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Abstract 

The electronic diagnostic records of patients, primarily collected by hospitals, comprise valuable data for the 

development of recommender systems to support physicians in predicting the risks associated with various diseases. 

For some diseases, the diagnostic record data are not sufficient to train a prediction model to generate 

recommendations; this is referred to as the data sparsity problem. Cross-domain recommender systems offer a solution 

to this problem by transferring knowledge from a similar domain (source domain) with sufficient data for modeling 

to facilitate prediction in the current domain (target domain). However, building a cross-domain recommender system 

for medical diagnosis presents two challenges: (1) uncertain representations, such as the symptoms characterized by 

interval numbers, are often used in medical records, and (2) given two different diseases, the feature spaces of the two 

diagnostic domains are often disparate because the diseases are only likely to share a few symptoms. This study 

addresses these challenges by proposing a cross-domain recommender system, named information transfer for medical 

diagnosis (ITMD), to provide physicians with personalized recommendations for disease risks. In ITMD, a novel 

dissimilarity measurement was performed for diagnosis, represented as interval numbers. The space alignment 

technique eliminated the feature space divergence caused by different symptoms between two diseases, and the 

development of collective matrix factorization enabled knowledge transfer between the source and target domains. 

Experiments and a case study using real-world data demonstrated that ITMD outperforms four baselines and improves 

the accuracy of recommendations for disease risks in patients to support physicians in determining a final medical 

diagnosis. 
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1. Introduction  

In clinical medicine, medical diagnosis is often the first step in predicting and preventing the possible onset of a 

disease [1]. Early diagnosis helps in preventing further deterioration and increases the possibility of complete healing, 

especially for cancer. For example, breast tumors are a common malignant neoplasm in women, and over 60% of 

patients with breast tumors are incurable [2]. However, breast cancer is preventable and curable if the tumor is 

diagnosed in its early stages. Electronic medical records comprise significant information that could help physicians 

in diagnosing several diseases accurately in the early stage. Because the symptoms and situations vary among patients, 

personalized recommendations are required for medical diagnosis by physicians. Recommender systems are an 

effective tool to provide personalized decision support for medical diagnosis, such as chronic disease [3], heart disease 

[4], and right heart catheterization [5]. In a recommender system for medical diagnosis, a user is represented by a 

patient, an item is represented by the level of disease risks, and the probability of a patient to a disease risk is 

represented by a rating of the user to an item given by the physician or a prediction model. 

Although recommender systems can provide medical diagnosis support, they encounter the data sparsity problem 

[8–10]. Data sparsity in medical diagnosis occurs owing to insufficient medical records of some diseases because the 

incidence of these diseases is low or physicians are inexperienced; it can also be attributed to the limited access to 

medical records. Decision support with sparse data in the medical field may generate inaccurate results for disease 

diagnosis. For example, tetanus is a rare but life-threatening disease. It is difficult to use medical records to support 

physicians in providing more accurate diagnoses when the available data are insufficient and outdated for tetanus. The 

use of such insufficient data to estimate the relations between symptoms (e.g., age, pattern, severity, and interventions) 

in the diagnosis of tetanus is inconclusive; thus, the deductions generated with insufficient data are not permitted to 

support the diagnosis of this disease [11]. Recommender systems built in domains without sufficient data fail to 

provide accurate recommendations to physicians. 

To alleviate the problem of data sparsity, a feasible strategy involves the adoption of transfer learning. Transfer 

learning has been widely used to manage data sparsity in medical diagnosis [12–14]. In recommender systems for 

medical diagnosis, transfer learning can be combined with collaborative filtering to extract knowledge from a source 

domain with sufficient data and transfer it to the target domain, known as cross-domain recommender systems [15]. 
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In medical diagnosis, two types of disease diagnoses are considered to be of two similar domains when there are three 

perspectives of similarity between them [16–18]; that is, (a) the organs in which the two diseases occur belong to one 

type, such as the gland, abdomen, and superficial organs; (b) in general, the cytopathy and pathogenesis of the two 

diseases are similar; and (c) the two diseases are diagnosed by similar standards. Owing to the three perspectives of 

similarity, two similar diseases will lead to similar relations between their symptoms, which are considered as the 

knowledge transferred from the source disease to the target disease. To transfer the relations between symptoms across 

two similar diseases, the overlapping symptoms serve as a bridge to align these relations. The extracted relations 

between symptoms are used to generate recommendations of the target disease. 

A cross-domain recommender system for medical diagnosis uses the knowledge extracted from relatively sufficient 

symptom observation data of one disease (source domain) to support physicians in making decisions regarding the 

diagnosis of another disease with sparse symptom data (target domain). The establishment of such recommender 

system generally faces two challenges. (1) Medical records contain uncertain representations of symptoms and disease 

risks. For example, five diagnostic categories of disease risks are represented as interval numbers in the diagnosis of 

thyroid cancer, as {TIRADS 3, TIRADS 4A, TIRADS 4B, TIRADS 4C, TIRADS 5} = {[0, 0.03], (0.03, 0.25], (0.25, 

0.75], (0.75, 0.95], (0.95, 1]}. TI-RADS 5 means the physician evaluates the thyroid legions to have a 95–100% 

chance of being malignant, which strongly indicates thyroid cancer, while TI-RADS 4A indicates a 3–25% chance of 

malignancy. The prediction of diagnoses as a disease risk with an interval number and measuring the differences 

between diagnosis predictions with interval numbers between two domains are urgent problems that require solutions. 

(2) The feature (symptom) spaces of two different diseases in the source and target domains are different and 

mismatched. Considering breast cancer as the source domain and tophus as the target domain, the five symptoms of a 

breast lump suggest the presence of breast cancer, such as the margin, contour, echogenicity, calcification, and 

vascularity. In contrast, tophus is assessed against six symptoms, i.e., the number, size, contour, echogenicity, 

calcification, and halo. Thus, the two diagnoses only share three symptoms. Additionally, the severity values related 

to the shared symptoms may not be in the same distribution, which also needs to be considered before knowledge 

extraction. 

To address these two challenges, this study develops a new cross-domain recommendation method, called 

information transfer for medical diagnosis (ITMD), to provide personalized recommendations for the risk level of 
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particular diseases to support physicians in diagnosing patients with insufficient medical records. In the ITMD method, 

after normalization, two transformation matrices are learned to align the symptom space of the source domain with 

that of the target domain. A novel dissimilarity is proposed to measure the difference in disease risks indicated in the 

diagnostic categories. The symptom relations between two domains are then learned as shared knowledge by 

minimizing the dissimilarities between the diagnoses and their predictions in the two domains simultaneously. In 

summary, the main contributions of this study are as follows: 

(1) A new dissimilarity measurement is developed to characterize the discrepancies between diagnoses with interval 

numbers corresponding to challenge (1). This measurement is more suitable for diagnostic tasks than distance 

measurement because it fully reflects the risk intervals associated with each diagnostic category. 

(2) A space alignment method is established to deal with the mismatch of two different symptom spaces 

corresponding to challenge (2). This method eliminates the differences in the number of symptoms and their data 

distributions in the symptom spaces of the source and target domains. 

(3) The ITMD method is proposed, which is a new cross-domain recommender system to recommend suitable 

medical diagnostics; it can effectively predict the risk level of patients for particular diseases. With constraints of 

condition number on collective matrix factorization, this method transfers knowledge from the source domain for 

support decision making in the target domain. The proposed dissimilarity measurement and space alignment method 

are used in the recommender system. 

(4) A set of comprehensive experiments and a real-world case study (with thyroid cancer and breast cancer as the 

source and target domains, respectively) are performed, which demonstrated the accuracy and effectiveness of the 

proposed ITMD method for recommending disease risks in comparison to four baselines. The results of the case study 

particularly indicate the effectiveness considering decision support for real-world diagnosis for four physicians. 

The remainder of this paper is organized as follows. Section 2 presents the work related to this study. Section 3 

introduces the medical diagnosis problems based on the interval number in one domain and formally defines the 

problem being examined in this study. In Section 4, the ITMD method is proposed. Section 5 details the experiments 

conducted in two cases: one where the symptom spaces are the same, and the other where they are different. The 

results show that our method performs better than the four baseline methods. Section 6 illustrates how the proposed 

method works in a real-world scenario as a case study. The conclusions and directions for further research are provided 
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in Section 7. 

2. Related work 

This section first presents a review of the relevant work on recommender systems and their applications in the 

medical domain, followed by a summary of the current state-of-the-art cross-domain recommender systems. 

2.1. Recommender systems and their applications in medical domain 

Because a large number of electronic health records have been collected by hospitals, the information extracted 

from these data is used to develop recommender systems that can support the decision-making process of physicians 

for diagnosing diseases. For example, a recommendation system framework was developed to support physicians with 

personalized prescriptions to improve their efficiency and reduce the risk of making errors in daily clinical consultation 

with patients [19]. Another example involves the use of a collaborative filtering technique with clustering to provide 

medical advice to cardiac patients [20]. Measurement between treatments and a unified recommendation method were 

proposed in [21] to recommend treatments to new patients according to their demographic information and disease 

severity. 

In addition, recommender systems have been developed to support diagnosis in different domains of disease 

diagnosis based on collaborative filtering. Hussein et al. [3] proposed a chronic disease diagnosis recommender system 

approach based on a hybrid method using multiple classifications and unified collaborative filtering to provide high-

accuracy disease risk prediction and medical recommendation. Hassan and Syed [4] built a collaborative filtering 

framework to achieve high accuracy in predicting sudden cardiac death and recurrent myocardial infarction by 

concurrently matching new cases to historical records as well as patient demographics to adverse outcomes. Davis et 

al. [22] presented a recommender system that used collaborative filtering to predict the potential disease risks of a 

patient based on sufficient medical history and that of similar patients. 

The aforementioned recommender systems and their key characteristics are summarized in Table 1. The existing 

recommender systems in the medical domain, for example, [3–4] and [19–21], cannot manage the challenges of 

interval data and data sparsity, which commonly occur in practice. 

2.2. Cross-domain recommender systems 

Cross-domain recommender systems can be divided into two broad categories, i.e., user-item matrix-based methods 

and additional information-based methods. 
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(1) Cross-domain recommender systems with user-item rating matrix 

Cross-domain recommender systems with a user-item rating matrix can have non-overlapping, partially overlapping, 

or fully overlapping users/items. Non-overlapping users/items implies that all users and items in the source and target 

domains are different. Here, users and items are usually clustered into groups, and shared knowledge is extracted at 

the group level. Li et al. [23] provided a generative rating matrix model by transferring a shared cluster-level rating 

matrix across domains. Gao et al. [24] created a novel cross-domain recommendation model that transferred rating 

patterns at a common cluster level. Zhang et al. [25] extracted the shared group-level knowledge based on consistent 

user/item group information, adjusted by a domain adaptation technique. 

Partially overlapping users/items refer to situations where some of the users or items are common to both domains. 

These methods usually adopt matrix factorization models and implement shared knowledge transfer based on 

overlapping users or items. Pan et al. [26] established a coordinate system transfer method based on sparse matrix tri-

factorization to reduce the effect of data sparsity, while Pan and Yang [27] constructed a transfer framework based on 

collective factorization with sparse data by transferring explicit binary rating information from the source to the target 

domain. Zhang et al. [28] proposed a cross-domain recommender system that used kernel-induced knowledge transfer 

to manage partially overlapping entities. The entity correlations of the overlapping entities were determined via 

domain adaptation and diffusion kernel completion methods, which also served as constraints to generate a new matrix 

factorization technique. 

(2) Cross-domain recommender systems with additional information 

Some cross-domain recommender systems connect two domains through additional information, instead of user-

item ratings [29], such as social network information, tagging information, review information, and metadata. Chen 

et al. [30] established a cross-domain recommender system that fused social network information and cross-domain 

rating data to improve recommendations. The cluster-level tensor was considered as shared information in the source 

and target domains. Jiang et al. [31] proposed a hybrid random walk method to transfer knowledge from auxiliary 

item domains to the target domain using social network data to create a star-structured hybrid graph. Shi et al. [32] 

used shared tags as bridges to connect the source and target domains. To study the correlations between tags from 

different domains, Fang et al. [33] constructed a tag matrix transfer model to obtain rating patterns by transferring the 

shared tag co-occurrence matrix information in multiple domains. The user-tag-item relation was factorized into user-
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tag and item-tag relations. Hao et al. [34] regularized joint matrix factorization with the constraints of inter-domain 

and intra-domain correlations, built based on the tagging information. Xin et al. [35] proposed a nonlinear cross-

domain recommendation framework with review information. Joint tensor factorization [36] was modeled to transfer 

the review information in cross-domain recommendations. Fernández-Tobías et al. [37] developed cross-domain 

hybrid matrix factorization models that exploited metadata as a bridge between items across domains. 

These cross-domain recommender systems and their key characteristics are summarized in Table 1. The existing 

cross-domain recommender systems, for example, [22–28] and [30–37], are not specifically designed for medical 

diagnosis problems; thus, they cannot be applied directly to the problem being investigated in this study. Moreover, 

the interval data that are commonly observed in medical diagnosis cannot be addressed by any existing study. 

Table 1. Summary of related works 

 

Data Domain User/item overlap Field 
User-item rating Additional 

information Single Two Multiple Non-
overlap Overlap Medical Non-

medical Discrete 
value 

Interval 
number 

[19] ×   ×   — — ×  
[20] ×   ×   — — ×  
[21] ×   ×   — — ×  
[3] ×   ×   — — ×  
[4] ×   ×   — — ×  
[22] ×   ×   — — ×  
[23] ×     × ×   × 
[24] ×     × ×   × 
[25] ×    ×  ×   × 
[26] ×    ×   ×  × 
[27] ×    ×   ×  × 
[28] ×    ×   ×  × 
[30] ×  ×  ×  ×   × 
[31] ×  ×  ×   ×  × 
[32] ×  ×   × ×   × 
[33] ×  ×   × ×   × 
[34] ×  ×  ×  ×   × 
[35] ×  ×  ×   ×  × 
[36] ×  ×  ×   ×  × 
[37] ×  ×  ×   ×  × 

ITMD  × ×  ×  ×  ×  
3. Problem definition 

This section first presents the problem formulation for medical diagnosis with interval number in one domain. Then, 

we formally describe the cross-domain medical diagnosis problem under study. 

3.1. Medical diagnosis with interval number in one domain 

In medical diagnosis, physicians diagnose the likely cause of the conditions of a patient based on their symptoms. 

A formal definition of this medical diagnosis problem for a group of patients is presented below. 
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Consider three lists, P = {P1, …, PM}, S = {S1, …, SL}, and C = {C1, …, CN}, where P is a list of patients, S is a list 

of symptoms, and C is a list of diagnostic categories. Each symptom, Sl, has Nl levels of severity, as L(Sl)={Ln(Sl), 

n=1, …, Nl}={[ , ], ( , ], …, ( , ]}, where =0, =1, =

, n = 1, …, Nl-1, and = [0, 1]. The relations between patients, symptoms, and diagnostic 

categories were recorded in three matrices. U =  denotes the patient-symptom matrix, where L(Sl) is the 

level of a symptom, Sl, in patient Pm. V =  denotes the symptom-category matrix, where [0, 1] and 

. R =  is the patient-category matrix, where [0, 1] and . These matrices 

correspond to the reasoning followed by a physician when making a diagnosis; i.e., relate a patient to some symptoms, 

relate those symptoms to a diagnostic category, and then relate the patient to that diagnostic category. Thus, the 

diagnosis problem involves the determination of matrix R from matrices U and V. 

A recommender system is used to assist physicians to provide the patient-category matrix R, which can be simply 

formulated as . The following example can help in understanding the details of this problem. 

Example 1. Suppose a physician needs to diagnose whether eight patients Pm (m = 1, …, 8) have breast cancer. This 

requires assessing the suspected breast nodules against five symptoms Sl (l = 1, …, 5), i.e., margin, contour, 

echogenicity, calcification, and vascularity. Here, the same levels L(Sl) = {[0, 0.03], (0.03, 0.25], (0.25, 0.75], (0.75, 

0.95], (0.95, 1]} are applied to symptoms. A patient-symptom matrix, U= , is presented in Table 2. 

Table 2. Patient-symptom matrix for eight patients with breast nodules. 
 S1 S2 S3 S4 S5 

P1 (0.03, 0.25] (0.95, 1] (0.25, 0.75] (0.95, 1] (0.03, 0.25] 
P2 [0, 0.03] [0, 0.03] [0, 0.03] [0, 0.03] (0.03, 0.25] 
P3 (0.25, 0.75] (0.95, 1] (0.25, 0.75] (0.25, 0.75] (0.95, 1] 
P4 (0.03, 0.25] (0.95, 1] (0.25, 0.75] (0.25, 0.75] (0.95, 1] 
P5 (0.25, 0.75] (0.25, 0.75] (0.75, 0.95] (0.95, 1] [0, 0.03] 
P6 (0.03, 0.25] (0.03, 0.25] [0, 0.03] [0, 0.03] (0.03, 0.25] 
P7 [0, 0.03] [0, 0.03] (0.25, 0.75] (0.95, 1] (0.03, 0.25] 
P8 (0.03, 0.25] (0.25, 0.75] (0.25, 0.75] (0.03, 0.25] (0.95, 1] 

The physician then relates these symptoms to the five diagnostic categories {TI-RADS 3, 4A, 4B, 4C, and 5} 

denoted as Cn (n = 1, …, 5); this produces the symptom-category matrix, V = , as depicted in Table 3. 

Table 3. Symptom-category matrix of the five symptoms and five diagnostic categories. 
 C1 C2 C3 C4 C5 
S1 0.2 0.15 0.35 0.15 0.15 
S2 0.3 0.3 0.25 0.05 0.1 
S3 0.25 0.3 0.2 0.15 0.1 

1 ( )lL S-
1 ( )lL S+

2 ( )lL S-
2 ( )lL S+ ( )

lN lL S- ( )
lN lL S+

1 ( )lL S- ( )
lN lL S+ ( )n lL S+

1( )n lL S-
+ 1

( )lN
n ln
L S

=!

( )ml M Lu ´ mlu Î

( )ln L Nv ´ lnv Î

1
1N

lnn
v

=
=å ( )mn M Nr ´ mnr Î

1
1N

mnn
r

=
=å

ˆ ( , )f=R U V

8 5( )mlu ´

5 5( )lnv ´
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S4 0.1 0.15 0.3 0.25 0.2 
S5 0.3 0.25 0.2 0.2 0.05 

Matrices U and V now provide a basis for relating the eight patients to the five diagnostic categories; i.e., matrix R 

= , as presented in Table 4. 

Table 4. Patient-category matrix showing the correspondences of 
the eight patients to the five diagnostic categories. 

 C1 C2 C3 C4 C5 
P1 0 0 0 1 0 
P2 1 0 0 0 0 
P3 0 0 1 0 0 
P4 0 0 0 1 0 
P5 0 0 1 0 0 
P6 0 1 0 0 0 
P7 0 0 1 0 0 
P8 0 0 1 0 0 

Thus, the diagnosis of breast cancer is the process of determining matrix R from matrices U and V. 

3.2. Cross-domain recommender systems for medical diagnosis 

To formally define this medical diagnosis problem as it relates to our cross-domain setting, we assume that there 

are two related but different disease domains. One domain, the target domain, does not contain enough records to 

provide adequate diagnostic support; however, the other, the source domain, has an abundance of records. The problem 

under study, therefore, involves determining the usage of records from the source domain to improve diagnostic 

support in the target domain. First, a symptom space must be defined with interval numbers to describe the problem.  

Suppose that S = {S1, …, SN} represents a list of symptoms in a medical diagnosis problem with interval numbers. 

The symptom space for the diagnosis is generated by the associations between symptoms Sl and Sk, where l, k {1, …, 

N}, which describe the influences of Sl and Sk on the disease risks. When the symptoms in the source and target 

domains have the same number and distribution, the symptom spaces are the same in the two domains; otherwise, the 

symptom spaces are different. In this study, we focus on the latter, which is more challenging. Accordingly, the 

medical diagnosis problem under study is formally described. 

Suppose that (Us= , Vs= , Rs= ) and (Ut= , Vt= , Rt= ) 

represent the patient-symptom matrix, symptom-category matrix, and patient-category matrix in the source and target 

domains, respectively. Here, Ms and Mt denote the number of patients, Ls and Lt are the number of symptoms, and Ns 

and Nt are the number of symptoms in the two domains. When the symptom spaces in the two domains are different, 

8 5( )mnr ´

Î

( )
s s

s
ml M Lu ´ ( )

s s

s
ln L Nv ´ ( )

s s

s
mn M Nr ´ ( )

t t

t
ml M Lu ´ ( )

t t

t
ln L Nv ´ ( )

t t

t
mn M Nr ´
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a cross-domain recommender system extracts knowledge from the source domain and predicts medical diagnoses in 

the target domain by . 

4. Cross-domain recommender system through information transfer for medical diagnosis 

In this section, we present the proposed ITMD recommendation method. The ITMD method transfers the shared 

information contained in the symptom spaces from the source domain to the target domain when the symptom spaces 

in the two domains are different. The procedure of the ITMD method is presented in Fig. 1, which consists of five 

steps. (1) The patient-symptom matrices in the source and target domains are normalized. (2) Symptom space 

alignment is designed to generate consistent symptom spaces in the two domains. (3) A new dissimilarity measurement 

is used to calculate the dissimilarities between the diagnoses and their predictions. (4) Information transfer is 

conducted based on the constraints on the symptom relation matrix. (5) Medical diagnosis support in the target domain 

is enabled. Next, we further demonstrate the ITMD method in detail.  

 
Fig. 1. Five steps of the ITMD framework. 

4.1. Step 1: Normalizing the patient-symptom matrix 

To normalize the patient-symptom matrices Us and Ut, the interval-valued matrices must be transformed into 

numerical matrices. Because all elements in Us and Ut are drawn from the interval sets L(Sl), Us and Ut can be converted 

ˆ ( , , , , )g= s s s tt tR U V U VR

Source data Target data

Step 1: Normalizing 
patient-symptom matrix

Rs, Us, Vs Rt, Ut, Vt

Rs,      , VssU Rt,      , VttU

Same symptom spaces?
Yes No

Dt

Step 5:  Generating recommendations 
in the target domain

Step 4: Transferring information  
through  constraints on symptom matrix

Step 3: Calculating the dissimilarity  
for symptom relation matrix extraction

Step 2: Aligning 
the symptom spaces

Step 1: Normalizing 
patient-symptom matrix
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into averaged matrices  and , respectively. Here, , where  and  

denote the lower and upper bounds of , respectively. Likewise, , where  and  denote the 

lower and upper bounds of , respectively. 

Demonstrating the rationality of converting  and  into  and , respectively, involves generalizing the 

relations between them as two propositions, as presented below. 

Proposition 1. Consider a list of intervals In, n = 1, …, N that satisfy 

                                                                                                                          (1) 

and suppose that  denotes the average of In (n = 1, …, N); it is calculated by , n = 1, …, N. Then, it 

follows that Im = In iff  = , m, n = 1, …, N. 

The proof of Proposition 1 can be easily obtained. From Proposition 1, it is evident that there is a one-to-one 

correspondence between In and . However, is the difference in size between Im and In consistent with that between 

 and ? This is determined by measuring the possibility degree of Im being superior to In [38] as follows: 

p(Im > In) = .                                                                 (2) 
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From Eq. (1), there are three possible correlations between Im and In: 1) < ≤ < ; 2) = < = ; and 

3) < ≤ < . Accordingly, Eq. (2) can be transformed into:  

p(Im > In) = . 

Proposition 2. Given a list of intervals {In, n = 1, …, N} that satisfy Eq. (1), suppose  is the average of In. Then, it 

follows that 

(1) p(Im > In)= 1 iff > ; 

(2) p(Im > In)= 0.5 iff = ; and 

(3) p(Im > In)=0 iff < . 

The proof of Proposition 2 can be easily obtained. From Proposition 2, it can be deduced that the difference in size 

between Im and In is consistent with that between  and . 

From Propositions 1 and 2, it is reasonable to transform Us and Ut into  and , respectively. 

4.2. Step 2: Aligning the symptom spaces 

Once the patient-symptom matrix is normalized, the patient-category matrices in the two domains, Rs and Rt can be 

factorized. However, first, a symptom matrix for a single domain must be defined to demonstrate the relation between 

symptoms. 

Definition 1 (symptom matrix). Given the medical diagnosis problem presented in Section 3, the symptom matrix D 

=  is defined to represent the degree of influence of symptom Si on the disease risks of symptom Sj, resulting 

in the diagnostic categories, where dij satisfies dij [0, 1], dij= dji, and . 

According to Definition 1, Rs and Rt can be factorized as  and , respectively, where Ds=

 denotes the symptom matrix in the source domain and Dt =  in the target domain. It should be noted 

that the patient-symptom matrices Us and Ut, the symptom-category matrices Vs and Vt, and the patient-category 

matrices Rs and Rt in the source and target domains can be obtained from medical records. If the medical records in 
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the target domain are insufficient, the symptom relation matrix Ds learned from  may be imprecise. To 

obtain more precise Ds, sufficient records in the source domain can be used to help learn Ds using the connection of 

the symptom relation matrices Ds and Dt. When both symptom spaces in the source and target domains are the same, 

any or all information in the source domain Ds can be transferred to the target domain Dt. Otherwise, the symptom 

spaces in the two domains must be aligned first. 

Aligning the symptom spaces involves the process of factorizing the symptom matrix in the source domain Ds into 

three matrices, , where M1 =  with  and , M2 =  with 

 and  are the two transformation matrices, and  =  is the new symptom matrix. 

Matrices  and Dt share the same symptom space. Thus, matrix Rs is factorized into five matrices, i.e., 

. 

4.3. Step 3: Calculating the dissimilarity for symptom relation matrix extraction 

Information cannot be transferred from the source domain to the target domain without knowing the dissimilarity 

between Rs and  and that between Rt and . To obtain the dissimilarities, the disease risks indicated in the 

diagnostic categories must be considered. For a list of diagnostic categories C = {C1, …, CN}, we denote their risk 

intervals as {p(Cn), n=1, …, N} = {[ , ], ( , ], …, ( , ]} such that 

=0, =1, 0≤ < ≤1, n = 1, …, N, = , n = 1, …, N-1, and = 

[0, 1]. Following Propositions 1 and 2, p(Cn), n = 1, …, N can be transformed into their averages, 

, and n = 1, …, N; accordingly, a new dissimilarity measurement is constructed that 

describes the dissimilarity between R and its prediction , which is formally defined as follows. 

Definition 2 (dissimilarity of diagnoses with risk intervals). Suppose that p(Cn), where n = 1, …, N denotes the risk 

intervals of the diagnostic categories Cn, n = 1, …, N. A dissimilarity measurement between a diagnostic matrix R=

 and its predicted matrix =  is defined as 
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d(R, ) = ,                                                      (3) 

where  denotes the average of p(Cn). 

The dissimilarity measurement between R and  constructed in Definition 2 is distinct from other distance 

measures, such as the Euclidean distance [39], Manhattan distance [40], or Chebyshev distance [41], because it 

considers  (n= 1, …, N) such that 0 ≤ < <…< ≤ 1. Hence, using  (l = 1, …, 

N, k = l+1, …, N) distinguishes the dissimilarities between ( , ) and ( , ). The following example can help 

in explaining the construction of this dissimilarity measurement. 

Example 2. Suppose that there are five diagnostic categories, , n = 1, …, 5, in a medical diagnosis problem. Given 

the risk intervals defined in the diagnostic categories {p(Cn), n = 1, …, 5} = {[0, 0.03], (0.03, 0.25], (0.25, 0.75], (0.75, 

0.95], (0.95, 1]}, assume that R = (1 0 0 0 0) and the two predictions are  = (0 1 0 0 0) and  = (0 0 0 0 1). 

The averages of {p(Cn), n = 1, …, 5} are { , n = 1, …, 5} = {0.015, 0.14, 0.5, 0.85, 0.975}. From Eq. (3), 

d(R, ) and d(R, ) are calculated as 

d(R, ) =  = 0.397; and 

d(R, ) =  = 1. 

To ascertain whether our dissimilarity measurement (Eq. (3)) is more reasonable than the Euclidean, Manhattan, or 

Chebyshev distance, we compared all three distances between R and  or . Each distance was calculated as 

follows: 

Euclidean distance: dE(R, ) =  and dE(R, ) = ; 

Manhattan distance: dM(R, ) = 2 and dM(R, ) = 2; and 

Chebyshev distance: dC(R, ) = 1 and dC(R, ) = 1. 
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Thus, we conclude that dE(R, ) = dE(R, ), dM(R, ) = dM(R, ), and dC(R, ) = dC(R, ). Because 0 <

< < … < < 1,  is closer to R than , which supports the use of our dissimilarity measurement. 

The properties of the dissimilarity measurement between R and  are summarized below. 

Property 1. Suppose that d(R, ) represents the dissimilarity between two matrices R=  and =  

provided in Definition 2. Then, it follows that 

0 ≤ d(R, ) ≤ 1,                                                                                                                                         (4) 

d(R, ) = d( , R),                                                                                                                                    (5) 

d(R, ) = 0 iff R = , and                                                                                                                        (6) 

d(R, ) = 1 iff =1 and =1 or =1 and =1, m = 1, …, M.                                                        (7) 

The proof of Property 1 is given in Appendix A. Using the dissimilarity measurement shown in Eq. (3), the 

dissimilarity between Rs and  and that between Rt and  can be obtained by  and , 

respectively. 

4.4. Step 4: Transferring information through constraints on the symptom matrix 

The process of transferring information differs depending on whether the symptom spaces in the source and target 

domains are the same. We first consider the more challenging of the two cases, where the symptom spaces are different. 

As discussed in Step 2, when the symptom spaces are different, the patient-category matrices Rs and Rt must be 

factorized into  and , respectively, and the symptom relation matrices  and Dt 

share one symptom space. To further characterize the symptom space, we introduce the definition of the condition 

number of a matrix with the Frobenius norm, which describes the influence of the input variations in a matrix function 

on the output variations.  

Definition 3 (condition number of matrix) [42]. Given matrix A = , L1, L2 , the condition number of A 

with the Frobenius norm is defined as cond(A) = , where =  and  is the 

generalized inverse matrix of A. 
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It is evident that cond(A) ≥ 1. The condition numbers of Dt and  are denoted by cond(Dt) and cond( ), 

respectively. Now, we must analyze the influence of cond(Dt) on the matrix factorization of  and that of 

cond( ) on . The influence of cond(Dt) on the sensitivity of the relative error of Rt to that of  

or Vt in the target domain is demonstrated below. 

Theorem 1. If , the following two conclusions are satisfied. 

(1) If  and  satisfy , then 

,                                                             (8) 

where  and  represent the relative error of Rt and , respectively. 

(2) If  and  satisfy , then 

.                                                            (9) 

where  and  represent the relative error of Rt and Vt, respectively. 

The proof of Theorem 1 is given in Appendix B. From Eqs. (8) and (9), we can conclude that the smaller the value 

of cond(Dt), the narrower the range of the relative error of Rt, which indicates that the relative error of Rt is more 

controllable. In the source domain, the influence of cond( ) on the sensitivity of the relative error of Rs to that of 

 or M2Vs can similarly be deduced from Theorem 1. When  and Dt share the same symptom space, we have 

cond( ) = cond(Dt). , Dt, M1, and M2 can be learned by minimizing d(Rs, ) and d(Rt, ). 

Minimizing the difference between  and Dt also needs to be considered. Thus, the cost function is constructed as 

follows:  

J =  + + ,                                                                            (10) 
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where = , = ,  and  are the average matrices of Us and Ut, 

respectively, and λ is a parameter such that 0 ≤ λ ≤ 1. Based on Eq. (10), , Dt, M1, and M2 are learned by the 

following optimization problem:  

min J 

s.t. cond( )=cond(Dt) 

0 ≤ , Dt ≤ 1, , , 1, 1, 

0 ≤ M1, M2 ≤ 1, 1, 1, 

where , , and  denote each column of , M1, and M2, respectively. 

This is a sequential quadratic programming problem [43] that can be solved by several existing solvers. The 

information transfer between the source and target domains is summarized in Algorithm 1. 

Algorithm 1: Information transfer 
Input: Rs, Us, Vs, patient-category matrix, patient-symptom matrix, and symptom-category matrix of source domain 

Rt, Ut, Vt, patient-category matrix, patient-symptom matrix, and symptom-category matrix of target domain  
Output: , aligned symptom matrix of source domain 

Dt, symptom matrix of target domain 
M1, M2, transformation matrices for symptom space alignment 

1 INITIALIZE , , , ,  
2 WHILE J = 0 OR  DO 

3     FOR , Dt, M1, M2 in each iteration 

4        UPDATE , Dt, M1, M2 using the sequential quadratic programming method 
5     ENDFOR 
6     UPDATE J as in Eq. (10) 
7     IF  
8           
9     ENDIF 
10 ENDWHILE 
11 RETURN , Dt, M1, M2 

The ITMD method can also be used to support medical diagnosis with the same symptom spaces. In this situation, 

suppose that Ds=  and Dt = . Because Ds and Dt are aligned, Rs is factorized as ; that is, 

M1 and M2 are not required. Because the optimization problem of solving Ds and Dt is similar to Eq. (10), the details 

are omitted. 
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4.5. Step 5: Generating recommendations in the target domain 

Diagnostic support in the target domain is generated by , where  is the predicted diagnostic category 

of patients;  is the average matrix of Ut, which denotes the relations between the patients and symptoms; Vt 

represents the relations between the symptoms and diagnostic categories; and Dt is the symptom matrix in the target 

domain. The highest prediction of diagnosis is the recommendation for physicians. 

The ITMD method is presented in Algorithm 2. 

Algorithm 2: ITMD method 
Input: Rs, Us, Vs, patient-category matrix, patient-symptom matrix, and symptom-category matrix of source domain 

Rt, Ut, Vt, patient-category matrix, patient-symptom matrix, and symptom-category matrix of target domain 
Output: Cm, recommendation of target domain for patient pm 
1 Normalize Us and Ut with  and  
2 IF Ls = Lt 
3     INITIALIZE ,  

4      

5      

6     CALCULATE  and  as in Eq. (3) 

7     CALCULATE J as in Eq. (10) with  
8     LEARN Ds, Dt using the sequential quadratic programming method 
9 ELSE IF 
10   INITIALIZE , ,  

11    

12    

13    LEARN , Dt, M1, M2 using Algorithm 1 
14 ENDIF 
15  

16 RETURN Cm for patient pm using Cm=  

5. Experiments and analyses 

Owing to the privacy and inaccessibility of diagnostic data for most diseases, it is necessary to generate synthetic 

data to investigate the effectiveness of the ITMD method. The generation of synthetic data should adequately reflect 

the characteristics of medical diagnosis at the risk intervals. We conducted two sets of experiments where the symptom 

spaces were either the same in the two domains or different. First, we explain the process of generating synthetic data, 

followed by the evaluation metrics and the baselines for comparison. Finally, the results are presented. 
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5.1. Synthetic datasets 

To ensure that the synthetic data can reflect the structure of real medical records, they are generated based on the 

essential information for disease diagnosis. They include a set of patients P= {P1, …, PM}, a set of symptoms S = 

{S1, …, SL}, a set of diagnostic categories C = {C1, …, CN} with risk intervals p(Cn) (n=1, …, N), and the levels of 

severity of symptoms L(Sl) (l = 1, …, L). 

For the first group of experiments, thyroid cancer and breast cancer were considered as the source and target 

domains, respectively. Both domains contain five symptoms, i.e., Ss=St = {S1, …, S5} = {margin, contour, echogenicity, 

calcification, vascularity}, and five diagnostic categories denoted by Cs=Ct = { , …, } [44]. The risk intervals of 

the diagnostic categories and the levels of severity of symptoms in the two domains are {p( ), n=1, …, 5} = {L( ), 

l = 1, …, 5} = {[0, 0.03], (0.03, 0.25], (0.25, 0.75], (0.75, 0.95], (0.95, 1]} [45]. Suppose that the diagnoses of patients 

on the symptoms in the two domains Us=  and Ut=  follow two different probability distributions, 

and without loss of generality, the two probability distributions are assumed to be (p( =L(S1)), …,  p( =L(S5)) = 

(0.3, 0.2, 0.3, 0.1, 0.1) and (p( =L(S1)), …,  p( =L(S5)) = (0.4, 0.1, 0.1, 0.2, 0.2). Based on the essential 

information and possibility distributions in the two domains, 40000 and 10000 diagnostic records (patient-symptom 

ratings) were generated for the two domains, respectively. The parameter λ was set to 0.5. The number of records with 

the same symptom space in this group of experiments is listed in Table 5. 

For the second group of experiments, gastric cancer and liver cancer were considered as the source and target 

domains, respectively. The diagnosis of gastric cancer involves six symptoms, Ss = { , …, } = {margin, contour, 

echogenicity, depth, lymph node metastases, size} [46], and eight diagnostic categories denoted by Cs = { , …, 

}. The diagnosis of liver cancer includes five symptoms, St = { , …, } = {margin, echogenicity, contour, 

vascularity, size} [47], and five diagnostic categories denoted by Ct = { , …, }. The TNM system of the American 

Joint Committee on Cancer/International Union Against Cancer Classification (AJCC/UICC) is used to represent the 

risk intervals of the diagnostic categories and the severity of symptoms in the diagnosis of gastric cancer; that is, 

{p( ), n=1, …, 8} = {L( ), l = 1, …, 8} = {[0, 0.261], (0.261, 0.413], (0.413, 0.584], (0.584, 0.717], (0.717, 0.84], 

(0.84, 0.884], (0.884, 0.951], (0.951, 1]} [48]. Correspondingly, the risk intervals of the diagnostic categories and the 
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levels of severity of symptoms in the diagnosis of liver cancer are described by the risk stages of laparoscopic 

ultrasonography in the evaluation of liver nodules, which are {p( ), n=1, …, 5} = {L( ), l = 1, …, 5} = {[0, 0.18], 

(0.18, 0.24], (0.24, 0.3], (0.3, 0.84], (0.84, 0.1]} [49]. Suppose that Us=  and Ut=  follow two 

different probability distributions, and without loss of generality, they were assumed to be (p( =L( )), …,  p(

=L( )) = (0.1, 0.15, 0.1, 0.1, 0.15, 0.1, 0.1, 0.2) and (p( =L( )), …,  p( =L( )) = (0.4, 0.1, 0.1, 0.2, 0.2). 

Based on the essential information and distributions in the two domains, 40000 and 10000 diagnostic records (patient-

symptom ratings) of the two domains were generated. The parameter λ was set to 0.5. The number of records with the 

same symptom space in this group of experiments is listed in Table 5. 

Table 5. Number of records for five groups of records with same and different symptom spaces. 

Symptom spaces Group ID 1:1 2:1 3:1 4:1 
Source Target Source Target Source Target Source Target 

Same 

G1 2000 2000 4000 2000 6000 2000 8000 2000 
G2 4000 4000 8000 4000 12000 4000 16000 4000 
G3 6000 6000 12000 6000 18000 6000 24000 6000 
G4 8000 8000 16000 8000 24000 8000 32000 8000 
G5 10000 10000 20000 10000 30000 10000 40000 10000 

Different 

G6 2000 2000 4000 2000 6000 2000 8000 2000 
G7 4000 4000 8000 4000 12000 4000 16000 4000 
G8 6000 6000 12000 6000 18000 6000 24000 6000 
G9 8000 8000 16000 8000 24000 8000 32000 8000 
G10 10000 10000 20000 10000 30000 10000 40000 10000 

In all experiments, the test set was obtained from the target domain; then, we performed five-fold cross-validation 

to generate the training and test data, as demonstrated in [50–51]. Five-fold cross-validation was applied to the dataset 

in the target domain, and the entire dataset in the source domain was used for training. 

5.2. Evaluation metrics and baselines 

We selected the prediction accuracy as our evaluation metric, which is calculated as ARt = , where Y 

is the test set in the target domain, |Y| is the number of test sets, and  and  represent the true values and 

predictions of diagnoses in the test set, respectively. The greater the prediction accuracy, the better the performance. 

We selected four non-transfer learning methods as the baselines for comparison, named B1 [52], B2 [45], B3 [53], 

and B4 for simplicity. For baselines B1 and B2, the diagnoses were generated using a linear combination of the relations 

between patients and symptoms (denoted by =[ , ], m = 1, …, M, l = 1, …, L, where M and L are the number 

of patients and symptoms, respectively) and the relative weights of symptoms (denoted by wl, l = 1, …, L). Thus, the 
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risk intervals for patients denoted by pm = [ , ] can be predicted by  = [ , ]= . The distances 

between pm and  in the two baselines were respectively calculated with 

d1(pm, ) =  and 

d2(pm, ) = , 

where , , , , and 

. For baseline B3, the relation between patients and symptoms, , was replaced by 

their averages ; they were subsequently used to generate the diagnostic predictions by linearly combining the 

relative weights of symptoms wl, l = 1, …, L. That is, the average risk intervals for patients denoted by , m=1, …, 

M can be predicted by  = . The distance between  and  was calculated using d1( , ) = 

. B4 is a non-transfer learning variant of the ITMD method. The prediction model is the matrix factorization 

of . All methods were evaluated using the same test set. The averages and standard deviations of the 

experimental results from 20 random initializations are reported. 

5.3. Experimental results 

A comparison of the two sets of test results for the five different ratios is presented in Table 5 and Figs. 2 and 3. 

The experimental results indicate that the ITMD method exhibited the best performance for each group of records. In 

addition, the performance of the ITMD method improved as the source: target domain data ratio increased from 1:1 

to 4:1. These results provide solid support for the effectiveness of knowledge transfer, both when the symptom spaces 

are the same and when they are not. The following four highlights can be derived from Tables 6 and 7. 

(1) Baseline B4, the non-transfer learning variant of the ITMD method, performed better than the other three 

baselines, which did not incorporate knowledge transfer. However, compared with the ITMD method, the performance 

of the four baselines was poor, indicating that the transfer of shared information from the source domain to the target 

domain significantly improves the final result. 
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(2) The standard deviations for B1, B2, and B3 were significantly larger than those for B4 and the ITMD method, 

which means that B1, B2, and B3 lost some stability when the target domain had insufficient records, whereas B4 and 

the ITMD method did not. 

(3) In the experiments for all five groups of records, the ITMD method exhibited superior performance than the 

baselines. Further, the larger the ratio of data between the source and target domains, the better the ITMD method 

performed. The largest improvements in the ITMD method in comparison to the baselines are presented in Table 7. 

The largest improvements in the prediction accuracy of the ITMD method with the same and different symptom spaces 

were 0.0973 and 0.0827, respectively. 

(4) As the number of records in the target domain increased, the performance of the ITMD method gradually 

decreased. Table 7 demonstrates that the maximum improvement rate for the ITMD method decreased from 13.43% 

to 8.15%, with the same symptom spaces, and from 11.3% to 8.85%, with different symptom spaces as the number of 

records increased from 2000 to 10000. This is reasonable because, with more data, the ITMD method does not need 

to provide as much support. 

Table 6. Prediction accuracy for five groups of records with same and different symptom spaces. 
Group ID B1 B2 B3 B4 

ITMD  
1:1 2:1 3:1 4:1 

G1 0.7243±0.0215 0.7361±0.0236 0.7436±0.0217 0.7756±0.0108 0.7926±0.0069 0.8022±0.0083 0.8163±0.0113 0.8216±0.0102 
G2 0.7357±0.0233 0.7457±0.0214 0.7538±0.0233 0.7791±0.0096 0.7873±0.0088 0.7976±0.0073 0.8052±0.0082 0.8231±0.0066 
G3 0.7536±0.0218 0.7413±0.0243 0.7563±0.0211 0.7828±0.0045 0.7996±0.0077 0.8066±0.0089 0.8127±0.0061 0.8202±0.0073 
G4 0.7499±0.0238 0.7468±0.0211 0.7456±0.0178 0.7903±0.0079 0.8044±0.0041 0.8067±0.0063 0.8111±0.0046 0.8179±0.0087 
G5 0.7547±0.0213 0.7501±0.0137 0.7589±0.0205 0.8018±0.0063 0.8041±0.0046 0.8062±0.0073 0.8091±0.0059 0.8112±0.0074 
G6 0.7348±0.0176 0.7401±0.0201 0.7319±0.0219 0.7786±0.0043 0.7952±0.0066 0.8027±0.0052 0.8067±0.0069 0.8146±0.0023 
G7 0.7403±0.0198 0.7429±0.0211 0.7504±0.0168 0.7902±0.0062 0.8041±0.0046 0.8087±0.0035 0.8101±0.0042 0.8144±0.0064 
G8 0.7476±0.0161 0.7394±0.0143 0.7490±0.0157 0.7961±0.0069 0.8015±0.0037 0.8043±0.0054 0.8082±0.0041 0.8151±0.0022 
G9 0.7510±0.0214 0.7433±0.0153 0.7469±0.0188 0.7989±0.0073 0.8038±0.0033 0.8069±0.0025 0.8110±0.0051 0.8155±0.0048 
G10 0.7488±0.0139 0.7505±0.0123 0.7444±0.0149 0.8017±0.0047 0.8043±0.0026 0.8073±0.0035 0.8088±0.0019 0.8103±0.0036 

Table 7. Improvement of the ITMD method for five groups of records with same and different symptom spaces. 
Group ID 1:1 2:1 3:1 4:1 Max improvement rate 

G1 0.0683 0.0779 0.0920 0.0973 13.43% 
G2 0.0516 0.0619 0.0695 0.0874 11.88% 
G3 0.0583 0.0653 0.0714 0.0789 10.64% 
G4 0.0588 0.0611 0.0655 0.0723 9.7% 
G5 0.0540 0.0561 0.0590 0.0611 8.15% 
G6 0.0633 0.0708 0.0748 0.0827 11.3% 
G7 0.0688 0.0734 0.0748 0.0791 10.76% 
G8 0.0621 0.0649 0.0688 0.0757 10.24% 
G9 0.0605 0.0636 0.0677 0.0722 9.71% 
G10 0.0599 0.0629 0.0644 0.0659 8.85% 
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Fig. 2. Prediction accuracy of all methods for G1-G10 with same and different symptom spaces. 

  
Fig. 3. Average prediction accuracy of all methods with same and different symptom spaces. 

6. Real-world case study 

This section presents a case study to demonstrate the operation and performance of the proposed ITMD method in 

practical situations. Thyroid cancer and breast cancer were considered as the source and target domains, respectively; 

additionally, real-world datasets of medical diagnoses were used for each domain. 

6.1. Description of real-world case 

This case was obtained from a tertiary-level hospital in China. It is famous for the diagnosis of thyroid cancer; 

however, it is inadequate in the diagnosis of breast cancer. Thus, the data related to the diagnosis of breast cancer are 

significantly less than those related to the diagnosis of thyroid cancer. Thyroid and breast cancers both have a high 

incidence rate, and both use ultrasound as a common means of early diagnosis. The ultrasonic diagnoses of thyroid 

and breast cancers mainly have three perspectives of similarity, as presented below. 

(1) Both thyroid and breasts are superficial organs. Based on this, a high-frequency linear ultrasound probe with the 

same frequency of L14-5WU was used to check the structure, echogenicity, and vascularity of the two organs [54]. 

(2) Both thyroid and breasts are endocrine glands. In the two glands, a malignant tumor is generally created due to 

lesions and necrocytosis of the endocrine cells. The external features of the lesions include the burr of margin, 

calcification, and definition of contour [55]. 
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(3) The criteria for assessing nodules and stratifying risks in thyroid and breast cancers are similar. BI-RADS was 

published by the American College of Radiology to help physicians in making uncertain diagnosis of breast cancer. 

Based on BIRADS, TIRADS was developed for the diagnosis of thyroid cancer [45]. 

From the first and second perspectives of similarity, the diagnostic process generally starts with detecting the thyroid 

and breast nodules by ultrasound and examining them according to five characteristics (symptoms): margin, contour, 

echogenicity, calcification, and vascularity. For the third perspective of similarity, both TI-RADS and BI-RADS 

include eight diagnostic categories, five of which are uncertain interval-valued symptoms‡ . The five diagnostic 

categories are generally used by physicians in hospitals; that is, TI/BI-RADS 3, 4A, 4B, 4C, and 5. Details regarding 

TI-RADS and BI-RADS used in the ultrasonic department of the hospital are presented in Table 8. Physicians use the 

aforementioned five diagnostic categories to evaluate the tumor on each symptom. By using TI/BI-RADS to express 

the evaluations of symptoms and the diagnoses of cancer risks, the relations between symptoms are consistent in the 

diagnoses of thyroid and breast cancers. 

In clinical practice, physicians transform the observations on the five symptoms into TIRADS categories and further 

the risk intervals {[0, 0.03], (0.03, 0.25], (0.25, 0.75], (0.75, 0.95], (0.95, 1]}, which are used to describe the relations 

between patients and symptoms. Five diagnostic categories may be recommended to patients, and their cancer risk 

intervals are used to determine the relations between patients and diagnostic categories. For example, when a 

radiologist evaluates a nodule of thyroid and breast on the five symptoms (TI/BI-RADS 3, TI/BI-RADS 4A, TI/BI-

RADS 4B, TI/BI-RADS 3, TI/BI-RADS 4A), the overall diagnosis of the thyroid and breast nodules will be TI/BI-

RADS 4A, which is generated by synthetically considering the evaluation of symptoms. Thus, the high similarity 

between the diagnoses of thyroid and breasts results in consistent relations between the symptoms of the two diseases, 

and such relations can be used as the shared knowledge transferred across the two diseases. 

Our datasets comprise the diagnostic assessments of ultrasonic examination collected by four physicians from 2017 

to 2019. The statistical information is presented in Table 9. Similar to Section 5, both records in the source and target 

domains are used to train the proposed model discussed in Section 4.4. The dataset in the target domain is divided into 

two parts using five-fold cross-validation. 

Table 8. TI/BI-RADS used in the hospital. 

 
‡ The other three diagnostic categories are TI/BI-RADS 1: negative (0% risk of malignancy); TI/BI-RADS 2: benign (0% malignancy), and TI/BI-RADS 6: biopsy 

proven malignancy. 
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Categories Findings Cancer risk 
3 Probably benign [0, 0.03) 

4A Undetermined (0.03, 0.25] 
4B Suspicious (0.25, 0.75] 
4C High suspicious (0.75, 0.95] 
5 Probably malignant (0.95, 1] 

Table 9. Statistics for the diagnostic records of four physicians 

Physician ID Serving periods Number of patients 1:1 2:1 3:1 4:1 
Thyroid Breast Source Target Source Target Source Target Source Target 

F1 2017-2019 627 153 143 143 286 143 429 143 572 143 
F2 2017-2019 632 166 153 153 306 153 459 153 612 153 
F3 2017-2019 685 138 125 125 250 125 375 125 500 125 
F4 2017-2019 475 107 91 91 182 91 273 91 364 91 

The four methods, B1, B2, B3, and B4, mentioned in Section 5 were selected as the baselines for comparison with the 

ITMD method. The experiments for the ITMD method were conducted with four ratios of records between the source 

and target domains, which were set to 1:1, 2:1, 3:1, and 4:1, respectively. The regularization factor was set to 0.5. The 

experiments for all compared methods were conducted on the same test sets. The results reported denote the averages 

with standard deviations from 20 random initializations. 

6.2. Case study results and analysis 

The results are presented in Table 11 and a visual comparison is shown in Fig. 4, which leads to the following 

observations:  

(1) The ITMD method performed better than the four baselines with the datasets of all four physicians. Table 12 

indicates that in comparison to the four baselines, the largest improvement in prediction accuracy using the ITMD 

method was 0.1221 and its improvement rate was 16.69%.  

(2) B1, B2, and B3 performed so poorly that they would not be acceptable for diagnosing breast cancer without more 

data. Moreover, with such few data, none of the three methods could maintain stability. 

(3) The ITMD method became more accurate as the ratio of records increased. From Table 12, when the source: 

target ratio increased from 1:1 to 4:1 for physician F1, the improvement of prediction accuracy with the ITMD method 

increased from 0.0608 to 0.1095 in comparison to the four baselines. Similar results were observed for the other three 

physicians. 

Table 11. Prediction accuracy for the datasets of four physicians. 
Physician ID B1 B2 B3 B4 

ITMD 
1:1 2:1 3:1 4:1 

F1 0.7384±0.0069 0.7262±0.0058 0.7307±0.0045 0.7767±0.0030 0.7870±0.0082 0.7999±0.0059 0.8179±0.0073 0.8357±0.0014 
F2 0.7028±0.0306 0.6943±0.0401 0.6897±0.0346 0.7384±0.0018 0.7464±0.0085 0.7582±0.0063 0.7720±0.0023 0.7777±0.0042 
F3 0.7180±0.0067 0.7003±0.0095 0.7185±0.0257 0.7766±0.0006 0.7837±0.0016 0.7945±0.0029 0.8016±0.0027 0.8076±0.0028 
F4 0.7381±0.0093 0.7317±0.0024 0.7423±0.0157 0.8273±0.0018 0.8356±0.0011 0.8399±0.0018 0.8451±0.0011 0.8538±0.0019 

Table 12. Improvement of the ITMD method for five groups of records with same and different symptom spaces. 
Physician ID 1:1 2:1 3:1 4:1 Max improvement rate 

F1 0.0608 0.0737 0.0917 0.1095 15.08% 
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F2 0.0567 0.0685 0.0823 0.0880 12.76% 
F3 0.0834 0.0942 0.1013 0.1073 15.32% 
F4 0.1039 0.1082 0.1134 0.1221 16.69% 

 
Fig. 4. Average prediction accuracy for all methods. 

To further demonstrate the performance of the ITMD method, we conducted experiments when the symptom 

relation matrix was directly learned from the dataset in the source domain without adjustments. Table 13 presents the 

prediction results only with the datasets in the source domain. 

Table 13. Prediction accuracy for the datasets of four physicians in the source domain 

Physician ID Prediction accuracy 
1:1 2:1 3:1 4:1 

F1 0.7816± 0.0018 0.7852± 0.0028 0.7895± 0.0027 0.7919± 0.0039 
F2 0.7246+ 0.0027 0.7332± 0.0041 0.7350± 0.0014 0.7432± 0.0030 
F3 0.7790± 0.0003 0.7797± 0.0010 0.7815± 0.0011 0.7868± 0.0010 
F4 0.8258± 0.0020 0.8262± 0.0012 0.8296± 0.0010 0.8314± 0.0014 

By comparing the results in Tables 11 and 13, we found that the use of the dataset in the source domain for 

generating recommendations will have minimal effect on the improvement of the prediction accuracy in the target 

domain. Meanwhile, although there are only a few labels in the target domain, the results indicate that they can 

significantly improve the prediction accuracy. 

In addition to the prediction accuracy of the ITMD method, we wanted to assess the effectiveness of our new 

dissimilarity measurement. Table 14 presents the different distance measurements applied to the B4 baseline on the 

four sets of medical records. Our dissimilarity measurement clearly led to more accurate predictions than other 

distance measures. 

Table 14. Prediction accuracy on the target domain with different distance measurements. 
 Euclidean distance Manhattan distance Chebyshev distance Dissimilarity measurement 

F1 0.5917±0.0057 0.6428±0.0043 0.6435±0.0029 0.7767±0.0030 
F2 0.6076±0.0054 0.6174±0.0050 0.6116±0.0065 0.7384±0.0018 
F3 0.6349±0.0015 0.6463±0.0036 0.6450±0.0042 0.7766±0.0006 
F4 0.6140±0.0042 0.6083±0.0010 0.6072±0.0010 0.8273±0.0018 

 0.6120±0.0042 0.6287±0.0035 0.6268±0.0036 0.7798±0.0018 F
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We also examined the influence of λ with a record ratio of 4:1; the results are shown in Fig. 5. As illustrated, the 

prediction accuracy monotonically increases when λ varies from 0 to 0.5, with no significant change in accuracy from 

0.5 to 1. 

 
Fig. 5. Prediction accuracy for the four physicians with changes in λ. 

7. Conclusion and future study 

In this study, we proposed a new cross-domain recommender system called ITMD to provide personalized 

recommendations to physicians to determine the disease risks of patients for various diseases. The ITMD method was 

developed by solving the two challenges of uncertainty in medical diagnosis data and mismatched symptom spaces. 

A new dissimilarity measurement was developed for diagnosis with interval numbers to depict the dissimilarities 

between the diagnoses and their predictions to manage the first challenge. A space alignment technique was adopted 

to align the different symptom spaces of the two domains to manage the second challenge. A collective matrix 

factorization technique was constructed using the ITMD method based on the new measurement and space alignment 

technique to implement shared information transfer from the source domain to the target domain. The proposed ITMD 

method can provide effective decision support in the domain of disease diagnosis with insufficient records. A set of 

experiments were conducted on synthetic data and a case study was conducted with real-world data for the diagnoses 

of thyroid cancer and breast cancer. The results suggested that the ITMD method exhibits superior performance and 

can provide personalized recommendations to support physicians with diagnosing the risks associated with various 

diseases. The significance of the results in this paper lies in providing a novel recommendation method in both 

theoretical and practical way. 1) Theoretically, this paper solves the data sparsity problem in medical diagnosis 

with the solution of a cross-domain recommendation method that is able to effectively transfer knowledge from 

a similar domain. The proposed method is able to deal with two theoretical issues: uncertain and heterogeneous 
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representations. 2) Practically, the problem is derived from a real-world scenario occurs in hospital and our 

solution can be directly used to support the radiologists with insufficient experiences and help improve their 

diagnostic accuracy. 

In future study, we intend to focus on extending the principles of the ITMD method to more complex settings, such 

as the transfer of heterogeneous diagnostic data across domains. We will also consider other salient aspects of medical 

diagnoses, such as patient privacy, the attitudes of physicians toward risks, and the gold standards in medical diagnosis. 

Acknowledgments 

This work was partially supported by the Australian Research Council (ARC) under the Australian Laureate 

Fellowship [FL190100149] and the National Natural Science Foundation of China (Grant Nos. 71622003 and 

71571060). 

Appendix A. Proof of Property 1 

Proof. Eqs. (4)-(7) are verified in A.1-4. 

A.1. Because  ≥ 0 and  > 0 in Eq. (3), it follows that d(R, 

) ≥ 0. In addition, . 

Thus, we can deduce that 

≤  = 1. 

Correspondingly, we have 0 ≤ d(R, ) ≤ 1, which verifies Eq. (4). 

A.2. Eq. (5) is easily proved. 

A.3. Two things must be verified in Eq. (6): 

(1) If R= , we have = , m=1, …, M, n=1, …, N. By substituting this into Eq. (3), we obtain d(R, ) =0. 

(2) According to Eq. (3), we deduced from d(R, ) = 0 that =0, m=1, …, 

M, l=1, …, N-1, k=l+1, …, N. Because , l=1, …, N-1, k=l+1, …, N, we can conclude that = , 

m=1, …, M, n = 1, …, N, i.e., R = . Thus, Eq. (6) is verified. 

A.4. Two things must be verified in Eq. (7): 
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(1) Under the condition that =1 and =1 (m = 1, …, M), we can infer from  and  that 

rmn=0, n = 2, …, N and = 0, n = 1, …, N-1. Then, d(R, ) can be calculated as d(R, ) = 

= 1. Conditioned on rmN=1 and =1 (m = 1, …, M), d(R, )=1 

can be similarly verified. 

(2) Because  is the maximum value of , l = 1, …, N-1, k = l+1, …, N, we prioritize 

the assignment of rml and  (l = 1, …, L) to  for achieving the maximum value of d(R, ), 

i.e., 1. This implies that when d(R, ) = 1, =1 is satisfied, which indicates that =1 

and =1. Then, we have (rm1=1, =1) or (rmN=1, =1). Thus, Eq. (7) is verified. Accordingly, Property 

1 is verified. 

Appendix B. Proof of Theorem 1 

Proof. Two things must be verified for Eq. (8): 

(1)  and (2) . 

(1) Suppose that  has a small value and satisfies , where the symbol “+” represents the 

generalized inverse of a matrix, and 

 = ,                                                                                                          (B.1) 

From Eq. (B.1), we deduce that  
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Because , we have 
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.                   (B.4) 

Because , we have 

.                                                                                                                           (B.5) 

From Eqs. (B.4) and (B.5), we can deduce that 

= . 

Suppose that , then it can be deduced into . 

(2) Because  and , we have . Thus, ≤

, which indicates that .  

From , we have , which infers . Combining the two 

inequations, we have  ≥  = ; that is, 

. 

Thus, Eq. (8) is verified. Similarly, Eq. (9) is proved and, correspondingly, Theorem 1 is verified. 
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