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Abstract

Financial institutions increasingly rely upon data-driven methods for developing fraud detection

systems, which are able to automatically detect and block fraudulent transactions. From a machine

learning perspective, the task of detecting suspicious transactions is a binary classification problem

and therefore many techniques can be applied. Interpretability is however of utmost importance

for the management to have confidence in the model and for designing fraud prevention strategies.

Moreover, models that enable the fraud experts to understand the underlying reasons why a case

is flagged as suspicious will greatly facilitate their job of investigating the suspicious transactions.

Therefore, we propose several data engineering techniques to improve the performance of an analytical

model while retaining the interpretability property. Our data engineering process is decomposed into

several feature and instance engineering steps. We illustrate the improvement in performance of

these data engineering steps for popular analytical models on a real payment transactions data set.

Keywords: Decision analysis, Payment transactions fraud, Instance engineering, Feature

engineering, Cost-based model evaluation.

1. Introduction

The association of certified fraud examiners (ACFE) estimates that a typical organization loses

5% of its revenues to fraud each year. The fifth oversight report on card fraud analyses developments

in fraud related to card payment schemes (CPSs) in the Single Euro Payments Area (SEPA), issued

in September 2018 by the European Central Bank and covering almost the entire card market,

indicates that the total value of fraudulent transactions conducted using cards issued within SEPA

and acquired worldwide amounted to 1.8 billion Euros in 2016, which in relative terms, i.e. as
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a share of the total value of transactions, amounted to 0.041% in 2016 (European Central Bank,

September 2018). These are just a few numbers to indicate the severity of the payment transactions

fraud problem. It is also seen that losses due to fraudulent activities keep increasing each year

and affect card holders worldwide. Therefore, fraud detection and prevention are more important

than ever before and developing powerful fraud detection systems is of crucial importance to many

organizations and firms in order to reduce losses by timely blocking, containing and preventing

fraudulent transactions.

The Oxford Dictionary defines fraud as follows: the crime of cheating somebody in order to get

money or goods illegally. This definition captures the essence of fraud and covers the many different

forms and types of fraud. On the other hand, it does not very precisely describe the nature and

characteristics of fraud and as such does not provide much direction for discussing the requirements

of a fraud detection system. A more thorough and detailed characterization of the multifaceted

phenomenon of fraud is provided by Van Vlasselaer et al. (2017): Fraud is an uncommon, well-

considered, imperceptibly concealed, time-evolving and often carefully organized crime which appears

in many types of forms. This definition highlights five characteristics that are associated with par-

ticular challenges related to developing a fraud detection system.

The first emphasized characteristic and associated challenge concerns the fact that fraud is un-

common. Independent of the exact setting or application, only a small minority of the involved

population of cases typically concerns fraud, of which furthermore only a limited number will be

known to be fraudulent. This makes it difficult to both detect fraud, since the fraudulent cases are

covered by the non-fraudulent ones, as well as to learn from historical cases to build a powerful fraud

detection system since only few examples are available. This will make it hard for machine learning

techniques to extract meaningful patterns from the data.

Fraud is also imperceptibly concealed since fraudsters exactly try to blend into their environments

to remain unnoticed. This relates to the subtlety of fraud since fraudsters try to imitate normal be-

havior. Moreover, fraud is well-considered and intentional and complex fraud structures are carefully

planned upfront. Fraudsters can also adapt or refine their tactics whenever needed, for example, due

to changing fraud detection mechanisms. Therefore, fraud detection systems need to improve and

learn by example.

The traditional approach to fraud detection is expert-driven, which builds on the experience,

intuition, and business or domain knowledge of one or more fraud investigators. Such expert-based

rule base or engine is typically hard to build and maintain. A shift is occurring toward data-

2



driven or machine learning based fraud detection methodologies. This shift is triggered by the

digitization of almost every aspect of society and daily life, which leads to an abundance of available

data. Financial institutions increasingly rely upon data-driven methods for developing powerful fraud

detection systems, which are able to automatically detect and block fraudulent transactions. In other

words, we need adaptive analytical models to complement experience-based approaches for fighting

fraud. A stream of literature has reported upon the adoption of data-driven aproaches for developing

fraud detection systems (Phua et al., 2010; Ngai et al., 2011). These methods significantly improve

the efficiency of fraud detection systems and are easier to maintain and more objective. From a

machine learning perspective, the task of detecting fraudulent transactions is a binary classification

problem.

A natural first step to move from expert-based approaches to data driven techniques (while still

taking into account the experience of the fraud experts) is to consider logistic regression and/or

decision trees. These simple analytical models can then be replaced by complex techniques such as

random forests and boosting methods, support vector machines, neural networks and deep learning

to increase the detection power. Although the latter are definitely powerful analytical techniques,

they suffer a very important drawback which is not desirable from a fraud prevention perspective:

they are black box models which means that they are very complex to interpret. We would also like

to note that these complex models not always significantly outperform simple analytical models such

as logistic regression (Baesens et al., 2003; Lessmann et al., 2015) and we strongly believe that you

should always start with implementing these simple techniques. Many benchmarking studies have

illustrated that complex analytical techniques only provide marginal performance gains on structured,

tabular data sets as frequently encountered in common classification tasks such as fraud detection,

credit scoring and marketing analytics (Baesens et al., 2003; Lessmann et al., 2015). It is our firm

belief that in order to improve the performance of any analytical model, we should focus more on

the data itself rather than developing new, complex predictive analytical techniques. This is exactly

the aim of data engineering. It can be defined as the clever engineering of data hereby exploiting the

bias of the analytical technique to our benefit, both in terms of accuracy and interpretability at the

same time. Often times it will be applied in combination with simple analytical techniques such as

linear or logistic regression so as to maintain the interpretability property which is so often needed in

analytical modeling. In our context of fraud analytics, interpretability is of key importance to design

smart fraud prevention mechanisms. Data engineering can be decomposed into feature engineering

and instance engineering. Feature engineering aims at designing smart features in one of two possible
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ways: [either by transforming existing features using smart transformations or by designing better,

new features which will allow a simple analytical technique such as linear or logistic regression to

boost its performance, or by designing new features (a process often called featurization) to basically

achieve the same aim.] Instance engineering entails the careful selection of instances or observations

again with the aim to improve predictive modeling performance. Put differently, it aims at selecting

those observations which positively contribute to the learning of the analytical technique and remove

those that have a detrimental impact on it. Obviously, this is not a trivial exercise and many instance

engineering techniques have been developed which we will carefully study and experiment with in this

paper. In this paper the focus will be on successful data engineering steps to improve the performance

of a fraud detection model. More concretely, we will describe the lessons that we have learnt when

complementing expert-based approaches with machine learning or data-driven techniques to combat

payment transactions fraud for a large European bank.

This paper is organized as follows. We start with presenting our data engineering process: Section

2 presents feature engineering steps whereas instance engineering is explained in Section 3. In Section

4 popular performance measures in an (imbalanced) classification setting are described. In Section 5,

more information about payment transaction fraud and the observed data set is given. This section

also illustrates the benefits of the various data engineering steps by showing increased performance

on our real data set. Finally, concluding remarks and potential directions for future research are

provided in Section 6.

2. Feature engineering

The main objective of machine learning is to extract patterns to turn data into knowledge. Since

the beginning of this century, technological advances have drastically changed the size of data sets

as well as the speed with which these data must be analyzed. Modern data sets may have a huge

number of instances, a very large number of features, or both. In most applications, data sets

are compiled by combining data from different sources and databases (containing both structured

and unstructured data) where each source of information has its strengths and weaknesses. Before

applying any machine learning algorithm, it is therefore necessary to transform these raw data sources

into interesting features that better help the predictive models. This essential step, which is often

denoted feature engineering, is of utmost importance in the machine learning process. We believe

that data scientists should be well aware of the power of feature engineering and that they should

share good practices.
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An important set of interesting features can be created based on the famous Recency, Frequency,

Monetary (RFM) principle. Recency measures how long ago a certain event took place, whereas

frequency counts the number specific events per unit of time. Besides recency features, we also

present several other time-related features. Features related to monetary value measure the intensity

of a transaction, typically expressed in a currency such as Euros or USD. We also introduce features

based on unsupervised anomaly detection and briefly discuss some other advanced feature engineering

techniques.

2.1. Frequency features

We explain the idea behind the RFM principle by first deriving frequency features using a trans-

action aggregation strategy in order to capture a customer’s spending behavior. This methodology

was first proposed by Whitrow et al. (2009) and has been used by a number of studies (Bhattacharyya

et al., 2011; Jha et al., 2012; Dal Pozzolo et al., 2014; Bahnsen et al., 2016). Frequency calculates

how many transactions were made during a sliding time window that satisfies predefined conditions,

as illustrated in Figure 1. The first step in creating frequency features consists in aggregating the

transactions made during the last given time period (e.g. last 3 months), first by card or account

number, then by payment channel, authentication method, beneficiary country or other, followed

by counting the number of transactions. It is important to choose an appropriate time period over

which to aggregate a customer’s transactions. When time passes, the spending patterns of a cus-

tomer are not expected to remain constant over the years. For transactions made with debit cards,

we propose to use a fixed time frame of 90, 120 or 180 days (∼ 3, 4 or 6 months). Let D denote a set

of N transactions where each transaction is represented by the pair (xi, yi) for i = 1, 2, . . . , N . Here

yi ∈ {0, 1} describes the true class of transfer i and xi =
(
x1i , x

2
i , . . . , x

p
i

)
represents the p associated

features of transfer i. Bahnsen et al. (2016) describe the process of creating frequency features as

selecting those transactions that were made in the previous tp days, for each transaction i in the data

sliding time window of !! days

timestamp of a
transaction

Figure 1: Timeline of transactions of a customer using, for example, a particular payment channel.
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set D,

Dfreq
tp,i

= AGGfreq (D, i, tp)

=
{
xamt
j

∣∣∣ (xidj = xidi

)
and

(
days

(
xtime
i , xtime

j

)
< tp

)}N

j=1

(1)

where AGG(·) is a function that aggregates transactions of D into a subset associated with a trans-

action i with respect to the time frame tp; x
time
i is the timestamp of transaction i; xamt

i is the amount

of transaction i; xidi is the customer or card identification number of transaction i; and days(t1, t2)

is a function that calculates the number of days between the times t1 and t2. Finally, the frequency

feature is calculated as

xfreqi =
∣∣∣Dfreq

tp,i

∣∣∣ (2)

where |·| is the cardinality of a set. This aggregation strategy, however, does not take the combination

of different features into account. For example, we can aggregate transactions according to certain

criteria, such as: transactions made in the last tp days using the same authentication method (e.g.

pin code or fingerprint) and the same payment channel (e.g. online banking or mobile app). For

calculating such features, Bahnsen et al. (2016) expand (1) as follows

Dfreq2
tp,i

=AGGfreq (D, i, tp, cond1, cond2)

=
{
xamt
j

∣∣∣ (xidj = xidi

)
and

(
days

(
xtime
i , xtime

j

)
< tp

)
and

(
xcond1j = xcond1i

)
and

(
xcond2j = xcond2i

)}N

j=1

(3)

where cond1 and cond2 could be one of the features of a transaction (e.g. authentication method,

payment channel, beneficiary country, etc.). Similarly, the frequency feature is then calculated as

xfreq2i =
∣∣∣Dfreq2

tp,i

∣∣∣. (4)

One could also define new features as the ratio of frequency features. For example,

xratioi = xfreq2i /xfreqi (5)

which is always between 0 and 1. Since xratioi is the fraction of of transfers for which conditions cond1

and cond2 hold over all transactions in the past tp days, this feature represents the probability that

both conditions cond1 and cond2 are met by the customer.

We show an example to further clarify how the frequency features are calculated. Consider a set

of transactions made by a customer between 01/07/2019 and 03/07/2019, as shown in Table 1. Then

we estimate the frequency features xfreqi and xfreq2i by setting tp = 1 day (∼ 24 hours) for ease of

calculation.
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The frequency features give us specific details about the spending behavior of the customer.

For example, if a customer frequently used a particular payment channel in the past tp days, its

frequency is obviously large. However, a zero frequency for a particular payment channel implies

that the customer has not used that payment channel in the past tp days which indicates anomalous

behavior and perhaps fraud. The total number of frequency features can grow quite quickly, as tp can

have several values, and the combination of criteria can be quite large as well. For the experiments we

set the different values of tp to 90, 120 and 180 days. Then we calculate the frequency features using

(2) and (4) as well as (5) with the aggregation criteria including payment channel, authentication

method, beneficiary country, type of communication, and others.

Initial features Frequency features

TransId CustId Timestamp
Authentication

method

Payment

channel
xfreqi xfreq2i

1 1 01/07/2019 16:51 pin code web 0 0

2 1 01/07/2019 19:04 pin code web 1 1

3 1 01/07/2019 19:36 fingerprint app 2 0

4 1 01/07/2019 23:31 pin code web 3 2

5 1 02/07/2019 17:48 fingerprint app 3 1

6 1 02/07/2019 22:12 fingerprint app 2 1

7 1 02/07/2019 23:34 fingerprint app 2 2

8 1 03/07/2019 01:40 pin code app 3 0

Table 1: Example calculation of frequency features: xfreqi is the number of transactions in the last 24 hours, and

xfreq2i is the number of transactions with the same authentication method and payment channel in the last 24 hours.

2.2. Recency features

Although frequency features are powerful in describing a customer’s spending behavior, they do

not take the aspect of time into account. Recency features are a way to capture this information.

Recency measures the time passed since the previous transaction that satisfy predefined conditions.

To explain how recency features are defined we show an example where we create a recency feature

derived from the authentication method used by the customer as illustrated in Figure 2. When

a customer makes a transfer xi, she chooses a method xAU
i to authenticate herself. Examples of

authentication methods are passwords, pin codes, fingerprints, itsme1, iris scans and hardware tokens.

1This is a popular app in Belgium that allows you to safely, easily and reliably confirm your (digital) identity and

approve transactions.
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Figure 2: Example of a recency feature derived from the authentication method used by a customer. When the customer

makes a transaction, she chooses one of five possible authentication methods which are labeled as AU01, AU02, ...,

AU05. If the time between the same two successive authentication methods is long, the recency is close to zero, while

if that time is short, the recency is close to 1. If an authentication method is used for the first time, its recency is

defined as zero.

For each transaction i in the data set D, we define the recency of the transaction’s authentication

method as

xAU,recency
i = exp (−γ ·∆ti) where (6)

∆ti = min
{
days

(
xtime
i , xtime

j

) ∣∣ (xidj = xidi

)
and

(
xAU
j = xAU

i

)}N

j=1
.

Here ∆ti is the time interval, typically in days, between two consecutive transfers made by the same

customer with identification number xidi using the same authentication method xAU
i . The parameter

γ can be chosen such that, for example, the recency is small (e.g. 0.01) when ∆t = 180 days (∼ 6

months) in which case γ = − log(0.01)/180 = 0.026. Notice that recency is always a number between

0 and 1. When the time period ∆t between two consecutive transfers with the same authentication

method is small (large), we say that the authentication method has (not) recently been used. In

that case the recency for this authentication method is close to one (zero). When an authentication

method is used for the first time, we define its recency to be zero. A zero or small recency shows

atypical behavior and might indicate fraud. Figure 3 shows that recency indeed decreases when the

time interval becomes larger. The parameter γ determines how fast the recency decreases. For larger

values of γ, recency will decrease quicker with time and vice versa.
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Figure 3: Recency versus time (in days) for different values of γ.

2.3. Other time-related features

It is well-known that time is an important aspect in fraud detection. Besides recency features other

time-related features can be created based on the assumption that certain events, like a customer

who makes transactions, occur at similar moments in time. Having a transaction at 22:00 might

be very regular for one person, but very suspicious for another person. Since, for every customer,

we know the timestamps of all their transactions in the past, we can use this information to decide

whether a new transaction at 22:00 is atypical for a particular customer. For the set of timestamps

of transactions made by a each customer we can construct a circular histogram, as shown in Figure

4 (left). Since 00:00 is the same as 24:00, we have to model the time of a transaction as a periodic

variable by fitting an appropriate statistical distribution (Bahnsen et al., 2016). A popular choice is

the von Mises distribution, also known as the periodic normal distribution because it represents a

normal distribution wrapped around a circle (Fisher, 1995). The von Mises distribution of a set of

timestamps Dtime = {t1, t2, . . . , tN} is defined as

Dtime ∼ von Mises (µ, κ) (7)

where parameters µ and 1/κ represent the periodic mean and the periodic standard deviation, respec-

tively. These parameters can easily be estimated by most statistical software. We use the function

mle.vonmises from the R package circular to compute the maximum likelihood estimates for the

parameters of a von Mises distribution.
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For each customer we construct a confidence interval for the time of a transaction. First, we

select the set of transactions made by the same customer in the last tp days,

Dtime
tp,i = AGGtime (D, i, tp)

=
{
xtime
j

∣∣∣ (xidj = xidi

)
and

(
days

(
xtime
i , xtime

j

)
< tp

)}N

j=1
.

(8)

Based on this set of selected timestamps, the estimated parameters µ̂ and κ̂ are calculated. Next, a

von Mises distribution is fitted on the set of timestamps using these estimates:

xtime
i ∼ von Mises

(
µ̂
(
Dtime

tp,i

)
, κ̂
(
Dtime

tp,i

))
. (9)

Once the von Mises distribution is fitted on the timestamps of the customer’s transactions we can

construct a confidence interval with probability α, e.g. 80%, 90%, 95%. An example is presented in

Figure 4 (right). Using the confidence interval, a binary feature is created: a transaction is flagged as

normal or suspicious depending on whether or not the time of the transaction is within the confidence

interval. Table 2 shows an example of a binary feature that takes the value of one if the current

time of the transaction is within the confidence interval of the time of the previous transactions with

a confidence of α = 0.9. Of course, multiple of these binary features can be extracted for different

values of α and time period tp. The new feature also helps to get a better understanding of when

a customer is expected to make transactions. Note that this feature (just as many others) solely

indicates atypical behavior for a customer, which might give an indication for fraud. If a certain

3

6

9

12

15

18

21

0/24

3

6

9

12

15

18

21

0/24

Figure 4: (Left) Circular histogram of timestamps of transactions. The dashed line is the estimated periodic mean of

the von Mises distribution. (Right) Circular histogram including the 90% confidence interval (orange area).
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transaction is flagged as potentially fraudulent due to this feature, then it is important that this

information is also given to the fraud investigators. If they see that the customer is abroad, then

that could be the reason for the atypical value of this feature.

Instead of looking at the timestamp of a transaction within a day, we can of course create

similar features indicating how atypical it is for a customer to have a payment on a certain day

or above a certain amount. Some customers, for example, may only do transactions during the

weekend. Adding such features based on customer spending history may bring significant increase in

model performance. Most predictive models let you also easily evaluate which features increased the

performance of your model and which are not significant for discriminating frauds from non-frauds.

TransId Time Periodic mean Confidence interval Binary feature

1 01/07/2019 16:51 - - -

2 01/07/2019 19:04 - - -

3 01/07/2019 19:36 17:57 16:07 - 19:48 1

4 01/07/2019 23:31 18:31 16:32 - 20:29 0

5 02/07/2019 17:48 19:40 15:39 - 23:40 1

6 02/07/2019 22:12 19:14 15:27 - 23:01 1

7 02/07/2019 23:34 19:47 15:52 - 23:42 1

8 03/07/2019 01:40 20:21 16:05 - 00:38 0

Table 2: Example calculation of a binary feature that informs whenever a transaction is being made within the

confidence interval (with α = 0.9) of the time of the previous transactions.

2.4. Monetary value related features

The last pillar of the RFM principle involves monetary value related features which focus on the

amount that is transferred. Monetary features calculate various statistics such as the total value,

the average, and the standard deviation of the transferred amounts that were pursued during the

sliding time window of !! days

timestamp of a
transaction

€250€300€100 €350 €50 €150 €100 €600

Figure 5: Timeline of amounts transferred by a customer using, for example, a particular payment channel.
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sliding time window that satisfy predefined conditions (Figure 5). The first step in creating monetary

features is the same as with frequency features: select those transactions that were made in the last

tp days, as in (1). Next, we can calculate the total amount spent on those transactions,

xtotali =

N∑
j=1

xamt
j I

(
xamt
j ∈ Dfreq

tp,i

)
(10)

where I(·) is the indicator function. Of course, we can also aggregate transactions according to

certain criteria, as in (3), followed by calculating their sum,

xtotal2i =
N∑
j=1

xamt
j I

(
xamt
j ∈ Dfreq2

tp,i

)
. (11)

Transferring 500 Euros may be little for one person, but a lot for another person. A monetary feature

that calculates the so-called z-score of an amount can indicate whether the amount is atypical for a

particular customer. For a set of amounts Dfreq
tp,i

, the standardized values or z-scores are defined as

zi =
xamt
i − µ̂D
σ̂D

(12)

where µ̂D and σ̂D are the sample mean and sample standard deviation, respectively,

µ̂D = Mean
(
Dfreq

tp,i

)
and σ̂D = Stdev

(
Dfreq

tp,i

)
. (13)

As a rule of thumb, an amount is flagged as an outlier if its z-score is larger than 3, |zi| > 3. Now

consider the transactions made by a customer, as shown in Figure 6. The last amount of 500 Euros

is clearly an outlier compared to the previous amounts. However, when using the sample mean and

sample standard deviation, the z-score of the atypically high amount is only 2.66 and is therefore not

regarded as abnormal.

Instead of computing the z-score using traditional estimates such as sample mean and sample

standard deviation, we propose using robust alternatives such as the median and the median absolute

deviation (MAD),

zri =
xamt
i − µ̂rD
σ̂rD

(14)

with

µ̂rD = Median
(
Dfreq

tp,i

)
and σ̂rD = MAD

(
Dfreq

tp,i

)
(15)

where

MAD ({x1, x2, . . . , xn}) = 1.4826 ·Median
(∣∣∣xi −Median({xj}nj=1)

∣∣∣n
i=1

)
. (16)
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The constant scale factor 1.4826 ensures that the MAD is a consistent estimator for the estimation

of the standard deviation σ, i.e. E [MAD ({X1, X2, . . . , Xn})] = σ for Xj distributed as N
(
µ, σ2

)
and large n. Using the robust estimates, the z-score of the last amount in Figure 6 is 5.79, which

clearly indicates that the 500 Euros is atypical for this customer.

Remark: transferred amounts are often right-skewed as shown in Figure 7 (left). The rule

of thumb, i.e. |zi| > 3, implicitly assumes that the z-scores are distributed as N
(
µ, σ2

)
. Before

standardizing the amounts, a transformation is often applied to them that changes their distribu-

tion to one that resembles a normal distribution, or at least a symmetric distribution. One such

transformation is the natural logarithm, as shown in Figure 7 (right).

Figure 6: An example of transferred amounts. The last amount of 500 Euros is clearly an outlier compared to the

previous amounts. The atypical high amount is not indicated when using traditional estimates such as sample mean

and sample standard deviation. Instead, we have to use robust estimates such as the median and the median absolute

deviation (MAD).

Figure 7: Histogram and kernel density estimate of amounts (left) and natural logarithm of those amounts (right).
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A popular alternative for computing (robust) z-scores is the boxplot, which is a very popular

graphical tool to analyze a univariate data set (Tukey, 1977). The boxplot marks all observations

outside the interval [Q11.5IQR;Q3 + 1.5IQR] as potential outliers, where Q1, Q2 and Q3 denote re-

spectively the first, second (or median) and third quartile and IQR = Q3−Q1 equals the interquartile

range. It is known that the boxplot typically flags too many points as outlying when the data are

skewed and therefore Hubert and Vandervieren (2008) have modified the boxplot interval so that the

skewness is sufficiently taken into account.

In practice one often tries to detect outliers using diagnostics starting from a classical or tra-

ditional fitting method. Unfortunately, these traditional techniques can be affected by outliers so

strongly that the resulting fitted model may not allow to detect the deviating observations. This is

called the masking effect (see e.g. Rousseeuw and Leroy (2005)). Additionally, some good data points

might even appear to be outliers, which is known as swamping (Davies and Gather, 1993). To avoid

these effects, the goal of robust statistics is to find a fit which is close to the fit we would have found

without the outliers. We can then automatically identify the outliers by their large ‘deviation’ (e.g.,

their distance or residual) from that robust fit. It is not our aim to replace traditional techniques by

a robust alternative, but we have illustrated that robust methods can give you extra insights in the

data and may improve the reliability and accuracy of your analysis.

2.5. Features based on (unsupervised) anomaly detection techniques

In this section we focus on unsupervised techniques that do not use the target variable (fraudulent

or not). Anomaly detection techniques flag anomalies or outliers, which are observations that deviate

from the pattern of the majority of the data. These flagged observations indicate atypical behavior

and hence may contain crucial information for fraud detection and should be investigated by the fraud

expert. As an alternative, we propose to use the outlyingness score or metric of several anomaly

detection techniques as features that we add to our data set.

Anomalies in a single dimension (i.e. univariate outliers) can be detected by computing (robust)

z-scores (and see which observations are in absolute value larger than 3) or by constructing the

(adjusted) boxplot (and see which observations are outside the boxplot interval or fence). Another

tool for univariate anomaly detection that is also popular in fraud detection is Newcomb-Benford law,

which makes predictions about the distribution of the first leading digit of all numbers (Nigrini, 2012;

Barabesi et al., 2018). These techniques can then be applied on each feature in the data set. However,

in this way it is only possible to detect anomalies that are atypical in (at least) one dimension or

feature of our data set. Since fraudsters succeed very well in blending in with legitimate customers,
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they are typically not detected by checking each feature separately. It is important to flag those

observations that deviate in several dimensions from the main data structure but are not atypical in

one of the features. Such multivariate outliers can only be detected in the multidimensional space

and require the use of advanced models.

A first tool for this purpose is robust statistics, which first fits the majority of the data and

then flags the observations that deviate from this robust fit (Rousseeuw and Hubert, 2018). For

a multivariate n × p data set X , one can calculate the robust Mahalanobis distance (or robust

generalized distance) for each observation xi:

MD(xi, µ̂, Σ̂) =

√
(x− µ̂)T Σ̂

−1
(x− µ̂). (17)

An observation is then flagged as anomaly if its distance exceeds the cut-off value
√
χ2
p,0.975, which

is the 0.975 quantile of the chi-squared distribution with p degrees of freedom. It is of utmost

importance that robust estimates of multivariate location and scatter are used in the computation of

the distances (to avoid masking and swamping effects). A popular method yielding such estimates

is the Mininimum Covariance Determinant (MCD) method of Rousseeuw and Driessen (1999) or the

Minimum Regularized Covariance Determinant (MRCD) estimator of Boudt et al. (2020) in case of

high-dimensional data. Note that also various robust alternatives for popular predictive models are

proposed in literature. These robust supervised techniques automatically flag anomalies (typically

with a convenient graphical tool to visualize the anomalies). Therefore it is interesting to also apply

robust versions of the predictive models on the data and carefully examine the anomalies flagged

with these techniques (for more information see e.g. Maronna et al. (2019); Heritier et al. (2009);

Atkinson and Riani (2000)). Recently, Rousseeuw et al. (2019) also used robust statistics to detect

potential fraud cases in time series of imports into the European Union.

Besides robust statistics, many other unsupervised anomaly detection tools from various research

fields have been proposed (Goldstein and Uchida, 2016). We briefly introduce and illustrate three

popular techniques: k-nearest neighbors distance (Angiulli and Pizzuti, 2002; Brito et al., 1997),

local outlier factor (LOF) (Breunig et al., 2000) and isolation forests (Liu et al., 2008). The k-

nearest neighbors distance for an observation is the average distance to each of its k closest neighbors.

This distance measures how isolated an observation is from its neighbors and hence a large distance

typically indicates an anomaly. The LOF score is the average density around the k nearest neighbors

divided by the density around the observation itself and anomalies typically have a score above

one. Isolation forest is obtained by taking an ensemble of isolation trees which try to isolate each

observation as quickly as possible. The final score is the average of the standardized path length (i.e.
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number of splits to isolate the observation) over all trees. Hence for all the methods above it holds:

the higher the score or metric, the more suspicious is the observation.

2.6. Other feature engineering techniques

In this paper, we only study a few feature engineering techniques to illustrate their importance as

a key data engineering mechanism. Other powerful feature engineering techniques are the Box-Cox

and Yeo-Johnson transformation which both univariately transform data variables so as to boost

the performance of the predictive analytical model. Note that these transformation techniques are

sensitive to outliers and will try to move outliers inward at the expense of the normality of the

central part of the data. Therefore various robust transformation procedures have been proposed

in literature (see e.g. Carroll and Ruppert (1985); Riani (2008); Marazzi et al. (2009); Raymaekers

and Rousseeuw (2020)). Feature engineering techniques have also been designed for unstructured

data such as text, network data, and multimedia data (e.g., images, audio, videos). For text data,

one commonly uses Singular Value Decomposition (SVD) or Natural Language Processing (NLP) as

feature engineering techniques. For network data, node2vec and GraphSage (Grover and Leskovec,

2016; Hamilton et al., 2017) have proven to be very valuable techniques. Deep learning has been used

to learn complex features for multimedia data. As an example, convolutional neural networks can

learn key features to describe objects in images. However, an important caveat is that many of these

features are black box in nature and thus hard to interpret for business decision makers. Finally,

tailored feature engineering techniques have been designed for specific domains, e.g., Item2Vec in

Recommender Systems (Barkan and Koenigstein, 2016).

3. Instance engineering

A major challenge in fraud analytics is the imbalance or skewness of the data, meaning that

typically there are plenty of historical examples of non-fraudulent cases, but only a limited number of

fraudulent cases. For example, in a credit card fraud setting, typically less than 0.5% of transactions

are fraudulent. Such a problem is commonly referred to as the needle in a haystack problem, and

might cause an analytical technique to experience difficulties in learning to create an accurate model.

Every classifier faced with a skewed data set typically tends to favor the majority class. In other

words, the classifier tends to label all transactions as non-fraudulent since it then already achieves

a classification accuracy of more than 99%. Classifiers typically learn better from a more balanced

distribution. Two popular ways to accomplish this is by undersampling, whereby non-fraudulent
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transactions in the training set are removed, or oversampling, whereby fraudulent transactions in the

training set are replicated.

A practical question concerns the optimal, non-fraud/fraud odds, which should be the goal by

doing under- or oversampling. This of course depends on the data characteristics and quality and

type of classifier. Although train and error is commonly adopted to determine this optimal odds,

the ratio 90% non-fraudsters versus 10% fraudsters is usually already sufficient for most business

applications.

The Synthetic Minority Oversampling technique, or SMOTE, is another interesting approach

to deal with skewed class distributions (Chawla et al., 2002). In SMOTE, the minority class is

oversampled by adding synthetic observations. The creation of these artifical fraudsters goes as

follows. In Step 1 of SMOTE, for each minority class observation, the k nearest neighbors (of same

class) are determined. Step 2 then randomly selects one of the neighbors and generates synthetic

observations as follows: 1) take the difference between the features of the current minority sample

and those of its nearest neighbor. 2) multiply this difference with a random number between 0 and

1 and 3) add the obtained result as new observation to the sample, hereby increasing the frequency

of the minority class.

The key idea of these undersampling and oversampling techniques is to adjust the class priors to

enable the analytical technique to create a meaningful model that discriminates the fraudsters from

the non-fraudsters. By doing so, the class posteriors become biased. This is not a problem if the

fraud analyst is interested in ranking the observations in terms of their fraud risks. However, if well-

calibrated fraud probabilities are needed, then the posterior probabilities can be adjusted (Saerens

et al., 2002).

Since its introduction in 2002, many variants of SMOTE have been proposed in literature (see e.g.

Zhu et al. (2019) and Kovács (2019) for an overview). In this paper, we visually show the differences

between ADASYN (He et al., 2008), MWMOTE (Barua et al., 2012) and ROSE (Lunardon et al.,

2014) and show their performance on our data set. We refer to their papers for details. It is clear

that there is not one oversampling technique that always yield the best result (Amin et al., 2016).

4. Measuring performance

The aim of detecting transfer fraud is to identify transactions with a high probability of being

fraudulent. From the perspective of machine learning, the task of predicting the fraudulent nature of

transactions can be presented as a binary classification problem where observations (i.e. transactions,
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customers, etc.) belong either to class 0 or to class 1. We follow the convention that the fraudulent

observations belong to class 1, whereas the legitimate observations correspond to class 0. We often

speak of positive (class 1) and negative (class 0) observations.

Consider again our set D = {(xi, yi)}Ni=1 of N transactions. In general, a classification algorithm

provides a continuous score si := s(xi) ∈ [0, 1] for each transaction i. This score si is a function

of the observed features xi of transaction i and represents the fraud propensity of that transaction.

Here we assume that legitimate transfers (class 0) have a lower score than fraudulent ones (class 1).

The score si is then converted to a predicted class ŷi ∈ {0, 1} by comparing it with a classification

threshold t ∈ [0, 1]. If a transfer’s probability of being fraudulent as estimated by the classification

model lies above this threshold value, then the transfer is predicted as fraud (si > t⇒ ŷi = 1), and

otherwise it is classified as legitimate (si ≤ t⇒ ŷi = 0).

A classification exercise typically leads to a confusion matrix as shown in Table 3. Based on

the confusion matrix, we can compute several performance measure such as Precision, Recall (also

Original data SMOTE

ADASYN MWMOTE ROSE

Figure 8: Illustration of SMOTE, ADASYN, MWMOTE and ROSE. The blue circles represent the legitimate cases,

the black squares are the original fraud cases, and the red dots are the synthetic fraud cases.
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Actual legitimate Actual fraudulent

(negative) y = 0 (positive) y = 1

Predicted as legitimate True negative False negative

(negative) ŷ = 0 (TN) (FN)

Predicted as fraudulent False positive True positive

(positive) ŷ = 1 (FP) (TP)

Table 3: Confusion matrix of a binary classification task.

called True Positive Rate, Sensitivity or Hit Rate), False Positive Rate, and F1-measure. Each of

these measures are calculated for a given confusion matrix that is based on a certain threshold value

t ∈ [0, 1].

The receiver operating characteristic (ROC) curve, as shown on the left plot in Figure 9, is

probably the most popular method to analyze the effectiveness of a classifier. The ROC curve is

obtained by plotting for each possible threshold value the false positive rate (FPR) on the X-axis

and the true positive rate (TPR) on the Y -axis. As a graphical tool the ROC curve visualizes the

tradeoff between achieving a high recall (TPR) while maintaining a low false positive rate (FPR),

and is often used to find an appropriate decision threshold. Provost et al. (1998) argue that ROC

curves, as an alternative to accuracy estimation for comparing classifiers, would enable stronger and

more general conclusions. For more information about ROC curves we refer to Krzanowski and Hand

(2009) and Swets (2014).

Comparing classifiers based solely on their ROC curves can be challenging. Therefore, the ROC
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Figure 9: (Left) example of a ROC curve. (Right) example of a Precision-Recall curve. Both curves are based on the

same classifier validated on the same data set.
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curve is often summarized in a single score, namely the Area Under the ROC Curve (AUC) which

varies between 0 and 1 (Fawcett, 2004, 2006; Ling et al., 2003). In the context of fraud detection, the

AUC of a classifier can be interpreted as being the probability that a randomly chosen fraud case is

predicted a higher score than a randomly chosen legitimate case. Therefore, a higher AUC indicates

superior classification performance. A perfect classifier would achieve an AUC of 1 while a random

model (i.e. no prediction power) would yield an AUC of 0.5.

When dealing with highly imbalanced data as is the case with fraud detection, AUC (and ROC

curves) may be too optimistic and the Area under the Precision-Recall Curve (AUPRC) gives a more

informative picture of a classifier’s performance (Davis and Goadrich, 2006; Saito and Rehmsmeier,

2015; Fernández et al., 2018). As the name suggest, the Precision-Recall curve (right plot in Figure

9) plots the precision (Y-axis) against the recall (X-axis) or each possible threshold. The AUPRC is

therefore also a value between 0 and 1. Both ROC and PR curves use the recall, but the ROC curve

also plots the FPR whereas PR curves focus on precision. In the denominator of FPR, one sums

the number of true negatives and false positives. In highly imbalanced data, the number of negatives

(legitimate observations) is much larger than the number of positives (fraudulent observations) and

hence the number of true negatives is typically very high compared to the number of false positives.

Therefore, a large increase or decrease in the number of false positives will have almost no impact on

FPR in the ROC curves. Precision, on the other hand, compares the number of true positives to the

number of false positives and hence copes better with the imbalance between positive and negative

observations. Since precision is more sensitive to class imbalance, the area under the Precision-Recall

curve (AUPRC) is better to highlight differences between models for highly imbalanced data sets.

Despite the many ways to evaluate a classification model’s performance we argue that the true

business objective of a fraud detection system is to minimize the financial losses due to fraud. How-

Actual legitimate Actual fraudulent

(negative) yi = 0 (positive) yi = 1

Predicted as legitimate True negative False negative

(negative) ŷi = 0 [Ci(0|0) = 0] [Ci(0|1) = Ai]

Predicted as fraudulent False positive True positive

(positive) ŷi = 1 [Ci(1|0) = cf ] [Ci(1|1) = cf ]

Table 4: Cost matrix where, between square brackets, the related instance-dependent classification costs for transfer

fraud are given.
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ever, the performance measures mentioned so far do not incorporate any costs related to incorrect

predictions such as not detecting a fraudulent transaction. Therefore, they may not be the most

appropriate evaluation criteria when evaluating fraud detection models. In fact, the previous perfor-

mance measures tacitly assume that misclassification errors carry the same cost, similarly with the

correctly classified transactions. This assumption clearly does not hold in practice because wrongly

predicting a fraudulent transaction as legitimate carries a significantly different financial cost than

the inverse case. To better align the assessment of data-driven fraud detection systems with the

actual objective of decreasing losses due to fraud, we extend the confusion matrix in Table 3 by

incorporating costs as proposed in (Baesens et al., 2020). Let Ci(ŷ|y) be the cost of predicting class

ŷ for a transfer i when the true class is y. If ŷ = y then the prediction is correct, while if ŷ 6= y the

prediction is incorrect. In general, the costs can be different for each of the four cells in the con-

fusion matrix and can even be instance-dependent, in other words, specific to each transaction i as

indicated in Table 4. Hand et al. (2008) proposed a cost matrix, where in the case of a false positive

(i.e. incorrectly predicting a transaction as fraudulent) the associated cost is the administrative cost

Ci(1|0) = cf . This fixed cost cf has to do with investigating the transaction and contacting the card

holder. When detecting a fraudulent transfer, the same cost Ci(1|1) is allocated to a true positive,

because in this situation, the card owner will still need to be contacted. In other words, the action

undertaken by the company towards an individual transaction i comes at a fixed cost cf ≥ 0, regard-

less of the nature of the transaction. However, in the case of a false negative, in which a fraudulent

transfer is not detected, the cost is defined as the amount Ci(0|1) = Ai of the transaction i. The

instance-dependent costs are summarized in Table 4. We argue that the cost matrix in Table 4 is a

reasonable assumption. However, one could alter the cost matrix, for example, by using a variable

cost for false positives that reflects the level of friction that the card holder experiences.

Using the instance-dependent cost matrix in Table 4, Bahnsen et al. (2016) define the cost of

using a classifier s (·) on the transactions in D as

Cost (s (D)) =

N∑
i=1

(
yi

[
ŷiCi(1|1) + (1− ŷi)Ci(0|1)

]
+ (1− yi)

[
ŷiCi(1|0) + (1− ŷi)Ci(0|0)

])
=

N∑
i=1

yi(1− ŷi)Ai + ŷicf .

(18)

In other words, the total cost is the sum of the amounts of the undetected fraudulent transactions

(yi = 1, ŷi = 0) plus the administrative cost incurred. The total cost may not always be easy to
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interpret because there is no reference to which the cost is compared (Whitrow et al., 2009). So

Bahnsen et al. (2016) proposed the cost savings of a classification algorithm as the cost of using the

algorithm compared to using no algorithm at all. The cost of using no algorithm is

Costl(D) = min{Cost(s0(D)), Cost (s1(D))} (19)

where s0 refers to a classifier that predicts all the transactions in D as belonging to class 0 (legitimate)

and similarly s1 refers to a classifier that predicts all the transfers in D as belonging to class 1 (fraud).

The cost savings is then expressed as the cost improvement of using an algorithm as compared with

Costl (D),

Savings (s(D)) =
Costl (D)− Cost (s (D))

Costl (D)
. (20)

In the case of transaction fraud, the cost of not using an algorithm is equal to the sum of amounts

of the fraudulent transactions, Costl (D) =
∑N

i=1 yiAi. The savings are then calculated as

Savings (s (D)) =

∑N
i=1 yiŷiAi − ŷicf∑N

i=1 yiAi

. (21)

In other words, the costs that can be saved by using an algorithm are the sum of amounts of detected

fraudulent transactions minus the administrative cost incurred in detecting them, divided by the sum

of amounts of the fraudulent transactions.

Besides obtaining the best statistical accuracy or the highest cost savings, there are many other

reasons why one model might be preferred above another, such as interpretability, operational effi-

ciency and economical cost.

Interpretability refers to the intelligibility or readability of the analytical model. Models that

enable the user to understand the underlying reasons why the model signals a case to be suspicious

are called white-box models. Complex incomprehensible mathematical models are often referred

to as black-box models. It might well be, in a fraud detection setting, that black-box models are

acceptable, although in most settings, some level of understanding and in-fact validation, which

is facilitated by interpretability, is required for the management to have confidence and allow the

effective implementation of the model. In most situations, the aim of the fraud detection system

is to select out of millions of payments the transactions that are most suspicious. These top, say

100, most suspicious transactions are then given to the fraud investigators for further examination.

When using white box models, it is straightforward to also give information about why a certain

transaction is flagged as being suspicious. This of course facilitates the job of the fraud investigators

leading to more suspicious transactions that can be examined for example in one day. The need of
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interpretability on the operator side, which advocates for relatively simple models and methods, has

also the advantage to simplify for the end-user (a bank) the implementation, maintainability and

possibility to update/enrich the system over time.

Operational efficiency refers to the response time or the time that is required to evaluate the

model, or in other words, the time required to evaluate whether a case is suspicious. It also entails

the efforts needed to collect and preprocess the data, evaluate the model, monitor and back-test the

model, and re-estimate it when necessary. Operational efficiency can be a key requirement, meaning

that the fraud detection system might have only a limited amount of time available to reach a decision

and let a transaction pass or not. In others words, huge volumes of data need to be processed in

a short time span. For example, in a credit card fraud detection setting, the decision time must

typically be less than eight seconds. Such a requirement clearly impacts the design of the operational

IT systems, but also the design of the analytical model.

The economical cost refers to the total cost of ownership and return on investment of the analytical

fraud model. Although the former can be approximated reasonably well, the latter is more difficult to

determine. Fraud analytical models should also be in line and comply with all applicable regulation

and legislation with respect to, for example, privacy or the use of cookies in a web browser.

5. Experimental assessment

In this Section 5.1 we first describe the observed data set for the experiments. In Section 5.2 we

present the experimental design and in Section 5.3 we show the results of the experiments.

5.1. Information about the real data set

We illustrate the proposed techniques on a data set that has been provided to our research group

by a large European bank. The data set consists of fraudulent and legitimate transactions made

with debit cards between September 2018 and July 2019. Note that the magnitude of the data set

illustrated here is much smaller than data sets typically used in fraud prediction and its incidence

of fraudulent transactions is also much higher. This is because a kind of white-listing (based on

experience-driven business rules) was first applied to the data by the bank to filter out definitely safe

transactions. The total data set contains 31,763 individual transactions, each with 14 attributes and

a fraud label that indicates when a transaction is confirmed as fraudulent. This label was created

internally in the bank by fraud investigators, and can be considered as highly accurate. Only 506

transactions in the data set were labeled as fraud, resulting in a fraud ratio of 1.6%.
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The initial set of features include information regarding individual transactions, such as amount,

timestamp, payment channel and beneficiary country. Table 5 contains examples of such typical

attributes that are available for transactions.

Feature name Description

Transaction ID Transaction identification number

Timestamp Date and time of the transaction

Originator’s account number Identification number of the originator’s bank account

Beneficiary’s account number Identification number of the beneficiary’s bank account

Beneficiary’s name Name of the beneficiary

Card number Identification of the debit card

Payment channel Electronic channel (e.g. online banking, mobile app, ...)

Authentication method e.g. pin code, fingerprint, itsme, ...

Currency Original currency (e.g. Euros, USD, ...)

Amount Amount of the transaction in Euros

Originator country Country from which the money is send

Beneficiary country Country to which the money is send

Communication Message provided with the transfer

Gender Gender of the customer

Age Age of the customer

Country Customer’s country of residence

Language Customer’s preferred language

Table 5: Examples of typical features of transactions.

5.2. Experimental design

In order to test the performance of machine learning models that only use these 14 initial features,

we split the data into a training and testing set. Each one contains 70% and 30% of the transactions,

respectively, stratified according to the fraud label to obtain similar fraud distributions as observed

in the original data set. Table 6 summarizes the different data sets.

For the experiments we use the following popular classification methods: logistic regression (LR),

Set Transactions Frauds

Total 31,763 506

Training 22,234 354

Testing 9,529 153

Table 6: Summary of the data sets.
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decision tree (DT), using the CART algorithm (Breiman et al., 1984), and gradient boosted trees

(GBT), using the XGBoost algorithm (Chen and Guestrin, 2016). Logistic regression is often used

in the industry because it is fast to compute, easy to understand and interpret. Moreover, logistic

regression is often used as a benchmark model to which other classification algorithms are compared.

Commonly used decision tree algorithms include CART (Breiman et al., 1984) and C4.5 (Quilan,

1993). The tree-like structure of a decision tree makes it particularly easy to gain insight in its

decision process. This is especially useful in a fraud detection setting to understand how fraud is

committed and work out corresponding fraud prevention strategies. XGBoost is short for eXtreme

Gradient Boosting (Chen and Guestrin, 2016). It is an efficient and scalable implementation of the

gradient boosting framework by Friedman et al. (2000) and Friedman (2001), but it uses a more

regularized model formalization to control over-fitting, which gives it better performance. The name

XGBoost refers to the engineering goal to push the limit of computational resources for boosted

tree algorithms. The XGBoost algorithm is widely used by data scientists to achieve state-of-the-art

results on many machine learning challenges and has been used by a series of competition winning

solutions (Chen and Guestrin, 2016). Note that recent model explaining techniques, such as SHap-

ley Additive exPlanation (SHAP,Lundberg and Lee (2017)) and Local Interpretable Model-agnostic

Explanations (LIME, Ribeiro et al. (2016)) make it possible to provide model interpretability for

such black box methods. These perturbation-based methods estimate the contribution of individual

features towards a specific prediction. The purpose of this paper is to illustrate the benefit of the

proposed data engineering techniques to the performance of fraud detection models regardless of the

chosen model structure. Therefore, all three classifiers (LR, DT and GBT) are trained on the training

set using their default parameters as suggested by their respective authors. The performance of the

three classifiers is evaluated on the testing set using Precision, Recall (i.e. hit rate), F1 measure, false

positive rate (FPR, i.e. false alarm rate), Area Under Precision Recall Curve (AUPRC), Savings,

and the fraction of fraudulent amounts that are detected. Hereby a decision threshold of t = 50% is

used. For the calculation of the Savings measure, we choose a fixed cost of cf = 5 Euros.

5.3. Results

Table 7 contains the performance of logistic regression (LR), decision tree (DT) and gradient

boosted trees (GBT) on the testing set using the 14 original features (top). When we include RFM

features and time features using the von Mises distribution, the performance of all three models

improves significantly (middle of Table 7). In particular the Savings, F1 and AUPRC values of the

three models have clearly increased. Their overall performance is further enhanced when we add
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the features that are based on the anomaly detection techniques (bottom of Table 7). Using the

original features, the three models are only able to detect around 50% of the fraudulent amounts.

By including the features that are created by the various feature engineering methods, the improved

models can block more than 70% of the stolen money and thus saving more than 67% of the costs

compared to not using any fraud detection system.

Original features

Precision Recall F1 FPR AUPRC Savings % of fraud amount detected

LR 0.6154 0.3810 0.4706 0.0025 0.4417 0.5117 0.5340

DT 1.0000 0.1905 0.3200 0.0000 0.3050 0.3191 0.3260

GBT 0.7778 0.3333 0.4667 0.0010 0.4632 0.5068 0.5223

Including RFM and other time-related features

Precision Recall F1 FPR AUPRC Savings % of fraud amount detected

LR 0.5625 0.4286 0.4865 0.0035 0.4680 0.5483 0.5757

DT 0.8000 0.3810 0.5161 0.0010 0.4836 0.6635 0.6807

GBT 0.6923 0.4286 0.5294 0.0020 0.6333 0.5979 0.6202

Including features based on anomaly detection techniques

Precision Recall F1 FPR AUPRC Savings % of fraud amount detected

LR 0.7647 0.6190 0.6842 0.0020 0.6975 0.6751 0.7042

DT 0.8125 0.6190 0.7027 0.0015 0.6370 0.6883 0.7158

GBT 0.8750 0.6667 0.7568 0.0010 0.7669 0.7908 0.8183

Table 7: Performance of logistic regression (LR), decision tree (DT) and gradient boosted trees (GBT) on the testing

set using (top) the 14 original features, (middle) the RFM and other time-related features, (bottom) and the features

based on anomaly detection techniques.

While the data set is now extended with new features, the imbalance between the fraudulent and

legitimate transactions remains. To address this issue we apply the following over-sampling methods

on the extended training set: SMOTE, ADASYN, MWMOTE and ROSE, each with their default

parameters as suggested by their respective authors. We use these over-sampling techniques such that

the new, re-balanced training set contains a ratio of 90% legitimate cases versus 10% fraud cases. In

Table 8 we present the results for all three classifiers with each of the over-sampling methods. Notice

how the performance varies depending on the chosen over-sampling method. The Savings value of

the logistic regression model is mostly improved with MWMOTE as well as SMOTE and ROSE. The

Savings value of the decision tree, however, only increases with ADASYN and SMOTE. While logistic

regression and decision tree may benefit from over-sampling methods, the overall performance of the
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gradient boosted trees is decreasing. This may be due to the boosting algorithm which could be over-

fitting the classifier on the over-sampled training set resulting in a lesser performance on the testing

set. Depending on the chosen classification method, there is definitely potential in over-sampling the

training set with synthetic fraud cases, although there is not one over-sampling technique that will

always yield the best result.

Logistic regression (LR)

Precision Recall F1 FPR AUPRC Savings % of fraud amount detected

Original 0.7647 0.6190 0.6842 0.0020 0.6975 0.6751 0.7042

SMOTE 0.4103 0.7619 0.5333 0.0116 0.6408 0.7647 0.8316

ADASYN 0.4167 0.7143 0.5263 0.0106 0.6924 0.6674 0.7291

MWMOTE 0.4706 0.7619 0.5818 0.0091 0.6388 0.7733 0.8316

ROSE 0.4324 0.7619 0.5517 0.0106 0.6692 0.7681 0.8316

Decision tree (DT)

Precision Recall F1 FPR AUPRC Savings % of fraud amount detected

Original 0.8125 0.6190 0.7027 0.0015 0.6370 0.6883 0.7158

SMOTE 0.5000 0.7619 0.6038 0.0081 0.5118 0.7712 0.8261

ADASYN 0.5667 0.8095 0.6667 0.0066 0.3716 0.7987 0.8501

MWMOTE 0.4545 0.7143 0.5556 0.0091 0.4001 0.6739 0.7305

ROSE 0.6190 0.6190 0.6190 0.0040 0.6565 0.6866 0.7226

Gradient boosted trees (GBT)

Precision Recall F1 FPR AUPRC Savings % of fraud amount detected

Original 0.8750 0.6667 0.7568 0.0010 0.7669 0.7908 0.8183

SMOTE 0.6842 0.6190 0.6500 0.0030 0.7146 0.5941 0.6266

ADASYN 0.8462 0.5238 0.6471 0.0010 0.7763 0.5962 0.6184

MWMOTE 0.7500 0.5714 0.6486 0.0020 0.6931 0.5975 0.6249

ROSE 0.6667 0.0952 0.1667 0.0005 0.4341 0.0430 0.0482

Table 8: Performance of logistic regression (top), decision tree (middle) and gradient boosted trees (bottom) on the

testing set using different over-sampling methods: SMOTE, ADASYN, MWMOTE and ROSE.

6. Conclusions and future research

In this paper, we extensively researched data engineering in a fraud detection setting. More

specifically, we decomposed data engineering into feature engineering and instance engineering. Our

motivation for doing so is that, based upon past extensive research, it it is our firm belief that the best
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way to boost the performance of any analytical technique is to smartly engineer the data instead of

overly focusing on the development of new, often times highly complex, analytical techniques giving

us analytical models which are often only poorly benchmarked and give us no interpretability at all.

We used a payment transactions data set from a large European Bank to illustrate the substantial

impact of data engineering on the performance of a fraud detection mode. We empirically showed that

both the feature engineering and instance engineering steps significantly improved the performance of

popular analytical models. Moreover, we have illustrated that by clever engineering of the data simple

analytical techniques as logistic regression and classification trees yield very good results.Although

the focus in this paper is on payment transactions fraud, the discussed techniques are also useful or

could be extended to other types of fraud, e.g. in healthcare, insurance or e-commerce.
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Brito, M.R., Chávez, E.L., Quiroz, A.J., Yukich, J.E., 1997. Connectivity of the mutual k-nearest-

neighbor graph in clustering and outlier detection. Statistics & Probability Letters 35, 33–42.

Carroll, R.J., Ruppert, D., 1985. Transformations in regression: A robust analysis. Technometrics

27, 1–12.

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. Smote: synthetic minority over-

sampling technique. Journal of artificial intelligence research 16, 321–357.

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd

acm sigkdd international conference on knowledge discovery and data mining, ACM. pp. 785–794.

Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., Bontempi, G., 2014. Learned lessons

in credit card fraud detection from a practitioner perspective. Expert systems with applications

41, 4915–4928.

Davies, L., Gather, U., 1993. The identification of multiple outliers. Journal of the American

Statistical Association 88, 782–792.

29



Davis, J., Goadrich, M., 2006. The relationship between Precision-Recall and ROC curves, in:

Proceedings of the 23rd international conference on Machine learning, ACM. pp. 233–240.

European Central Bank, E., September 2018. Fifth report on card fraud. URL

www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport201809.en.html .

Fawcett, T., 2004. ROC graphs: Notes and practical considerations for researchers. Machine learning

31, 1–38.

Fawcett, T., 2006. An introduction to ROC analysis. Pattern recognition letters 27, 861–874.
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