584 5 0.1583 28
uk 0.2593 2 0.2593 17 0.2593 50 0.2593 15 0.2593 51
lending club 0.0008 13 0.0009 77 0.0009 205 0.0006 42 0.0009 206
pakdd 0.0161 160 0.0165 370 0.0127 370 0.0152 43 0.0165 373
gmsc 0.0042 21 0.0042 39 0.0043 56 0.0043 13 0.0043 68
∗ Results in this table use logistic regression as a base classifier. Results for other models are given in the Appendix. EMP is

rounded to four digits after the decimal point.
∗∗ We consider a single solution on the NSGA-II frontier, which has the highest EMP and uses the maximal number of features
∗∗∗ k refers to the number of selected features used to construct the model.

(point E). However, there is a crucial difference between these
points. Solution G does not dominate any points on the frontier
– it achieves better performance in objective II only by deterio-
rating on objective I. At the same time, point F achieves better
performance in both objectives compared to points D and E on
the frontier. Therefore, F dominates these solutions.

Based on the example above, we define three metrics. Let S1
be a share of data sets where all single-objective benchmarks
are dominated by points on the Pareto frontier resulting from
the NSGA-II algorithm (e.g., point H). If satisfied, this condi-
tion indicates a clear advantage of the multi-objective feature
selection over the benchmarks, since they can not achieve bet-
ter performance in any of the objectives. Next, let S2 indicate a
share of data sets with a weaker condition: none of the bench-
marks dominates the solution on the Pareto front. Here, bench-
marks may either be dominated by the solutions on the frontier
(e.g., point H) or achieve better EMP than solutions on the fron-
tier, but only if they use more features (e.g., point G). Finally,
let S3 be a share of data sets where one or more benchmarks
dominates at least one solution on the frontier. This condition
corresponds to point F from the aforementioned example and
demonstrates an advantage of the single-objective benchmarks.
We compute shares S1, S2 and S3 separately for each base clas-
sifier. The results are given in Table 5.

As Table 5 suggests, all single-objective benchmarks are
dominated by the best point on the NSGA-II frontier on 60%
data sets for L1 and on 50% cases for LR and XG. In other
words, NSGA-II identifies a feature subset that has a higher
profitability and contains fewer features compared to the con-
sidered conventional single-objective strategies on at least half
of the data sets.

In most of the remaining cases, single-objective benchmarks
can outperform the best multi-objective solution in terms of
EMP only if they use more features. This is observed for four
remaining data sets when using LR or L1 and for five data sets
for XG. In this case, solutions on the frontier identified by our
method are still non-dominated by benchmarks and represent

Table 5
Aggregated Results

Base Classifier S1 S2 S3

Logistic regression 50% 90% 10%
L1-regularized LR 60% 100% 0%
Gradient boosting 50% 100% 0%

a trade-off between model comprehensibility and profitability
in the regions where fewer features are used. Feature subsets
selected by the single-objective benchmarks could serve as a
possible extension of the frontier.

From the business perspective, solutions on the NSGA-II
frontier may be more attractive for companies even if the score-
cards are characterized by a lower profitability but based on
a significantly smaller amount of data. For instance, NSGA-
II achieves EMP of 0.0161 on pakdd data using 160 features,
whereas single-objective GA identifies a subset of 370 features
that obtains EMP of 0.0165. Here, relying on a multi-objective
algorithm results in a 2% drop in EMP but also eliminates 57%
of features. It is then the task of a risk analyst to decide whether
a drop in profitability would be compensated by reducing the
costs of collecting and storing the data on customer behavior.

Taking both objectives into account, solutions lying on the
NSGA-II frontier are not dominated by any of the bench-
marks in 90% to 100% cases depending on the base model.
There is a single case (gmsc data with LR), where one of the
single-objective methods dominates some solutions on the fron-
tier. This indicates a good performance of the proposed multi-
objective feature selection algorithm.

5. Conclusion

This paper introduces a multi-objective profit-driven frame-
work for feature selection in credit scoring. We use the recently
developed EMP measure and the number of features as two fit-
ness functions for the wrapper-based feature selection to ad-
dress both profitability and comprehensibility. Multi-objective

7



●

●

●

●

●

0 2 4 6 8 10 12

1
2

3
4

5
6

Objective I

O
bj

ec
tiv

e 
II

●

●

●

●

●

● ●

A

B

C
D

E
F

Objective I

O
bj

ec
tiv

e 
II

●

●

●

●

●

0 2 4 6 8 10 12

1
2

3
4

5
6

Objective I

O
bj

ec
tiv

e 
II

●

●

●

●

●

● ●

●

●

●

●

●

0 2 4 6 8 10 12

1
2

3
4

5
6

Objective I

O
bj

ec
tiv

e 
II

●

●

●

●

●

● ●
G

●

●

●

●

●

0 2 4 6 8 10 12

1
2

3
4

5
6

Objective I

O
bj

ec
tiv

e 
II

●

●

●

●

●

● ●
H

Fig. 2. Example Multi-Objective Optimization. The task is to minimize objective I while maximizing objective II. Points A – E represent solutions on the efficient
frontier, points G, F and H are external solutions. Compared to the frontier, H is dominated by points A to D, G is a non-dominated point, and F dominates
solutions D and E on the frontier.

optimization is performed with the genetic algorithm NSGA-II.
We evaluate the effectiveness of our approach by running em-
pirical experiments on ten real-world retail credit scoring data
sets.

Empirical results indicate that the proposed multi-objective
feature selection framework performs highly competitive com-
pared to the conventional feature selection strategies. The de-
veloped approach identifies feature subsets that yield the same
or higher expected profit using fewer features than single-
objective benchmarks on at least half of the data sets. De-
pending on a base classifier, solutions selected by the NSGA-II
are not dominated by any of the single-objective benchmarks in
90% to 100% of cases. The results imply that previous work in
ignoring the two objectives of feature selection in credit scoring
has missed promising solutions that can be identified using the
suggested framework.

In addition to demonstrating a superior performance, the sug-
gested multi-objective method serves as a tool to find a trade-off

in two conflicting objectives: comprehensibility and profitabil-
ity of the model. By comparing the non-dominated solutions on
the efficient frontier, risk managers can select a suitable subset
of features depending on their business context.

Future research could pursue several directions. Recent lit-
erature suggested new multi-criteria optimization methods that
could replace the NSGA-II algorithm in the profit-driven fea-
ture selection framework. For instance, Hancer and colleagues
suggest using multi-objective artificial bee colony optimization
[18]; Zhang et al. apply multi-criteria particle swarm optimiza-
tion to perform feature selection [41]. A benchmarking study
with different evolutionary algorithms would shed more light
on identifying a suitable optimizer for the profit-driven feature
selection in credit scoring.

Another promising avenue would be to use the developed
feature selection approach in other business applications. One
of the possible domains is customer churn. Verbraken and col-
leagues developed a similar EMP measure for customer churn
models [35], which could serve as one of the objectives for the
feature selection algorithm.

References

[1] Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., &
Vanthienen, J. (2003). Benchmarking state-of-the-art classification algo-
rithms for credit scoring. Journal of the Operational Research Society,
54(6), 627-635.

[2] Baesens, B., Roesch, D., & Scheule, H. (2016). Credit Risk Analytics:
Measurement Techniques, Applications, and Examples in SAS. John Wi-
ley & Sons.

[3] Bentez-Pea, S., Blanquero, R., Carrizosa, E., & Ramrez-Cobo, P. (2018).
Cost-sensitive Feature Selection for Support Vector Machines. Computers
& Operations Research.

[4] Bergstra, J. S., Bardenet, R., Bengio, Y., & Kgl, B. (2011). Algorithms for
hyper-parameter optimization. In Advances in Neural Information Pro-
cessing Systems (pp. 2546-2554).

[5] Boln-Canedo, V., Snchez-Maroo, N., & Alonso-Betanzos, A. (2013). A
review of feature selection methods on synthetic data. Knowledge and
Information Systems, 34(3), 483-519.

[6] Boln-Canedo, V., Snchez-Maroo, N., Alonso-Betanzos, A., Bentez, J. M.,
& Herrera, F. (2014). A review of microarray datasets and applied feature
selection methods. Information Sciences, 282, 111-135.

[7] Boln-Canedo, V., Snchez-Maroo, N., & Alonso-Betanzos, A. (2015). Re-
cent advances and emerging challenges of feature selection in the context
of big data. Knowledge-Based Systems, 86, 33-45.

[8] Bonev, B., Escolano, F., & Cazorla, M. (2008). Feature selection, mutual
information, and the classification of high-dimensional patterns. Pattern
Analysis and Applications, 11(3-4), 309-319.

[9] Bravo, C., Maldonado, S., & Weber, R. (2013). Granting and managing
loans for micro-entrepreneurs: New developments and practical experi-
ences. European Journal of Operational Research, 227(2), 358-366.

[10] Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection
methods. Computers & Electrical Engineering, 40(1), 16-28.

[11] Crook, J. N., Edelman, D. B., & Thomas, L. C. (2007). Recent develop-
ments in consumer credit risk assessment. European Journal of Opera-
tional Research, 183(3), 1447-1465.

[12] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation, 6(2), 182-197.

[13] Emmanouilidis, C., Hunter, A., MacIntyre, J., Cox, C. (1999). Selecting
features in neurofuzzy modelling by multiobjective genetic algorithms.
In Proceedings of the 9th International Conference on Artificial Neural
Networks (pp. 4387-4392). Washington, D.C.

[14] Finlay, S. (2010). Credit scoring for profitability objectives. European
Journal of Operational Research, 202(2), 528-537. Chicago

[15] Guyon, I., & Elisseeff, A. (2003). An introduction to feature and feature
selection. Journal of Machine Learning Research, 3, 1157-1182.

[16] Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2006). Feature Ex-
traction: Foundations and Applications (Studies in Fuzziness and Soft
Computing): Springer-Verlag.

8



[17] Hand, D. J. (2005). Good practice in retail credit scorecard assessment.
Journal of the Operational Research Society, 56(9), 1109-1117.

[18] Hancer, E., Xue, B., Zhang, M., Karaboga, D., & Akay, B. (2018). Pareto
front feature selection based on artificial bee colony optimization. Infor-
mation Sciences, 422, 462-479.

[19] Hamdani, T. M., Won, J. M., Alimi, A. M., & Karray, F. (2007, April).
Multi-objective feature selection with NSGA II. In International Con-
ference on Adaptive and Natural Computing Algorithms (pp. 240-247).
Springer, Berlin, Heidelberg.

[20] Jung, K. M., Thomas, L. C., & So, M. C. (2015). When to rebuild or when
to adjust scorecards. Journal of the Operational Research Society, 66(10),
1656-1668.

[21] Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Bench-
marking state-of-the-art classification algorithms for credit scoring: An
update of research. European Journal of Operational Research, 247(1),
124-136.

[22] Lichman, M. (2013). UCI Machine Learning Repository
<http://archive.ics.uci.edu/ml/>. Irvine, CA: School of Information
and Computer Science, University of California. Accessed 2018-09-01.

[23] Maldonado, S., Bravo, C., Lopez, J., & Perez, J. (2017). Integrated frame-
work for profit-based feature selection and SVM classification in credit
scoring. Decision Support Systems, 104, 113-121.

[24] Maldonado, S., Prez, J., & Bravo, C. (2017). Cost-based feature selection
for support vector machines: An application in credit scoring. European
Journal of Operational Research, 261(2), 656-665.

[25] Mays, E., & Lynas, N. (2004). Credit scoring for risk managers: The
handbook for lenders. Ohio: Thomson/South-Western.

[26] Min, F., Hu, Q., & Zhu, W. (2014). Feature selection with test cost con-
straint. International Journal of Approximate Reasoning, 55(1), 167-179.

[27] Oliveira, L. S., Sabourin, R., Bortolozzi, F., & Suen, C. Y. (2002). Fea-
ture selection using multi-objective genetic algorithms for handwritten
digit recognition. In Proceedings of the 16th International Conference on
Pattern Recognition (pp. 240-247). IEEE.

[28] Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M., Vaughan, J. W.,
& Wallach, H. (2017). Manipulating and measuring model interpretabil-
ity. In NIPS 2017 Transparent and Interpretable Machine Learning in
Safety Critical Environments Workshop..

[29] Saeedi, R., Schimert, B., & Ghasemzadeh, H. (2014). Cost-sensitive fea-
ture selection for on-body sensor localization. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting (pp. 833-842). ACM.

[30] Serrano-Cinca, C., & Gutirrez-Nieto, B. (2016). The use of profit scoring
as an alternative to credit scoring systems in peer-to-peer (P2P) lending.
Decision Support Systems, 89, 113-122.

[31] Somers, M., & Whittaker, J. (2007). Quantile regression for modelling
distributions of profit and loss. European Journal of Operational Re-
search, 183(3), 1477-1487.

[32] Soto, A. J., Cecchini, R. L., Vazquez, G. E., & Ponzoni, I. (2009). Multi-
objective feature selection in QSAR using a machine learning approach.
QSAR & Combinatorial Science, 28(1112), 1509-1523.

[33] Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using non-
dominated sorting in genetic algorithms. Evolutionary Computation, 2(3),
221-248.

[34] Thomas, L. C., Edelman, D. B., Crook, J. N. (2002) Credit Scoring and
its Applications. Philadelphia: SIAM.

[35] Verbraken, T., Verbeke, W., & Baesens, B. (2013). A novel profit max-
imizing metric for measuring classification performance of customer
churn prediction models. IEEE Transactions on Knowledge and Data En-
gineering, 25(5), 961-973.

[36] Verbraken, T., Bravo, C., Weber, R., & Baesens, B. (2014). Develop-
ment and application of consumer credit scoring models using profit-
based classification measures. European Journal of Operational Re-
search, 238(2), 505-513.

[37] Vidaurre, D., Bielza, C., & Larraaga, P. (2013). A survey of L1 regression.
International Statistical Review, 81(3), 361-387.

[38] Xue, B., Zhang, M., & Browne, W. N. (2013). Particle swarm optimiza-
tion for feature selection in classification: A multi-objective approach.
IEEE Transactions on Cybernetics, 43(6), 1656-1671.

[39] Xue, B., Zhang, M., Browne, W. N., & Yao, X. (2016). A survey on evo-
lutionary computation approaches to feature selection. IEEE Transactions
on Evolutionary Computation, 20(4), 606-626.

[40] Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic
algorithm. In Feature Extraction, Construction and Selection (pp. 117-
136). Springer, Boston, MA.

[41] Zhang, Y., Gong, D. W., & Cheng, J. (2017). Multi-objective particle
swarm optimization approach for cost-based feature selection in classifi-
cation. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 14(1), 64-75.

9



Appendix A. Empirical Results using L1 Model

Table A.1
Performance of Feature Selection Methods: L1

Data NSGA-II∗∗ GA SBS SFS Full Model
EMP k∗∗∗ EMP k EMP k EMP k EMP k

australian 0.1035 4 0.1029 22 0.1032 41 0.1029 10 0.1032 42
german 0.0369 26 0.0397 24 0.0366 60 0.0390 12 0.0358 61
thomas 0.1729 4 0.1728 16 0.1728 21 0.1728 5 0.1728 28
bene1 0.1460 2 0.1460 41 0.1457 82 0.1460 5 0.1457 83
hmeq 0.0206 13 0.0199 16 0.0205 18 0.0186 7 0.0198 20
bene2 0.1589 1 0.1584 12 0.1583 27 0.1591 2 0.1583 28
uk 0.2597 21 0.2593 24 0.2593 47 0.2593 1 0.2593 51
lending club 0.0010 42 0.0009 93 0.0009 205 0.0007 5 0.0010 206
pakdd 0.0160 214 0.0159 201 0.0158 371 0.0135 4 0.0156 373
gmsc 0.0045 17 0.0045 39 0.0045 65 0.0043 10 0.0044 68
∗ Results in this table use L1 as a base classifier. EMP is rounded to four digits after the decimal point.
∗∗ We consider a single solution on the NSGA-II frontier, which has the highest EMP and uses the maximal number of features
∗∗∗ k refers to the number of selected features used to construct the model.
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Fig. A.1. Performance of Feature Selection Methods. Each diagram in the graph matrix depicts results on a single data set. The Pareto frontier outputted by the
NSGA-II algorithm is depicted with red points, whereas the blue markers refer to benchmarks. L1 is used as a base classifier.
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Appendix B. Empirical Results using XG Model

Table B.1
Performance of Feature Selection Methods: XG

Data NSGA-II∗∗ GA SBS SFS Full Model
EMP k∗∗∗ EMP k EMP k EMP k EMP k

australian 0.1060 3 0.1065 17 0.1056 36 0.1060 11 0.1055 42
german 0.0393 2 0.0391 25 0.0411 51 0.0330 11 0.0392 61
thomas 0.1731 10 0.1728 12 0.1728 23 0.1728 3 0.1728 28
bene1 0.1457 1 0.1457 42 0.1457 80 0.1459 4 0.1457 83
hmeq 0.0422 19 0.0418 15 0.0415 19 0.0399 12 0.0418 20
bene2 0.1583 1 0.1583 10 0.1583 28 0.1583 3 0.1583 28
uk 0.2593 1 0.2593 18 0.2593 47 0.2593 5 0.2593 51
lending club 0.0008 12 0.0007 107 0.0007 197 0.0008 13 0.0009 206
pakdd 0.0168 203 0.0165 180 0.0164 366 0.0157 14 0.0166 373
gmsc 0.0046 24 0.0045 34 0.0046 66 0.0044 14 0.0045 68
∗ Results in this table use XG as a base classifier. EMP is rounded to four digits after the decimal point.
∗∗ We consider a single solution on the NSGA-II frontier, which has the highest EMP and uses the maximal number of features
∗∗∗ k refers to the number of selected features used to construct the model.
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Fig. B.1. Performance of Feature Selection Methods. Each diagram in the graph matrix depicts results on a single data set. The Pareto frontier outputted by the
NSGA-II algorithm is depicted with red points, whereas the blue markers refer to benchmarks. XG is used as a base classifier.
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