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ABSTRACT 
 
At the dawn of the 21st century, environmental scientists are collecting more data more 
rapidly than at any time in the past.  Nowhere is this change more evident than in the 
advent of sensor networks able to collect and process (in real time) simultaneous 
measurements over broad areas and at high sampling rates.  At the same time there has 
been great progress in the development of standards, methods, and tools for data analysis 
and synthesis, including a new standard for descriptive metadata for ecological datasets 
(Ecological Metadata Language) and new workflow tools that help scientists to assemble 
datasets and to diagram, record, and execute analyses.  However these developments 
(important as they are) are not yet sufficient to guarantee the reliability of datasets created 
by a scientific process – the complex activity that scientists carry out in order to create a 
dataset.  We define a dataset to be reliable when the scientific process used to create it is 
(1) reproducible and (2) analyzable for potential defects. 
 
To address this problem we propose the use of an analytic web, a formal representation 
of a scientific process that consists of three coordinated graphs (a data-flow graph, a 
dataset-derivation graph, and a process-derivation graph) originally developed for use in 
software engineering.  An analytic web meets the two key requirements for ensuring 
dataset reliability: (1) a complete audit trail of all artifacts (e.g., datasets, code, models) 
used or created in the execution of the scientific process that created the dataset, and (2) 
detailed process metadata that precisely describe all sub-processes of the scientific 
process.  Construction of such metadata requires the semantic features of a high-level 
process definition language. 
 
In this paper we illustrate the use of an analytic web to represent the scientific process of 
constructing estimates of ecosystem water flux from data gathered by a complex, real-
time multi-sensor network.  We use Little-JIL, a high-level process definition language, 
to precisely and accurately capture the analytical processes involved.  We believe that 
incorporation of this approach into existing tools and evolving metadata specifications 
(such as EML) will yield significant benefits to science.  These benefits include: 
complete and accurate representations of scientific processes; support for rigorous 
evaluation of such processes for logical and statistical errors and for propagation of 
measurement error; and assurance of dataset reliability for developing sound models and 
forecasts of environmental change. 
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INTRODUCTION 
 
At the dawn of the 21st century, more environmental scientists are collecting more data at 
more rapid rates than at any time in the past.  The pace of environmental change is also 
accelerating.  Policy analysts and decision-makers require robust and reliable models of 
ongoing ecological dynamics and forecasts of environmental change (Clark et al., 2001).  
Uncertainty in these forecasts will decline as more data are accumulated and models are 
updated and run again (Ellison, 1996).  Economic markets are evolving that will take 
advantage of these forecasts to set prices for scarce natural resources, emissions levels, 
and restoration efforts (Cacho et al., 2003). The lone ecologist studying obscure 
organisms in pristine sites who analyzes simple datasets and publishes results in technical 
journals read by few is quickly being replaced by teams of investigators who are studying 
“real-world” environmental problems, analyzing terabytes of data in (near) real time, and 
communicating their results to vastly broader audiences, all with the aid of new 
information technologies. 
 
Great progress has been made in recent years in the development of standards, methods, 
and tools for data analysis and synthesis (Jones et al., 2006).  Descriptive metadata that 
provide essential information about the contents of individual or aggregated datasets 
(Michener et al., 1997) can now be represented using a community standard, Ecological 
Metadata Language (EML1).  New scientific workflow tools help scientists to assemble 
datasets and to diagram, record, and execute analyses.  Perhaps the most notable of such 
tools for ecologists is the open-source Kepler2, which is able to utilize EML directly 
(Altintas et al., 2004; Ludäscher et al., 2005).  There is also growing interest in 
developing permanent archives of environmental models to facilitate verification of past 
results and development of future models (Thornton et al., 2005). 
 
Nevertheless these important developments are not sufficient to ensure the reliability of 
datasets created through a scientific process – the complex activity that scientists carry 
out in order to create a dataset.  We define a dataset to be reliable when the scientific 
process used to create it (both the overall process and the specific execution trace) is (1) 
reproducible and (2) analyzable for potential defects.  By reproducible, we mean that the 
reported results could be replicated exactly by an independent entity (Schwab et al., 
2000; NRC, 2003).  By analyzable, we mean that the process could be rigorously 
evaluated for potential defects such as undesirable outcomes or logical and statistical 
errors (Dwyer et al., 2004). 
 
EML does not have a formal structure for accurately capturing the processes used by 
scientists to analyze and synthesize data, update existing models, or create new models.  
Workflow tools such as Kepler are typically based on data-flow graphs, representations 
that are unable to capture all of the essential details of many current and increasingly 
complex scientific processes (see below).  Further, the archiving of models, even with 
extensive documentation and versioning, does not tell us exactly how they were used in a 
particular application. 
                                                 
1 http://knb.ecoinformatics.org/software/eml/ 
2 http://www.kepler-project.org/ 
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The goal of dataset reliability can be realized by recording and archiving two sets of 
information: (1) a complete audit trail of all artifacts (e.g., datasets, code, statistical or 
simulation models) used or created in the execution of the scientific process that created 
the dataset, and (2) detailed process metadata that completely and precisely describe all 
sub-processes of the scientific process.  We believe that accomplishing this goal will 
require advances on several fronts.  First, we need conceptual methods for defining 
processes using formal representations with sufficient accuracy and detail to support 
analysis and execution (the focus of this paper).  Second, we need community standards 
for expressing these definitions in a persistent and platform-independent form such as 
XML.  Third, we need cyberinfrastructure tools based on these definitions that scientists 
can actually use to help ensure that their analyses are sound and reproducible.  These 
advances would provide critical benefits to science, including complete and accurate 
records of scientific processes; support for rigorous evaluation of such processes for 
logical and statistical errors and for propagation of measurement errors; and assurance of 
dataset reliability for developing sound models and forecasts of environmental change. 
 
In our work to date we have developed a software prototype (SciWalker) that creates a 
complete audit trail for the execution of a scientific process (Osterweil et al., 2005), and 
we have applied SciWalker to the analysis of archival carbon flux data derived from 
eddy-covariance towers (Ellison et al., 2006).  Rudiments of this relatively simple 
scientific process were easily captured with the traditional data-flow graph widely used in 
workflow tools such as Kepler.  However, new challenges arise when there is a need to 
create audit trails and to construct process metadata for more complex systems such as 
the real-time analysis and modeling of data delivered continuously by sensor networks.  
In this paper we illustrate these challenges in the context of a real-time sensor network 
for measuring ecosystem water flux, and we use the Little-JIL language (Wise et al., 
2000) to precisely and accurately capture the analytical processes involved.  We believe 
this approach can be integrated into existing tools and evolving metadata specifications 
(such as EML) and that the need to do this will prove to be essential for emerging 
environmental observatories such as the National Ecological Observatory Network 
(NEON)3. 
 
 
A WATER FLUX SENSOR NETWORK 
 
Water is essential to life, and the movement of water through ecosystems has long been 
studied by scientists.  In the past, for practical reasons, such studies have been limited to 
specific ecosystem components (e.g., stream discharge) or to relatively long time frames 
(e.g., annual water budgets).  In recent years, new technologies and methods have made it 
possible to measure elements of the water cycle that previously were difficult to measure 
directly, including evapotranspiration (e.g., using eddy covariance measurements; Wilson 
et al., 2000) and sap flow in trees (e.g., using measurements of thermal conductivity; 
Wilson et al., 2001; Phillips et al., 2004).  Current advances in sensor network technology 
promise a paradigm shift in environmental research (Atkins et al., 2003; Estrin et al., 
                                                 
3 http://www.neoninc.org/ 
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2003) in which the ability to conduct simultaneous measurements over broad areas and at 
high sampling rates will open up entirely new areas for investigation (Porter et al., 2005).  
Moreover the ability to collect and process this information in (near) real time holds 
considerable promise for real-time environmental modeling and forecasting, as well as 
for demonstration and education (Cayan et al., 2003).  However it also presents 
significant challenges for how to manage and document the analysis of streaming data in 
real time. 
 
In this section we describe a planned sensor network for measuring real-time ecosystem 
water flux at the Harvard Forest Long-Term Ecological Research (LTER) site in 
Petersham, Massachusetts, USA (Fig. 1).  This system will integrate ongoing 
meteorological, hydrological, eddy flux, and tree physiological measurements.  
Simultaneous measurements in adjoining small watersheds will enable us to study 
variations in water flux caused by differences in topography, soils, vegetation, land use, 
and natural disturbance history.  High-frequency sampling will enable us to study water 
flux dynamics at a wide range of temporal scales, from minutes (e.g., response of 
evapotranspiration to light) to days (e.g., groundwater response to precipitation and snow 
melt) to years (e.g., ecosystem response to climate, reforestation, land use, and natural 
disturbance).  Data will be collected via a field-based wireless network, processed using 
our analytical web tools (see below), and immediately posted to the Internet for real-time 
use by the scientific community and the public. 
 
Here we illustrate the data requirements for a simplified system consisting of a single 
watershed and three key measurements (the actual system will encompass multiple 
watersheds and a wider array of measurements).  The water balance for a single 
watershed can be described as follows: 
    P – ET – Q = dS     (1) 
where P = precipitation, ET = evapotranspiration, Q = stream discharge, and dS = change 
in ecosystem water storage (including groundwater, soil moisture, surface water, snow 
pack, and vegetation).  The terms in this equation may represent instantaneous rates or 
amounts integrated over a fixed time interval (the equation as formulated ignores 
belowground inputs and outputs). 
 
Measurements will be made at a meteorological station, an eddy flux tower, and a stream 
gauge.  Because accurate and complete measurements of precipitation (P) are critical, 
two independent rain gauges will be used at the meteorological station, and rules 
established for what to do if the two measurements of precipitation (P1, P2) do not agree.  
For example, a difference of more than a specified amount would generate a warning of 
possible sensor failure to the system operator.  Evapotranspiration (ET) will be measured 
at the eddy flux tower and modeled using linear regression on recent measured 
photosynthetically active radiation (PAR; actual models will be based on PAR and vapor 
pressure deficit; J. Hadley, unpublished data).  Surface discharge (Q) will be measured 
with a stream gauge and modeled using a simple linear reservoir model (Dingman, 2002) 
in which recent measured values of P and Q are used to estimate base flow and the 
fraction of precipitation returned as event flow (E. Boose, unpublished data). 
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The system for processing data from the sensor network is designed to present the best 
possible data and metadata online in real time.  A key feature is modeling ET and Q to 
allow for real-time quality control and to enable interpolation and gap filling when 
measured values are unreliable or when sensors fail.  For example, the modeled value 
would be substituted for the measured value if the latter were missing, out of range, or 
otherwise unsuitable (e.g., eddy flux measurements are not reliable under certain wind 
conditions; see Ellison et al. 2006); in other cases a difference of more than a specified 
amount would generate a warning to the system operator of possible sensor failure or a 
new phenomenon not predicted by the model.  Note that actual measurements at each 
station are preprocessed by onsite dataloggers and/or computers, and “measured values” 
are 30-minute averages. 
 
The data collection and analysis system will contain the following three subsystems:  (1) 
A real-time subsystem will collect, analyze, and document data from the meteorological 
station, eddy flux tower, and stream gauge.  This subsystem will retrieve measurements 
every 30 minutes, perform range checking, calculate best values from redundant sensors 
(P1, P2), create and apply models as described above (for ET and Q), choose between 
measured and modeled values (of ET and Q), and calculate the change in water storage 
(dS) for each 30-minute period.  (2) A post-processing subsystem will update models 
using before and after measurements.  Real-time models by necessity are based on 
preceding measurements, but experience has shown that such models can often be 
improved by using both preceding and subsequent measurements, especially during 
periods of rapid ecosystem change (e.g., during spring leaf-out or when soils become 
saturated by heavy precipitation).  This ongoing activity is scheduled to take place 30 
days after the original measurement; because new measurements are constantly being 
accumulated, new post-processing will occur daily.  (3) An alternate measurement 
subsystem will permit the system operator to substitute new values for original 
measurements.  For example, measurements may arrive too late for real-time processing, 
original measurements may require subsequent correction for sensor drift, and missing or 
questionable measurements may need to be replaced with data from another site.  
Because measured values (as opposed to modeled values) are changed through this 
activity, all models and modeled values within 30 days of the new measurement must 
also be updated to capture any possible “ripple effects.” 
 
Online data and metadata products will include the following: (1) All original and 
alternate 30-minute measurements will be retained, with appropriate quality control 
metadata (e.g., value missing or out of range).  (2) All original and updated daily models 
will be retained, with unique identifiers and date and time of creation.  (3) An ordered 
dataset will contain current best estimates of P, ET, Q, and dS for each 30-minute period, 
updated regularly by the real-time and post-processing subsystems and as needed by the 
alternate measurement subsystem.  Associated metadata will identify data source (e.g., 
real-time measurement, alternate measurement, modeled value), confidence level (e.g., 
good, estimated, questionable), and history (e.g., processing time-stamp, models used).  
Metadata will be generated on the fly using an analytic web. 
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AN ANALYTIC WEB 
 
A scientific process definition is a formal representation of a scientific process (in the 
form of structured metadata) that completely and accurately describes the process and is 
sufficient to support execution of the process and the re-execution required to reproduce 
the original results.  Such a definition is provided by what we call an analytic web 
(Osterweil et al., 2005; Ellison et al., 2006) which consists of three coordinated graphs – 
a data-flow graph (DFG), a dataset-derivation graph (DDG), and a process-
derivation graph (PDG) – all originally developed for use in defining and controlling 
software development projects (Ghezzi et al., 2003).  The three graphs and the rigorous 
analytical information that may be inferred from them are sufficient to render a dataset 
reliable.  In this section we discuss the strengths and limitations of each graph in the 
context of the water flux sensor network. 
 
The Data-Flow Graph 
 
The most familiar of the three graphs is the data-flow graph (DFG), a representation that 
also forms the basis for workflow tools such as Kepler.  The DFG defines the sequence 
by which processes (perhaps as simple as the application of a specific tool) are applied to 
raw and intermediate datasets to create a final dataset.  Note that the DFG identifies 
dataset and process types, rather than specific instances.  For example, the DFG might 
specify that a process type interpolate via linear regression be applied to a dataset type 
eddy flux data.  The DFG specifies only that a process for interpolating via linear 
regression must be used; it does not specify which specific tool is used to execute the 
process.  However when the general description of each dataset type in a DFG is 
associated with (or bound to) a specific dataset and the general description of each 
process type is bound to a specific process, the DFG and this binding information 
describes the sequence of activities to be performed.  In a simple scientific process, the 
DFG and binding information are sometimes sufficiently complete and precise to specify 
what must be done in order for the process to be executed automatically by a DFG 
interpreter (e.g., available in SciWalker).  In such cases, the DFG interpreter accesses the 
appropriate input datasets (perhaps via the Internet), sends them to the appropriate 
processes (and/or tools), initiates execution of those processes (and/or tools) on the 
datasets, and finally stores and transmits the derived datasets (again perhaps via the 
Internet). 
 
Though useful and easy to grasp, the DFG has two important limitations: (1) Most DFGs 
incorporate ambiguities that make it impossible to be sure which, of a number of possible 
alternatives, is the sequence of processing steps that was actually used in the particular 
execution that led to the creation of a particular output dataset. The dataset-derivation 
graph (DDG; see next section) of an analytic web captures this information.  (2) The 
DFG is unable to represent the coordination of processes (e.g., parallel processing, 
multiple interactive loops, exception handling) without excessive annotation.  In general, 
scientific processes that make significant use of such features cannot be fully represented 
by the DFG or executed by a DFG interpreter without (at the very least) substantial 
difficulties that can lead to severe loss of clarity.  As described below, a process-
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derivation graph (PDG) can capture this information by drawing on the greater semantic 
capabilities of a language developed expressly for process definition, such as Little-JIL 
(Wise et al., 2000). 
 
The system for measuring and modeling water flux illustrates both the utility and the 
limitations of a DFG (Fig. 2).  The overall design of the system is clearly captured in the 
graph: e.g., the four major loops correspond to the three major subsystems plus a fourth 
activity to create and apply models, whereas Revised Data represents the current best 
data to be provided to users.  However it would be impossible to determine the derivation 
history of a particular datum in Revised Data based on the DFG alone.  More 
importantly, the DFG does not specify how the various processes are initiated, controlled, 
or coordinated.  For example: how is model-building coordinated with real-time data 
processing?  When alternate measurements are substituted for original measurements, 
how is the required updating of neighboring models and modeled values initiated and 
controlled?  What happens if a process (e.g., retrieval of a real-time measurement) is 
unable to complete successfully?  Do the three major subsystems operate independently 
of one another?  Clearly there are a lot of critical questions that cannot be answered 
easily, if at all, based solely upon information provided by the DFG. 
 
The Dataset-Derivation Graph 
 
The dataset-derivation graph (DDG) documents the specific datasets used and created in 
the execution of a scientific process as well as the specific process steps whose execution 
(represented as a path through the DFG) resulted in the creation of each of these datasets.  
Where the DFG documents dataset types (e.g., eddy flux data), the DDG documents 
dataset instances (e.g., eddy flux data collected on 1 Oct 2006 at the Harvard Forest).  
Note that a new DDG, containing a new set of instances, is generated every time the 
scientific process is executed.  The instances represented as DDG nodes may be stored 
independently with a unique URL (uniform resource locator) or DOI (digital object 
identifier).  The DDG contains the minimal process metadata required to support 
reproduction of a particular dataset and can be produced automatically with a DFG 
interpreter in a tool such as SciWalker. 
 
The DFG and DDG address complementary needs.  The DDG provides the specific 
information needed to reproduce particular datasets or to verify models of interest.  The 
DFG provides the type information needed to replicate the scientific process using 
different input datasets or different processing tools (as is commonly done in model 
validation; Horn et al., 1989).  The reapplication of a scientific process using alternative 
dataset or tool bindings is easily accomplished with a tool such as SciWalker.  Though 
the DDG provides complete information about one specific trace through the process, it 
provides no information about other traces.  The testing and validation of all possible 
traces through the scientific process could be done based on a DFG representation, but a 
more thorough evaluation requires a more formal structure, such as that provided by a 
PDG. 
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The DDG excerpt for the water flux system shows that the size and complexity of the 
DDG may be considerable (Fig. 3).  The figure illustrates the results of two iterations of 
DFG looping, resulting in the creation of two instances of Revised Data.  The first 
instance (1) is a product of the real-time subsystem, while the second instance (2) is a 
product of the post-process subsystem.  Note that the modeled values also have complex 
derivation histories of their own.  Moreover, additional instances of Revised Data could 
result from the introduction of alternate measurements 
 
The Process-Derivation Graph and Little-JIL 
 
By incorporating a stronger and broader set of semantic features than the DFG, the 
process-derivation graph (PDG) provides a complete and precise specification of all 
possible executions of a scientific process.  As noted above, the relatively crude 
semantics of the DFG lack facilities for clear and concise specification of iteration 
parameters and conditions, concurrency, and exception management.  The DFG may also 
contain paths whose execution would not produce valid datasets and that are not intended 
for actual execution; the DFG lacks facilities to prevent the execution of such paths.  In 
addition, the DFG is unable to specify the particular dataset instances to be used as input 
to a scientific process or to identify the particular dataset instances produced as output.  
Such information is critical for the large set of environmental models created by a process 
of iterative reconsideration or reevaluation, where it is imperative to know which datasets 
are used as input and which are created as output (Peterson et al., 2003).  The PDG, as 
implemented here with the process definition language Little-JIL, provides semantic 
features that are adequate to address these specification needs.  It can also support 
rigorous analysis of all possible execution paths through the use of tools such as the 
FLAVERS finite-state verification system (Dwyer et al., 2004).  Such analysis can be 
used, for example, to eliminate defects that could otherwise lead to invalid sequences of 
statistical processes and unsound scientific results (Oates and Jensen, 1999). 
 
Little-JIL is a visual language for the coordination of agents (Wise et al., 2000; Wise, 
2006).  Its semantics are precisely defined using finite-state automata, thereby rendering 
it able to support precise definitions of processes.  Among its distinguishing features are 
its use of scoping to make the use of required dataset inputs clear, its facilities for 
specifying parallel processing and for defining the handling of exceptional conditions, 
and the clarity with which iteration can be specified and controlled.  Little-JIL follows 
earlier efforts to develop languages and diagrammatic notations for defining processes, 
including procedural languages (Sutton and Osterweil, 1997), rules (Ben-Shaul and 
Kaiser, 1994), functional decomposition (Suzuki and Katayama, 1991), data flow 
diagrams (Diamant et al., 1990), and modified Petri Nets (Bandinelli et al., 1993). 
However none of these earlier efforts provide the clarity and precision needed for the 
PDG. 
 
A process is defined in Little-JIL using hierarchically decomposed steps (Fig. 4), where a 
step represents a task to be done by an assigned agent.  Each step has a name.  A set of 
badges represents control flow among its sub-steps, its interface (a specification of its 
input and output datasets), the exceptions it handles, etc.  A step with no sub-steps is 
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called a leaf step, and represents an activity to be performed by an agent without any 
guidance from the process.  An agent may be a human or it may be a computational tool 
that is executed with the designated input when the leaf step is encountered.  Other key 
features of the language are outlined below. 
 
Step sequencing.  Every non-leaf step has a sequencing badge (an icon embedded in the 
left portion of the step bar) which defines the order in which its sub-steps execute.  For 
example, a sequential step (right arrow) indicates that its sub-steps are to be executed 
sequentially from left to right; the step is completed only after all of its sub-steps have 
completed.  A parallel step (equal sign) indicates that its sub-steps can be executed in any 
(possibly arbitrarily interleaved) order. It, too, is completed only after all of its sub-steps 
have completed.  A choice step (line through circle) indicates that the agent executing the 
step is to make a choice among sub-steps, while a try step (right arrow through X) 
mandates the sequence in which sub-steps are to be tried. 
 
Artifacts and artifact flows.  Artifacts are entities (e.g., a datum, data, or datasets) that 
are used or produced by the step.  The artifacts used by the step (IN parameters) or 
produced by the step (OUT parameters) are declared in the step interface (circle atop the 
step bar).  In addition, the flow of artifacts between parent and child steps is indicated by 
attaching artifact identifications and appropriate arrows to the edges (lines) between 
parent and child. 
 
Requisites.  A step optionally can be preceded and/or succeeded by a step that is 
executed before and/or after (respectively) the execution of the main body of the step. A 
prerequisite is represented by a downward arrowhead to the left of the step bar, and a 
post-requisite is represented by an upward arrowhead to the right of the step bar. 
Requisites enable the checking of a specified condition either as a precondition for step 
execution or as a post-execution check to assure that the execution has been acceptable.  
If a requisite fails, an exception is triggered. 
 
Exception Handling.  A step can signal the occurrence of exceptional conditions when 
there are aspects of the step’s execution that fail (e.g., violation of one of the step’s 
requisites). This triggers the execution of a matching exception handler associated with 
the parent of the step that throws the exception (represented as a step attached to an X on 
the right of the step bar). Of particular interest and importance is the Little-JIL facility for 
specifying how execution proceeds after completion of the exception handler; for 
example, execution may return to the step that triggered the exception or it may continue 
with the step that handled the exception.  Although it is possible for DFGs to represent 
how exceptions are to be handled and how execution is to resume subsequently, such 
DFGs quickly become quite complex and impenetrable, especially when exceptions can 
originate in multiple ways and from multiple process locations.  Little-JIL supports these 
specifications in a particularly clear and intuitive way. 
 
Scoping.  A parent step and all of its descendants represent a scope, enabling the 
specification that certain datasets are to be treated as specific to that scope. Little-JIL also 
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supports recursive specifications of a step within its own scope, greatly clarifying the 
iterative application of a process step to specifically defined datasets. 
 
The PDG for the water flux system illustrates the power of this approach (Fig. 5).  The 
requisite root process (Process Data) has three parallel sub-steps that represent the three 
subsystems (real time, post processing, alternate; Fig. 5a).  Each of these steps has a 
series of sequential sub-steps that retrieve and process a datum; the Process Alt Datum 
step in the alternate measurement subsystem has an additional iterative sub-step (Process 
Next Datum) to ensure that models and modeled values from the appropriate temporal 
window are duly updated.  The real-time subsystem (Process RT Datum) has two 
sequential sub-steps that are expanded in the next two figures (Fig. 5b, 5c).  The Get RT 
Datum step retrieves real-time data from the three measurement stations, performs range 
checking, and selects among the two precipitation measurements.  The Process Datum 
step retrieves the appropriate context data (a 30-day or 60-day window for real-time and 
post-processing, respectively), gets the model estimates, selects among measured and 
modeled values, and calculates the change in water storage (dS).  Creation and 
application of the two models (for ET and Q) are parallel processes.  Note that the 
Process Datum step is utilized by each of the three major subsystems but only has to be 
defined once. 
 
It is important that the water flux system be robust and able to react properly to a wide 
range of contingencies.  The PDG provides an effective and efficient means for ensuring 
robustness through the use of exceptions and exception handlers.  For example, in Fig. 5b 
an exception handler (Measurement Unavailable) provides instructions for what to do if a 
real-time measurement is not available (e.g., because of a communications timeout), 
whereas in Fig. 5c an exception handler (Model Unavailable) provides instructions for 
what to do if a model cannot be generated (e.g., because of a significant gap in the data 
required to construct the model).  In both cases the PDG makes the way in which 
processing is to be resumed clear. 
 
The detail captured in the PDG also allows us to apply rigorous testing and analysis tools. 
Bounding the number of iterations to consider, it is possible to determine the set of 
distinct paths that could be executed based on a PDG and then to select test cases that 
would exercise each of these.  If there is parallelism in the PDG, then the number of paths 
can be extremely large.  In such situations, it is useful to apply static analysis techniques, 
such as the FLAVERS tool mentioned above, to verify that expected sequences of events 
always (or never) occur.  For example, it might be essential that corrective action be 
taken whenever the precipitation measured by the two rain gauges varies by more than a 
specified amount.  If FLAVERS analysis reveals there is a path where this is not the case, 
this path would be displayed so that the process description could be corrected.  As 
processes become large, and especially when parallelism and exception handling are 
included, it is particularly important to apply such techniques to validate that the process 
definition adheres to required behaviors.  
 
The complete PDG for the water flux system is considerably larger (nearly all of the leaf 
steps shown in Fig. 5 would be decomposed into sub-steps) and contains significantly 
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more annotations (e.g., artifact and requisite details).  Nevertheless, even this abbreviated 
version illustrates how the questions raised above (in connection with the DFG for the 
water flux system) can be answered through the use of specification details made 
available in the PDG. 
 
Process Metadata 
 
The three graphs of an analytic web provide complementary views of a scientific process.  
The DFG is not sufficient (either by itself or with the DDG) to ensure dataset reliability 
in all but the simplest cases.  Nevertheless we have retained it as a component of the 
analytic web because of its familiarity to a broader audience and because it provides 
a useful high-level view of a scientific process.  Just as software designers often start with 
a high-level design to gain some understanding of a problem and then subsequently 
develop a detailed design, so we expect that scientists may first outline a scientific 
process using a DFG and then elaborate the details of that process using a PDG.  Analysis 
techniques could even be developed to determine if the PDG is consistent with the 
corresponding DFG and to report any discrepancies that were found in order to help 
detect misunderstandings in either representation. 
 
The DDG, by tracking what did happen in a particular execution of a scientific process, 
contains the instance information needed to reproduce that particular trace through the 
process and to evaluate it for soundness.  The PDG, on the other hand, contains the type 
information needed to reconstruct the overall process and to understand the choices made 
in a particular execution.  Moreover, by specifying everything that could happen during 
execution, the PDG supports evaluation of all possible traces (and thus of the entire 
process) for soundness. 
 
Dataset reliability is ensured by either (1) the PDG plus the DDG, because the DDG 
provides a complete derivation history and the PDG provides all the information needed 
to reconstruct and analyze the processes utilized; or (2) the PDG plus the input dataset 
instances, because together they can be used to re-derive all intermediate and final 
datasets (in effect, to recreate the DDG).  The first strategy provides a complete record of 
all artifacts but usually requires more storage space, while the second strategy saves 
space but requires more processing time (and access to the original tools and computing 
environment). 
 
The same tradeoff of space versus time can be seen in a common and related problem: 
how to ensure access to earlier versions of a dataset so that earlier analyses can be 
verified.  One solution, which works well for traditional ecological studies, is to 
permanently archive snapshot versions of the dataset as it evolves over time, using 
nonproprietary formats and unambiguous identifiers (Jones et al., 2006).  However this 
approach is problematic for streaming data and virtually untenable for systems like the 
water flux system where the data not only are streaming but also are subject to constant 
revision.  In this case it would be far more efficient to archive the PDG and all input data 
instances (real-time measurements, alternate measurements, selection criteria, etc), since 
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together these can be used to recreate on demand the current best dataset at any point in 
time. 
 
Two complementary approaches have been identified for establishing dataset provenance 
(Braun et al., 2006).  In a “disclosed-provenance system” there is a defined process that 
describes how data items and datasets are generated.  In an “observed-provenance 
system” data items and datasets are logged and monitored as they are created.  The 
analytic web combines the strengths of both approaches: the PDG provides an a priori 
process definition, while the DDG is created by recording what happens as the process is 
executed.  We believe that constructing the DDG directly from execution of a sufficiently 
articulate process definition is inherently simpler than reconstructing what happened 
through queries of a structured database of artifacts (as proposed, e.g., in Bowers et al., 
2006). 
 
The DDG and PDG play complementary roles in supporting the critical goals of 
reproducibility and repeatability in science.  A scientific study is reproducible if one is 
able to get the same results from the same input data; it is repeatable if one is able to get 
comparable results after repeating the experiment with new measurements (Cassey and 
Blackburn, 2006).  The DDG supports reproducibility by ensuring that the original data 
analysis can be replicated exactly.  The PDG supports repeatability by ensuring that the 
same kind of analysis can be applied to new input data. 
 
It remains to be seen whether the process metadata associated with an analytic web can 
be standardized and reduced in size and complexity to the point where it will gain 
acceptance from the scientific community.  Selecting the appropriate level of granularity 
in the PDG is also a challenge and practical guidelines may be required to guide users.  
While the PDG supports any level of granularity and greater detail tends to improve 
dataset reliability, excessive detail is counterproductive.  Nevertheless we are optimistic 
that standards can be developed for the XML representation of the three graphs that 
comprise an analytic web and for unique identifiers for dataset and process instances, and 
that software tools can be developed that will greatly simplify the task of generating, 
managing, and interpreting process metadata. 
 
 
DISCUSSION 
 
In the long run we expect that scientific process definition tools will be universally 
accepted as a basic requirement for scientific data analysis.  Eventually such tools will be 
unobtrusive and will be able to record all relevant details as the scientist works.  In the 
short run we predict that scientists will increasingly choose to use such tools as a means 
to create, test, execute, and document their analyses.  Though there has been great 
progress in tool development in recent years, we think that current efforts could be 
strengthened by the inclusion of concepts and methods from analytic webs.  In particular 
we believe that enhancing existing tools to include DDG and PDG capabilities would 
provide the following critical advantages: 
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(1) Creation of a PDG requires scientists to think carefully about how they 
perform a given data analysis.  It is our experience that such analyses are often carried 
out on an intuitive level, without clear articulation (even in the mind of the scientist). 

 
(2) The PDG allows a scientist to create representations that are flexible and 

scalable.  Individual process steps can be kept relatively simple and the overall design 
can be quickly modified by changing the PDG. 

 
(3) The PDG supports execution of a scientific process and re-execution using 

different input data and/or different tools, often leading to a significant savings in time 
and effort. 

 
(4) The PDG provides a useful and efficient framework for structuring and 

generating the DDG. 
 
(5) Scientific processes represented by PDGs can be rigorously evaluated for 

undesirable outcomes, logical and statistical errors, and propagation of measurement 
errors.  This is a significant advantage, especially for complex systems. 

 
(6) The PDG provides an alternative to retaining versioned datasets, which may 

be impractical for streaming data and for other situations where datasets are subject to 
frequent change. 

 
(7) The combination of the PDG and the DDG (or the PDG and the input dataset 

instances) provides a basis for evaluating dataset reliability regardless of the complexity 
of the scientific process. 
 
We believe these advantages will prove to be increasingly important in the future, 
especially for real-time sensor networks in emerging environmental observatories such as 
NEON.  There are significant practical problems that remain to be addressed, including 
(1) developing XML (or similar) standards for representing the graphs, (2) devising 
efficient methods for storing and managing process metadata, (3) developing guidelines 
for optimal granularity, (4) creating scientific process definition tools that are easy to use 
and reliable, (5) training scientists in the analytical thinking required to create a PDG, and 
(6) promoting the use of such tools and their benefits to the scientific community.  But 
the potential benefits to science are great. 
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FIGURES 
 
Figure 1.  A conceptual diagram of the planned water flux sensor network at the Harvard 
Forest. 
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Figure 2.  A data-flow graph for the water flux system.  The icons represent dataset types 
(boxes) or process types (ovals).  The arrows indicate the flow of datasets into and out of 
processes. 
 
Figure 3.  An excerpt from a dataset-derivation graph for the water flux system.  The 
icons represent dataset instances.  Each arrow indicates the application of a process 
instance.  Arrows connect a dataset instance to the dataset instance(s) from which it was 
derived. 
 
Figure 4.  A Little-JIL step icon (from Wise et al., 2000). 
 
Figure 5.  Simplified excerpts from the process-derivation graph (in Little-JIL) for the 
water flux system, showing (a) the root process and major sub-steps, (b) the process for 
real-time data collection and quality control, and (c) the process for creation and 
application of models and calculation of the water budget. 
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