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Abstract 
Environmental sensor networks are now commonly being deployed within environmental 
observatories and as components of smaller-scale ecological and environmental 
experiments. Effectively using data from these sensor networks presents technical 
challenges that are difficult for scientists to overcome, severely limiting the adoption of 
automated sensing technologies in environmental science. The Realtime Environment for 
Analytical Processing (REAP) is an NSF-funded project to address the technical 
challenges related to accessing and using heterogeneous sensor data from within the 
Kepler scientific workflow system. Using distinct use cases in terrestrial ecology and 
oceanography as motivating examples, we describe workflows and extensions to Kepler 
to stream and analyze data from observatory networks and archives. We focus on the use 
of two newly integrated data sources in Kepler: DataTurbine and OPeNDAP. Integrated 
access to both near real-time data streams and data archives from within Kepler 
facilitates both simple data exploration and sophisticated analysis and modeling with 
these data sources. 
 
 
Keywords: Scientific Workflows, Sensors, Near Real-Time Data Access, Data Analysis, 
Terrestrial Ecology, Oceanography 
 
 
1. Introduction and Motivation 
Scientific workflows are representations of the processes involved in accomplishing a 
scientific analysis. They combine data and computational procedures into a configurable, 
structured set of steps that implement semi-automated computational solutions to a 
scientific question. A scientific analysis, depending on its focus, can involve a number of 
ad-hoc processes that a scientist may use to get from raw data to publishable results. 
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One system for creating and using scientific workflows is Kepler. Kepler streamlines the 
workflow creation and execution process so that scientists can design, execute, monitor, 
re-run, and communicate analytical procedures with minimal effort. Kepler allows 
scientists to capture workflows in a format that can easily be exchanged, archived, 
versioned, and executed (Altintas et al., 2004a). Kepler is free, open-source software that 
works on several popular operating systems, and can be used to couple disparate 
execution environments, e.g. providing linkages of a model written in C with network-
distributed input data sources, and passing these outputs on to the R statistical 
environment for graphical presentation. 
 
Scientific workflow systems have been used for accessing data from a variety of sources, 
including database systems (Altintas et al., 2004a), Grid systems (Altintas et al., 2003; 
Altintas et al., 2005; Deelman et al., 2005; Ludäscher et al., 2006; Taylor et al., 2007b), 
and Web Services (Altintas et al., 2004b). In addition, the Kepler workflow system has 
built-in tools for accessing heterogeneous environmental data by using details about data 
content and structure from metadata descriptions available in the Knowledge Network for 
Biocomplexity (KNB), a large-scale, distributed data system. Pennington et al. (2007) 
have shown that these technologies along with several others in Kepler can be used to 
solve scientific problems that require access to data in existing archives. Today, scientific 
workflows are widely being adopted by the scientific and engineering communities 
because of the advantages they provide beyond those of existing scripting and visual 
programming tools (Taylor et al., 2007a; Podhorszki et al., 2007; Bowers et al., 2008; 
Callaghan et al. 2008). However, new challenges arise when building workflows using 
sensor data from heterogeneous systems. Some of these challenges include: rapid 
exploratory analysis of the data; monitoring the quality of streaming data to ensure the 
“health” of a network; visualization and on-the-fly analysis of streaming data; recording, 
re-running, and sharing procedures that utilize sensor data; and using these data in 
conjunction with preexisting data housed in heterogeneous data stores.  
 
The Realtime Environment for Analytical Processing (REAP) project addresses several 
of these technical challenges related to accessing and using heterogeneous sensor data 
from within the Kepler scientific workflow system. In this paper we describe extensions 
to Kepler that allow users to easily access and utilize streaming data from sensor 
networks and archived data from the KNB and other data networks. We develop Kepler 
interfaces that may be leveraged by others, augment existing Kepler infrastructure, and 
create workflows that use these extensions to fulfill the needs of two very different use 
cases and to serve as examples for future Kepler users with similar needs. We begin with 
a brief scientific background on the use cases, describe related work and technologies, 
and then describe our work that addresses the software-related needs of the use cases. We 
conclude with a summary and discussion of areas of future work. 
 
 
2. Scientific Use Cases 
Our initial development efforts have primarily been focused on the needs of two very 
different scientific use cases: 1) a terrestrial ecology use case in which near real-time data 
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from terrestrial micrometeorological sensors will aid in a study of plant populations and 
their susceptibility to viral pathogens, and 2) an oceanography use case that will compare 
and match-up remotely sensed sea surface temperature (SST) data. While these use cases 
require real, multi-step analyses with specific data and computational requirements, we 
have attempted to address the needs of these use cases in ways that promote the re-use 
and extension of our work. 
 
  2.1. Terrestrial Ecology 
Non-native annual grasses currently dominate the west coast of the United States in areas 
historically dominated by perennial native bunchgrasses and forbs (Baker, 1978; Jackson, 
1985). The terrestrial ecology use case focuses on the evaluation of the hypothesis that 
this widespread invasion by non-native annual grasses in the U.S. Pacific States is 
mediated by a suite of viral pathogens in the barley and cereal yellow dwarf virus group. 
This viral group infects both 
annual and perennial grasses and 
is carried by several common 
aphid species (Halbert and 
Voegtlin, 1995). Although 
mathematical models and field 
observations are consistent with 
this hypothesis (Borer et al., 
2007), a thorough hypothesis test 
requires, in part, a detailed 
understanding of grass 
community phenology, which can 
be derived from a sensor network 
that accurately provides 
information about ambient 
meteorological conditions, soil 
moisture, and biomass accumulation in the grass canopy – all commonly measured 
factors in terrestrial ecology studies.  
 
For this study we have deployed hardware that is commonly used by the ecological 
community, to develop software for use with a realistic set of sensor equipment. A 
Campbell Scientific weather station was deployed at the Baskett Slough National 
Wildlife Refuge in Dallas, Oregon. The weather station includes a datalogger, a 900MHz 
spread spectrum radio, and a battery power supply within a weatherproof enclosure. The 
enclosure, a directional antenna, and a solar panel that serves as power source are 
mounted on a six-foot tripod (Figure 1). Eight sensors attached to the datalogger are 
mounted on the tripod and ground nearby. A program written in the Campbell Scientific 
CRBasic language runs on the datalogger, sampling data from the sensors at regular 
intervals, and a computer at a nearby U.S. Fish and Wildlife Service building periodically 
establishes radio communication to the weather station and downloads the newly 
collected data. 
 

Figure 1. 
Meteorological 
station for the 
terrestrial ecology 
use case. From left 
to right, starting at 
top: anemometer, 
lightning rod, 
quantum point 
sensor, directional 
antenna, relative 
humidity and 
temperature sensor 
within gill radiation 
shield, enclosure 
and solar panel. 
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This use case requires easy-to-use analytical software to support issues commonly 
experienced in ecological research, e.g., the need for the analysis and modeling of sensor 
network data in near real-time to detect local thresholds (e.g., hours exceeding 
developmental temperature thresholds for aphids), long-term trends (e.g., within- and 
among-season soil moisture trends), and significant events (e.g., timing of peak plant 
biomass). Having access to the results of such analyses in near real-time accelerates 
study, and facilitates managerial tasks such as optimally planning field trips. As with 
many such studies, to ensure the collection of a reliable dataset, there is also a need for 
software that monitors and analyzes incoming data, sending alerts for events such as 
power or sensor malfunction. In addition, hypothesis testing for this use case, like many 
ecological studies, requires integration of sensor data with archived data: in this case to 
assess the relative impacts of disease, plant composition, rainfall, temperature, and soil 
nutrients on competitive interactions among grasses. With the addition of the extensions 
and workflows we describe in this paper, Kepler now provides a freely available software 
solution that fulfills these requirements. 
 
  2.2. Oceanography 
Sea surface temperature (SST) fields are among the most, if not the most, broadly used 
observational datasets related to the ocean. They are used to delineate water masses, as 
indicators of the near surface density field from which geostrophic estimates are made for 
near surface currents (Kelly et al., 1999; Dong and Kelly, 2003), as tracers for estimating 
surface currents (Emery et al., 1992; Bowen et al., 2002), in support of in situ 
observations (Cornillon et al., 1988), in support of operational activities such as search 
and rescue, and in biological applications for a variety of species related studies (Hare et 
al., 2002; Baumgartner et al., 2003; Barcena et al., 2004). In addition, SST fields play an 
important role in air-sea interactions both at large scales (Chelton et al., 2001; O’Neill et 
al., 2003) and at small scales (Park and Cornillon, 2002; Song et al., 2004; Park et al., 
2006) and they are beginning to be used in operational systems by the National Weather 
Service (Ginis, personal communication, 2006). Because of their importance in 
oceanography and meteorology, for both research and operational uses, significant effort 
has been devoted over the past twenty-five years to the development of SST fields using 
data obtained from satellite-borne instruments, model output, and in situ surveys. As a 
result, scientists interested in using SST data in their work face a bewildering array of 
SST products from which to choose, generally with little to no guidance as to which 
product(s) is (are) the most appropriate for their needs.  
 
Because SST datasets can be very large, evaluations or comparisons are performed on 
small subsets of the data, generally scattered in space and time. The collection of these 
subsets is referred to as a Match-up database. Match-up databases may be generated from 
a mixture of point observations, such as those obtained from ships or buoys, and arrays, 
typically obtained from satellite-based observations or numerical models, or they may be 
generated from array datasets only. Our focus is on the latter. There are two extremes for 
the generation of such match-up databases: 1) they are predefined for a collection of 3-d 
(latitude, longitude, and time) datasets, or 2) they are built dynamically based on user 
input. Disadvantages of prebuilt match-up databases are that the user is constrained to 
datasets for which the database has been built and to the predefined density of spatial and 
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temporal match-ups. Building the match-up database on-the-fly addresses these concerns 
by allowing the user to include all datasets of potential interest and to define the density 
of match-up locations. One disadvantage of this approach is that if a number of datasets 
are being compared and the user requests a relatively high density of match-up locations, 
building the match-up database can take a significant amount of time. Despite this 
drawback, we have decided to focus our use case on comparisons made using a match-up 
database built on-the-fly. This is especially important given the increasing number of on-
line SST datasets: it is very likely that users will want to include “new” datasets in their 
analyses, datasets that may not been included in a prebuilt match-up database. 
 
This use case challenged us to extend Kepler to solve the common problem of comparing 
heterogeneous SST datasets accessible via the web from a number of different data 
providers. There is widespread need among scientists for such a tool that allows them to 
select the suite of datasets to be included in a comparison, to build a match-up database, 
and then to perform and visualize statistical analyses of this database. 
 
 
3. Related Work 
A variety of related work exists dealing with providing, accessing, analyzing and 
describing sensor data and remote environmental datasets. In this section we review work 
that is especially relevant to ours. We first describe three technologies that we leverage in 
our use cases to access remote datasets, and then contrast our work with the Sensor Web 
Enablement initiative from the Open Geospatial Consortium. 
 
  3.1. DataTurbine 
In the terrestrial ecology use case, we push our sensor measurements into a DataTurbine 
server. DataTurbine is an open-source data streaming middleware that provides a robust 
and generic interface for buffering and accessing real-time and user-selected time-ranges 
of data from a diverse set of sensors. DataTurbine also provides server mirroring 
capabilities and the ability to link servers together in parent-child relationships (Tilak et 
al., 2007). 
 
In DataTurbine terminology, data providers are called Sources, and data consumers Sinks. 
The DataTurbine API provides a means for developing sink and source applications to 
easily push and pull numeric, binary, and image data (Tilak et al., 2007). After 
purchasing our weather station, we developed a DataTurbine source to parse and push our 
numeric terrestrial sensor data into a DataTurbine server. In DataTurbine, data and their 
associated time-stamps are stored together in an independently accessible Channel. The 
data collected from our weather station forms 13 channels, e.g., one channel for air 
temperature and two for volumetric water content. After being pushed into our publicly 
accessible DataTurbine, anyone running a sink client may access the data over the 
Internet. Within Kepler we have developed a DataTurbine sink, so data from DataTurbine 
servers may be pulled directly into Kepler workflows. 
 
  3.2. KNB Metacat 
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Metacat is a “network-enabled database framework that lets users store, query, and 
retrieve XML documents with arbitrary schemas in SQL-compliant relational database 
systems” (Jones et al., 2001). Metacats are an integral part of the infrastructure in the 
Knowledge Network for Biodiversity (KNB). Many ecological datasets are stored in 
Metacat systems around the world and these are directly accessible from within Kepler. A 
workflow author can use the Kepler Data Search panel to find and use data of interest 
from these systems. 
 
Many Metacat datasets consist of ecological data described in Ecological Metadata 
Language (EML) (Fegraus et al., 2005). Kepler parses and presents this metadata for the 
end-user, enabling enhanced use of Metacat data resources in scientific workflows. For 
the terrestrial ecology use case, we have developed workflows that use EML data from 
remote Metacat servers in conjunction with near real-time sensor data from a 
DataTurbine server. 
 
  3.3. OPeNDAP 
Many of the data sources used in the oceanography use case are accessed using the 
OPeNDAP DAP protocol. OPeNDAP provides “a framework that simplifies all aspects 
of scientific data networking”, part of which is the Data Access protocol (DAP) 
(Gallagher et al., 2007). The DAP is a network protocol for access to data organized as 
name-datatype-value tuples. It provides a way to access individual variables within data 
stores (e.g., files) so that only those variables requested, or parts of those variables, are 
transferred to the client. This is accomplished using a Constraint Expression which 
describes how to subset the data source. Because data accessed using DAP are often 
stored in many types of files or databases, often unique to a particular organization, all 
transfers take place using the DAP data model to represent the data store and its contents. 
The servers provide the transformations between the local storage form and the DAP 
network representation of data. Thus a DAP-aware client can read from any DAP server 
knowing that, regardless of the actual form in which data are stored, it can manipulate the 
contents using the DAP and its single data model. The protocol has been in use since 
1995 by the Distributed Oceanographic Data System (DODS) (Gallagher and Milkowski, 
1995) and subsequently by many other projects and groups.  
 
In the oceanography use case, the DAP protocol and OPeNDAP software are used to 
subset and retrieve data from several DAP servers into Kepler workflows for further 
processing. 
 
3.4. OGC Sensor Web Enablement 
The Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) initiative is 
“focused on developing standards to enable the discovery, exchange, and processing of 
sensor observations, as well as the tasking of sensor systems” (Botts et al., 2007). OGC 
defines the Sensor Web as "web accessible sensor networks and archived sensor data that 
can be discovered and accessed using standard protocols and application program 
interfaces (APIs)" (Botts et al., 2007). The SWE initiative has established a number of 
candidate OpenGIS Specifications, including Observations and Measurements (O&M), 
Sensor Model Language (SensorML), Transducer Markup Language (TransducerML or 
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TML), Sensor Observation Service (SOS), Sensor Planning Service (SPS), Sensor Alert 
Service (SAS), and Web Notification Service (WNS) (Botts et al., 2007).  
 
Our work is a complementary effort to the SWE initiative; while SWE is focused on the 
development of standards, we are focused on providing scientists, network engineers, and 
laypersons the ability to access and interact with sensor data and services, possibly 
described by these emerging standards, from within a scientific workflow environment. 
We give examples of planned connections between our work and the Sensor Web 
Enablement initiative in section 5.1. 
 
 
4. Use Case Related Kepler Development 
 
  4.1 Introduction to Kepler Workflows 
First, we introduce some critical terminology that underlies the structure of Kepler 
scientific workflows. In Kepler, workflow authors use a graphical user interface to 
implement an analytical procedure by connecting together a series of workflow 
components, called Actors, through which data are processed. Actors that may contain a 
hierarchy of other actors are called Composites. Parts of actors that receive Tokens, which 
encapsulate single or multiple data or messages, are called Ports. Directors control the 
execution of workflows, and in a typical, simple workflow, one director manages the 
execution of one set of actors. Parameters are settings that a user may create and 
configure, e.g. to serve as arguments to an actor. 
 
  4.2 Terrestrial Ecology Workflows in Kepler 
Many of the workflows for the terrestrial ecology use case require access to the sensor 
data that is being made available in our DataTurbine server. To facilitate access to such 
data from within Kepler, we have developed a Kepler DataTurbine actor that exposes 
data from a DataTurbine server to downstream workflow components. A Kepler 
workflow author configures this actor to connect to a specific DataTurbine server. The 
actor then automatically generates its output ports, each corresponding to a data channel 
that exists in the server. The user then specifies a time range of interest, connects output 
ports of the DataTurbine actor to other actors, and operates on the output data within their 
workflow. For efficiency, only data for those output ports that are connected to other 
actors are requested from the server. A specific time range of data may be requested, or 
numerous such time ranges may be requested via iteration. 
 
DataTurbine also provides data request modes for streaming data in real-time, and 
support for these modes within Kepler has also been developed. Streaming modes are 
useful for "headless" (without a graphical user interface), continuously running 
workflows that provide notification when events of interest or problems occur. For 
example, a workflow author may use these modes to start a continuously running 
workflow that monitors a data stream for events such as sensor malfunction. 
 
We have also developed a feature in the DataTurbine actor to fill in missing data, since it 
is not uncommon for real-world data to have gaps. The user may turn this option on or 
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off; if it is on, the actor attempts to identify the sampling rate of the stream and fills any 
gaps with pairs of timestamps and empty data-points. This yields a more uniform stream 
that can be easier to operate on within certain types of workflows, for example those with 
actors that require, in advance of execution, the number of incoming tokens.  
 
The simple workflow and its resulting plot in Figure 2 illustrate an easily created 
exploratory analysis. The workflow author has configured the DataTurbine actor to use 
our DataTurbine server and has specified a time range of interest (seven days starting at 
noon, Jan 15, 2008). The channel requested, Air Temperature, is split into its data and 
timestamps components and then plotted. The Synchronous Dataflow (SDF) director is 
used since the workflow is a simple sequential procedure that does not require dynamic 
scheduling. 
 

 
Figure 2. An exploratory analysis workflow that plots sensor data from a DataTurbine 
server. There are three actors: a DataTurbine data source actor (with 13 output ports), a 
composite actor that separates a DataTurbine channel into its Data and Timestamp 
components, and a plotting actor that plots the timeseries. Three relations (“links” along 
which tokens flow) connect the actors. The Synchronous Dataflow (SDF) director 
controls execution of the workflow. For convenience, three parameters positioned 
beneath the director allow for easily changing the time-range of data that the 
DataTurbine actor will output during execution. The resultant interactive plot is also 
shown. 
 
A simple workflow for visualizing the data is often the first step a new user takes before 
building more complex workflows. For the terrestrial ecology use case, we have 
developed three categories of more complex workflows that are critical to addressing 
specific scientific questions. However, these workflows also demonstrate capabilities that 
are broadly relevant to any researchers using near real-time data. The first are event 
detectors, analyzing incoming streaming sensor data to detect events such as sensor-
malfunction, or grass emergence and initiation of growth. The second group of 
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workflows provide quality assurance filters, processing incoming sensor data through a 
series of criteria to produce “higher level” derived data products that may be archived for 
use in post-hoc analyses. The third set of workflows is for post-hoc analysis of data, 
representing a series of analyses and models that combine sensor data with archived data, 
e.g., from experimental treatments to assess the relative effects of fertilization and disease 
on competitive exclusion by the annual grasses described in section 2.1. 
 
One example from the first category, event detection, is a workflow that analyzes our 
meteorological station’s battery power level and sensor data outputs and sends email 
warnings if data points fall outside specified thresholds. On receiving such an alert, a user 
may look at the data more closely to determine if any action is necessary (e.g., a trip to 
the site for repair), thus minimizing periods of data loss or the collection of poor quality 
data. 
 
An example from the second category – workflows that generate higher-level derived 
data products – is a workflow that operates on the photosynthetically active radiation data 
collected from our meteorological station’s light sensors. This workflow requests light 
sensor data from our DataTurbine server, carries out a series of quality checks (e.g., 
checking if the data are within accepted ranges and if the ambient, “above canopy” data 
values are greater than those from the sensors along the ground), and then outputs 
“cleaned” and “error” datasets. This workflow uses a set of RExpression actors (the 
RExpression actor provides integrated access to the R language and environment for 
statistical computing and graphics (R Development Core Team, 2009)), leveraging R’s 
statistical and data-manipulation functions. 
 
By adding the ability to access streaming data from DataTurbine servers from within 
Kepler, a new set of options is available to users, not only for using these data on their 
own, but in novel combination with preexisting datasets. Kepler now provides a unified 
environment within which a user may analyze streaming data in near real-time against 
preexisting datasets. An example from the terrestrial ecology use case for such post-hoc 
analysis is the workflow show in Figure 3, in which archived, on-line data (an EML 
formatted dataset from the KNB Metacat: the number of aphids caught in pan traps at 
Baskett Slough Wildlife Refuge and other sites), is plotted against streamed sensor data 
(Baskett Slough Wildlife Refuge meteorological sensor data pulled from our DataTurbine 
server). 
 



 10 

 
Figure 3. Post-hoc analysis workflow in which an EML formatted dataset found in the 
KNB is compared against sensor data. 
 
  4.3 Oceanography Workflows in Kepler 
To meet the needs of the oceanography use case, we have developed workflows to 
statistically compare a suite of SST datasets accessible via OPeNDAP. The steps – 
selection, acquisition, and analysis – of this suite of workflows are outlined below in the 
context of a simple example. Although the workflows have been designed for SST 
datasets, there is nothing that constrains the measurements to SST; the procedure will 
work for any collection of geospatial time series datasets representing a given variable. 
 



 11 
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sets to use
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Data Base

Figure 1: Workflow for SST field evaluation software package for a user who wants to compare HYCOM SST

fields with Pathfinder SST fields.

match-up database from a local dataset(s) and/or a remote dataset(s). The match-up dataset is written
to a relational database. As currently configured, the database resides at the San Diego Supercomputer
Center (SDSC), but the database could reside locally as well.

In the final step, a second workflow analyzes the data stored in the match-up database. As currently
configured the analyses are very simple calculations of the mean and standard deviations of the SST values
in each tile for the two data sets as well as the di�erence between the means. The workflow generates a KML

file based on the results of this analysis which can be displayed using Google Earth.
As is evident from the discussion above, the two workflows developed to date define a rudimentary system

with a limited number of options. Over the next year, these workflows will be refined and made available to
the community.

 
Figure 4: Schematic of a sample application of the SST Comparison procedure 

 
Figure 4 is a rendering of the various components required for a simple SST comparison 
scenario. In this scenario, the user uses the oceanography workflows to compare SST 
fields output from the Hybrid Coordinate Ocean Model (HYCOM), an ocean general 
circulation model (OGCM), with those available from the Pathfinder v.5 dataset, based 
on Advanced Very High Resolution Radiometer (AVHRR) retrievals.  
 
Initially the user specifies the HYCOM SST dataset (this is the primary dataset in this 
example), the parameter of interest (SST in this case), the spatial and temporal range 
from which to build the match-up database, the fraction of SST fields to be sampled and 
the fraction of the area of each field to be sampled, and the number of tiles (subareas) that 
are to be used for this area. Known SST datasets are checked for those that meet the 
search parameters and the results are presented to the user who then specifies which ones 
are to be used, such as the AVHRR dataset in this case.  
 
The second step in this scenario generates the match-up database, and is implemented by 
the workflow shown in Figure 5. Using the specified temporal sampling fraction, the 
appropriate number of HYCOM SST fields is randomly selected and the AVHRR field 
nearest in time to each of the selected HYCOM fields is identified. The workflow also 
calculates the area of each tile and randomly selects the spatial center of each tile. As 
currently configured, the location of tiles is randomly selected for each instance in time; 
i.e., the tiles are located at different places from one temporal sample to the next. This 
could be changed so that the spatial location of tiles is the same at all times or this could 
be a user specified option. Once the times, tile sizes, and tile locations are known, the 
workflow acquires first the data from one dataset and then from the other. As currently 
configured the datasets are both assumed to be remote and accessed via OPeNDAP, but 



 12 

the workflow could be modified to build the match-up database from a local dataset(s) 
and/or a remote dataset(s). The match-up dataset is written to a relational database.  
 

 
Figure 5: The “Build Tiles” workflow. The workflow first chooses the set of times and tile 
locations to build the match-up dataset. Next, it retrieves the SST measurements from 
OPeNDAP servers and stores them in a local SQL database. The PN director used in 
this workflow runs each actor in parallel, thereby decreasing the overall workflow 
execution time. 

 
In the third and final step, the “Analyze Tiles” workflow analyzes the data stored in the 
match-up database (Figure 6). Currently the analyses are very simple calculations of the 
mean and standard deviations of the SST values in each tile for the two datasets as well 
as the difference between the means. This workflow generates a KML file based on the 
results of these analyses, which can be displayed in Google Earth (Figure 7).  
 

 
Figure 6: The Analyze Tiles workflow analyzes a single run of the Build Tiles workflow. 
The sizes, locations and times of the match-up tiles are written to a KML file so that they 
may be viewed in Google Earth. This workflow uses the DDF director since it allows 
actors to write and read variable amounts of data. 
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A number of enhancements to Kepler were made to implement these workflows that are 
valuable beyond this use case. For example, to import satellite derived sea surface 
temperature data into Kepler, we developed an OPeNDAP actor that provides access to 
data served by any Data Access Protocol (DAP) 2.0 compatible data source. The 
OPeNDAP actor reads data from a single DAP data server and provides that data as 
either a matrix (1xN, or NxM) or an array of more complex dimensionality for processing 
by downstream actors in a Kepler workflow. 
 
Each DAP server provides (serves) many data sources and each of those data sources can 
be uniquely identified using a URL in a way that is similar to how pages are provided by 
a web server. The OPeNDAP actor takes as configuration parameters the URL to a 
specific data granule available on a server and an optional constraint expression (CE). 
Based on the URL and optional CE, the actor configures its output ports to match the 
variables to be read from the data source. 
 
Additionally, a new Kepler data type for timestamps was created, along with actors to 
create timestamps, calculate the difference between timestamps, choose a random 
timestamp within a time span, and convert timestamps to formatted strings. The 
oceanography workflows use the timestamp data type and related actors to retrieve 
randomly selected time-slices of SST measurements. 
 

 
Figure 7. The result of an execution of the workflows in Figures 5 and 6 is shown above, 
displayed in Google Earth. Specific points display the difference in mean temperatures 
between two datasets. 
 
  4.4. Data source handling in Kepler 
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We have now demonstrated access to two new types of data systems within Kepler: 
DataTurbine data streams and data stores available through OPeNDAP. This significantly 
enhances the data systems that scientists can utilize in Kepler (Table 1), but emphasizes 
one of the primary remaining shortcomings: customized actors for each data source. 
 
Table 1: Some Kepler data source actors. No or user-defined metadata format is 
denoted by a dash. 
Actor Name Data System Metadata Format Data Format 
EML200DataSource EarthGrid/Metacat Ecological 

Metadata Language 
(EML) 

Various (CSV, 
raster images, 
vector images) 

DarwinCoreDataSource DiGIR — DarwinCore 
DatabaseQuery JDBC — Relational 
OrbPacketObjectSource AntelopeORB — Orb packets 
DataTurbine DataTurbine — Named 

timestamp/data 
channels 

OpendapDataSource OPeNDAP OPeNDAP DDS OPeNDAP data 
model 

SRBSGet Storage Resource 
Broker (SRB) 

Uncontrolled 
Name-value pairs 

Various 

FTPClient FTP — Various 
URLToLocalFile HTTP — Various 
GridFTP GridFTP — Various 
  
Because each data system has its own actor with parameters customized for use with that 
particular data system, it is difficult for scientists to utilize these actors without prior 
familiarity with each of the corresponding data systems. For example, to use the 
OPeNDAP actor, one must know and understand the OPeNDAP URL syntax, while 
using the DataTurbine actor requires understanding how to constrain incoming data 
streams based on a timestamp and duration value. Neither of these is easy to handle by a 
person unfamiliar with that system. 
 
 
5. Discussion 
Kepler workflows can now be used to accomplish the full suite of analysis and modeling 
procedures employed in our two use cases, including accessing both streaming sensor 
data and archived historical data via many of the data access protocols in use today. As a 
consequence, Kepler represents one of the few analytical environments in which effective 
data access is combined with formal specification of an analysis to allow one to 
completely and accurately archive an analysis in an executable format. In contrast, many 
analytical systems such as R and Matlab currently provide only limited integrated support 
for accessing scientific data networks, typically via various relational database access 
clients. By developing actors that can read data directly from sources such as 
DataTurbine and OPeNDAP, Kepler provides tools useful to a broad set of data providers 
and consumers, and addresses needs beyond those specific to our example use cases. 
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Although we have designed workflows that use the DataTurbine actor to retrieve data 
from a server hosting terrestrial meteorological data, and the OPeNDAP actor to retrieve 
data from OPeNDAP servers hosting SST data, a user may easily configure these actors 
to access different servers with different types of data. These new data source actors may 
be used in conjunction with the many other data systems supported, for the construction 
of workflows that can, as our work demonstrates, vary widely in purpose and complexity. 
 
Our workflows also serve as useful starting points for a scientist or network manager 
using sensor network data. We provide examples of exploratory analyses, monitoring and 
alerting, visualization, and more complex analyses creating higher-level data products. 
After creating such workflows, the user reaps the benefits of Kepler: the workflow is 
easily shared, archived, modified, or re-run. When opened in Kepler, a workflow itself 
provides a visual depiction of an analysis, which can be flexibly annotated and organized 
to appeal and be comprehendible to a wide audience. 
 
  5.1 Future Work 
We envision several areas of future work that will continue to streamline and improve the 
analytical process for scientists using workflows. Based on our work with DataTurbine 
and OPeNDAP, we plan to develop more general inspection, monitoring, and control 
interfaces that work with other common sensor middleware software such as Boulder 
Real Time Technologies’ Antelope software. With these interfaces, for example, 
scientists will be able to browse data and be alerted when events of interest occur, and 
network engineers will be able to monitor the performance of deployed sensors or adjust 
data sampling rates. 
 
Another area of work will focus on effective management of sensor stream data by using 
workflows for quality assurance to create high-quality datasets that are deposited in long-
term archives. We plan to build workflows that format streaming sensor data into EML 
and then archive these data as they progress through quality assurance and processing 
steps into a Metacat. For example, it will be possible for a network engineer to request 
“level 0” or “raw” data from a Metacat, while a scientist might request a “cleaned” data 
product. 
 
Additionally, we will investigate integrating Kepler with the Sensor Web Enablement 
initiative so that scientists can access data that are exposed via these emerging standards 
from within Kepler. For example, we could enable workflow authors to easily obtain and 
use data from a Sensor Observations Service, and provide mechanisms for using data that 
are organized using the Observations and Measurements specification. 
 
As discussed in section 4.4, the existing Kepler data source actors present workflow 
developers with many different types of interfaces. To address this complication, as we 
develop new data source actors, we will unify and generalize those that already exist, 
shielding workflow authors whenever possible from underlying technological details, and 
leaving them with simpler sets of options from which to choose. This work will be 
critical to improving Kepler's usability for scientists that may not be familiar with the 
various data access protocols that are in use. In the meantime, simply having access to the 
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many datasets available through various data access protocols from within a single 
workflow system should result in significantly increased capabilities to efficiently access, 
monitor, analyze and integrate diverse environmental information. 
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