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Automated Planning of Process Models: 

The Construction of Parallel Splits and Synchronizations 

 

Abstract: 

Efficient business processes play a major role in the success of companies. Business processes are captured and 

described by models that serve, for instance, as a starting point for implementing processes in a service-oriented 

way or for performance analysis. To support process modelers via methods and techniques (e.g., algorithms) in 

an automated manner, several research fields such as process mining and automated planning of process models 

have emerged. In particular, the aim of the latter research field is to enable the automated construction of process 

models using planning techniques. To this end, an automated construction of control flow patterns in process 

models is necessary. However, this task currently remains a widely unsolved issue for the central patterns 

parallel split and synchronization. 

We introduce novel concepts, which, in contrast to existing approaches, allow the construction of complex 

parallelizations (e.g., nested parallelizations and parallelizations with an arbitrary length of path segments) and 

are able to identify the set of feasible parallelizations. Moreover, we propose an algorithm facilitating the 

automated construction of parallel splits and synchronizations in process models. Our approach is evaluated 

according to key properties such as completeness, correctness and computational complexity. Furthermore, both 

the practical applicability within several real-world processes of different companies in various contexts as well 

as the practical utility of our approach are verified. The presented research expands the boundaries of automated 

planning of process models, adds more analytical rigor to automatic techniques in the context of business 

process management and contributes to control flow pattern theory. 

Keywords: business process modeling, automated planning of process models, control flow patterns, business 

process management 
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1 Introduction 

The way a company defines and handles its business processes is of paramount importance for the company’s 

success; this has been acknowledged in both science and practice over the previous years [1,2] and has started and 

stimulated research fields such as Business Process Management (BPM). A business process can be defined as the 

“specific ordering of work activities across time and space, with a beginning, an end, and clearly identified inputs 

and outputs” [3]. BPM focuses on capturing, implementing, analyzing and optimizing a company’s business 

processes. In this regard, several research fields in BPM such as process mining [4–6], automated (web) service 

selection and composition [7,8] and automated planning of process models [9,10] have emerged in order to support 

business analysts and process modelers via methods and algorithms. In particular, the focus in this paper lies on the 

research field automated planning of process models, which aims to enable the automated construction of process 

models using planning algorithms [9–15]. 

 The automated construction of process models can be understood as a planning problem [16] with the 

objective to arrange process model components in a feasible order based on an initial state, a set of available actions 

as well as conditions for goal states. The input data for this planning can, for instance, be obtained by fresh modeling 

of actions, extracting actions from existing process models or a conceptualization of (web) services to represent the 

corresponding actions [17]. Furthermore, interfaces of process modeling tools may be used (cf. Evaluation). A 

fundamental challenge of the automated construction of process models is to cope with control flow patterns 

describing the control flow of a process. More precisely, in order to plan sophisticated process models, not only a 

specific sequence of actions but also the control structures representing these patterns have to be constructed in an 

automated manner. 

 This general problem of planning an entire process model including control flow patterns is decomposed into 

subproblems to address a subproblem in-depth. Parallel splits (sometimes also called AND-splits) and their 

corresponding synchronizations capture elementary aspects of processes and thus are assessed to be central patterns 

[18–20]. Parallelizations are also deemed highly relevant when aiming to represent complex process flows (cf., e.g., 

examples in [21,22] and the discussion below). Furthermore, uncovering and representing the concurrent behavior 

of a system has long been assessed as valuable in many application contexts [23,24] and parallelizations are crucial, 
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for instance, to reduce execution times of processes and service compositions [25]. Besides the relevance discussed 

by researchers, in several projects with different companies, we observed that almost all of the processes incorporated 

many parallelized actions. For example, in a cooperation with a European financial services provider in which over 

600 core business processes were analyzed, over 90% of these processes contained at least one parallelization while 

around 33% contained more than five. Our analyses of these processes showed that the parallelizations served 

different reasons such as reducing total required execution time, increasing throughput and allowing a relatively 

constant workload of employees and a high utilization of resources (due to the reduction of waiting time). In this 

vein, parallelizations offer valuable decision support, as parallelizations enhance the decision-making aspect of 

process models [26,27]: They allow to select a beneficial way for process execution (e.g., in terms of execution time). 

Moreover, in some cases, they were necessary to ensure legal and regulatory compliance (e.g., to realize a dual 

principle). Furthermore, they improved organizational flexibility. For instance, they enabled a concurrent process 

execution by different organizational units and, due to reduced execution times, a quicker response to external events 

(e.g., customer complaints). This illustrates the practical importance of parallelizations in process models. 

 Addressing both the scientific and practical relevance, in this paper we will concentrate on the so far widely 

unsolved issue of an automated construction of parallel splits and synchronizations in process models. The 

contributions are as follows: 

 Concepts are developed allowing the construction of complex parallelizations (including nested parallelizations 

and an arbitrary length of path segments within parallelizations) and the set of all feasible parallelizations while 

not constructing infeasible parallelizations. These concepts are independent of a concrete modeling language and 

can cope with possibly infinite sets of world states and large domains. This guarantees a maximum of 

compatibility with existing approaches and process modeling languages. 

 Based on these concepts, we propose a novel algorithm for the automated construction of parallel splits and 

synchronizations in process models. 

 The presented algorithm is implemented into a prototype which is evaluated in real-use situations. 

The remainder of the paper is organized as follows: The next section contains the background of our research. Here, 

the theoretical background, the related work and the underlying planning domain are presented. Thereafter, we 
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answer the key research question of how parallel splits and synchronizations can be constructed in an automated 

manner by proposing concepts and providing a concrete algorithm. The approach is illustrated by means of a running 

example. In the subsequent section, the concepts and the algorithm are evaluated according to key properties such as 

completeness, correctness and computational complexity. Furthermore, they are implemented into a prototype and 

their practical applicability within several real-world processes of different companies in various contexts as well as 

their practical utility are assessed. Finally, the last section summarizes the results, discusses limitations and provides 

an outlook for future research. 

2 Background 

In this section, we describe the theoretical background of our research based on the discussion by Soffer et al. [18] 

and present related work and the research gap. Thereafter, we outline the underlying planning domain. 

2.1 Theoretical Background 

Business process models are critical when designing, realizing and analyzing business processes [2,22,28,29]. 

Imperative models representing business processes usually consist of at least two types of components: actions and 

control flow patterns. These control flow patterns can be seen as a theory for clarifying the process flow, with a 

control flow pattern being a proposition which expresses how processes can be executed, or, more precisely, which 

control flows can exist in processes [20,30]. On the one hand, control flow patterns are abstract concepts striving to 

show the process flow independently of a concrete modeling language; on the other hand, modeling languages 

provide a concrete representation for control flow patterns [20]. The basic control flow patterns are sequence, 

exclusive choice, simple merge, parallel split and synchronization [19,22,30,31]. Control flow patterns allow to 

abstract from an individual process execution: In this regard, a parallel split specifies that a single route of execution 

is split into two or more sequences of actions (called ‘path segments’), where all actions in these different path 

segments can be executed concurrently [19,22,30]. However, the actions in different path segments originating from 

a parallel split do not necessarily have to be executed in parallel from a temporal perspective [19], although it is 

generally feasible to do so. Further, a synchronization represents a point where two or more path segments of arbitrary 

length originating from previous parallel splits converge into a single subsequent path [22]. This conceptualization 
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regarding parallel splits and synchronizations also holds for so called nested parallelizations. Such a nested 

parallelization occurs when one or more parallelizations and their corresponding actions are contained in a path 

segment of another parallelization.  

 To further substantiate this conceptualization, the process state (denoted by its state variables; cf. Definition 

1 in Planning Domain) has to be considered. In this way, potential inconsistencies can be avoided, ensuring the 

feasibility of parallel splits, synchronizations and their state transitions (cf., e.g., [32]). The well-known ACID 

properties [33] serve as reference to address this feasibility. More precisely, a synchronization merging two or more 

path segments (originating from a previous parallel split) requires that all actions in these path segments have been 

executed [22], while conflicts have to be avoided. For instance, when the same state variables are changed 

concurrently in different path segments, this represents a violation to the ACID-principle isolation, thus creating a 

conflict when trying to synchronize the path segments and their resulting states. In detail, while due to the potential 

concurrency of path segments leading to a synchronization, different actual execution routes are enabled (e.g., due 

to different possible temporal orders of actions), all of these routes need to result in the same state when synchronized. 

This holds due to two reasons: First, the state before the parallel split is equal. Second, it is necessary to be able to 

continue with the process independently of the actual execution route taken before synchronization [18]. 

Furthermore, as processes may be executed many times with different initial states, both control flow patterns as well 

as states (and its state variables) denoted by a process model should be able to deal with possibly infinite sets of 

world states and large domains as well as respective data types used by the state variables [12]. 

 Based on these theoretical considerations with regard to control flow patterns, and in particular 

parallelizations, much work has been carried out to analyze control flow patterns in terms of different aspects such 

as inclusion in workflow modeling languages and corresponding tools (e.g., [22]), reconstruction of control flow in 

processes via process mining (e.g., [34]), empirical evidence and applications in real-world processes (e.g., [30]), 

and automated verification of control flow (patterns) (e.g., [35]). In the same vein, approaches for the automated 

planning of process models can also be seen as contribution to control flow pattern theory by analyzing and evaluating 

whether control flow patterns can be constructed correctly in an automated manner. Based upon this, sequences of 

actions as well as control flow patterns can be constructed in order to plan sophisticated process models. To this end, 
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concepts and algorithms for the automated construction of control flow patterns need to be provided. In this paper, 

we contribute to this research by presenting concepts and an algorithm that constructs both parallel splits and 

synchronizations in an automated manner while considering the theoretical conceptualization of parallelizations 

discussed above. 

2.2 Related Work and Research Gap 

We structure existing approaches for the automated identification or construction of parallelizations according to the 

BPM lifecycle phases process modeling, process implementation, process execution and process analysis [36]. While 

our research focuses on the process modeling phase, we have also included relevant approaches from other phases, 

as such approaches may possibly be interesting. 

 In the process modeling phase, so far only the approach of Hoffmann et al. [10] discusses the automated 

construction of process models including parallelizations. However, the authors do not aim to provide concepts of 

how to construct parallelizations and do not present a concrete algorithm for the construction of parallelizations. 

Moreover, they use a heuristic approach in model-based software development, and thus their approach does not 

provide all feasible parallelizations.  

 Automated web service composition can be seen as part of the phases process implementation and process 

execution and is partly based on planning techniques [37–39]. Heinrich et al. [40] analyze multiple approaches [41–

48] in detail regarding the construction of control flow patterns: Focusing on parallel splits and synchronizations, 

most of these approaches state that two actions can be parallelized if they do not contradict each other. However, 

these approaches do not define concepts and thus do not specify when exactly an action is contradicting another 

action. This would be necessary to provide a concrete automated planning algorithm for the construction of 

parallelizations. Only Meyer and Weske [43] state a formal concept to parallelize two actions, which is based on 

preconditions and effects not being in conflict. However, using this approach and focusing on two actions means that 

the length of each path segment within parallelizations is limited to only one action (cf. [43]). Moreover, construction 

of complex parallelizations such as nested parallelizations is not supported. Additionally, due to its heuristic nature, 

the authors do not aim to provide the set of feasible parallelizations. Furthermore, large sets of world states and large 

domains as well as respective numerical data types and also other large data types of state variables are not treated. 
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Other authors in these phases propose to calculate so called dependency coefficients for each action and suggest to 

parallelize two actions if their dependency coefficients are the same [49–52]. Dependency coefficients represent how 

many actions are dependent on the considered action or how many actions the considered action is dependent on. 

However, similarly to [43], the parallelized path segments are synchronized in any case after at most one action per 

path segment. Furthermore, nested parallelizations are not supported, and the approaches are heuristic. Additionally, 

large sets of world states as well as respective numerical data types and other large data types of state variables are 

not treated. The same holds for a similar approach proposed by Madhusudan and Uttamsingh [53] which divides a 

sequence of actions into sets of actions that can be parallelized based on precedence constraints. 

 Further research related to our work is associated with the phase process analysis. In process mining, data 

about executed processes is stored in logs and used to enable the reconstruction of process models. For instance, 

Hwang and Yang [54] present an approach in which process log data can be used to reconstruct the underlying 

process model and thus also control flow patterns such as parallel splits. The reconstruction of parallel splits and 

synchronizations in this research field is based on the execution order of actions discovered in the logs. Most 

approaches state that two actions are parallel if they appear in any order (see, e.g., [55–57]). This is of heuristic nature 

and a non-sufficient criterion, as, for instance, two actions may be executed in any order but not in parallel and at the 

same time because the same executing person (resource) is required for both actions. Other approaches also use logs 

with explicit timestamps enabling the identification of actions which were actually executed simultaneously [56,58] 

or detecting overlapping actions [34]. However, their intention and the presented algorithms are different to our 

research goal, since process mining focuses on the reconstruction of models for already existing processes. Therefore, 

these works do not aim to provide an approach for an automated construction of parallelizations in newly planned 

process models and thus do not present concepts to support this task. Moreover, as they rely on logs from existing 

process executions, these works do not deal with infinite sets of world states and large domains as well as respective 

data types used by the state variables. Further, Jin et al. [59] propose an approach for refactoring process models and 

including parallelizations in the refactored process models. They do so by applying techniques from process mining 

and determining relations between actions, allowing to identify actions which can be parallelized. However, the 

authors strive to refactor existing process models and thus do not aim to construct parallelizations in newly planned 
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process models. Additionally – as Jin et al. [59] state – their approach cannot guarantee that the resulting process 

models are sound structured, which makes the manual intervention of a modeler necessary when applying the 

approach. This impedes an automated construction of parallelizations by means of an algorithm. Furthermore, the 

presented approach strictly relies on petri nets and is thus dependent on a concrete modeling language. 

 To sum up: In the literature there are several valuable contributions regarding an automated identification or 

construction of parallel splits and synchronizations which could serve as a basis for our research. However, there is 

a research gap which can be stated in terms of the following relevant aspects (cf. Section Theoretical Background) 

not addressed by existing approaches (cf. Table 1): 

(A1) Concepts stating how to construct feasible parallelizations in newly planned process models need to be 

provided. These concepts have to allow the construction of complex parallelizations, which means, the 

support of nested parallelizations and an arbitrary length of path segments within parallelizations. The 

concepts must ensure the consistency of the state transitions resulting from a parallelization and must be 

formally and clearly defined. 

(A2) Possibly infinite sets of world states and large domains as well as respective large data types of state variables 

have to be treated. 

(A3) The set of feasible parallelizations has to be provided while preventing infeasible parallelizations. 

(A4) The approach needs to be independent of a concrete modeling language. 

(A5) A concrete algorithm for an automated construction of parallelizations in newly planned process models has 

to be provided. 

Table 1. Overview of related work 

Phase Works (A1) (A2) (A3) (A4) (A5) 

Process Modeling Hoffman et al. [10] ✖ ✖ ○ ✔ ✖ 

Process Implementation & 

Process Execution 

Binder et al. [41], Constantinescu et 

al. [42], Pathak et al. [44], Bertoli et 

al. [45], Bertoli et al.  [46],  Pistore et 

al. [47], Lécué et al. [48] 

✖ ○ ✖ ○ ✖ 

Meyer & Weske [43] ○ ✖ ○ ✔ ○ 

Omer & Schill [49], Omer [50], 

Rathore & Suman [51], Vanitha et al. 

[52], Madhusudan & Uttamsingh [53] 

○ ✖ ○ ✔ ○ 

Process Analysis 

van der Aalst et al. [55], Wen et al. 

[56], van der Aalst [57], Weijters et 

al. [58], Wen et al. [34] 
✖ ○ ○ ○ ✖ 

Jin et al. [59] ✖ ✖ ○ ✖ ✖ 

✔: considered; ✖: not considered; ○: partly considered 
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2.3 Planning Domain 

Based on control flow pattern theory, when planning process models, we have to cope with an abstraction from 

individual process executions. Therefore, the realizations of state variable values are not determined at the moment 

of planning and belief states instead of world states need to be considered [16]. Here, a belief state represents possibly 

infinite sets of world states. When working with belief states it is common to deal with a nondeterministic planning 

problem and to refer to a nondeterministic planning domain. Both guarantee a maximum of compatibility with 

existing approaches in the literature [12–14,37,46,60] and allow an acceptance and use of our approach. Central for 

the nondeterministic planning domain is the nondeterministic belief state-transition system. It is based on the notion 

of a belief state tuple, which is defined as follows:  

Definition 1 (belief state tuple). A belief state tuple p is a tuple consisting of a belief state variable v(p) and a subset 

r(p) of its predefined domain dom(p), which is written as p:=(v(p),dom(p),r(p)). The domain, dom(p), specifies which 

values can generally be assigned to v(p). The set r(p)⊆dom(p) is called the restriction of v(p) and contains the values 

that can be assigned to v(p) in this specific belief state tuple p. 

According to this definition, each belief state variable v(p) has a predefined data type (for example ‘double’) 

specifying the predefined domain dom(p). Additionally, restrictions r(p) can be defined for each belief state variable 

v(p). A restriction can either be described by logical expressions defining a set of values or an explicit enumeration 

of values. The notion of a belief state tuple is used in the formal definition of a nondeterministic belief-state transition 

system presented in the following. It is given in terms of its belief states, its actions and a transition function which 

describes how the application of actions leads from one belief state to possibly many belief states [16,46,61]. 

Definition 2 (nondeterministic belief state-transition system). Let 𝐵𝑆𝑇 be a finite set of belief state tuples. A 

nondeterministic belief state-transition system is a tuple  =  (𝐵𝑆, 𝐴, 𝑅), where 

 𝐵𝑆2𝐵𝑆𝑇 is a finite set of belief states. An element of 𝐵𝑆, a belief state, is a subset of the finite set of belief 

state tuples 𝐵𝑆𝑇, containing every belief state variable one time at the most.  

 𝐴 is a finite set of actions. Each action 𝑎𝐴 is a triple consisting of the action name and two sets, which we 

will write as 𝑎:= (𝑛𝑎𝑚𝑒(𝑎), 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑎), 𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑎)). The set 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑎)𝐵𝑆𝑇 are the preconditions of 
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𝑎 and the set 𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑎)𝐵𝑆𝑇 are the effects of 𝑎. The term preconditions (including inputs) denotes 

everything an action needs to be applied, including tangible and non-tangible entities (e.g., data, materials, 

components), general conditions (e.g., time slot when an action is applicable) and resources (e.g., staff, 

machines). The term effects (including outputs) denotes everything an action provides, deallocates or alters 

after it was applied, including tangible and non-tangible entities, general conditions and resources.1 

 An action a is applicable in a belief state 𝑏𝑠 iff ∀w𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑎) ∃u∈bs: v(w)=v(u) ∧ r(w)∩r(u) ≠ ∅. In other 

words, a is applicable in 𝑏𝑠 iff all belief state variables in 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑎) also exist in 𝑏𝑠 and the respective 

restrictions of the belief state variables intersect. 

 𝑅: 𝐵𝑆 × 𝐴 ⟶ 2𝐵𝑆 is the transition function. The transition function associates to each belief state 𝑏𝑠𝐵𝑆 and 

to each action 𝑎𝐴 the set 𝑅(𝑏𝑠, 𝑎) 𝐵𝑆 of next belief states. 

According to Definition 2, a state variable of the preconditions and effects is defined as belief state tuple that consists 

of the name of the state variable, its domain and a set of values, all of which can be assigned to the state variable in 

a specific world state (according to an individual process execution). From a process modeling perspective, this is a 

natural way to express certain preconditions and effects of actions and allows to represent possibly infinite sets of 

world states.  

Definition 3 ((non-)determinism in state space). An action 𝑎 is deterministic in a belief state 𝑏𝑠 iff |𝑅(𝑏𝑠, 𝑎)|  =  1. 

It is nondeterministic if |𝑅(𝑏𝑠, 𝑎)|  >  1. If 𝑎 is applicable in 𝑏𝑠, then 𝑅(𝑏𝑠, 𝑎) is the set of belief states that can be 

reached from 𝑏𝑠 by applying 𝑎. 

Based on both Definitions 2 and 3, a planning graph can be generated by means of several existing algorithms that 

progress from an initial belief state to goal belief states (see for example [13,37,46,60]). Here, a planning graph is 

defined as: 

Definition 4 (planning graph). A planning graph is an acyclic, bipartite, directed graph 𝐺 = (𝑁, 𝐸) with the set of 

                                                   

1 To give an example: With the help of preconditions, data entities such as securities order data entities as well as bank employees 

(human resources) can be specified which are needed to apply an action “process buying order”. Its effects specify, for example, 

that the securities order data entities are altered and the previously allocated bank employees are deallocated. 
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nodes 𝑁 and the set of edges 𝐸. Henceforth, the set of nodes 𝑁 consists of two partitions: The set of action nodes 

𝑃𝑎𝑟𝑡𝐴 and the set of belief state nodes 𝑃𝑎𝑟𝑡𝐵𝑆. Each node 𝑏𝑠𝑃𝑎𝑟𝑡𝐵𝑆 represents one distinct belief state from the 

set 𝐵𝑆 of belief states in the planning graph. Each node 𝑎𝑃𝑎𝑟𝑡𝐴 represents an action from the set 𝐴 of actions in 

the planning graph. The planning graph starts with one explicit initial belief state 𝑏𝑠𝑖𝑛𝑖𝑡𝐵𝑆 and ends with one to 

possibly many goal belief states 𝑏𝑠𝑔𝑜𝑎𝑙𝑗𝐵𝑆.  

Given Definition 4, a planning graph may consist of one to many paths. Here, a path is defined as: 

Definition 5 (path). A path in a planning graph is a sequence (𝑏𝑠𝑖𝑛𝑖𝑡,𝑎1,𝑏𝑠2,𝑎2,…,𝑎𝑛,𝑏𝑠𝑛+1) of belief state nodes 

and action nodes starting with the initial belief state and ending in exactly one goal belief state with each action being 

represented one time at the most. 

 

Figure 1. Excerpt of the order management of a financial services provider 

To illustrate the above definitions of a planning domain and to introduce a running example, Figure 1 shows an 

excerpt of the real-world order management of a financial services provider. Here, the (internal or external) 

processing of an incoming order is performed. The full planning graph from which this example is taken can be found 

in the Evaluation. In our case the graph is planned by applying the approach suggested by Bertoli et al. [46]; however 

other approaches such as [61] are also feasible and provide the same graph. If a manually constructed graph 

(respectively, process model) is available, our approach may be applied as well to allow the construction of 

(additional) parallelizations for such models. The specification of the initial belief state and the condition for a belief 

state to be a goal belief state are given in Table 2. 



 

13 

 

Table 2. Initial belief state and condition for goal belief state 
initial belief state {(order state, state, {passed}), (order price, double+, double+), (order amount, int+, int+), 

(internal processing, state, {unknown}), (documentation state, state, {not created}), (portfolio 

assignment, boolean, {false})} 

condition for goal belief state {(order state, state, {routed})} 

In the initial belief state, an order has already been placed in terms of an order state, a price and an amount. The 

condition for a belief state to be a goal belief state of the presented excerpt represents that the order has been routed. 

Several actions are necessary before an order can be routed. The company can decide to mandate an external 

contractor (assign to external contractor) that provides a package which encapsulates all needed actions (receive 

portfolio assignment and filed documentation). After running these actions, the order can be routed (route order) to 

reach a goal belief state. If the company chooses not to mandate the external contractor, the action process internally 

enables the execution of three tasks which have to be completed before the order can be routed: assign to portfolio, 

create documentation and file documentation. The planning graph exhibits four possible sequences of actions to 

reach a goal belief state starting from the initial belief state and thus contains four paths (cf. Definition 5). In the 

following Table 3, we present the actions of one of the paths (marked in grey as path 1 in Figure 1) according to 

Definition 2. The remaining paths and actions are analogously annotated. 

Table 3. Order management: Annotation of the actions of path 1 
Action Preconditions Effects 

process internally {(internal processing, state, {unknown})} {(internal processing, state, {true})} 

create 

documentation 

{(internal processing, state, {true}), 

(documentation state, state, {not created})} 
{(documentation state, state, {created})} 

file documentation 
{(internal processing, state, {true}), 

(documentation state, state, {created})} 
{(documentation state, state, {filed})} 

assign to portfolio 
{(internal processing, state, {true}), 

(portfolio assignment, boolean, {false})} 
{(portfolio assignment, boolean, {true})} 

route order 

{(order state, state, {passed}), (order price, double+, double+), 

(order amount, int+, int+), (portfolio assignment, boolean, {true}), 

(documentation state, state, {filed})} 

{(order state, state, {routed})} 

In path 1, the company chooses to process the order internally (action process internally), setting the value of the 

belief state variable internal processing to “true”. Internal processing enables the creation of a 

documentation (action create documentation). This creation is represented by the belief state variable 

documentation state whose value is altered from “not created” to “created”. After the documentation is 

created, it is filed. Therefore, the action file documentation requires the value “created” of documentation 

state and transforms it into “filed”. Finally, the portfolio needs to be updated (action assign to portfolio), which 

alters the value of the belief state variable portfolio assignment to “true”. Until now, the order could not be 



 

14 

 

routed (action route order), since this requires a filed documentation as well as an existent portfolio assignment as 

represented by the preconditions of route order. Applying route order leads to the value of the belief state variable 

order state changing from “passed” to “routed”. As this also represents the condition for a goal belief state, 

route order is the last action applied in the path. 

3 Approach for the Automated Construction of Parallelizations 

In this section, we present our concepts and algorithm for the automated construction of parallel splits and 

synchronizations. Figure 2 illustrates the approach on an abstract level by showing which part of the paper represents 

existing knowledge, which concepts we introduce and how the algorithm works. 

 We build our research on both the planning domain and planning graph (cf. Definitions 4 and 5; area a) in 

Figure 2), which can be constructed by existing algorithms. The graph contains all sequences of actions starting from 

the initial belief state and resulting in goal belief states. To provide a complete and correct solution to the problem of 

constructing the set of feasible parallelizations in a graph, we state concepts (“dependencies”, cf. section Concepts) 

that describe conditions under which actions can be parallelized. To be more precise, we will first define “direct 

dependencies” between actions (cf. Definition 6). We will then show the connection of this notion to parallelizing 

actions. However, these direct dependencies will prove insufficient to construct the set of all feasible parallelizations, 

especially more complex parallelizations such as nested parallelizations. Therefore, we will introduce the concept of 

“transitive dependency” of actions (cf. Definition 7), critically complementing direct dependencies and enabling a 

correct and complete construction of parallelizations (cf. Theorems 1-3). More precisely, we will prove that if and 

only if neither of these dependencies occur, the regarded actions can indeed be parallelized. 

 An algorithm stating how to analyze these dependencies and how to construct all feasible parallelizations is 

described in the section Algorithm. For this analysis, it needs to be taken into account which action is succeeding 

another action in a certain path of the planning graph. To this end, our algorithm creates a position matrix representing 

the order of actions in each path of the planning graph (cf. area b) in Figure 2). Using this matrix and the identified 

dependencies (cf. area c) in Figure 2), parallelization matrices for each path of the planning graph can be constructed. 

These matrices show which actions are directly or transitively dependent on each other and which actions can be 

parallelized (cf. area d) in Figure 2) based on the respective path. When combined, the parallelization matrices 
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therefore indicate every feasible parallelization and enable the construction of the final graph (cf. area e) in Figure 2) 

containing all parallelizations. 

 
Figure 2. Overview of our approach for the construction of parallelizations 

 

 

3.1 Concepts 

The first idea to identify actions that can be parallelized is to compare the preconditions and effects of actions in a 

path. If this analysis shows that the effects of two compared actions are not disjoint from each other, or that the effects 

of one action intersect with the preconditions of the other action, we call this a direct dependency of both actions in 

the following. 

Definition 6 (direct dependency ⇠): Let (𝑏𝑠𝑖𝑛𝑖𝑡,𝑎1,𝑏𝑠2,𝑎2,…,𝑎𝑛,𝑏𝑠𝑛+1) be a path in the planning graph and let 𝑎𝑖 

and 𝑎𝑗 be actions in this path with 𝑖 < 𝑗 (i.e., 𝑎𝑗 is succeeding 𝑎𝑖), 𝑖  {1, … , 𝑛 − 1}, 𝑗  {2, … , 𝑛}. The action 𝑎𝑗 is 

directly dependent on the action 𝑎𝑖 (denoted by 𝑎𝑖 ⇠ 𝑎𝑗) iff: 

(𝑣(𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑎𝑖)) (𝑣 (𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑎𝑗)) 𝑣 (𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑎𝑗)))) (𝑣 (𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑎𝑗)) 𝑣(𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑎𝑖)))  

Here, 𝑣(… ) denotes the belief state variables of the tuples of the regarded set. 

To illustrate Definition 6, consider the actions process internally and create documentation from the running example 

above. The effects of process internally and the preconditions of create documentation have the belief state variable 
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internal processing in common. Therefore, these actions are directly dependent in every path containing 

both actions. This definition can be used to gain information about feasible parallelizations via the following theorem. 

Theorem 1: Let (𝑏𝑠𝑖𝑛𝑖𝑡,𝑎1,𝑏𝑠2,𝑎2,…,𝑎𝑛,𝑏𝑠𝑛+1) be a path in the planning graph and let 𝑎𝑖 and 𝑎𝑗 be actions in this 

path with 𝑖 < 𝑗 (i.e., 𝑎𝑗 is succeeding 𝑎𝑖), 𝑖  {1, … , 𝑛 − 1}, 𝑗  {2,… , 𝑛}.  

a) If 𝑎𝑗 is directly dependent on 𝑎𝑖 (i.e., 𝑎𝑖 ⇠ 𝑎𝑗), 𝑎𝑖 and 𝑎𝑗 cannot be parallelized. 

b) If 𝑎𝑗 is not directly dependent on 𝑎𝑖  and 𝑗 = 𝑖 + 1 (i.e., 𝑎𝑗 is directly succeeding 𝑎𝑖), 𝑎𝑖 and 𝑎𝑗 can be parallelized. 

Theorem 1 as well as all following theorems are proven in the Supplement. This theorem enables the construction of 

parallelizations with respect to directly adjacent actions. However, in order to construct complex parallelizations 

(including nested parallelizations and parallelizations with an arbitrary length of path segments), non-adjacent actions 

have to be analyzed as well. For that purpose, direct dependencies are not a sufficient concept, because it might or 

might not be correct to parallelize such actions that are not directly dependent. Therefore, we have to state under 

which additional concept it is feasible to parallelize two non-adjacent actions. 

Definition 7 (transitive dependency): Let 𝑝 = (𝑏𝑠𝑖𝑛𝑖𝑡,𝑎1,𝑏𝑠2,𝑎2,…,𝑎𝑛,𝑏𝑠𝑛+1) be a path in the planning graph and let 

𝑎𝑖 and 𝑎𝑗 be actions in 𝑝 with 𝑖 < 𝑗 (i.e., 𝑎𝑗 is succeeding 𝑎𝑖), 𝑖  {1,… , 𝑛 − 2}, 𝑗  {3,… , 𝑛}. The action 𝑎𝑗 is 

transitively dependent on the action 𝑎𝑖 in 𝑝 iff there is a set 𝐴𝑘 = {𝑎𝑘1 , … , 𝑎𝑘𝑚} ⊆ {𝑎𝑖+1, … , 𝑎𝑗−1}, 𝐴𝑘 ≠ ∅, such that 

𝑎𝑖 ⇠ 𝑎𝑘1 ⇠. . .⇠ 𝑎𝑘𝑚 ⇠ 𝑎𝑗. 

A transitive dependency in a path can be seen as a continuous chain of direct dependencies among a non-empty 

subset of actions in that path, leading from one action to another. Evidently, the concrete ordering of actions in a path 

plays a crucial role for transitive dependency: The actions 𝑎𝑘1 , … , 𝑎𝑘𝑚 that result in a transitive dependency of an 

action 𝑎𝑗 on an action 𝑎𝑖 in a path 𝑝 might, even if they are contained in a path 𝑝′, fail to do so in 𝑝′ due to being in 

a different ordering (for example, in 𝑝′, one of the actions 𝑎𝑘1 , … , 𝑎𝑘𝑚 may be executed after 𝑎𝑗). This underlines the 

need of a path-wise definition of transitive dependency. Definition 7 can be used to gain information about feasible 

parallelizations via the following theorem. 

Theorem 2: Let 𝑝 =(𝑏𝑠𝑖𝑛𝑖𝑡,𝑎1,𝑏𝑠2,𝑎2,…,𝑎𝑛,𝑏𝑠𝑛+1) be a path in the planning graph and let 𝑎𝑖 and 𝑎𝑗 be actions in 𝑝 

with 𝑖 < 𝑗 (i.e., 𝑎𝑗 is succeeding 𝑎𝑖), 𝑖  {1,… , 𝑛 − 2}, 𝑗  {3, … , 𝑛}.  
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a) If 𝑎𝑗 is transitively dependent on 𝑎𝑖, the actions 𝑎𝑖 and 𝑎𝑗 cannot be parallelized based on 𝑝. 

b) If 𝑎𝑗 is neither directly nor transitively dependent on 𝑎𝑖, the actions 𝑎𝑖 and 𝑎𝑗 can be parallelized. 

Focusing only on a single path, we might at first “miss out” (from a graph-wise perspective) a certain parallelization 

by not parallelizing transitively dependent actions (cf. Theorem 2a)), if these actions are not dependent on each other 

in another path of the planning graph. However, the respective parallelization is then constructed based on the 

analysis of that path: 

Theorem 3 (completeness): Let 𝐺 be a planning graph consisting of the paths 𝑝1,…,𝑝𝑘. Suppose the actions 𝑎1, … , 𝑎𝑛 

represented in 𝐺 can be parallelized. By analyzing direct and transitive dependencies in all paths 𝑝1,…,𝑝𝑘, the 

parallelization of 𝑎1,…,𝑎𝑛 is constructed. 

This result finalizes the development of our concepts. Thus, the set of feasible parallelizations including nested 

parallelizations and parallelizations consisting of path segments with more than one action can be constructed based 

on our formally defined concepts of direct dependency, transitive dependency and completeness. 

3.2 Algorithm 

In this section, we present an algorithm which builds on the concepts and allows to construct complete graphs while 

also being computationally efficient (cf. Section Evaluation). Let 𝑃 be the set of all paths contained in the planning 

graph 𝐺 (as planned by existing approaches; e.g., [46,61]). For each 𝑝 ∈ 𝑃 we define a parallelization matrix 𝑀𝑝. 

The purpose of a parallelization matrix is to show which actions can be parallelized based on the respective path. To 

this end, our algorithm fills the parallelization matrices with entries determining whether to allow or to prohibit 

parallelization based on the concepts from the previous section. The family (𝑀𝑝)𝑝∈𝑃 then indicates all feasible 

parallelizations of the whole graph. The pseudo code of the algorithm is shown in the Table 4 (an extended version 

with comments is available in the Supplement). The algorithm relies on four steps, which are exemplified in the 

following by our running example: 

Table 4. Pseudocode of our algorithm 
1  Vector allActions:= new Vector() 

2  [][] positionMatrix:= new int [#actionsInGraph][#pathsInGraph] 

3  for all p  (1 ≤ p ≤ #pathsInGraph) 

4   for all i  (1 ≤ i ≤ p.length) 

5    if (a[i][p] ∉ allActions) then 

6     allActions.add(a[i][p]) 
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7    end if 

8    positionMatrix[allActions.getIndex(a[i][p])][p] = i 

9   end for 

10 end for 

11 Vector ParaMatrices:= new Vector() 

12 for all p  (1 ≤ p ≤ #pathsInGraph) 

13  [][]ParaMatrix:= new String[allActions.length][allActions.length] 

14  ParaMatrices.insertElementAt(ParaMatrix, p) 

15 end for 

16 for all p  (1 ≤ p ≤ #pathsInGraph) 

17  for all i  (2 ≤ i ≤ allActions.length) 

18   if (positionMatrix[i][p]=0) then 

19    continue 

20   end if 

21   for all j  (i-1 ≥ j ≥ 1) 

22    if (positionMatrix[j][p]=0) then 

23     continue 

24    end if 

25    if (ParaMatrices.elementAt(p).[i][j]ddep) then 

26     if(v(effects(a[i]))(v(precond(a[j]))v(effects(a[j])))∨v(precond(a[i]))v(effects(a[j])))  then 

27      for all a  (p ≤ a ≤ #pathsInGraph) do 

28       if (positionMatrix[i][a]=0 ∨  positionMatrix[j][a]=0) then 

29        continue 

30       end if 

31       ParaMatrices.elementAt(a).[i][j] ⃪ ddep 

32      end for 

33     else  

34      if (|positionMatrix[i][p]-positionMatrix[j][p]| = 1) then 

35       ParaMatrices.elementAt(p).[i][j] ⃪ para 

36      end if 

37     end if 

38    end if 

39   end for 

40  end for 

41 end for 

42 for all p  (1 ≤ p ≤ #pathsInGraph) 

43  for all i  (3 ≤ i ≤ p.length) 

44   for all j  (i-2 ≥ j ≥ 1) 

45    pos_i:= allActions.getindex(a[i][p]) 

46    pos_j:= allActions.getindex(a[j][p]) 

47    if(ParaMatrices.elementAt(p).[Max(pos_i,pos_j)][Min(pos_i,pos_j)])ddep) then 

48     for all k  (i > k > j) 

49      pos_k:= allActions.getindex(a[k][p]) 

50      if((ParaMatrices.elementAt(p).[Max(pos_i,pos_k)][Min(pos_i,pos_k)]) = (ddep ∨ tdep)) 

51      ˄ (ParaMatrices.elementAt(p).[Max(pos_j,pos_k][Min(pos_j,pos_k)]) = (ddep ∨ tdep))) then 

52       (ParaMatrices.elementAt(p).[Max(pos_i,pos_j)][Min(pos_i,pos_j)]) ⃪tdep 

53       break for 

54     end if 

55     end for 

56    end if 

57    if(ParaMatrices.elementAt(p).[Max(pos_i,pos_j][Min(pos_i,pos_j]ddep ∨ tdep)) then 

58     ParaMatrices.elementAt(p).[Max(pos_i,pos_j][Min(pos_i,pos_j]⃪para 

59    end if 

60   end for 

61  end for 

62 end for 

 

1) A list of the actions in the graph and a position matrix, containing the position of each action in each path, is 

generated (line 1-10). To this end, first the actions of the graph are determined in the order in which they appear (line 
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3-7): this means, all actions of a first path (in our example, process internally, create documentation, file 

documentation, assign to portfolio, route order; cf. Figure 1) are followed by the actions in other paths that were not 

part of the first path (assign to external contractor, receive portfolio assignment and filed documentation)2. Then, 

the position matrix containing the position of every action in each path of 𝐺 is generated (line 8). The rows represent 

the actions (in the order identified before), the columns correspond to the different paths. For our example with the 

four paths 𝑝1, 𝑝2, 𝑝3 and 𝑝4, this yields the following position matrix: 

      𝑝1   𝑝2   𝑝3   𝑝4 

𝑝𝑖
𝑐𝑑
𝑓𝑑
𝑎𝑝
𝑟𝑜
𝑎𝑒
𝑟𝑒(

 
 
 
 

1 1 1 −
2 2 3 −
3 4 4 −
4 3 2 −
5 5 5 3
− − − 1
− − − 2)

 
 
 
 

. 

 

 

Abbreviation Action 
𝑝𝑖 process internally 

𝑐𝑑 create documentation 

𝑓𝑑 file documentation 

𝑎𝑝 assign to portfolio 

𝑟𝑜 route order 

𝑎𝑒 assign to external contractor 

𝑟𝑒 receive portfolio assignment and filed documentation 

Here, " − " denotes that the action is not part of the respective path. 

2) A set of (at first, empty) parallelization matrices is constructed (lines 11-15). The rows and columns of every 

parallelization matrix 𝑀𝑝 represent all actions contained in 𝐺 ordered by their position as identified in step 1). Each 

entry determines a row-column-combination and therefore an action-action-combination. For our example, this 

means that four (one for each path) parallelization matrices 𝑀1 to 𝑀4 are generated, each row and column 

representing one of the seven actions contained in the graph. 

3) The algorithm examines – for all paths – the direct dependencies between pairs of actions in the respective path 

(lines 16-41)3. Whenever a direct dependency is identified in a path 𝑝 (line 26), it is inserted in the respective entry 

in 𝑀𝑝. The concept of direct dependency is path-overarching, so that additionally, to reduce computing time, an 

identified direct dependency is also inserted into all entries corresponding to these two actions in the subsequent 

paths (lines 27-32). Following Theorem 1a), direct dependencies prohibit parallelization. When actions are not 

                                                   

2 A different order of the paths does not lead to different sets of feasible parallelizations. 

3 Only one entry for each pair of actions is required, so in this and the following steps, just a triangular matrix needs to be 

considered and without loss of generality, all entries above the main diagonal can be disregarded (cf. for-loops, e.g., line 21). 

Also, only matrix entries for actions that actually appear in the respective path need to be filled out (lines 18-24, lines 28-29). 
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directly dependent, it is examined whether one of the actions is directly succeeding the other action in the considered 

path (lines 33-37). This is done via the position matrix. If this is indeed the case, the potential parallelization is noted 

in the corresponding entry in 𝑀𝑝 (line 35), which is justified by Theorem 1b). In our example, the analysis of the 

direct dependencies starts with the actions process internally and create documentation. The effects of process 

internally and the preconditions of create documentation have the belief state variable internal processing 

in common (cf. Table 3 for an overview of preconditions and effects), resulting in a direct dependency of those two 

actions. Therefore, this direct dependency is inserted in the parallelization matrices 𝑀1 to 𝑀3, since both actions are 

applied in the first three paths. The algorithm then examines file documentation and create documentation (directly 

dependent, because the effects of both actions contain the belief state variable documentation state), file 

documentation and process internally (directly dependent due to the common belief state variable internal 

processing), assign to portfolio and file documentation (not directly dependent because of no common belief 

state variable) etc. and inserts the respective entries in the parallelization matrices.  

4) The transitive dependencies are worked out (necessarily path-wise; lines 42-62). Only actions which are not 

directly dependent and which are not directly succeeding each other remain to be examined, reducing computing 

time. The algorithm searches for a set 𝐴𝑘 of actions as in the definition of transitive dependency (Definition 7). This 

is done in a special proceeding order to guarantee that all dependencies required to examine a certain transitive 

dependency have already been determined beforehand (cf. for-loops in lines 43, 44 and 48). More precisely, the 

algorithm at first searches for a transitive dependency by adjacent actions (for example between action 1 and action 

3 by action 2). Thereafter, the algorithm searches for transitive dependencies between non-adjacent actions (so that, 

e.g., for examining the transitive dependency of action 4 on action 1, the potential transitive dependency between 

action 1 and action 3 can be already used). Every transitive dependency is noted in the parallelization matrix of the 

considered path, prohibiting parallelization (cf. Theorem 2a); line 52). If neither direct nor transitive dependency is 

discovered between two actions in a path, the actions can be parallelized (cf. Theorem 2b); lines 57-58). In our 

example, the first potential transitive dependency that the algorithm analyzes is the one between create 

documentation and assign to portfolio in path 1 (cf. Figure 1), since it is already known that file documentation is 

directly dependent on process internally. However, assign to portfolio is not dependent on file documentation (which 
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is the action applied in-between assign to portfolio and create documentation), and thus create documentation and 

assign to portfolio are not transitively dependent in path 1. Thus, the possibility to parallelize assign to portfolio and 

create documentation is included in 𝑀1. The algorithm proceeds by examining the pair route order and process 

internally (in path 1). Here, route order is directly dependent on assign to portfolio, which itself is directly dependent 

on process internally, leading to a transitive dependency of route order and process internally that is entered in 𝑀1. 

In this way, the algorithm identifies all transitive dependencies for all paths. 

 Based on the parallelization matrices, the process model containing all feasible parallelizations can be 

constructed by iterating over all parallelization matrices, including each feasible parallelization (as indicated in of 

the matrices) in the process model and removing redundant parallelizations. Thus, Theorem 3 is considered. For the 

running example, the completed parallelization matrices are 

𝑀1 = 𝑀2 = 𝑀3 =  𝑀4 =  

           𝑝𝑖          𝑐𝑑         𝑓𝑑          𝑎𝑝       𝑟𝑜   𝑎𝑒   𝑟𝑒      𝑝𝑖    𝑐𝑑   𝑓𝑑   𝑎𝑝      𝑟𝑜         𝑎𝑒       𝑟𝑒  
𝑝𝑖
𝑐𝑑
𝑓𝑑
𝑎𝑝
𝑟𝑜
𝑎𝑒
𝑟𝑒(

 
 
 
 

− − − − − − −
𝑑𝑑𝑒𝑝 − − − − − −
𝑑𝑑𝑒𝑝 𝑑𝑑𝑒𝑝 − − − − −
𝑑𝑑𝑒𝑝 𝑝𝑎𝑟𝑎 𝑝𝑎𝑟𝑎 − − − −
𝑡𝑑𝑒𝑝 𝑑𝑑𝑒𝑝 𝑑𝑑𝑒𝑝 𝑑𝑑𝑒𝑝 − − −
− − − − − − −
− − − − − − −)

 
 
 
 

 

 𝑝𝑖
𝑐𝑑
𝑓𝑑
𝑎𝑝
𝑟𝑜
𝑎𝑒
𝑟𝑒(

 
 
 
 

− − − − − − −
− − − − − − −
− − − − − − −
− − − − − − −
− − − − − − −
− − − − 𝑡𝑑𝑒𝑝 − −
− − − − 𝑑𝑑𝑒𝑝 𝑑𝑑𝑒𝑝 −)

 
 
 
 

. 

 

They are used to construct the final graph (depicted in Figure 3) including all feasible parallelizations. 

 

Figure 3. Final graph resulting from the application of the algorithm to the running example 
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4 Evaluation 

The presented approach was evaluated as shown in this section. 

4.1 Analysis of the algorithm properties 

We mathematically evaluated the algorithm in terms of the key properties termination, completeness and 

computational complexity and summarize the results in the following (proofs and calculations are available in the 

Supplement). 

Termination: The algorithm terminates. 

Correctness/Completeness: The algorithm leads to complete and correct parallelization matrices: Every required 

entry is inserted and there is no entry that would allow an infeasible parallelization or prohibit a feasible 

parallelization. 

Computational Complexity: When evaluating the computational complexity of our algorithm, we considered the 

worst-case-scenario as is usual. The following results were achieved: Given a planning graph in which each path has 

𝑛 actions and each action has 𝑚 preconditions and 𝑚 effects, the asymptotic time complexity of our algorithm is 

𝑂(𝑛3) and 𝑂(𝑚2). This polynomial run time underlines the computational efficiency (cf. [62,63]) and thus practical 

applicability of the algorithm. We did not evaluate the computational complexity of our algorithm in comparison to 

competing algorithms since it solves a heretofore unsolved problem (cf. aspects (A1) – (A5) in Related Work and 

Research Gap). 

4.2 Operational evaluation 

To examine its technical feasibility and practical applicability [64], we examined our approach with respect to the 

following three evaluation questions: 

(E1) Can the algorithm be realized in a prototypical implementation? 

(E2) Can the algorithm be applied to real-world processes and how can the necessary input data (i.e., the specification 

of actions, initial belief state and conditions for goal belief states) be obtained? 

(E3) Which output results from the application of the algorithm to real-world processes? 

In regard to (E1), a Java implementation of an existing algorithm for the automated construction of planning graphs 
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[46] served as a basis for our work. This implementation allows the import of actions, initial belief states and 

conditions for goal belief states specified in form of XML files. We extended the implementation to incorporate the 

presented algorithm for the automated construction of parallelizations. The validity of the prototype was ensured by 

means of structured tests using the JUnit framework and planning test process models. At the end of the test phase, 

the implementation did not exhibit any errors. This result supports the technical feasibility of the algorithm and 

provides “proof by construction” [65,66] 4. 

 With respect to (E2) we analyzed the algorithm in-depth in different real-use situations using our prototypical 

implementation5. In the following, we exemplarily focus on one of these real-world processes referring to the order 

management of a European financial services provider (the running example used above is part of this process as 

well). More precisely, this process addresses the execution of security orders where several steps including check 

routines have to be modeled (cf. Figure 4). In the past, this process had to be (re)designed several times due to new 

services, new regulations or changing organizational requirements (for example, when outsourcing parts of the 

process to external service providers). To evaluate our approach we focused on the previous redesigns of this process 

and analyzed whether it is possible to apply the approach in these redesign situations and to what extent the results 

of the automated planning match with manually designed parallelizations. 

 In order to apply the algorithm, we conducted two steps: First, we obtained the necessary input data. To do 

so, a set of actions was extracted based on former process models in the area of security order management. This 

could be done easily and in an automated manner via the financial services provider’s process modeling tool (ARIS 

toolset) which features a XML interface. Such an interface can be used in order to export actions to our prototype. In 

the area of security order management, about 200 different actions including their preconditions and effects were 

imported from the ARIS toolset and verified. Besides, a small number of additional actions was modeled manually. 

Moreover, the initial belief state and conditions for goal belief states were specified in cooperation with the financial 

                                                   

4 In this context, a web interface for the implementation capable of planning process models in an automated manner has been 

prepared. It can be accessed using the following link: http://www-sempa.ur.de/ 

5 The prototype was run on an Intel Core i7-2600 3.40 GHz running Windows 7, 64 Bit and Java 8, Build-Version 1.8.0_05-b13. 
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services provider. Then, the process models were planned using the prototype. This second step took less than two 

seconds in case of the order management process model. 

 Concerning (E3), we examined the output. Figure 4 shows an entire planned process model6. Here, our 

algorithm constructed two parallelizations which were also part of the manually designed process model. The first 

parallelization is constructed after the action proof stock, where the actions enter quantity and determine market value 

are parallelized. The second parallelization refers to our running example. Here, the action assign to portfolio is 

parallelized to the actions create documentation and file documentation. The assessment underlined the applicability 

and feasibility of the algorithm in all redesign situations of the security order management process. 

 To further address the evaluation questions, the presented approach was applied in additional real-use 

situations from various application contexts and different companies. These applications are discussed in the 

Supplement. The analysis of the evaluation questions (E1)-(E3) supported the technical feasibility and practical 

applicability of the presented approach. Table 5 summarizes the results.  

Table 5. Results with regard to the evaluation questions (E1)-(E3) 
Evaluation Question Result 

(E1) Can the algorithm be realized in a prototypical 

implementation? 

The algorithm was implemented and successfully integrated into a prototype for 

the automated planning of process models. 

(E2) Can the algorithm be applied to real-world 

processes and how can the necessary input data (i.e., 

the specification of actions, initial belief state and 

conditions for goal belief states) be obtained? 

The algorithm was applied in several real-use situations of various application 

contexts and different companies. The analyzed situations included up to 278 

actions and 189 states in the planning graph and are of a medium to large size. 

This is also reflected in the number of paths of the different planning graphs 

which ranges up to over 1.2 million (due to the various orders the actions can 

appear in). The necessary input data could, for example, be obtained by the XML 

interface of an existing modeling tool. Our algorithm was able to cope with the 

required data types and could be applied in all situations without restrictions. 

The run time of the algorithm varied – depending on the size and complexity of 

the processes - from a few milliseconds up to around 12.5 minutes. 

(E3) Which output results from the application of the 

algorithm to real-world processes? 

The algorithm constructed parallelizations for each of the real-world processes. 

For a significant number of processes, complex parallelizations (e.g., nested 

parallelizations) were constructed. The algorithm provided the manually 

constructed parallelizations and further, additional feasible parallelizations. 
 

 

                                                   

6 Note that in this figure, the two paths of our running example have been merged before the action route order, since the process 

model is represented as a UML activity diagram without state nodes. This diagram type was the modelling notation preferred by 

the financial services provider. 
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Figure 4. Planned model of the order management process (screenshot prototype) 
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4.3 Practical utility 

We further assessed the practical utility [64] of our approach by means of a naturalistic ex post evaluation [67]. Its 

application resulted in the construction of the parallelizations already contained in the (existing) manually designed 

process models as well as additional feasible parallelizations and consequently increased flexibility by definition (cf. 

[28]). Thereby, flexibility by definition represents the ability to consider alternative execution routes at planning time 

(in our context, facilitated by feasible parallelizations). This capability is of practical use for decision support because 

alternative execution routes can be assessed based on economic and resource criteria constraints. Subsequently the 

most beneficial execution route can be selected for process execution. For instance, in this way, an execution route 

with favorable execution time may be chosen when necessary. The real-use situation of this naturalistic evaluation is 

presented in the following Table 6 [67,68]. 

Table 6. Real environment analyzed in the naturalistic evaluation 

General setting 
Extensive project at a European financial services provider aiming for an improved transparency of costs, 

execution times and capacities with regard to core business processes 

Available data and 

systems 

Detailed information as well as key economic indicators such as total cost, total required execution time and 

personnel requirements for a large number of business processes and the actions covered by these processes; 

provided by process experts and executives of the financial services provider 

Involved people  
Multiple organizational units of the European financial services provider and their employees (business and 

process experts, executives) 

Hypothesis 

Realizing a previously non-identified feasible parallelization should reduce total costs and total required 

execution times while increasing resource utilization, as long as the necessary resources for concurrent execution 

are available. This should also help in the prevention of errors and claims occurring during process execution. 

Similar to Siha and Saad [69], we exemplarily discuss two selected cases in the context of the “Contracting wealth 

management customer” process (cf. Table C.1 in Supplement) in Table 7. 

Table 7. Selected cases in the naturalistic evaluation 
Subprocess Managing depot conditions Handling non-executed security paper orders 

Description of 

the sub-process 

Customer inquiries lead to changed depot 

conditions which are issued by the respective 

employees in charge. These change requests are 

stored in a list, which has to be worked through by 

different organizational units of the financial 

services provider to complete the needed change. 

A variety of problems results in non-executed security paper 

orders issued by employees in charge of the financial services 

provider. These orders need to be rectified, forwarded and 

executed. 

Organizational 

units involved 

Advisors / multiple regional service divisions / 

processing department / process management 

department 

Advisors / regional service division / commerce, sales and 

deposits units / processing department / process management 

department / financial market services 

Issue 

The previously existing sequential execution of 

actions occurring when, for instance, a customer 

opened a deposit account had resulted in a 

significant time gap between the opening and the 

completion of the respective inquiry. This, in turn, 

had led to customer complaints and repeated effort 

of the employees in charge. 

Discussions with different organizational units revealed that 

for certain actions, it had not been clear which unit was in 

charge. Time delays resulting from the sequential execution 

of these actions had resulted in long execution times and many 

unnecessary internal inquiries and reworks. This in turn had 

led to claims of customers because overdue security paper 

orders had been deleted erroneously. 

Improvement 

potential 

A clear division of responsibility between the 

different organizational units of the financial 

Our analysis showed that, as long as different organizational 

units were responsible for some of the actions, a 
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services provider allowed a (previously not 

identified) concurrent execution of actions (i.e., 

nested parallelizations). The feasibility of this 

concurrent execution of actions with respect to 

economic criteria and resource constraints was 

confirmed by experts in a workshop based on 

which the employees in charge were informed and 

trained.  

parallelization of these actions was not only feasible, but 

highly beneficial. A workshop with the respective 

organizational units (including, e.g., the sales, commerce and 

deposits units) was conducted to ensure that the proposed 

concurrent action execution would be possible based on 

economic criteria and resource constraints. Thereby, it was 

also ensured that each organizational unit was only in charge 

of the actions it was capable for. 

Results 

The concurrent execution of previously 

sequentially executed actions could be realized. In 

this way, a large number of time delays and 

repeated efforts could be avoided. A 50%-

reduction in occurrence of these aspects led to 

saving 20% of total required execution time. For 

the employees, this amounted to an average 

reduction of at least 12 minutes of working time 

per process execution. Additionally, realizing the 

improved feasible execution route including the 

concurrent execution of actions resulted in an 

optimization potential for cost savings of 1.2 full 

time equivalents p.a. 

The concurrent execution of actions allowed an improved 

workload efficiency and thus an optimization potential for 

cost savings amounting to 1.42 full time equivalents p.a. 

Furthermore, due to a reduction of the total required execution 

time, the aforementioned claims could be reduced or even 

avoided. 

Overall, our approach demonstrated its practical utility in the analyzed real-use situations with respect to the criterion 

flexibility by definition. Several in-depth analyses and discussions with executives and employees supported that 

realizing the identified concurrent execution of actions (e.g., in nested parallelizations) was feasible and beneficial 

based on economic criteria and resource constraints. After workshops with the involved organizational units of the 

financial services provider, selected execution routes including the concurrent execution were applied. In this way, 

total required execution times were reduced, resource utilization was increased and errors and claims could be 

reduced. In these real-use situations, an improved decision support provided by our approach was realized. 

5 Conclusion, Limitations and Further Research 

In this paper, we introduced concepts stating how to construct parallel splits and synchronizations in newly planned 

process models in an automated manner. Compared to existing works, our approach supports the construction of all 

feasible parallelizations in a process model, including complex parallelizations such as nested parallelizations. Based 

on our formally defined concepts, we presented a concrete algorithm for this task. We implemented the approach 

into a software prototype to show its applicability. Moreover, the presented approach allows the consideration of 

large data types and planning independently of a concrete modeling language. This means that applicability for 

various notations such as UML activity diagrams, BPMN diagrams and Event-driven Process Chains is supported. 

 The main findings from our research for control flow pattern theory are as follows. To begin with, the 

presented concepts support the foundations of control flow pattern theory regarding the patterns parallel split and 
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synchronization and allow to show that both patterns can indeed be constructed feasibly and in an automated manner. 

Second, the theoretical understanding of parallel splits and synchronizations was furthered, compared to existing 

approaches: Thereby, interestingly, it was proven that for two or more actions to be parallelized, other actions have 

to be analyzed as well (due to potential transitive dependency). Third, we showed that actions which are directly or 

transitively dependent cannot be parallelized. This adds rigor to statements prevalent in literature that actions may 

not be “in conflict” or similar descriptions (cf., e.g., [70]). Fourth, it was proven that in contrast to existing concepts 

(e.g., based on the order of actions), the absence of dependency is indeed a sufficient criterion for actions to be 

parallelized. 

 Building on these insights, our work offers major findings for the research field automated planning of 

process models. We believe that by addressing the presented research gap, it significantly expands the boundaries of 

the research field. In particular, the proposed concrete algorithm for an automated construction of all feasible 

parallelizations in newly planned process models forms an indispensable component of a comprehensive approach 

for an automated planning of process models.  

 Additionally, there are implications for applying our approach in practice as well. Parallelizations are, 

amongst other purposes, used to reduce execution times and costs while increasing workload efficiency and resource 

utilization. This optimization potential can be leveraged by applying our approach which allows the construction of 

additional parallelizations, thus increasing flexibility by definition. In this way, our approach provides valuable 

decision support. To reflect such implications in more detail: First, proposing alternative feasible parallelizations 

opens the door for discussions with process managers and executives as specific and detailed models are on the table, 

which can be explored and assessed regarding their organizational feasibility. Second, such discussions and what-if 

scenarios are in particular very fruitful – as the experiences in our cooperations show – in cases where existing 

process models have to be adapted to new company-internal or external (e.g., new regulations) requirements. Third, 

because the run times to plan models were short, some preconditions and effects of actions, especially the ones which 

specify resources and organizational responsibilities, could be altered. In this way, new ways and alternatives to 

overcome traditional organizational constraints could be provided. Fourth, when process models are realized by 

(web) services, our approach can provide valuable input. For instance, the process models constructed by our 
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approach can be used by service selection approaches. This means, planned process models including different 

feasible parallelizations can be assessed regarding both their potential service implementation and resulting Quality-

of-service values (e.g., overall cost or availability) which supports to choose beneficial execution routes (cf., e.g., 

[17,71]). 

 However, our research also possesses some limitations that should be addressed in future work. First, our 

approach constructs parallelizations for planning graphs without cycles (cf. Definitions 4 and 5). This limitation 

could be resolved by analyzing the (sub)paths within a cycle once and separately, allowing the construction of 

parallelizations while considering arbitrary cycles. Further advanced control flow patterns and their combination with 

parallelizations have to be examined in a similar way. Second, when applying the approach in real-use situations, 

noisy preconditions or effects may occur and influence dependencies between actions. To address this issue, multiple 

plannings with different preconditions and/or effects of respective actions can be initiated. Based on this, it can be 

evaluated whether the noise influences the resulting process model and a feasible process model can be chosen. Third, 

paths consisting of ordered actions as input can be provided by multiple approaches. Thus, work should be carried 

out to transfer our approach to related research fields such as web service composition and process model verification 

which may also benefit from our work. For instance, currently we work on an enhancement of an existing (web) 

service composition and selection approach by considering feasible parallelizations of services during runtime of a 

process. Moreover, future work should analyze how our approach can be applied to manually constructed process 

models to allow the construction of (additional) parallelizations for such models. Our approach forms an appropriate 

foundation for this as well as for the aforementioned enhancements and thus serves as a suitable basis for further 

research. 
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