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Fish species have been often used as indicators of environmental quality in aquatic
ecosystems, while biotic indices based on fish have become common tools in ecological
monitoring. Nevertheless, such indices are far from perfect, mainly because they are based
on assumptions that sometimes are not met and because they cannot be optimized from a
computational point of view. As any other method, they rely upon expert judgments for
selecting relevant metrics, combining metrics into a score and defining thresholds between
ecological status classes in the scoring scale. Provided that no procedure can be entirely
objective in evaluating ecological status, as this very concept is inherently subjective, we
propose a novel approach in which the unavoidable subjective elements only play a role in
the earliest steps, while the subsequent optimization of the evaluation procedure is as
objective as possible. An expert system, designed after this concept for Latium (Central Italy)
river basins and based on a multilayer perceptron neural network, was developed and
implemented into a Graphical User Interface (GUI) in order to make it easily accessible to
non-technical users. The neural network reconstructs experts' judgments on the basis of a
set of abiotic descriptors and fish assemblage composition, thus providing consensus
estimates of ecological status for any river stretch. This approach allows easily the
incorporation into the expert system of new data and new expert judgments as soon as they
become available. However, the very first version of the expert system is already able to
correctly classify 2 out of 3 cases, while the worst classification error does not exceed a
single class of ecological status.
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1. Introduction

Fish species have been regarded as very effective biological
indicators of environmental quality in different aquatic ecosys-
tems (Fausch et al., 1990; Whitfield, 1996), not only because of
their iconic value, but also because of their sensitivity to subtle
environmental changes (Karr, 1981). Obviously, fish responses
to environmental disturbances, including hydromorphological
ones, are different in time and space from those of simpler
di).
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organisms, as they tend to be integrated over larger intervals
(Scardi et al., 2006).

The relevance of fish species as biotic indicators has been
explicitly mentioned not only in scientific studies (e.g. Karr and
Dudley, 1981; Oberdorff and Hughes, 1992), but also in European
and American laws and regulations (European Commission,
1992; EuropeanUnion, 2000; Kurtz et al., 2001) aswell as in those
fromother countries. In particular, fish are explicitlymentioned
among the biological “quality elements” that are to be con-
sidered to assess the ecological status of surface waters
according to the European Water Framework Directive (WFD)
(European Union, 2000).

Several environmental assessment methods based on fish
have been developed during the last two decades, mostly
.
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inspired to the seminal work by Karr (1981), who developed the
Index of Biotic Integrity (IBI). The IBI is amultimetric index, as it
combines into a single score different variables (i.e.metrics) that
are thought to respond to environmental disturbance. The
original IBI metrics included twelve ecological attributes of fish
assemblages related to species richness, assemblage composi-
tion and abundance, trophic guilds and fish condition.

The multimetric IBI approach is very flexible, as different
metrics can be selected according to regional ecological condi-
tions, and this is certainly the main reason why it has been
adapted to a number of countries and river basins, not only in
North America (e.g. Karr and Dudley, 1981; Karr et al., 1986;
Plafkin et al., 1989; Fausch et al., 1990), but also in Europe (e.g.
Hughes and Oberdorff, 1999) and in other continents (e.g.
Steedman, 1988; Lyons et al., 1995; Kleynhans, 1999; Harris,
1995; Hugueny et al., 1996; Hay et al., 1996; KamdemTohamand
Teugels, 1999; An et al., 2002).

While many IBI clones and other biotic indices were
developed during the last two decades, other methods were
also proposed. Although they may differ from the IBI paradigm
because of more complex scoring criteria or because they take
into account not only the fish assemblage composition, but also
someenvironmental attributes (e.g. geomorphological types), in
most cases they are still based on a multimetric approach. The
European Fish Index (EFI) is a recent example of such a second
generation multimetric index (FAME Consortium, 2004).

Multimetric indices, although very popular, are not the only
available solution for evaluating the environmental quality of
streams and rivers. In fact, some interesting attempts have
beenalsomadeby comparing theobserved fish assemblages to
thosemodeled on the basis of relevant physical variables, thus
obtaining indices based on deviation from expectation of the
fish fauna composition (e.g. Oberdorff et al., 2002). This
approach involves the selection of reference sites and the
application of multivariate analyses, and it seems more
accurate than multimetric indices (Reynoldson et al., 1997).
Multivariate methods, however, have been developed almost
exclusively for benthic macroinvertebrates so far.

While (multimetric) biotic indices have become very com-
mon ecological tools, even themost successful ones have been
criticized (e.g. Suter, 1993; Karr and Chu, 1999; Norris and
Hawkins, 2000). Criticisms stem from very diverse reasons,
like, for instance, lack of diagnostic capacity, unpredictable
interactions between different metrics (e.g. same final score
resulting from different arrangements of the single metrics
scores), the inherent circularity of selecting indicators that are
supposed to respond to human pressures. Moreover, Reynold-
son et al. (1997) pointed out that multimetric indices do not
exploit all the collected information, that metrics are often
redundant and that errors can be compounded.

The accuracy of methods for evaluating ecological status
(as well as any other ecological property) always decreases
when they are applied at large spatial scale. This is not sur-
prising, because no model (or method, or index, in this case)
can be simple, general and accurate at the same time. In order
to be simple, and multimetric indices are designed to be in-
herently simple, a method can be general, but not accurate, or
it can be accurate, but not general.

Biotic indices are not exceptions to this rule, and this is the
reasonwhy they usually have to be calibrated at regional scale
or at river basin scale in order to provide accurate results. This
is the case, for instance, of the original IBI concept, which has
been adapted to a number of different (eco)regions and river
basins, resulting in a large number of local implementations
(Miller et al., 1988). Obviously, all these implementations share
the same common rationale, although the metrics that are
taken into account change from case to case. On the other
hand, indices which are aimed at generality always fail when
applied to many different ecoregions. The problems that have
been experienced with the EFI in several European countries
demonstrate the limited accuracy of a multimetric index that
was designed to be both general and simple (e.g. de Sostoa
et al., 2004; FAME Consortium, 2004).

The simplicity versus accuracy (or generality) tradeoff,
which applies to any model, or concept, or method, is the
reason why the multimetric approach, being inherently sim-
ple, cannot be accurate at large spatial scale (i.e. when it has to
be also general). In particular, the simplicity of all multimetric
approaches involves the assumption that each metric is
linearly or monotonically related to the ecological status (e.g.
Karr, 1981; FAME Consortium, 2004), even though linear or
monotonic responses are the exception, not the rule in ecol-
ogy. For instance, species distributions along environmental
gradients are usually unimodal, and very often even more
complex because of interspecific competition. However, when
only a small portion of an environmental gradient is taken
into account, species responses can be regarded as locally
linear. Likewise, the assumption of linear or monotonic rela-
tionships betweenmetrics and ecological status that supports
multimetric indices can be approximately met at small spatial
scales (e.g. at the scale of a single river basin), whereas it is
most certainly violated at larger scales (e.g. throughout more
diverse ecoregions).

The case of species richness, a very commonmetric (Kennard
et al., 2006), is a typical example of such a problem. While in
multimetric indices species richness (overall, native or referred
toa specific taxonomic groupor guild) isassumed tobepositively
and monotonically related to the ecological status, it is well
known that amoderate disturbance usually favors an increase in
species richness, and the intermediate disturbancehypothesis is
the formal expression of this familiar evidence (Connell, 1978).
These effects are often causedbyhydromorphological pressures,
but other factors, like, for instance, competition between species,
may induce even more complex biotic responses.

Amajor problemwith (multimetric) biotic indices is the lack
of computational optimization. In fact, they usually take into
account only a handful of metrics, thus causing an information
loss, while the selected metrics are heuristically processed. For
instance, in many cases indices are obtained by summing up
scores assigned to each metrics, under the assumption that all
metricshave the sameweight, that nometrics is redundant and
that no interactions between metrics exist. It is obvious that
these assumptions are quite simplistic and seldom compliant
with reality. As a matter of fact, (multimetric) biotic indices are
often conceptually sound as far as the underlying ecological
rationale is concerned, but they exploit onlypart of the available
information, and in a suboptimal way.

The lack of computational optimization of multimetric
indices, however, may be not really relevant as far as accuracy
is concerned. As a matter of fact, a good implementation of a



Table 1 – List of the fish assemblage descriptors: 30 fish
species and 2 species richnesses (overall and juveniles
only) are included

Species/faunistic variable

Abramis brama Leuciscus cephalus
Alburnus alburnus alborella Leuciscus lucumonis
Alosa fallax Leuciscus souffia muticellus
Anguilla anguilla Liza ramada
Barbus plebejus/tyberinus Mugil cephalus
Carassius carassius Petromyzon marinus
Chondrostoma genei Pseudorasbora parva
Cobitis taenia bilineata Rutilus rubilio
Cyprinus carpio Rutilus rutilus
Dicentrarchus labrax Salaria fluviatilis
Esox lucius Salmo trutta
Gambusia holbrooki Sander lucioperca
Gasterosteus aculeatus Scardinius erythrophthalmus
Gobius nigricans Tinca tinca
Lampetra fluviatilis Overall species richness
Lampetra planeri Juveniles only species richness

Species that are not explicitly mentioned are taken into account in
species richnesses.
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multimetric index, especially when developed at regional
scale, can be enough accurate for most practical purposes and
the gain in accuracy that can be obtained using alternate
approaches might be negligible. On the contrary, the lack of
computational optimization severely affects the development
phase of multimetric and other biotic indices, which is time
consuming and usually based on trial-and-error procedures,
especially when the scoring scale has to be properly gauged.
This implies that different developers may produce very dif-
ferent solutions based on the same data set.

In spite of these problems, the index-based approach is
very popular and often perceived as an objective procedure. In
reality, though, it involves many steps that are based on
expert judgment (e.g. metrics selection, data transformations,
definition of thresholds in index scoring scale, etc.), because
expert judgment is the key for any environmental assessment,
evaluation or diagnosis. In fact, the very concept of ecological
status (or environmental quality, ecosystem health, etc.) is at
the same time very clear in the field and absolutely vague
when it has to be translated into a set of rules, or into a concise
definition, exactly like the concept of beauty. And, like beauty,
ecological status is not anemergent property of ecosystems, nor
a property that can be univocally defined (Scrimgeour and
Wicklum, 1996): on the contrary, it is based on the personal
interpretation of a natural phenomenology. Nevertheless, ecol-
ogistswho share a common theoretical background (a common
ecological aesthetics?) usually agree in ranking a set of sites
according to their ecological status.

Although itplays a fundamental role, expert judgmentmight
be controversial in applications that involve not only ranking,
but also setting critical boundaries. For instance, experts not
always agreewith each other in case slightly disturbed sites (i.e.
in “good” ecological statusaccording to theEuropeanWFD)have
to be recognized and separated frommoderately impaired sites.

We tried to address this problem by developing an expert
system based on a neural network, which was trained to
associate expert judgments to environmental and fish assem-
blage data. In essence, this solution is based on the assumption
that the complex biotic relationships that link fish assemblage
composition to environmental conditions can be implicitly
embedded intoaneuralnetworkand that suchaneural network
can be trained to reproduce consensus expert judgment.

In this paper we present the first implementation of such
method, based on a regional data set. To this aim, we trained a
workingdemoof theexpert systemusingdata fromLatiumriver
basins (Central Italy). However, the same method can be easily
retrained as soon as other data become available and we are
actually planning to update and extend the expert system on a
routine basis.
2. Materials and methods

Environmental data and fish assemblage composition were
recorded in 62 sites in Latium streams and rivers (Central Italy)
during summer2005. Sampling siteswere located in theTevere
river basin as well as in other minor river basins (Sacco, Marta
and Mignone). Most sampling sites were wadable, and
sampling was performed by means of standard electrofishing
gear.
Fish assemblage compositionwas recorded as thenumber of
fish caught in the sampling stretch for each species, but only
binary presence/absence data have been used in our expert
system so far, because we aimed at maximum compatibility
with previous qualitative data sets. Although 43 species were
identified in our samples, only 30 of them, i.e. those which
occurred in more than 5% of the records, were explicitly
considered (Table 1), whereas the remaining species were only
taken into account when computing the overall species rich-
ness. A separate species richness value was computed for
juveniles (young of the year) only. Information about 27
environmental variables (Table 2) was also recorded during
fish sampling. Most of these variables were selected because
they had been already considered in previous studies, but some
of them might be discarded in future implementations of the
expert system on the basis of a sensitivity analysis.

Finally, expert judgments were recorded. They were meant
as a global evaluation of the sampling sites ecological status,
not just as an evaluation of the fish fauna composition, and
they were issued by postdoctoral researchers with more than
10 years of experience in the study area. When possible, more
than a single expert operated at each sampling site, thus
allowing association of more than a single expert judgment to
the same environmental and fish assemblage data. Expert
judgments were fuzzy coded, i.e. a membership value was
recorded for each ecological status class in the high, good, mo-
derate, poor and bad range. This way of coding ecological status
is very flexible, as it also allows expressing uncertainty. For
instance, in case it was not possible to discriminate between
moderate and good ecological status (a very difficult task and a
very relevant problem in European countries because of the
WFD) a 50% good and 50%moderate expert judgmentwas issued.

Although our goal was to develop just a working demo of
the expert system, thenumber of available recordswas still not
large enough to properly train a multilayer perceptron neural
network. Therefore, more information was added to the
training set by simulating changes to real records that could
affect the expert judgment. In other words, the same experts



Table 2 – List of the environmental descriptors: 27
variables are included

Environmental
variable

Unit/Notes

Elevation m
Depth m
Runs % of the wetted surface

9>>>>>>>>>>>=
>>>>>>>>>>>;

X4

i¼1

pi ¼ 100k

Pools % of the wetted surface
Riffles % of the wetted surface
Uniform flux % of the wetted surface where

the water flow is apparently
uniform at surface (relevant in
larger rivers)

Wetlands presence or absence of
wetlands connected to the river
in normal flow conditions
(binary variable)

Bars or islands presence or absence (binary variable)
Boulders % of the sampling site surface

9>>>>>=
>>>>>;

X5

i¼1

pi ¼ 100k
Rocksandpebbles % of the sampling site surface
Gravel % of the sampling site surface
Sand % of the sampling site surface
Silt and clay % of the sampling site surface
Flow velocity semiquantitative score in the [0,5] range
Vegetational
cover

% of the surface of the sampling site covered by
aquatic macrophytes

Shade % of the surface of the sampling site shaded at
noon

Anthropic
disturbance

semiquantitative score in the [0,4] range

Dams upstream distance in km (use 100 in case there are no dams)
Dams
downstream

presence or absence (binary variable)

Lake upstream distance in km (use 50 in case there are no lakes)
Summer water
temperature

°C (mid-June to August)

Turbidity NTU
pH
Conductivity μS cm−1

Dissolved
oxygen

% saturation

Basin area Square root of the basin area in km2

Distance from
source

km

Units and notes for each variable are shown in the right column.
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who evaluated the ecological status of the sampling sites were
requested to think about species whose presence or absence
would change their judgment or to environmental variables
that, if changed in value, would affect their evaluation.

For instance, given a site in which the fish assemblage
included both adults and juveniles of the species that are
supposed to be present on the basis of the environmental
information, the overall evaluationwould certainly become less
positive in case less or no juveniles were found. Basically, such
virtual records were used to add relevant information that was
not found in the available real records, but they are obviously
basedon ecological scenarios that are very likely to occur. In this
first attempt we added 157 virtual records to our data base, i.e.
we derived one to three virtual records from each real record.
We also tried to balance the number of records that were as-
sociated to each class of ecological status, addingvirtual records
to this end. This way no class of ecological status included less
than 40 records.
Before training the neural network, the available records
were divided into two subsets, for training (n=150) and test
(n=69). Records were assigned to training or test subset on the
basis of a stratified procedure. At first several strata were
defined according to combinations of ecological status class
and sampling site elevation, then records to be assigned to
each data subset were randomly selected from each stratum.

Theoverall number of input variables in our data setwas 59,
including 27 environmental variables, 30 species and 2 values
for species richness (overall and juveniles), whereas the output
variableswere 5, corresponding tomembership values for each
class of ecological status defined by the European WFD.

The best architecture for the multilayer perceptron was
selectedon the basis of aheuristic test. In fact,we trainedneural
networks with a number of nodes in the hidden layer ranging
from 10 to 50 and then we selected the one which provided the
best results.On thebasisof thisprocedure, the final architecture
of themultilayer perceptron neural networkwas set to 59–25–5.
Different architectures, however, provided very similar results.

All the environmental variables and the species richness
valueswere normalized into the [0,1] interval. Obviously, binary
data for species occurrence did not require normalization.
Sigmoid activation functions were used in the hidden layer
nodes [f(x)=1/(1−e−x)], whereas softmax activation functions
(Bridle, 1990) were used in the output layer nodes. The softmax
function scales theneural networkoutputs so that their sum is 1
and that eachoutput can be regarded as a probability, i.e., in this
particular case, as a membership value for each class of ecol-
ogical status.

The neural network training was performed by means of the
most commonalgorithm, i.e. the error back-propagation (Rumel-
hart et al., 1986). A constant value was set for both the learning
rate (0.9) and the momentum (0.1), while overtraining was
avoided using an early stopping strategy. The neural network
training was performed according to a “learning per pattern”
paradigm. Moreover, training patterns were submitted to the
neural network in random order at each learning epoch, thus
avoiding that memorization of the submission order could
adversely affect the training. Finally, jittering, i.e. addition of a
small amount of noise to input patterns at each epoch (Györgyi,
1990), was performed during the training phase. Gaussian noise
with μ=0 and σ=0.01 was used. Jittering helps neural network
generalization by providing a virtually unlimited number of
artificial training patterns that are closely related, even though
not exactly identical, to the original ones.

The confusion matrix obtained from the neural network
output using a winner-takes-all strategy for the classification of
the test records was analyzed by means of the weighted Kappa
statistics (Cohen, 1960; Fleiss et al., 1969). Neural network
outputs were also analyzed after conversion into a continuous
variable by weighted average. In this case a linear correlation
coefficient (Pearson, 1896) was computed to evaluate the neural
network performance.

Finally, a GraphicalUser Interface (GUI)waswrapped around
the trained neural network, thus providing a user-friendly and
interactive access to the expert system (Fig. 1). The GUI was
designed in order to make the neural network completely
transparent to theuser,whocan interactwith theexpert system
in real time, observing changes in classificationwhile input data
are modified.
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3. Results

In spite of the problems related with the curse of dimensionality,
the synaptic weights of the trained 59–25–5 multilayer percep-
tron did not grow too large (88% of the weights were b0.5 and
97% of them b1.0) and the overall response of the neural net-
work to changes in input data was very smooth. Given the very
small ratio between the number of training patterns (150) and
the number of synaptic weights (1630), a proper training was
theoretically impossible, but ecological problems are often ex-
ceptions to this rule. In fact, their real dimensionality is usually
much smaller than expected, especially due to associations be-
tween species whose response to environmental variables is
similar and to tight relationships between environmental
variables.

For instance, the 30 species that were selected as neural
network binary inputs might combine in 230 different ways, i.e.
in more than one billion of different fish assemblages. In
practice, only 107 (partly) different fish assemblageswere found
in 219 records. Together with appropriate training strategies
(jittering, early stopping, random selection of training patterns
at each epoch) these ecological constraints to the theoretical
dimensionality of theproblemminimized theeffects of the curse
and made it possible to properly train a neural network. An
Fig. 1 –The Graphical User Interface (GUI) of the expert system. T
both graphically and alphanumerically: the histogram shows the
the values in the horizontal bar indicate the ESS and the EQR. In
winner-takes-all criterion has boldface labels. The GUI is fully int
change in the input data (ecological status classes are color-code
indirect evidence of training stability was also provided by the
very small differences that were observed between neural
networks with different numbers of nodes in the hidden layer.

The comparison between neural network outputs and expert
judgments can be carried out in differentways, depending on the
defuzzyfication method. In fact, the softmax activation functions
of theoutput layernodes returnedoutputvalues that summedup
to 1, which could be regarded asmemberships for each ecological
status class. Thesemembership values, however,were relative to
ordered categorical variables and therefore they could be either
used to compute a continuous score, or to define the most prob-
able class.

The first solution is the most straightforward, as a contin-
uous ecological status score (ESS), ranging from 1 (best) to 5
(worst), can be easily obtained as aweightedaverage of the class
membership values:

ESS ¼
X5

k¼1

k � pk

where k is the class rank and pk is the class membership value.
In the GUI the ESS can be found in the horizontal bar that is

located above thehistogram in the lower right corner. The ESS is
1.8 in the screenshot shown in Fig. 1. Next to the ESS another
numerical value is also shown, i.e. the Environmental Quality
he classification results are shown in the lower right corner
membership values for each class of ecological status, while
the histogram, the ecological status class selected by the
eractive and the classification is instantly updated at each
d).



Fig. 2 –Comparison between expert judgments and neural
network outputs. Results are shown as ESS, i.e. as weighted
averages obtained from class membership values (1 = best
ecological status, 5 = worst ecological status). Both training
(white squares, r=0.978***) and test (black triangles,
r=0.932***) data are shown.

Table 4 – Confusion matrix obtained from the winner-
takes-all classification of the test data subset

Expert
judgment

Neural network Total

High Good Moderate Poor Bad

High 5 7 0 0 0 12
Good 2 15 1 0 0 18
Moderate 0 5 6 2 0 13
Poor 0 0 2 11 0 13
Bad 0 0 0 4 9 13
Total 7 27 9 17 9 69

Correctly Classified Instances (CCI) were 66.7%, while the weighted
Kappa statistics was Kw=0.775 (pb0.001).
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Ratio (EQR),which is 0.807 in Fig. 1. TheEQR is explicitly required
by the European Water Framework Directive as the basis for
classifying the ecological status. It ranges from 1, in case of an
ecological status close to pristine or undisturbed, to 0, in case of
a heavily disturbed ecological status. In theory, the EQR is to be
computed with respect to some pre-defined reference condi-
tions, but in our expert system the reference conditions are
implicitly defined by the expert judgments used for training the
neural network, and therefore the EQR can be easily obtained by
reversing the ESS and scaling it into the [0,1] interval.

In Fig. 2 the ESS values obtained from the neural network are
compared to the ESS values computed on the basis of actual
expert judgments. Both the training (white squares) and the test
(black triangles) data subsets are shown. Differences between
the two data subsets are minimal, and the linear correlation
betweenneural network outputs and known values is very high
in both cases (r=0.978⁎⁎⁎ for the training data subset and
Table 3 – Confusion matrix obtained from the winner-
takes-all classification of the training data subset

Expert
judgment

Neural network Total

High Good Moderate Poor Bad

High 19 21 0 0 0 40
Good 2 40 4 0 0 46
Moderate 0 14 35 2 0 51
Poor 0 0 9 31 0 40
Bad 0 0 0 6 36 42
Total 21 75 48 39 36 219

Correctly Classified Instances (CCI) were 73.5%, while the weighted
Kappa statistics was Kw=0.822 (pb0.001).
r=0.932⁎⁎⁎ for the test data subset). While extreme ESS values
are very accurately estimated by the neural network, a few
larger errors are associated to intermediate ESS values. This is
not surprising, as the characterization of intermediate classesof
ecological status is inherently more controversial.

Even though the ESS assessment seems very accurate, a
classification into discrete levels of ecological status is required
in most practical applications. Such a classification can be
obtained from the neural network output according to different
criteria. The most straightforward solution is to round off the
ESS to the closest integer value, but this solution is also
potentially biased, because the ESS might be influenced by an
asymmetrical distribution of the neural network outputs
around the most probable ecological status class. In this case,
even small membership values for extreme classes might bias
the overall estimate of the ESS.

A safer alternate solution is the classical winner-takes-all
strategy. In other words, each pattern is classified according to
the highest class membership value in the neural network
output. This strategy seems more robust in case of asymme-
trical classmembership distributions and it also has the advan-
tage of being more intuitive than others. From a theoretical
point of view, it can be affected by bimodal (or trimodal) distri-
butions of class membership values, but such particular cases
were never observed while classifying real records.

Confusion matrices based on the winner-takes-all strategy
were obtained for both the training and the test data subset
(Tables 3 and 4). Data in the test subset were never used in the
training phase, and therefore they could be safely used to
assess the ability of the neural network to reproduce the way
expert judgments are issued. The percentage of Correctly
Classified Instances (CCI) in the test data subset (66.7%) is not
very different from the one in the training data subset (73.5%).
Basically, if only test data were taken into account, 2 out of 3
cases were exactly classified, while the remaining cases were
misclassified by only one class of ecological status.

The agreement between expert judgments and neural net-
work outputs was tested by means of the weighted Kappa sta-
tistics.Theweightedversionof theKappa statisticswas selected
because of the ordered categorical nature of the classification
and the following weighting scheme was adopted:

wi;j ¼
ji� jj
r� 1
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wherewi,j is the weight for the jth element of the ith row of the
confusion matrix and r is the rank of the confusion matrix.

The weighted Kappa statistics for the confusion matrix
obtained from the test data subset was highly significant
(Kw=0.775, pb0.001) and the overall agreement between expert
judgments and neural network outputs could be considered as
“good” according to Landis and Koch (1977). The same statistics
for the confusionmatrix obtained from the training data subset
was only slightly higher (Kw=0.822, pb0.001).

It isworth noticing that theweighted Kappa statistics for the
confusion matrix based on the alternate classification criterion
for the ecological status, i.e. on the rounding off of the ESS to the
closest integer value, was lower, although still highly significant
(Kw=0.715, pb0.001) for the test data subset.
4. Discussion and conclusions

Relationships between environmental variables and fish
assemblage composition in streams and rivers are quite tight,
and they have been already successfully modeled using statis-
tical approaches (e.g. Oberdorff et al., 2001) as well as neural
networks (e.g. Boet and Fuhs, 2000; Joy and Death, 2002;
Mastrorillo et al., 1997; Olden and Jackson, 2001; Scardi et al.,
2004, 2005). The expert system we developed, however, goes a
step farther, because it leverages an Artificial Intelligence ap-
proach in the strictest sense, i.e. for reproducing as closely as
possible the behavior of human experts.

Conventional strategies for evaluating the ecological status
of streams and rivers on the basis of fish fauna include biotic
(multimetric) indices and comparisons between observed and
expected fauna (either modeled or found in reference sites).
Although useful in many cases, especially when applied at re-
gional scale, these methods are not computationally optimized
and, althoughoftenperceivedasobjective, unavoidably relyupon
choices that are as subjective as the very concept of ecological
status (or environmentalquality, etc.).Nevertheless, recentdevel-
opments in environmental laws and regulations of most
countries demand ecological status classification procedures to
be applied in routine environmental monitoring activities.

Although we are fully aware that such requests imply an
oversimplification of the underlying ecological problems, our
expert system is aimed at obtaining the best classification
procedure by focusing on expert judgments only at the earliest
step, accepting their inherent subjectivity and then processing
all the relevant biotic and abiotic information as objectively as
possible. In short, we aim at mimicking as closely as possible
the way human experts issue a consensus expert judgment.

In fact, themultilayer perceptron neural network we trained
provided very good results, accurately reproducing expert
judgments, even though it was only aimed at demonstrating
the feasibility of an Artificial Intelligence approach and there-
fore the training data set was not nearly as large as needed. In
spite of these limits, the neural network classification of test
cases closely matched the expert judgments, with a limited
number ofmisclassifications (1out of 3 cases),whichwerenever
worse than a single ecological status class. Moreover, the
similarity in termsofCCIandweightedKappastatisticsbetween
the results obtainedwith training and test data subsets showed
that the neural network was properly generalized.
The software implementation of the expert system is not a
minor feature in our opinion, and theGUI thatmakes our neural
network transparent to users alsoplays amajor role as far as the
acceptance of the expert system is concerned. Most users are
already acquainted with biotic indices, while they are not com-
fortable with a “black box” approach, even though they realize
that itmakes sense from a theoretical point of view. Interacting
with the expert system through the GUI, on the other hand, is
very intuitive. For instance, changing input values by means of
sliders, which are not strictly needednor convenient for routine
data input, helpusers to learnhow the systemreacts to changes
in diagnostic variables. In other words, sliders help users to
understand the way of reasoning of the expert system and to
recognize similarities with their own point of view.

A recurrent criticism to an Artificial Intelligence approach
to the evaluation of ecological status is that a lot of data are
needed and that other methods are therefore more feasible in
data-limited situations. Although the need for data is abso-
lutely true, it is certainly false that more conventional ap-
proaches need less information to be correctly developed. In
fact, collecting enough relevant information is the basis for any
evaluation procedure, from the simplest, i.e. human expert
judgment, to the most complex ones. And biotic indices cannot
be regarded as exceptions to this rule.

However, information is available in many different forms,
and not only field data can be considered as useful informa-
tion. Knowledge is equally (and probably even more) impor-
tant, and it can be easily elicited from experts and converted
into virtual data records, which may contribute relevant
information to the training data set for a neural network. In
practice, simulating changes in real records thatmight affect the
expert judgment is a very effective way for eliciting experts'
knowledge and transferring it into a neural network with no
filters or reinterpretations. Of course, the role of such virtual
records will become less important as soon asmore data will be
available, but they will always play a useful role in transferring
knowledge to the expert system.

In conclusion, a reductionist, index-based approach to a
problem as complex as the evaluation of ecological status of
streams and rivers (assuming that this very concept really
makes sense) cannot be fully successful, except in particular
cases, like single river basins or very homogeneous ecoregions.
As amatter of fact, given the elusive nature of the very concept
of ecological status (or environmental quality, health, etc.), the
only sensibleway to evaluate the overall state of an ecosystem
is by expert judgment, which can integrate all the available
information and provide a competent diagnosis. Of course,
expert judgment is subjective by definition and, due to our
limited grasp of ecological processes, potentially biased.
Therefore, an expert system based on a typical Artificial Intel-
ligence approach may assist human experts by defining a
consensus reference or, if no human experts are available, it
may successfully surrogate them.
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