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Abstract

In the majority of executive domains, a notion of normality is involved in

most strategic decisions. However, few data-driven tools that support strategic

decision-making are available. We introduce and extend the use of autoencoders

to provide strategically relevant granular feedback. A first experiment indicates

that experts are inconsistent in their decision making, highlighting the need

for strategic decision support. Furthermore, using two large industry-provided

human resources datasets, the proposed solution is evaluated in terms of rank-

ing accuracy, synergy with human experts, and dimension-level feedback. This

three-point scheme is validated using (a) synthetic data, (b) the perspective of

data quality, (c) blind expert validation, and (d) transparent expert evaluation.

Our study confirms several principal weaknesses of human decision-making and

stresses the importance of synergy between a model and humans. Moreover, un-

supervised learning and in particular the autoencoder are shown to be valuable

tools for strategic decision-making.

Keywords: Unsupervised learning, Strategic Decision Support, Outlier

Detection

1. Introduction1

1.1. Problem Description2

Data-driven approaches, such as machine learning and artificial intelligence3

methods are being adopted across industries to support, optimize and automate4
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operational decisions. Examples include the adoption of machine learning in5

credit scoring to optimize decisions to extend credit [1], and in customer churn6

prediction to optimize customer relationship management [2].7

Data-driven methods perform best at well-defined tasks that are repetitive8

and have tractable short-term effects. These strengths stand in stark contrast9

with what constitutes strategic decision making. Strategic decisions are often10

described as infrequent decisions, typically taken by management, that are not11

well defined and have high impact, long-term effects [3, 4]. For the remainder12

of this paper, we follow this definition. Examples of strategic decisions include;13

deciding on a remuneration policy, the composition of the board of directors,14

launching a new product, or investing in new machinery.15

So in spite of technological progress, which has made operational task sup-16

port such as churn prediction accessible to the average company, strategic deci-17

sions are still predominantly made without any learning-based grounding.18

As such, the most important long-term decision-making in an organization19

is arguably the least supported by learning systems. Hence, strategic decision-20

making has to date been guided by expert knowledge even though humans21

are known to be prone to various biases [5], and managers are known to have22

preconceptions that lack objective grounding [6]. A lack of data-driven strategic23

decision support thus represents a large-impact problem across industries.24

A data-driven solution of this problem would entail a system capable of25

learning from data that provides management with actionable information, as26

conceptually displayed in Figure 1.27

1.2. Peer Influence in Strategic Decisions28

Organisations are heavily influenced by others when making strategic deci-29

sions. On the one hand peer information is used to imitate, and on the other30

hand as a baseline to differentiate from through innovation. For both use cases,31

the key question amounts to ’what is normal’ in a given peer group. This ques-32

tion underlies many strategic actions and their respective evaluation e.g., the33

definition of a correct remuneration policy is dependent on the market, and a34
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Figure 1: Conceptual diagram of the role of a learning system in decision support

policy leading to a revenue increase of one percent would be less lauded if all35

competitors grow by ten percent. Currently, lacking a learning-based ground-36

ing, the manager is restricted to peer information gathered through heuristics37

and readily available descriptive statistics. As such, a notion of normality that38

accurately represents complex multi-variate relationships is necessary for man-39

agement to function and intelligently outline strategy [7].40

The field concerned with this notion of normality is called outlier or anomaly41

detection, the identification of unexpected or abnormal behavior [8]. However,42

discrete classification of outliers does not suffice to enable provision of detailed43

and actionable information tuned to strategic decision making.44

1.3. From outlier detection to strategic decision support45

In outlier detection the decision to make usually applies at the observation-46

level, i.e. take a single action or not depending on the discrete classification47

outlier/no outlier of a single observation. Correct classification is thus central48

to the outlier detection task, which is reflected by the dominant evaluation49

strategies in this field.50

In strategic decision support the (in case of the autoencoder same) unsuper-51

vised learning method is used to characterise the whole strategic peer environ-52

ment, i.e. strategically relevant information is to be extracted. Not deviating53
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from others is usually inconsequential in outlier detection decision tasks. For54

strategic decisions on the other hand, the implications of the aggregate result55

depend on the specific strategy under review. For example, not deviating in56

certain areas may require policy adjustment when one wants to innovate, but57

could also imply successful policy that brought the organization in line with58

industry leaders. Disentanglement of these deviations at the dimension-level,59

indicating whether you are below the norm or exceeding it and to what extent,60

also represents actionable quantitative information for managers. For example,61

in which dimensions (how) is the organization different, and how much do we62

need to change to get in line with industry leaders?63

In other words, to provide actionable strategic information, managers require64

granular feedback on the outlyingness of each entity in the population. In65

line with above paragraph, this implies (1) whether, (2) how, and (3) to what66

extent an organization is different from relevant peers.67

However, the output of the solution is required to be actionable, inter-68

pretable, justifiable [9], and ultimately accepted by the decision-makers. We69

group these qualitative characteristics under the umbrella term (4) synergy.70

This fourth requirement is often ignored but is key to ensuring the eventual71

adoption of the proposed decision support system. Past research has shown72

strong distrust and even dislike towards algorithmic decision support in the73

managerial domain [10] and, ultimately, the management is responsible for the74

executive decisions.75

For strategic decision support, labeled data is not available and annotation76

is either largely incorrect, expensive, or both. As such, active learning or label77

noise strategies to enable supervised learning cannot be applied. Hence an78

unsupervised approach is adopted. Figure 3 visually motivates the need for79

unsupervised learning.80

1.4. Solution81

In this study, we introduce a framework for providing strategic data-driven82

decision support by utilizing an autoencoder (AE) neural network. The recon-83
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Figure 2: Comprehensive Diagram of the Extension of Data-driven Decision Support

struction error of the AE facilitates provision of granular feedback based on84

data by explicitly scoring in terms of how, to what extent and in what sense an85

observation deviates from a learned normal state, i.e., from what is expected,86

given the particular context when comparing to a set of relevant peers. Such a87

diagnosis is relevant in the strategic decision process which is dependent on peer88

information. Simply put, by means of comparison with a relevant benchmark,89

one may more accurately take position in the strategic landscape, and learn how90

to make more precise adjustments to either mimic or diverge from others. Other91

traditional outlier detection methods such as Isolation Forest and Local Outlier92

Factor techniques focus solely on classification performance, and do not yield93

this additional feedback necessary for the strategic support task. The structure94

of the solution is visualized in Figure 2.95

To evaluate our approach, we introduce an extensive experimental setup96

specifically designed to gauge the capacity to fulfill every single requirement for97

effective strategic decision support defined in Section 1.2. As Figure 2 shows,98

this still involves an evaluation of not only the aggregate ranking but also el-99

ements of the granular analysis as well as synergy with management. The100

evaluation framework is discussed in full detail in Section 5.101

For the purpose of the presented study, two proprietary datasets were ob-102

tained from a European HR services provider; these are sets of observations103
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representing employees (D1) and employers (D2), including a selection of five104

and eleven dimensions of employees and employers, respectively. These datasets105

allow us to evaluate the use of the proposed approach to leverage unlabeled106

datasets for providing relevant input to the strategic decision-making process.107

1.5. Contributions108

In this article, we introduce the use of autoencoders for providing strategic109

decision support. We introduce and apply an assessment procedure to validate110

the proposed methodology using two HR datasets. We leverage data quality111

issues, expert opinion, expert validation and synthetic observations to demon-112

strate that the AE-based method does the following:113

Outperforms humans and other benchmark models;114

Offers granular dimension-level feedback, yielding extensive insights be-115

yond the aggregate outlier scores; and116

Outputs information considered relevant and interpretable and is thus117

highly synergetic with human experts.118

We present experimental results that validate (a) the business need for a119

data-driven diagnosis and (b) the adequacy of the proposed methodology in120

providing such decision support. The presented application of the proposed121

methodology is in the field of human resources management. However, the122

methodology is versatile and can be applied across strategic domains by selecting123

an appropriate dataset relevant for the envisioned analysis e.g. for financial124

strategy select relevant financial features, for a relative mapping of company125

culture one would need different features.126

The remainder of this paper is structured as follows. In the next section, the127

related literature is reviewed. Subsequently, in Section 3 the proposed method-128

ology is discussed. In Section 4, the need for data-driven strategic decision129

support is experimentally demonstrated. Next, Section 5 describes a series of130

experiments evaluating the effectiveness of the autoencoder as a solution. The131
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implications of these experiments are reported and discussed in Section 5.5. Fi-132

nally, conclusions and future research opportunities are presented in Section 6.133

2. Related Work134

In this section, the existing decision support literature is revisited. Next, we135

review the literature relevant to characterize human decision making, and the136

influence of peer organizations thereon in a strategic context. Furthermore, the137

outlier detection literature is reviewed, as it methodologically and conceptually138

relates closely to our vision of strategic decision support. Finally, unsupervised139

learning for outlier detection is specifically examined to accommodate the ab-140

sence of labels in the setting of this paper.141

2.1. Analytics for Decision Support142

Applications of supervised learning to model well-defined, repeatedly oc-143

curring events and/or corresponding decisions are rife in the literature, e.g.144

[1, 2, 11, 12]. In the strategic decision support literature specifically, applica-145

tions include a multi-agent system for strategic bidding in electricity markets146

[13] and fire extinguishing method effectiveness prediction. However, different147

than the current work, these tasks are well defined and repeated. When the148

tasks are not well defined, no labels are available and unsupervised algorithms149

must be applied.150

From a technical perspective, unsupervised algorithms have been applied in151

other decision support settings. Applications of unsupervised outlier detection152
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aim to support decisions through flagging of outliers, e.g. in fraud detection153

[14].154

From a conceptual perspective, the literature most in line with ours, i.e.155

concerning those strategic decisions that are one-off and ill-defined, is largely156

focused on non-parametric [15] and qualitative studies [16, 17]. [15] is especially157

similar to our work as it also focuses on quantitative feedback about peers in158

strategic decision making, although the information is limited to identification159

of best practice organization and the peer-groups they affect.160

2.2. Peer Influences and Strategic Decision Making161

Strategic decisions are not taken on a purely rational basis. Initial emo-162

tional or intuitive responses affect judgment [18] and when faced with complex163

information, humans fall back to simple heuristics [19, 20, 21]. As such, deci-164

sion support should provide simple information that is relevant to the strategic165

decision making process. Several studies have established that organizations166

that gather more information about their environment achieve a higher per-167

formance through improved and more rational decision making [22, 23]. This168

environmental or peer information is used to make conscious choices to be sim-169

ilar to (i.e. mimicry) or different (i.e. innovation) than peers [24, 25, 7]. In the170

strategic management literature the optimal trade-off between differentiation171

and conformity is referred to as ’optimal distinctiveness’ [25]. Empirical exam-172

ples of mimicking decisions without rational basis include the appointment of173

CMOs [26]. Even when not outright mimicking, managers draw ideas from the174

practices of others [4, 3]. A tool able to comprehensively present similarity or175

quantifies best practice profiles thus provides information relevant to strategic176

decision making.177

In summary, the impact on strategic decision support systems is twofold:178

(a) Human decision making suffers from several flaws and biases and needs179

objective grounding through relevant information.180

(b) Strategic decision making is strongly influenced by peer information181
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To assess the impact of these limitations on learning and human handling of182

complex strategic information and thus the need for a system yielding inter-183

pretable condensed information, it is paramount to study human expertise.184

2.3. Outlier Detection185

Outlier detection has been successfully applied in a plethora of fields, in-186

cluding fraud detection [27], computer vision [28], network intrusion detection187

[29], and medicine [30]. The interest in outlier detection stems from the as-188

sumption that identification of outliers and their characteristics translates into189

actionable information [31] towards these outlying observations. We extend190

this assumption and argue that common unsupervised methods can uncover in-191

formation relevant to general strategic decision-making, beyond actions taken192

towards individual observations. Note that in the absence of labeled observa-193

tions, unsupervised methods allow the ranking of observations based on the level194

of outlyingness indicated by outlier scores.195

2.4. Unsupervised Outlier Detection196

Approaches to unsupervised outlier detection are mostly based on statistical197

reasoning, distances, or densities [32]. The capacity of methods to accurately198

identify outliers varies across applications and depends on the dimensionality of199

the dataset, although some methods appear to be robust and generalize better200

than others [33].201

Typically, a score is produced that can subsequently be used to rank and202

classify observations. The nature of such rankings produced by unsupervised203

outlier detection techniques is not yet well understood [33, 34]. This implies that204

every method inherently adopts its own implicit definition of what constitutes205

normality. Moreover, the optimal definition varies across application domains206

[33]. The autoencoder is a method that combines strong performance with a207

possibility of granular feedback. Deep autoencoding architectures have achieved208

outstanding results in traditional outlier detection [35, 12, 36].209
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To evaluate unsupervised models, expert input, e.g., a set of observations210

labeled by an expert, can be used; alternatively, if labels are available (though211

unused by the unsupervised learning method), then a holdout test set can be212

used as in the evaluation of supervised models [32]. An evaluation based on213

expert input hinges on two critical assumptions:214

(i) the expert’s labeling is correct, and215

(ii) the expert’s semantic understanding is relevant or desirable.216

Note here that labeling observations becomes exceedingly difficult if the di-217

mensionality of the observations, i.e., the number of available dimensions, in-218

creases [37]. This implies that the relevance of expert input is limited.219

3. Methodology220

In this section, we will discuss the autoencoder as well as two other state-221

of-the-art outlier detection methods, namely, the local outlier factor (LOF)[38]222

and isolation forest (Iforest)[39].223

3.1. Autoencoders for decision support224

The autoencoder facilitates an extension to decision support by offering gran-225

ular and actionable information in addition to an overall outlier score and rank-226

ing. This additional information makes the output highly interpretable, as the227

overall causes of abnormality are readily quantified in terms of the original fea-228

ture space [40]. LOF and Iforest do not offer such granular feedback but will229

be used in the experiments to benchmark the outlier ranking obtained from the230

autoencoder.231

Autoencoders are symmetric artificial neural networks trained with the ob-232

jective of reconstructing their inputs, i.e., observations. A basic autoencoder233

(Figure 4) maps an input vector x ∈ Rn, where n ∈ N+ is the dimension of x,234

to an output vector of an equal dimension, i.e., the reconstructed observation235

r ∈ Rn. An autoencoder essentially consists of two main components: (1) an236
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encoder f that maps x to an internal representation h ∈ Rm, where m ∈ N+,237

and (2) a decoder g that maps h to r.238

Most applications of autoencoders aim to extract useful properties of the239

dataset through the internal representation h. Such applications include pre-240

training [42], dimensionality reduction [43], and vectorizing word representations241

[44]. However, in outlier detection and by extension in decision support, we are242

primarily interested in the output r. More specifically, here we are interested243

in the similarity between r and x expressed by a loss function L(x, g(f(x))).244

Generally, a loss function that penalizes the distance from r to x is selected,245

thereby defining the reconstruction error. By restricting the capacity of h, useful246

properties of the data may be learned [41]. In an undercomplete autoencoder,247

the internal representation acts as a bottleneck since h is of a lower dimension248

than x, i.e., n > m. Through this bottleneck, an incomplete reconstruction is249

forced since model capacity no longer suffices for an exact reconstruction. When250

training the autoencoder with the objective of minimizing the reconstruction251

loss, we implicitly favor the reconstruction of inputs that are closest to the data.252

Hence, inputs that are the farthest from the learned reconstruction exhibit the253

largest errors. If more hidden layers are used in the autoencoder architecture,254

the capacity of the network increases, enabling it to construct a more complex255

hidden encoding of the data.256

An undercomplete autoencoder combines multiple characteristics of an at-257

tractive solution to our problem:258

It can handle a mix of continuous and discrete data [45].259

The reconstruction errors can be interpreted as deviations for each indi-260
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vidual dimension from the normal or expected state, and261

The errors offer information about both the size and the direction of the262

deviation.263

3.2. Outlier ranking methods264

3.2.1. Local Outlier Factor.265

The local outlier factor method (LOF) [38] is a state-of-the-art unsupervised266

outlier detection algorithm [46]. LOF is a density-based scheme in which an267

outlier score LOFk(p) is computed for each observation.268

The k nearest neighbors Nk(p) are determined for each observation p, where269

k ∈ N+. Afterwards, the local reachability density lrdk(p) for one observation270

p is computed:271

lrdk(p) =


∑

o∈Nk(p)

dk(p, o)

|Nk(p)|


−1

, (1)

where dk is the reachability distance. In (1), the local reachability density is272

thus inversely proportional to the average reachability distance from p to its273

k neighbors. The reachability distance is almost always computed as the Eu-274

clidean distance [46]. Intuitively, a larger distance between observations implies275

a lower density.276

Given lrdk(p), LOFk(p) can be computed:277

LOFk(p) =

∑
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)|
. (2)

LOFk(p) is the average ratio of the lrd of p to the lrds of its k neighbors.278

The number of nearest neighbors being considered (k), and the distance279

measure for the reachability distance, i.e., Euclidean, are hyperparameters of280

the model (cf. Table .10 in the Appendix). Observations with a density that281

is substantially lower than those of their neighbors are considered outliers or282

anomalies.283
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As the average ratio between the densities of the observation and the neigh-284

borhood increases, so does LOFk(p). Hence, LOFk(p) being equal to one implies285

that lrdk of observation p is on average equal to lrdk of its neighbors. A higher286

LOFk(p) indicates that p lies, on average, in a lower-density area than those of287

its neighbors and can thus be considered to be more outlying. LOF outputs a288

score that can subsequently be used to rank observations from high to low level289

of outlyingness.290

3.2.2. Isolation Forest (Iforest).291

Isolation forest (Iforest) [39] is a powerful outlier detection algorithm that292

extends decision tree and ensemble methods, such as random forests. Isolation293

implies “the separating of an instance from the rest of the instances” [39]. The294

key assumption behind Iforest is that anomalies are fewer and different and are295

thus more susceptible to isolation when the input space is randomly segmented.296

Compared to inlying observations, an outlying observation will on average297

require fewer splits of a decision tree that randomly partitions the input space,298

for the observation to be isolated from other observations. If a forest of such299

random trees collectively produces shorter path lengths for some observations to300

be isolated, the latter are likely outliers.301

The number of edges an observation x traverses in an isolation tree from the302

root node to termination at an external node is denoted by h(x). Moreover,303

a normalization factor c(n) enables comparisons across different subsampling304

sizes. The Iforest method then calculates a score s(x, n),305

s(x, n) = 2−
E[h(x)]
c(n) , (3)

where E[h(x)] is the expectation of h(x) from a collection of trees. The resulting306

anomaly score s(x, n), for which 0 < s(x, n) ≤ 1, can be utilized as follows:307

The closer s(x, n) is to 1 for observation p, the more likely p is to be308

anomalous.309

Conversely, if s(x, n) is significantly lower than 0.5, the observation is310
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almost certainly non-anomalous.311

An existing study of explainability of Iforest identifies the dimensions that312

contribute the most to the final score [47]. In contrast to an autoencoder, an313

isolation forest does not offer insight as to the size and sign of the deviation314

from normality. A more detailed explanation of Iforest is available in [39].315

4. Experimental Validation of the Problem316

In the literature section, it was established that managing optimal distinc-317

tiveness is key in strategic management, and that gathering of peer information318

is associated with enhanced performance. As such, if managers can swiftly and319

consistently process large amounts of complex peer information, there is no need320

for a support system. In other words, the assumption that this assessment of321

relative normality of complex strategic data is difficult ultimately determines322

the added value of this study, the type of algorithm we should use, and the323

evaluation strategy to be applied.324

In this section, we report the setup and results of an experiment designed325

to test this assumption.326

4.1. Set-up327

Ten study subjects were selected by an HR services company as experts328

based on their expertise. All subjects were from the consulting division, and329

had either consulting, business intelligence, or director roles in the organization.330

The data used in this study belongs to an HR services provider, and includes331

data on both employees and employers. Two datasets were composed: the first332

dataset (D1) consisted of 128, 820 observations of employees and included five333

dimensions (see Table .7); the second dataset (D2) consisted of 1, 864 observa-334

tions of employers and included eleven dimensions (see Table .7).335

For both datasets the subjects were asked to label a subset of observations.336

First, the three methods were run on both D1 and D2. Second, using these337

results, subsets were selected to (i) span the full range of normality, including338
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observations with high, medium and low outlier rankings across methods, and339

(ii) ensure discrimination between methods by including a mix of observations340

the three methods disagreed on, i.e., ranked in very different deciles. Third,341

the ten subjects were given as much time as needed to review and label the342

observations as normal (Y = 0), outlier (Y = 1), or undecided if a subject343

could not decide on a label (Y = na). Furthermore, two additional indicators344

of aptitude of subjects were collected for both D1 and D2. Each subject was345

asked to score the following:346

The relevance of the subject’s professional experience to the labeling task347

on a scale of one to ten, with a score of ten meaning very relevant; and348

The difficulty of the labeling task on a scale of one to ten, with a score of349

ten meaning very difficult.350

To assess whether humans indeed rely on certain heuristics when faced with351

complex, i.e., high-dimensional, strategically relevant data, the subjects were352

asked to identify the main dimensions that contributed to deciding on the label353

for an observation.354

A key requirement for logical decision-making, either by humans or systems,355

is consistency [18, 5]. To assess the consistency of subjects, in both series of356

observations that were to be labeled, a number of duplicates, i.e., copies of357

observations, were included. The consistency of a subject is then evaluated as358

the proportion of the copied observations that were assigned the same label, or,359

for a number of subjects s = 1, 2, ..., N and D duplicates,360

Consistency =

D∑
i=1

cs,i
D

, (4)

361

where cs,i =

1 if s assigned i the same label.

0 if s assigned i a different label.

(5)

This measure of consistency is interpreted as a proxy for proficiency at the task362

at hand. A higher level of inconsistency in making decisions points to irrational363
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Table 1: Expert Results

Correlation

Average StDev Min Max Consistency Difficulty Job Relevance

Employee Consistency 71.11% 1.26 4.00 8.00 1.00 -0.64 0.67
n = 49 Difficulty 6.90 3.11 2.00 10.00 -0.64 1.00 -0.85
D = 9 Job relevance 5.20 3.19 1.00 10.00 0.67 -0.85 1.00

Employer Consistency 60.00% 1.05 1.00 5.00 1.00 0.04 0.38
n = 40 Difficulty 6.00 2.45 2.00 9.00 0.04 1.00 -0.49
D = 5 Job relevance 5.60 2.50 1.00 9.00 0.38 -0.49 1.00

and non-systematic judgment.364

4.2. Results365

For both datasets, consistency scores, indicators of aptitude, and the corre-366

lation matrix between consistency and aptitude indicators are listed in Table 1.367

Four key observations can be made with respect to the results.368

1. First, the experts are often in disagreement with each other, as shown in369

Figure 5. Note that the experts do not unanimously agree for even a single370

observation on the appropriate label. Spearman rank correlation results371

for the judgments of individual experts are shown in Table .8 and Table .9372

for D1 and D2, respectively.373

2. Second, the experts do not agree with themselves. With average consis-374

tency rates of the duplicate labels of 71.11% and 60.00% for datasets D1375

and D2, respectively, human experts are remarkably inconsistent. They376

appear to barely surpass random performance, characterized by a consis-377

tency rate of 50%. In agreement with the literature, the consistency of378

experts is observed to decline as complexity increases. Inconsistencies are379

not related to a specific subset of observations that are difficult to assess,380

as all fourteen duplicate observations were inconsistently labeled at least381

once.382

3. Third, experts focus on a relatively small number of dimensions, indicating383

heuristic decision making. This can be inferred from Figure 6. Moreover,384

experts take into account different (combinations of) dimensions in decid-385

ing on the appropriate labels. The tenth dimension is the only characteris-386
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tic reported as having been used at least once by every expert. Conversely,387

only four experts indicated using the eighth dimension.388

4. Fourth, for the employee dataset (D1), consistency is positively correlated389

with self-reported professional relevance, and negatively with perceived390

difficulty. For the employer set (D2), which includes more dimensions,391

the experts’ self-assessment of perceived difficulty did not correlate signif-392

icantly with consistency.393
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Figure 5: Expert labels for the first twenty observations of the employer dataset (D2) described
in Section 4. The colors represent the labels, each column contains the labels assigned by a
given expert, and each row visualizes the labels assigned to a given observation.
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Figure 6: Distribution of the use of eleven dimensions (x1–x11) in the employer dataset (D2)
by the ten experts

These results indicate that human experts rely on heuristics and that in394

a strategic setting, they are not able to process complex, strategically relevant395

peer information. These results therefore highlight the need to support strategic396

decision making.397
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5. Experimental Validation of the Solution398

Section 4 presented experimental evidence of the limited ability of human399

experts to consistently analyze complex data within their field of expertise,400

which is the problem we aim to address in this study. In Section 5, use of the401

autoencoder as a strategic decision support system is validated as a potential402

solution to this problem.403

We identify three dimensions in validating the proposed approach:404

(i) Outlier detection performance: We assess the correctness of the ob-405

tained outlier score ranking, with outlier scores being the aggregated406

amount of deviation across all dimensions.407

(ii) Dimension-level feedback: To ensure the added value of providing408

granular feedback, i.e., feedback regarding size and sign of a deviation409

provided by the system at the level of individual dimensions, we assess410

the reliability and accuracy of the provided feedback.411

(iii) Synergy between the model and human assessment: A seamless412

integration within the management decision-making process is vital for a413

successful adoption of the proposed system; here, we ensure that users414

correctly understand the output of the system, can use the output for415

practical decision-making, and do not find their personal beliefs to be in416

persistent conflict with the output.417

To validate the autoencoder-based support system across these three di-418

mensions, we perform four experiments involving blind expert validation (Sec-419

tion 5.1), transparent expert validation (Section 5.2), an observed case of cor-420

rupted data (Section 5.3), and synthetic observations (Section 5.4).421

Table 2 summarizes the contributions of these four experiments to the vali-422

dation of the system across the three dimensions identified above. The following423

sections will provide full details on the setup of these experiments and discuss the424

results. Hyperparameters and correlations are consistent with previous studies425

and reported in the Appendix in Table .10 and Table .11.426
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Table 2: Validation of Methodology

(i) Outlier detection performance (ii) Synergy (iii) Dimension-level feedback

5.1. Blind expert validation (x) x (x)
5.2. Transparent expert validation x x
5.3. Data quality x x
5.4. Synthetic observations x x x

a (x) indicates a moderate contribution.
b x indicates a sizable contribution.

5.1. Blind Expert Validation427

This first experiment aims at evaluating the accuracy of outlier scores pro-428

duced by the autoencoder. Since the observations in the data are unlabeled,429

there is no objective ground truth that can be used for assessing the accuracy430

of the ranking. As argued in Section 4, the alternative of using labels assigned431

by an individual human expert cannot be assumed to yield a trustworthy as-432

sessment. As an improved alternative to using the labels of a single expert for433

validation, we may instead compare the assessment of the autoencoder system434

with that of a group of experts, which can be considered to be an ensemble435

classification system. An ensemble classifier benefits from accurate and diverse436

members [48, 49]. Hence, we use ensemble theory to construct a weighted ag-437

gregate classifier from individual expert opinions. Every subject is considered438

to be a weak classifier, and it is hypothesized that their joint performance may439

be better, leveraging the wisdom of crowds [50].440

5.1.1. Set-up.441

To combine individual estimates, two variants of majority voting are imple-442

mented:443

Unweighted Majority Voting. Denote the decision of the sth subject444

(i.e., expert) by ds,j ∈ {0, 1} for s = 1, ..., S and j = 1, ..., C, where S is the445

number of subjects, and C is the number of classes, such that ds,j = 1 for the446

class the subject selected, and zero otherwise. For an observation, Juv is the447

voted label, and the summation tabulates the number of votes for class j:448

Juv = argmaxj∈{0,1,2}

S∑
s=1

ds,j . (6)
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Weighted Majority Voting. Here, w acts as a weighting factor for the449

vote. The weighted majority vote is Jwv, and the summation in this case tabu-450

lates the weighted vote for class j. Hence, the votes of individuals who perceive451

their expertise to be more relevant to the task will have larger weights in the452

vote.453

Jwv = argmaxj∈{0,1,2}

S∑
s=1

wsds,j , (7)

where w = 1, ..., 10, and ws is either the self-perceived job relevance of subject454

s or the inverse of the self-perceived difficulty of the task of subject s.455

The labels of individual experts, obtained in the experiment discussed in456

Section 4 and combined using the two majority voting schemes described above,457

are used to assess the outlier scores of the autoencoder, LOF, and iForest by458

subsequently labeling five, ten, and fifteen percent of observations with the459

highest outlier scores as outliers. Afterwards, we measure the accuracy of the460

weighted and unweighted majority expert ensemble against this labeling. Under461

the assumptions that (i) the models are valid tools for outlier detection in this462

setting, and (ii) humans make different mistakes that can average out when463

combined, convergence between the labels of outlier detection methods and464

those of the expert ensemble is to be expected.465

5.1.2. Results.466

Table 3 shows the results for the unweighted and weighted expert ensembles,467

both when weighting with the self-reported job relevance and difficulty scores.468

A higher accuracy means there is a stronger match between the expert ensem-469

ble and the outlier detection method. This table demonstrates that, generally,470

the autoencoder attains the highest accuracy, at least in comparison with the471

weighted ensembles. This indicates that, among the three models, the autoen-472

coder best matches with the weighted aggregate judgment of human experts.473

The absolute and percentage accuracy increases achieved by weighing the ex-474

pert labels are also the highest for the autoencoder. The experts were relatively475

correct in their self-assessments, and the models are accurate, as evidenced by476
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Table 3: Majority Voting Results

AE Iforest LOF

5 % 10% 15% 5% 10% 15% 5% 10% 15%

Unweighted 0.54 0.56 0.62 0.56 0.54 0.59 0.64 0.51 0.49
JobRel Weight 0.69 0.72 0.77 0.69 0.67 0.69 0.72 0.64 0.62
Difference 0.15 0.15 0.15 0.13 0.13 0.10 0.08 0.13 0.13
% Increase 28.57% 27.27% 25.00% 22.73% 23.81% 17.39% 12.00% 25.00% 26.32%
Difficulty Weight 0.77 0.79 0.79 0.72 0.69 0.72 0.79 0.67 0.64
Difference 0.23 0.23 0.18 0.15 0.15 0.13 0.15 0.15 0.15
% Increase 42.86% 40.91% 29.17% 27.27% 28.57% 21.74% 24.00% 30.00% 31.58%

the accuracy increase after weighting.477

0.325 0.450 0.550 0.625 0.825

AE: 0.79

Figure 7: Boxplot of individual accuracy distribution between the experts and all models and
cutoffs (n = 90), with an indicator of the ensemble AE result from Table 3.

The boxplot in Figure 7 represents the distribution of accuracy values of ten478

individual experts across the three methods (AE, LOF, Iforest) and the three479

cutoff values for turning outlier scores into labels (5%, 10%, and 15%), thus480

yielding 90 data points (3x3x10). The median accuracy is barely higher than481

the performance of a random model. Out of these ninety combinations of cutoff482

values, experts and models, only one has a higher accuracy than that consis-483

tently reached by the ensemble-weighted AE. In this respect, it is remarkable484

that the expert-weighted ensemble stabilizes at an accuracy of just under 80%.485

We can conclude that there is high variance in accuracy between individual486

experts, but the AE can consistently represent majority expert opinion.487

5.2. Transparent Expert Validation488

To evaluate synergy, we assess whether experts understand and agree with489

the output provided by the autoencoder system.490
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Table 4: Outlier Detection Performance – Detection Results

A B C
Data Quality Synthetic Observations Average Performance

5% 10% 15% 5% 10% 15% 5% 10% 15%

AE 61.80% 82.05% 85.39% 50.00% 70.00% 80.00% 55.90% 76.01% 82.70%
Iforest 60.67% 95.51% 100.00% 10.00% 20.00% 40.00% 35.34% 57.76% 70.00%
LOF 0.00% 4.49% 11.24% 60.00% 80.00% 100.00% 30.00% 42.25% 55.62%

Table 5: Dimension-level Feedback – Data Quality Set

Dimension No. Obs. Dimension rank Direction % correct

x1 3 100.00%
x2 5 100.00%
x3 8 100.00%
x4 22 100.00%
x5 69 100.00%

All 89 85.39% 100.00%

5.2.1. Set-up.491

During a two-hour panel session, the group of experts was presented with492

the output of the autoencoder for the observations in the two datasets that493

the experts labeled in the previous experiment, as reported in Section 4. The494

aim of the session was to gauge whether and how each expert could extract495

insights useful for decision-making from the output of the system. Specifically,496

the experts discussed the outlier score ranking as well as the granular feedback,497

i.e., deviations at the dimension level, provided by the autoencoder. To facilitate498

analysis, observations were presented using interactive visualizations that were499

implemented in a business intelligence software.500

5.2.2. Results.501

The panel was able to interpret the results provided by the system. The panel502

did not object to a single assessment of the autoencoder (either at the aggre-503

gate outlier score level or at the granular dimension level). The interpretability504

and justifiability of the system, as confirmed by the experts, indicates synergy505

between experts and the model. While the autoencoder output was being stud-506

ied, a data quality issue was noticed in the employee dataset (D1), highlighting507

synergy and yielding concrete actionable benefits of the model. Moreover, the508

experts proposed new applications of the system beyond the employees-and-509

employer dataset. Alternative employee- or employer-level datasets could be510
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analyzed to provide specific insights on themes such as work fatigue, hiring, on-511

boarding, etc. The versatility of the autoencoder-based approach, as recognized512

by the experts, indicates that the system is effective and useful in decision-513

making. Such versatility is a valuable property, allowing the proposed approach514

to be adopted as a comprehensive decision-support instrument for performing515

ad hoc analysis in support of any decision-making process, by merely compiling516

a dataset including a set of relevant dimensions.517

5.3. Data Quality518

Data quality issues are closely related to outlyingness. As reported in the519

previous section, a large-impact data quality issue was discovered in the em-520

ployee dataset during the transparent expert validation of the autoencoder out-521

put. The discovered data quality issue (Section 5.2) was fixed by in-house522

experts. By comparing the pre- and post-fix versions of D1, the affected points523

could be reliably identified. Moreover, one could discern the involved dimen-524

sions as well as the direction of the effect. For the affected points, the logical525

relations the variables abide by were violated. Consequently, the affected ob-526

servations are sufficiently distinct to have a close affinity with the concept of an527

outlier.528

5.3.1. Setup.529

Using this data quality event to our advantage, two experiments were de-530

vised. First, labeling the affected observations as one, and the others as zero531

allowed an evaluation of the detection performance of the algorithms. Second,532

utilizing knowledge about the affected dimensions and the direction of the effect533

permitted testing of the granular feedback capabilities of AE.534

To validate the dimension-level feedback of AE, we define two measures of535

accuracy: dimension rank accuracy, and direction accuracy:536

Dimension rank accuracy equals 1 for an observation if the AE error537

is the highest in the actual affected dimension(s) and equals 0 otherwise.538
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Table 6: Dimension-level Feedback – Synthetic
Dataset

Obs. Perturbations Dimension rank acc. Direction

1 1 1 correct
2 1 0 correct
3 1 1 correct
4 1 0 correct
5 1 1 correct
6 2 1 correct
7 2 1 correct
8 2 0 correct
9 3 1 correct
10 3 1 correct

Average 70.00% 100.00%

Direction accuracy of an observation is equal to 1 if for all affected539

dimensions, the direction is correctly represented by the sign of the differ-540

ence between the observed value and the output value and is 0 otherwise.541

Since the data quality issue was identified, we were able to assign ground542

truth labels to the affected dimensions and the direction. Using these labels, we543

could calculate the dimension rank and direction accuracy.544

5.3.2. Results.545

Table 4A displays the data quality detection performance for the three algo-546

rithms. Iforest and AE perform well, as both have a high proportion of affected547

observations in the top percentiles of their respective rankings. In contrast,548

LOF performs poorly.549

Considering the granular feedback, as shown in Table 5, AE consistently550

recognizes the direction of the deviation (100%) and ranks the perturbed di-551

mension(s) the highest for 85.39% of the observations. Interestingly, this per-552

formance does not change significantly if observations that AE did not correctly553

classify as affected (84.21%) are omitted. This is particularly relevant to the554

extension from the top x percentile analysis to full-population decision support;555

even without high outlier scores, the granular feedback is accurate and valuable.556

5.4. Synthetic observations557

Due to the instability of outlier detection algorithms reported in the liter-558

ature across domains [33], examining performance on the data quality dataset559
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is insufficient for evaluating performance in general. Therefore, we adopt the560

approach proposed and applied in [51, 52] and inject synthetic outliers into the561

dataset.562

5.4.1. Setup.563

Observations in the employer dataset that were evaluated as non-outlying564

by three outlier detection methods were selected. Next, perturbations to these565

observations were devised by a panel of four experts to achieve impossibility,566

illogicality, or implausibility beyond a reasonable doubt with a minimum amount567

of perturbation. As such, variance between the methods’ rankings is ensured,568

making it possible to discern the best-performing method.569

The synthetic observations were varied across the data plane with five unidi-570

mensional, three two-dimensional, and two three-dimensional perturbations. Af-571

ter their inception, these perturbed observations were added to the full dataset,572

and outlier detection models were retrained. To evaluate the dimension-level573

feedback, we use the same measures as reported in Section 5.3. In this exper-574

iment, we can observe the ground truth, label accordingly, and evaluate the575

accuracy.576

5.4.2. Results.577

Table 4B shows that AE performs well. Additionally, and in contrast with578

Table 4A, LOF reports great results, with perfect discrimination at 15% cutoff.579

Iforest, however, performs poorly. The results for the dimension rank accu-580

racy and the directional feedback are displayed in Table 6. For 70.00% of the581

perturbed observations, AE correctly ranks all perturbed dimension(s). Fur-582

thermore, the autoencoder obtains the correct direction of the perturbation in583

all dimensions for every observation.584

5.5. Discussion585

We validated an autoencoder-based approach to support strategic decisions586

on three levels (cfr. Table 2:587
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Outlier detection performance. Validation results using experts, data588

quality and synthetic observations reported in Tables 4A, 4B and 3 in-589

dicate a strong performance of the autoencoder in detecting outliers in590

various experiments. Tables 4C and 3 illustrate performance for vari-591

ous settings and show that the autoencoder significantly outperforms two592

other state-of-the-art algorithms assessed in the experiments. The insta-593

bility of results due to data quality and synthetic observations’ settings594

confirms earlier results reported in [33], who reported instability of meth-595

ods when comparing performance for different outlier detection settings.596

We observe this phenomenon for two datasets in the same setting. A desir-597

able solution should therefore generalize well across semantic definitions598

of outliers without requiring significant hyperparameter tuning. More-599

over, excessive tuning to a specific semantic definition may prevent the600

model from identifying interesting semantically varying patterns. Tuning601

on already discovered data quality issues seems especially inappropriate.602

Based on the results of the conducted experiments, we conclude that the603

autoencoder generalizes well across settings.604

Synergy. The autoencoder is shown to be highly synergistic with hu-605

man decision-making processes due to (i) strongly correlating with joint606

weighted human decision-making, (ii) being unanimously accepted during607

a two-hour panel discussion that explored the insights provided by the608

approach, and (iii) matching the semantic definition of outliers on syn-609

thetic observations. The experts in the panel were able to interpret and610

explain the results, placing them in a richer context than that the model611

had direct access to through the input data.612

Granular feedback at the dimension level. The autoencoder is613

a powerful tool for discerning the rank and deviation direction of the614

main dimensions contributing to abnormality. Traditional unsupervised615

methods do not offer such granular feedback. Moreover, the autoencoder616

achieves perfect accuracy in assessing the direction of the deviation in617
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our experiments (Tables 5 and 6). An interesting implication is that the618

dimension-level feedback seems remarkably stable even for low-ranked ob-619

servations. This supports the idea of adopting unsupervised outlier detec-620

tion methods for obtaining actionable information beyond a small set of621

top-ranked observations with high aggregate outlier scores.622

6. Conclusions623

In this paper, we propose an unsupervised learning approach to support624

strategic decision-making by adopting the autoencoder, a powerful artificial neu-625

ral network-based method that can provide detailed insights in regard to large626

and small deviations from what is expected. Such deviations relative to relevant627

peers support decision-making, providing feedback on the “as-is” situation and628

the direction towards an improved “to-be” situation.629

To validate the proposed approach, a unique dataset was obtained from a Eu-630

ropean HR services provider, including information on a large set of employees631

and employers. Using a panel of ten experts, we observe that, as a first con-632

tribution to this domain, human experts are inconsistent and non-comparable633

in their judgments. This finding strongly motivates the need for support in the634

first stage of the business decision-making process, i.e., the analysis of business635

problems.636

To this end, we investigate the detection performance, synergy, and gran-637

ular feedback of our autoencoder-based solution. We acknowledge that in this638

setting, there is no single guaranteed evaluation method for assessing the perfor-639

mance and use of the proposed method. In the absence of a generally accepted640

evaluation procedure, we devise and perform four experiments for validation641

using (i) transparent expert validation, (ii) blind expert validation, (iii) data642

quality classification, and (iv) generation of synthetic observations.643

The results of these experiments indicate that the proposed autoencoder644

method meets business users’ requirements in terms of outlier detection perfor-645

mance, synergy, and dimension-level feedback. Moreover, the method is versa-646
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tile and can be adopted to support decision-making across various management647

areas by compiling appropriate datasets.648

Unsupervised learning for decision support is an underexplored research area.649

Decision support systems that interconnect humans and machines are urgently650

needed to unlock the potential of big data for optimizing strategic decision-651

making. Several challenges remain:652

(i) A framework for objective and trustworthy validation of analytical models653

in an unsupervised setting is missing;654

(ii) Models need to be more robust, reducing the risk of failure modes;655

(iii) Developing a system to provide strategic decision support is a challenge656

to data scientists since the development of a system that aligns with high-level657

strategy requires a higher level of business understanding than development of658

traditional decision support systems, e.g., a customer churn prediction model,659

and660

(iv) A lack of familiarity with unsupervised learning methods may hamper swift661

industry adoption.662

Along with challenges, unsupervised decision support offers exciting possi-663

bilities for future research. Possible areas for further development include the664

following:665

(i) The incorporation of a temporal dimension to capture and describe the time-666

varying nature of the data distribution;667

(ii) The demonstration and prediction of causal effects of actions with regard to668

their abnormality profile;669

(iii) The extension of other unsupervised algorithms to deliver granular population-670

wide decision support;671

(iv) The investigation of the generalization capacity of various algorithms across672

different semantic definitions of normality; and673

(v) A pragmatic alternative offered by our approach to the bandit model litera-674

ture proposing fully autonomous decision systems [11] that may offer opportu-675

nities for extending the proposed approach that are yet to be explored.676

28



x1

x2

x3

x4

Outflow

-10 0 10

Figure .8: Label Imperfection: the red area shows a non-deviating profile, while the blue area
shows a significant deviation with respect to the expected outflow.

Table .7: D1 and D2 Features

Features Type

Fixed Wage Continuous
Variable Wage Continuous
Vacation bonus Continuous
End-of-Year Bonus Continuous
Benefits in Kind Continuous

Features Type

Age Continuous
Company Cars Continuous
Inflow Continuous
Outflow Continuous
Average Wage Continuous
Average Variable Wage Continuous
Wage Range (Max-Min) Continuous
Gender Continuous
Hours of Education Leave Continuous
Education level Continuous
Number of Employees Continuous

Table .8: Expert Spearman Rank Correlation D1

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Expert 8 Expert 9 Expert 10

Expert 1 1.000 0.605 0.675 0.381 0.397 0.418 0.468 0.321 0.200 0.376
Expert 2 0.605 1.000 0.494 0.245 0.779 0.731 0.677 0.704 0.261 0.602
Expert 3 0.675 0.494 1.000 0.322 0.387 0.281 0.260 0.327 0.055 0.245
Expert 4 0.381 0.245 0.322 1.000 0.205 -0.001 0.074 0.162 0.187 0.404
Expert 5 0.397 0.779 0.387 0.205 1.000 0.684 0.691 0.698 0.333 0.443
Expert 6 0.418 0.731 0.281 -0.001 0.684 1.000 0.779 0.534 0.246 0.333
Expert 7 0.468 0.677 0.260 0.074 0.691 0.779 1.000 0.643 0.263 0.446
Expert 8 0.321 0.704 0.327 0.162 0.698 0.534 0.643 1.000 0.432 0.641
Expert 9 0.200 0.261 0.055 0.187 0.333 0.246 0.263 0.432 1.000 0.344
Expert 10 0.376 0.602 0.245 0.404 0.443 0.333 0.446 0.641 0.344 1.000

Table .9: Expert Spearman Rank Correlation D2

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Expert 8 Expert 9 Expert 10

Expert 1 1.000 0.053 0.221 -0.234 -0.082 -0.016 0.305 0.004 0.430 0.219
Expert 2 0.053 1.000 0.218 0.258 0.261 0.402 0.100 0.519 0.027 0.277
Expert 3 0.221 0.218 1.000 0.169 0.130 0.175 0.065 0.150 0.224 0.381
Expert 4 -0.234 0.258 0.169 1.000 0.380 0.129 -0.181 0.061 -0.109 0.424
Expert 5 -0.082 0.261 0.130 0.380 1.000 0.032 -0.177 0.205 0.251 0.023
Expert 6 -0.016 0.402 0.175 0.129 0.032 1.000 0.090 0.471 -0.067 0.373
Expert 7 0.305 0.100 0.065 -0.181 -0.177 0.090 1.000 0.168 0.034 0.428
Expert 8 0.004 0.519 0.150 0.061 0.205 0.471 0.168 1.000 0.177 0.201
Expert 9 0.430 0.027 0.224 -0.109 0.251 -0.067 0.034 0.177 1.000 -0.042
Expert 10 0.219 0.277 0.381 0.424 0.023 0.373 0.428 0.201 -0.042 1.000
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Table .10: Implementations and pa-
rameter selection

Model Parameters {employee, employer}

AE

Hidden layers: 3,8
Encoding dimensions: 4,7
Activation function: ‘SELU’
Loss = ‘MSE’
Optimizer: Adam
Learning rate: 9.5e-3

Iforest Contamination = 0.5
Distance: Minkowski with p = 2

LOF k=max(n*0.1,50)

Table .11: Correlation Methods

Correlations AE Iforest LOF

5% 10% 15% 5% 10% 15% 5% 10% 15%
5% 1.00 0.83 0.67 0.57 0.47 0.39 0.55 0.64 0.61

AE 10% 0.83 1.00 0.81 0.46 0.46 0.45 0.77 0.77 0.73
15% 0.67 0.81 1.00 0.49 0.44 0.59 0.60 0.75 0.70
5% 0.57 0.46 0.49 1.00 0.73 0.54 0.53 0.46 0.44

Iforest 10% 0.47 0.46 0.44 0,73 1.00 0.75 0.42 0.41 0.38
15% 0.39 0.45 0.59 0.54 0.75 1.00 0.45 0.34 0.30
5% 0.55 0.77 0.60 0.53 0.42 0.45 1.00 0.68 0.65

LOF 10% 0.64 0.77 0.75 0.46 0.41 0.34 0.68 1.00 0.95
15% 0.61 0.73 0.70 0.44 0.38 0.30 0.65 0.95 1.00
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