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Abstract

Rapid population growth, and human activities (such as agriculture, in-
dustry, transports,...) development have increased vulnerability risk for wa-
ter resources. Due to the complexity of natural processes and the numerous
interactions between hydro-systems and human pressures, water quality is
difficult to be quantified. In this context, we present a knowledge discovery
process applied to hydrological data. To achieve this objective, we combine
successive methods to extract knowledge on data collected at stations located
along several rivers. Firstly, data is pre-processed in order to obtain different
spatial proximities. Later, we apply a standard algorithm to extract sequen-
tial patterns. Finally we propose a combination of two techniques (1) to
filter patterns based on interest measure, and; (2) to group and present them
graphically, to help the experts. Such elements can be used to assess spatial-
ized indicators to assist the interpretation of ecological and river monitoring
pressure data.
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1. Introduction

Improvements in digital data collection devices and data storage tech-
nology have allowed companies and organizations to store increasingly huge
amounts of data thus making it harder to analyze them manually. Therefore,
new techniques have been developed to help humans to automatically turn
this huge volume of data into useful knowledge that enables a better under-
standing of phenomena occurring in their environment. These techniques
make up Knowledge Discovery in Databases (KDD) which is characterized
as a multi-step process for discovering valid, novel and potentially useful
information.

Natural phenomena involve both spatial and temporal components. For
example, in environmental contexts, river pollution is a phenomenon which
is observed by measuring physicochemical and biological indicators for water
quality. These indicators which evolve over time, depend explicitly on the
location of sampling stations strategically located along several rivers.

If systems dedicated to water quality monitoring have existed for several
decades, the challenge is now to define indicators to take into account the
impact of uses and water quality restoration measures. In this context, to
build an efficient tool, spatial relations both metric (e.g., distance) and non-
metric (e.g., topology, locations,...) and temporal relations (e.g., before or
after) must be considered in the KDD process in order to better understand
spatiotemporal phenomena.

In this paper, our objective is to analyze the water quality in the hy-
drological network of Saône watershed (located in the East of France, see
Figure 1). To achieve this goal, we describe a KDD process for hydrological
data consisting of: (1) a pre-processing step to transform data by group-
ing stations that consider their different spatial proximity according to their
distance, to membership in a common area,...; (2) a second step dedicated
to the extraction of sequential patterns in order to take into account the
temporal aspect, and; (3) post-processing step, combining a new interest
measure called the least temporal contradiction in order to filter sequences to
retain only the least contradicted over time. This technique is coupled with
another one that allows us to determine the degree of similarity between
patterns obtained and regroups them.

This paper is organized as follows: in Section 2, we present a brief
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Figure 1: The Saône river watershed: location (a) and hydrographic network (b)

overview of knowledge discovery process in spatiotemporal data. After, in
Section 3, we describe a framework for extracting knowledge. The exper-
iments performed are described in Section 4. Finally, we show the results
of our proposals by highlighting the short and medium term perspectives in
Section 5.

2. Related work

Knowledge discovery in databases (KDD) is a dynamic research field.
Fayyad et al. [1] presented the most widely used KDD framework and pro-
vides a broad overview of knowledge discovery techniques. Here KDD, was
described as a set of interactive and iterative steps: data selection, pre-
processing, transformation, data mining, and post processing or interpreta-
tion. As mentioned by Fayyad et al. [1], the basic problem addressed by the
KDD process is one of mapping low-level data into other forms that might be
more compact, more abstract, or more useful. Data mining is only a step of
this general process. Indeed, using only a data mining technique can lead to
the discovery of meaningless patterns for experts. Other steps of the KDD
process have been added to deal with this problem. All those steps working
together and integrating findings into a unified whole produce new knowledge
[2].
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The advent of GIS (Geographical Information Systems) technology and
the availability of large volume of spatiotemporal data has increased the need
for effective and efficient methods to extract unknown and unexpected infor-
mation. Unfortunately, in many situations, a simple data mining method will
often be limited in its ability to retrieve informative knowledge from com-
plex spatiotemporal databases [3]. The specificity of environmental data -
and in a more general sense spatiotemporal data, w.r.t. classical data - is the
significance of spatial and temporal dimensions for the extraction and inter-
pretation process [4]. In this context, authors in [5] highlight the importance
of pre and post-processing in a KDD process concerning spatiotemporal data.

Pre-processing and transformation steps (or more simply pre-
processing) are directly related to the data mining step. These steps have
an important impact on mining results. For example in [6], pre-processing is
used to integrate spatial information in the data mining step. Spatial data
is converted in spatial predicates. Thanks to this transformation, a classi-
cal data mining algorithm can be used to extract spatial patterns. Another
important criteria when pre-processing spatial data is the granularity chosen
when materializing the spatial data as a single table. Indeed, classical data
mining algorithms take a simple table as input and does not consider spatial
information directly. If the objective is to study changes in data generated
by stations, one way of extracting such spatial patterns is to aggregate infor-
mation for each station in a single row of the input table. In [7, 8], spatial
data is mapped to sets of values or sequences of values.

Several pre-processing techniques in spatiotemporal datasets have been
discussed in the literature [9, 10, 11]. Each reference has its own focus such
as spatial classification, spatial clustering or spatial association rules. To
our knowledge, no works have tried to mine sequential patterns at different
spatial granularity levels and then combine their results to obtain more infor-
mative and general spatial patterns. In fact, the goal of spatial data mining
is to discover spatial patterns and to suggest hypotheses about potential gen-
erators of this kind of patterns. This task is not straightforward and requires
us to challenge the classical KDD process. In this paper we focus on spatial
patterns from the perspective of space division using different levels of spatial
granularities. This task was performed to deduce more general patterns by
averaging attributes of spatial objects grouped into homogeneous areas.

Post-processing is also an important step in the KDD process. Results
generated by data mining algorithms are often difficult to interpret by ex-
perts. The number of extracted patterns may be too large and some of them
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may not be meaningful for experts. Thus, post-processing techniques are
needed to (1) filter more relevant patterns and to (2) display solutions in a
user-friendly way.

Many measures exist to filter relevant patterns. In the more general
context of association rules with the antecedent → consequent form, many
measures have been proposed to evaluate the relevance of extracted rules,
and hence reduce the set of solutions that a human expert can analyze. A
comparative study of several relevance measures is presented in [12]. Classical
measures for association rules try to evaluate the independence gap between
antecedent and consequent. The confidence [13], number of counter-examples
associated to rules [14], statistical astonishment [15, 16] are some examples
of such measures.

For spatiotemporal data, several measures have also been proposed. Al-
though this topic has received lot of attentions from the research community
[17], to our knowledge, no measure has been proposed to evaluate the spatial
and temporal prevalence of a pattern in an easily understandable way for ex-
perts. Most spatiotemporal measures evaluate only the ”spatial support” of
each pattern, i.e., the number of times the pattern occurs in different places.
In [8], the authors use the classical version of spatial support for the extrac-
tion of spatiotemporal patterns. More efficient measures have been proposed
to capture the ”spatiality” in a data mining process. For instance, in [18], the
authors define the participation index as a prevalence measure used in the
extraction of co-locations. The participation index measure has been modi-
fied for different purposes, for example, for the extraction process of cascade
spatiotemporal patterns [19] or for the extraction of confident co-location
rules [20].

When the temporal prevalence is considered, resulting measures are very
difficult to interpret by experts.

In the post-processing step, comparing two patterns by similarity is a
fundamental task that has to be defined before one can apply statistical,
machine learning, or data mining methods [21]. In order to get a clear view
of data, patterns should be classified or clustered so that semantically similar
terms are grouped together. Similarity measures such as Edit distance [22]
and LCS [23] have been proposed in literature and have been applied in
many contexts [24, 25, 26]. The measure S2MP proposed in [27] has been
adopted in this work due to its effectiveness and its applicability to sequences
of itemsets (see Section 3.3).

In addition, information visualization is an important aspect to help the
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expert in the decision-making task. In this context, some techniques targets
the visual representation of patterns extracted in order to help experts to
better understand and analyze information (for a survey, see, e.g., [28]). In
our work, we propose a graphical representation of solutions in groups of sim-
ilar patterns using the S2MP measure and k-medoids clustering algorithm.
In the next section we will describe our proposition.

3. A framework for mining spatiotemporal data

In this section, we describe the steps of the general process used to extract
knowledge in spatiotemporal database.

3.1. General process

Our approach is divided into four steps: (1) spatial decomposition and
aggregation; (2) spatially frequent sequential patterns mining; (3) filtering of
patterns according to a temporal interest measure, and finally; (4) restitution
of solutions in groups. This general process is illustrated in Figure 2.

Figure 2: Process of knowledge discovery applied to hydrological data

Spatial decomposition and aggregation are pre-processing steps in which
spatial data is mapped to sequences according to different spatial relation-
ships (e.g., station proximity, watercourse). The resulting spatial sequences
are the input of the data mining algorithm. The data mining step extracts
frequent sequences [13], i.e., those occurring in more than just minsup zones
(where minsup is a user-defined threshold). Therefore, extracted patterns
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represent spatially frequent temporal evolutions of zones. The spatial fre-
quency is evaluated by the support measure. Solutions are then filtered
according to a new temporal interest measure: the least temporal contradic-
tion. This filtering step reduces the number of solutions by eliminating the
most contradicted sequences. Later, solutions are grouped using a similarity
measure. Finally, all interesting sequences mined at different spatial gran-
ularities are combined. Similar sequences are displayed in groups so that
experts have access to results which are concise and easier to interpret.

3.2. Spatial pre-processing

Hydrological data are associated to biological indicators collected by mon-
itoring stations strategically positioned along the Saône watershed. This het-
erogeneous data is also geo-referenced and temporally variable, thus making
them difficult to explore globally. Moreover, the spatial relationship between
studied objects (i.e., monitoring stations) is implicit. It is therefore necessary
to perform pre-processing that takes into account different spatial proxim-
ities (e.g., grouping stations according to their distance, according to their
association to the same zone,...).

We propose in this step to explore these data in two different ways. The
first way is to consider each monitoring station as a unique spatial object so
that we can then apply a classical pattern extraction algorithm. The second
option is to pre-process data to bring together some monitoring stations
and build homogeneous zones of spatial objects. This will enable to study
how neighboring station attributes can impact the attributes of the studied
station.

For example, in Figure 3, we observe that the monitoring station X can
be impacted from both neighbor stations that are located on the same wa-
tercourse (represented by yellow lines) or/and monitoring stations that are
in a contiguous area but not necessarily positioned on the same watercourse
(represented by the red line).

In this context, spatial data can be used to determine the relevant geo-
graphical areas to handle (1) flow aspects, by combining the proximity related
to watercourse, the flow direction and the connections between the rivers;
(2) the spatial proximity of stations, expressed by their Lambert coordinates
(geo-referenced coordinate system). Purposely, two spatial divisions were
performed in the pre-processing step to divide the space into homogeneous
zones:
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X

Figure 3: Impact of neighboring stations to monitoring station X

• A watercourse neighborhood approach: for a given watercourse, two
stations X and Y located on this watercourse are considered to be
neighbors. For example, in Figure 4, stations W , X, Y and Z belong
to the same watercourse. These stations are considered to form a single
area and their data are combined. An incident that can be studied
thanks to this approach is: a fuel outflow from a boat at station X will
impact on measures of station X and later on measures on stations Y
and Z located on downstream of station X.

• The ε-neighborhood: the space is divided into areas adjoining each
station by exploiting the Lambert coordinates. In each of these areas,
stations that are located within an area of ε km2 centered on station
X are grouped, even if these stations belong to different watercourses.
For example in Figure 5, stations X and Y are considered to be in the
same area, even if they are not on the same watercourse. An example
of phenomenon that can be studied due to this approach is: pesticide
use in a crop field located between stations X and Y can impact on
measures of stations located on rivers around this crop field even if
stations are not positioned in the same river.

Thanks to these two spatial division methods, we are able to group the
stations within areas and thus to aggregate data in order to extract spatially
frequent sequences.

In the following sections, we will show that this aggregation provides the
most relevant sequential patterns that allows for the heterogeneous nature of
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Figure 5: ε-neighborhood zoning

the records.

3.3. Sequential patterns mining

Consider the database DB, illustrated in Table 1, which groups all records
made by stations along several rivers (e.g., in Table 1, item A could be ”good
state according bioindicator IBGN value”).

Each tuple T is a transaction and consists of a triplet (id-station, date,
items): the id of the station, the date of record as well as all current charac-
teristics of the river.

Let I = {i1, i2, . . . , im} the set of items (characteristics). An item-
set is a non-empty set of items denoted by (i1, i2, . . . , ik) where ij is an
item. A sequence S is a non-empty ordered list, of itemsets denoted by
< IS1, IS2, . . . , ISp > where ISj is an itemset.

A n-sequence is a sequence of n itemsets.
For example, consider characteristics A,B,C,D and E recorded by the

station Station1 according to the sequence S =< (A,E)(B,C)(D)(E) >, as
shown in Table 1. This means characteristics A and E were recorded together
by Station1, i.e., at the same time. Then, Station1 recorded B and C, the
last items in the sequence were recorded later and separately, by the same
station. In this example, S is a 4-sequence.

A sequence < IS1, IS2, . . . , ISp > is a subsequence of another sequence
< IS ′1, IS

′
2, . . . , IS

′
m > if there exist integers k1 < . . . < kj < . . . < kp

such as IS1 ⊆ IS ′k1 , IS2 ⊆ IS ′k2 , . . . , ISp ⊆ IS ′kp . For example, the sequence
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Table 1: Example of river characteristics dataset

ID-station Date Items

Station1 04/01/12 (A E)
Station2 04/02/28 (E)
Station1 04/03/02 (B C)
Station1 04/03/12 (D)
Station1 04/04/26 (E)

S ′ =< (B)(E) > is a subsequence of S because (B) ⊆ (B,C) and (E) ⊆ (E).
However, < (B)(C) > is not a subsequence of S because the two itemsets (B)
and (C) are not included in two different itemsets of S. All characteristics
recorded by the same station are grouped and sorted by date. It is called the
data sequence of the station.

A station supports a sequence S if S is included in its data sequence (S
is a subsequence of the station data sequence). The support of a sequence S
is calculated as the percentage of stations that support S.

Letminsupp be a minimum support set by the user. A sequence satisfying
the minimum support (i.e. whose support is greater or equal than minsupp)
is a frequent sequence called a sequential pattern.

The sequential patterns mining problem was introduced by [13] in
the context of the basket market problem and applied with success in many
fields such as biology [29], Web mining [30, 31] or the consumer market-
ing [32].

As noted above, the main challenge involved in finding sequential patterns
in a database is to extract sequences for which support is greater or equal
than the specified minimum threshold minsupp.

To extract sequential patterns, the PrefixSpan algorithm [33] has been
adopted because of its effectiveness with large volumes of data. This method
uses a divide and conquer strategy by performing a depth-first search with
successive database projections.

3.4. Filtering with a new interest measure

In the data mining domain, huge number of sequential patterns are fre-
quently obtained. Choosing the most relevant one remains a challenge which
is often correlated with the type of data handled.

Even if spatiotemporal data mining has received a lot of attention [34, 35],
the study of literature does not report on any work on spatiotemporal interest
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measure for sequential patterns. We thus focus on finding sequential patterns
that are not contradicted by data over time.

For this, we extend the measure called the least contradiction (LC), de-
fined for association rules in [14, 36] to our context, i.e., sequential patterns.

It must be recalled that this measure, in the context of an association
rule A→ B, where A and B are two disjoint sets of items, is defined by:

LC(A→ B) =
supp(AB)− supp(AB)

supp(B)
(1)

AB are itemsets where A is present and B is absent.
We choose to extend the least contradiction measure to sequences of item-

sets for two main reasons. First, this measure is simple to understand and
to implement. Second, previous work has illustrated the capacity of this
measure to extract nuggets of knowledge [14] and to resist to noise [36].
Other measures such as lift could also be extended to sequences of itemsets,
however, its definition is close to the one of the least contradiction.

Definition: let S be a sequential pattern, the Least Temporal Contra-
diction of S, denoted LTC(S), is defined by:

LTC(S) =

supp(S)−
∑
sd∈Sd

supp(sd)∑
st∈St

supp(st)
(2)

where


Sd the set of sequential patterns including all itemsets

of the sequence S but in a different position
St the set of sequential patterns including all items

which appeared in sequence S

LTC allows us to keep the original spirit of the least contradiction mea-
sure which was designed to estimate how many times a sequential pattern is
verified vs how many times it is disabled. A sequence that is most frequently
tested as enabled is a priori relevant. Like the conventional version, the
LTC is normalized. Here, normalization is performed in relation to the sum
of supports of the sequences that can be built from the items composing the
studied sequence.

For example, consider the following sequential patterns and their support:
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
S1 =< (AB)(BC) > , supp(S1) = 0.25
S2 =< (BC)(AB) > , supp(S2) = 0.10
S3 =< (AB)(CE) > , supp(S3) = 0.12
S4 =< (AB) > , supp(S4) = 0.13
S5 =< (EA)(BC) > , supp(S5) = 0.20

Then,

LTC(S1 =< (AB)(BC) >) =

supp(S1)−
∑
sd∈Sd

supp(sd)∑
st∈St

supp(st)

=
0.25− 0.10

0.67
= 0.224

with


supp(S1) = 0.25
Sd = {S2}
St = {S1, S2, S3, S5}

We find (BC) and (AB) in S2 (which has the same itemsets as the se-
quence S1, but in a different order) and found items A,B and C in S2, S3

and S5, but not in S4 which only contains items A and B.
Algorithm: Algorithm 1 describes the steps for computing LTC. This algo-
rithm is divided into two steps: (1) we look for sequences containing common
itemsets between the studied sequence and candidate sequence without con-
sidering the position of appearance (the first inner loop), and; (2) we look
for all sequences from among candidate sequences that contain all items con-
tained in the sequence under study (second inner loop). This algorithm has a
complexity of at most O(n2∗m) where n is the number of sequential patterns
in the sequential pattern database (spDB) obtained at the end of the mining
step and m represents the size of the longest pattern.

3.5. Restitution of extracted patterns

In the extraction of knowledge, once the sequential patterns extraction
process has been run, it is essential to compare the similarity of obtained
objects (e.g., for sequential patterns visualization). This task is more difficult
if we have results that include complex sequences composed of sets of items
such as sequential patterns.
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Algorithm 1: Calculation of the least temporal contradiction

Input: spDB: Database of sequential patterns and its supports
Output: the least temporal contradiction for each sequential pattern

S ∈ spDB
begin

LTC = φ;
forall the (sequential pattern S1 ∈ spDB) do

suppSd ← 0 ;
suppSt ← 0 ;
forall the (sequential pattern S2 ∈ spDB − {S1}) do

all in← true ;
while (all in) do

forall the (itemset IS ∈ S1) do
if (IS 6⊆ S2) then

all in← false;
else

next IS ∈ S1;
end

end

end
if (all in) then

suppSd ← suppSd + supp(S2) ;
end
all in← true ;
while (all in) do

forall the (item I ∈ S1) do
if (I 6∈ S2) then

all in← false;
else

next I ∈ S1;
end

end

end
if (all in) then

suppSt ← suppSt + supp(S2);
end

end

LTC(S1)← supp(S1)−suppSd

suppSt
;

end
return LTC;

end
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Several approaches have been developed to compare similarity between
two sequences [37]. In this paper, we use a similarity measure called Simi-
larity Measure for Sequential Patterns (S2MP ) proposed in [27] which takes
into account the characteristics and semantics of sequential patterns. Indeed,
this method can be used to measure the similarity of patterns and therefore
provide coherent groups of analogous sequential patterns. S2MP is based
on two scores: the mapping score which takes into account the number of
common itemsets between two sequences and the order score which takes
into account the common order of these itemsets.

The mapping score Sm: We associate all itemsets of the first sequence
with all itemsets of the second sequence and for each association we com-
pute a weight (number of common items divided by the number of items of
two compared itemsets divided by two). For each possible combination of
associations, we calculate an average of weight and store the combination
associated with the best average.

For example, consider two sequences S1 =< (A,B,C)(A,B)(C,D) >
and S2 =< (A,B)(C,A)(A) >. The weight associated with the association
between the itemsets (A,B,C) in S1 and (A,B) in S2 is equal to 2/((3 +
2)/2) = 0.8. Similarly, we associate (A,B,C) and (C,A) with a score of 0.8
and (A,B,C) and (A) with a score of 0.5. For the first itemset (A,B,C) of
S1, the association selected is (A,B) with a score of 0.8. The same procedure
is adopted with the other itemsets in S1: we combine the itemset (A,B) with
(A) with a weight of 0.6 and the itemset (C,D) with the itemset (C,A) with
a weight 0.5. Finally, Sm is the average weight of these three associations,
i.e., 0.65.

The order score So: To calculate this score, we aggregate two sub-
scores: totalOrder, the percentage of associations respecting sequence order
and positionOrder, which correspond to the gap between two consecutive
associations. To achieve this, we use the formula:

So = max {totalOrder(sub) ∗ positionOrder(sub)} (3)

with sub ∈ { sub-sequences growing on studied sequence} .

For example : The order of itemsets associated to S1 on S2 are (1,3,2). We
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find two growing sub-sequences, (1,3) and (1,2).

TotalOrder = 2/3

PositionOrder({1, 3}) = 1− (1− 2)/3 = 2/3

PositionOrder({1, 2}) = 1− (2− 1)/3 = 2/3

So = max(
2

3
∗ 2

3
;
2

3
∗ 2

3
)

= 0.44

The value of S2MP measure is the half of the product of mapping score
and order score.

S2MP = Sm ∗ So/2
= 0.65 ∗ 0.44/2

= 0.143

This measure was used - simultaneously - to compare the patterns ob-
tained by considering the three spatialization approaches.

4. Application to hydrological data

In this section, we describe the application of our spatiotemporal knowl-
edge discovery process to hydrological data of the Saône watershed.

4.1. Context and data

Our database is composed of biological indicators measured on the Saône
watershed. Figure 1 describes the geographical location of watercourses and
water sampling stations in this watershed. Table 2 shows a small portion of
the complete database.

Two types of data are available: (1) static informations related to the
station itself (its location, its reference code, etc.) and; (2) dynamic infor-
mations which correspond to data measured by the station.

Static data concerns to the characteristics of each station, i.e.:

• Identification of the station (codstace)
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Table 2: Data of Saône watershed

codstace codmasseau x y hydroecor rdate ibgn ibd ...

6000890 FRDR696 863500 2332140 10 2008-09-23 -100 12
6000890 FRDR696 863500 2332140 10 2001-07-10 17 -100
6000950 FRDR694 893478 2346387 4 2008-08-28 17 13
6000980 FRDR697 866447 2341582 10 2008-08-27 15 12
6001250 FRDR691 864725 2323175 10 2003-08-20 -100 12.5
6003550 FRDR680 877007 2300933 10 2008-07-31 -100 14
6456610 FRDR631 946436 2295348 18 2008-07-19 -100 12.3
... ... ... ... ... ... ... ...

• Code of the surface water body where the station is located
(codmasseau). Surface water body can correspond to a river, a canal,
a section of a river or a section of a canal. For the Saône, there are 572
watercourses corresponding to surface water bodies. Objects like lakes
and ponds are not studied;

• Spatial coordinates of the station (x, y). The Lambert Projection
System 93 is used for the geo-referencing;

• Hydro-ecoregion code (hydroecor). A Hydro-ecoregion is a homoge-
neous spatial unit in terms of geology, topography and climate. This is
one of the main criteria in the typology and definition of surface water
bodies. Metropolitan France is divided into 22 hydro-ecoregions and 7
hydro-ecoregions are presents in the studied area;

• A kilometric point of the station on the watercourse. This measure, in
kilometers, corresponds to the distance from the downstream conflu-
ence to the water quality station following watercourse;

• Size of water bodies at the station point. Sizes are ranking in five
classes (very small, small,..., extra large) according to Strahler order
that allows to define the spatial hierarchy of hydrographic network;

• Fish context of the station. This is a spatial unit for which a fish
population operates independently.

Dynamic data are measures conducted by the stations. The frequency
of these records varies with time and stations. Some stations have recurrent
sample data while other stations only have a single sample data (e.g., for
general monitoring). The main items associated with records are:
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• Date of measure (rdate);

• Standardized Global Biological Index (ibgn). This index, called
IBGN, is a standardized measure based on identification of macro-
invertebrates in rivers;

• Biological Diatom Index (ibd). This index, named IBD, is a standard-
ized measure to diagnostic trophic pollutions.

IBGN, IBD and a measure corresponding to the fusion of IBGN and
IBD are standardized according to the water body and the hydro-ecoregion
attributes. The IBGN and IBD measures have been made taking into ac-
count two points of view: a note (e.g., idb note) and their current status
(e.g., ibgn stat). In addition, other three variables have been included in our
dataset: (1) the taxonomic variety (var taxo) representing the total number
of taxa collected during a sampling, even if they are only represented by a
single individual; (2) the faunal group that is the more sensitive to pollution
(gr indic), and; (3) the IBD measure established before the DCE regulation
in France (IBD2007 ). All this information is used to estimate the condition
of the watercourse at a specific survey point.

The data set consists of 12 features and 2, 534 rows. Table 3 describes
the attributes Ai and their domain of values dom(Ai).

Table 3: Description of attributes and their domain

Ai dom(Ai)

codstace [6000850 . . . 6940940]
rdate 01/04/1993 . . . 16/10/2008
ibgn [0, 1, . . . 20, -100]
gr indic [0, 1, . . . 9, -100]
var taxo [2 . . . 59, -100]
ibgn etat {BE, Emauv, Emedio, Emoy, ND, ND No Ref, ND No Type, No Ref, No Type, TBE}
ibgn note [0, 1, . . . 4, -100, -101, . . . -104]
ibd [4.6, 6.0, . . . 20.0, -100]
ibd2007 [5.9, 6.1, . . . 20.0, -100]
ibd etat {BE, Emauv, Emedio, Emoy, ND, ND No Ref, ND No Type, No Ref, No Type, TBE}
ibd note [0, 1, . . . 4, -100, -102, -104]
ibgn ibd [0, 1, 2, 3, -1, -2, -3, -100]

4.2. Data pre-processing

In this section, we first present how data has been discretized. Then, we
describe the spatial relationships used to materialize the spatial data in the
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form of a non-spatial table. This transformation allows sequential pattern
mining to be used to study hydrological evolutions at different level of spatial
granularities, i.e. capturing the spatial information of data from two different
points of view (c.f. Section 3.2).

4.2.1. Data discretization

Frequency histograms of each attribute are studied to discretize the data.
In our case, the components are satisfactorily separated, and the number
of observations sufficient. Thus, the frequency histogram provides a good
estimation of the number of components and their values. Figures 6 and 7
show examples of frequency histograms for attribute var taxo and ibd (re-
spectively).

Figure 6: Frequency histogram for the
var taxo descriptor

Figure 7: Frequency histogram for the ibd de-
scriptor

Then, we apply a discretization based on an equal frequency. The val-
ues are partitioned such that each partition contains approximatively the
same number of data. Using this type of discretization, we obtain balanced
range of values. Final discretized values are presented in Table 4 with their
corresponding attribute.

4.2.2. Mining to consider three distinct spatial relationships

Three hypotheses are studied to analyze the water quality status accord-
ing to two bioindicators at different levels. Each hypothesis is closely related
to the spatial relationship considered when pre-processing the data.
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Table 4: Discretization of domain values dom(Ai)

Ai Discretization

ibgn [0 . . . 10] , [11 . . . 15], [16 . . . 20]
gr indic [0 . . . 4], [5 . . . 6] , [7 . . . 9]
var taxo [2 . . . 20], [21 . . . 30] , [31 . . . 40], [41 . . . 59]
ibgn etat {TBE, BE, Emauv, Emedio, Emoy}
ibgn note {0, 1, 2, 3, 4}
ibd [4 . . . 10], ]11 . . . 13], ]14 . . . 16], ]17 . . . 20]
ibd2007 [5 . . . 10], ]11 . . . 13], ]14 . . . 16], ]17 . . . 20]
ibd etat {TBE, BE, Emauv, Emedio, Emoy}
ibd note {0, 1, 2, 3, 4}
ibgn ibd {0, 1, 2, 3}

1. The first hypothesis is the most naive one: ”all stations are indepen-
dent”. Water quality is confined to the station area. It is not influenced
by what is happening in the same watercourse, or in nearby ones. In
this method, called without zoning, data is not pre-processed, and
each record in the database corresponds to a zone. This approach con-
structs 711 zones (one for each monitoring stations).

2. The second hypothesis is: ”stations of the same watercourse are linked”.
Water quality status in a particular station X may impact status of
the other stations downstream in the same watercourse. Thus, we take
account propagation and resilience processes. This division of space is
called watercourse and generates 233 zones in our data set.

3. The third hypothesis is: ”close stations are linked”. Close stations
to a given station X undergo the same kinds of pressures (e.g., in
groundwater, in nearby agricultural areas,...). The area studied is a
ε kilometers square around station X. This division of space, labeled
ε-neighborhood, can be used to observe potentially indirect effects of
pollution. 223 areas have been obtained using this approach.

Original data is mapped to sequences of values according to these spatial
relationships. Data belonging to the same zone (w.r.t. chosen spatial rela-
tionship) are grouped into sets and ordered w.r.t. date, leading to sequences
of itemsets. Thus, classical sequence mining algorithms can be used to ex-
tract spatially frequent sequences (sequential patterns). Table 5 shows the
characteristics of three datasets.
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Table 5: Characteristics of datasets

Datasets Number of Number of dates Number of items
zones per zone (min/max) per date (min/max)

without zoning 711 1/11 1/10
watercourse 233 2/37 1/10

ε-neighborhood 223 1/46 1/10

4.3. Mining sequential patterns

We use the PrefixSpan algorithm [33] for the extraction of sequential pat-
terns because of its effectiveness at ”mining” large volumes of data. This al-
gorithm is based on the pattern-growth strategy used in [38]. The principle of
this approach is to extract frequent patterns without a candidate generation
step. This approach recursively creates a projected database, then associates
it with a fragment of frequent pattern, and finally ”mines” each projected
database separately. Let S be a sequence of itemsets of the database DB.
The database projection DB w.r.t. S, denoted DB|S, is the set of suffixes of
S in DB. With this approach, frequent patterns are extended progressively
along a depth-first exploration of the search space.
For example, let the sequence database described in Table 6 and a minimum
support minsupp = 0.5 for which we apply the PrefixSpan algorithm.

Table 6: Database of sequences

Id Sequence

1 < (A,B)(C) >
2 < (A,B)(A,B) >
3 < (A,E)(D,E) >

Frequent 1-sequences are < A > with a support of 1 and < B > with a
support of 0.66. < C >, < D > and < E > are not frequent. The database
projections for these two sequences are presented in Table 7.

Finally, the frequent sequences occurring at least twice in the initial base
sequences are: < A >, < B > and < (A,B) >.

For our experiments, we have used SPMF (Sequential Pattern Mining
Framework) 1. We have extracted spatially frequent sequences in our dataset

1Available on http://www.philippe-fournier-viger.com/spmf/
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Table 7: Projections of sequences table for the items < A > and < B >

Prefix Projected database Frequent patterns

< A > < ( , B)(C) > < (A,B) >: 2
< ( , B)(A,B) >
< ( , E)(D,E) >

< B > < (C) >
< (A,B) >

w.r.t. the three spatial relationships defined in Section 4.2.2:

1. Without zoning: The dataset consists of 711 sequences. Pattern mining
was done with a minimum support threshold of 0.3. We have obtained
22 sequential patterns, all of size 1. Table 8 shows some solutions.

Table 8: Some patterns obtained with the without zoning approach.

Sequential patterns Supp

<(ibgn etat TBE)> 0.32
<(ibgn etat TBE, ibgn note 4)> 0.32
<(ibgn 0-10, gr indic 0-4)> 0.32
<(ibgn etat BE, ibgn note 3)> 0.31
. . . . . .

2. Watercourse zoning: We applied the PrefixSpan algorithm to a dataset
composed of 233 sequences with a minimum support of 0.3. We have
obtained 564 sequential patterns, with 110 1-sequences (i.e., sequences
of size 1), 361 2-sequences, 90 3-sequences and 3 4-sequences. Some of
the solutions are presented in Table 9.

Table 9: Some patterns obtained with the watercourse approach.

Sequential patterns Supp

<(ibgn 11-15) (ibgn 11-15, var taxo 21-30)> 0.41
<(var taxo 21-30) (var taxo 21-30) (ibgn 11-15)> 0.36
<(ibgn 11-15, ibgn etat Emoy, ibgn note 2) (ibgn 11-15)> 0.35
<(ibgn note 2) (ibgn etat Emoy, ibgn note 2)> 0.31
<(gr indic 5-6, var taxo 21-30, ibgn etat Emoy, ibgn note 2)> 0.30
<(var taxo 21-30) (ibgn 11-15, var taxo 21-30) (var taxo 21-30)> 0.33
<(var taxo 21-30) (ibgn 16-20, var taxo 31-40)> 0.30
. . . . . .
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3. ε-neighborhood zoning: We applied the same algorithm to a dataset
consisting of 223 zones with a minimum support threshold of 0.3. We
have obtained 138 1-sequences, 1, 174 2-sequences, 658 3-sequences, 104
4-sequences and 8 5-sequences. In total, 2082 sequential patterns were
extracted. Some of these patterns are presented in Table 10.

Table 10: Some patterns obtained with the ε-neighborhood approach.

Sequential patterns Supp

<(var taxo 21-30, ibgn etat Emoy)> 0.48
<(ibgn 16-20, gr indic 7-9, var taxo 31-40, ibgn etat TBE, ibgn note 4)> 0.38
<(ibgn note 2) (ibgn etat Emoy, ibgn note 2)> 0.36
<(var taxo 21-30, ibgn note 2) (ibgn 11-15, var taxo 21-30)> 0.35
<(gr indic 7-9) (ibgn 16-20, gr indic 7-9, ibgn etat TBE, ibgn note 4)> 0.39
<(ibgn etat Emoy, ibgn note 2) (var taxo 21-30)> 0.42
<(var taxo 21-30, ibgn etat Emoy) (var taxo 21-30) (ibgn 11-15)> 0.31
<(var taxo 21-30, ibgn etat Emoy, ibgn note 2) (ibgn 11-15) (ibgn 11-15, var taxo 21-30)> 0.31
<(var taxo 21-30) (var taxo 21-30) (ibgn 11-15)> 0.42
. . . . . .

The support of the last sequence in Table 9 means that sequential pattern
<(var taxo 21-30)(ibgn 16-20, var taxo 31-40)> appears for 30% of stations
in the sequence database and can be interpreted as: taxonomic variety in-
creases ”very often” over time. The extracted patterns represent the evo-
lution of a set of characteristics (biological indicators) belonging to a set of
monitoring stations grouped using different spatial proximities.

The number of sequential patterns obtained using PrefixSpan algorithm
on dataset with the three spatialization approaches and using a minimum
support of 0.3 is respectively 22 without zoning, 564 with watercourse zon-
ing and 2, 082 with ε-neighborhood zoning. Interestingly, we obtained fewer
patterns using the first approach than with the two other spatialization ap-
proaches.

4.4. Sequential patterns post-processing

This section describes the two post-processing steps performed on ex-
tracted sequential patterns. The first one filters sequential patterns according
to the new least temporal contradiction (LTC) measure, thus leading to more
pertinent spatiotemporal patterns. The second one groups relevant patterns
into clusters using the S2MP measure, leading to an easier interpretation of
results by experts.
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4.4.1. Application of the least temporal contradiction

We use the LTC measure to filter the most relevant sequential patterns.
The LTC is computed as follows: let spDB be a database of sequential pat-
terns obtained after running the PrefixSpan algorithm on the Saône water-
shed dataset - for example, using the watercourse approach - and given a
sequence S ∈ spDB and its support presented in Table 11.

Table 11: Sample sequence and its support

Sequential patterns Supp

<(ibgn 16-20, ibgn etat TBE) (var taxo 31-40)> 0.34

First, to calculate Sd, we look for sequences in spDB containing item-
sets (ibgn 16-20, ibgn etat TBE) and (var taxo 31-40) in a different posi-
tion. We found two solutions (see Table 12), then Sd value for the sequence
<(ibgn 16-20, ibgn etat TBE) (var taxo 31-40)> is 0.66.

Table 12: Sequences used to calculate Sd

Sequential patterns Supp

<(ibgn 16-20, ibgn etat TBE) (ibgn 11-15)(var taxo 31-40)> 0.34
<(var taxo 31-40) (ibgn 16-20, ibgn etat TBE)> 0.32

In a second time, St is calculated. Purposely, we look for items be-
longing to sequence <(ibgn 16-20, ibgn etat TBE) (var taxo 31-40)> in all
sequences in spDB database. We found these items in sequences shown in
Table 13, then the sum of St supports is equal to 3.34.

Table 13: Sequences used to calculate St

Sequential patterns Supp

<(ibgn 16-20, var taxo 31-40, ibgn etat TBE)> 0.36
<(ibgn 16-20, var taxo 31-40, ibgn etat TBE, ibgn note 4)> 0.36
<(ibgn 16-20, gr indic 7-9, var taxo 31-40, ibgn etat TBE)> 0.34
<(ibgn 16-20, gr indic 7-9, var taxo 31-40, ibgn etat TBE, ibgn note 4)> 0.34
. . . . . .

Finally, the least temporal contradiction (LTC) for the sequence
<(ibgn 16-20, ibgn etat TBE)(var taxo 31-40)> is:
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LTC(<(ibgn 16-20, ibgn etat TBE)(var taxo 31-40)>) =
0.34− 0.66

3.34

= −0.09580838323353

The LTC measure was performed for the three sequential patterns
datasets obtained w.r.t. pollution hypotheses. Tables 14, 15 and 16 show
some sequences with their support (Supp) and least temporal contradiction
(LTC), for the different spatialization approaches.

Table 14: LTC for data without zoning

Sequential patterns Supp LTC

<(ibgn etat TBE, ibgn note 4)> 0.32 1.0
<(ibgn 11-15, var taxo 21-30)> 0.39 1.0
<(var taxo 21-30)> 0.5 0.1236
<(ibgn 0-10)> 0.36 0.05882
. . . . . . . . .

Table 15: LTC for data using the watercourse approach

Sequential patterns Supp LTC

<(var taxo 21-30) (ibgn 16-20, var taxo 31-40)> 0.3 1.0
<(ibgn 0-10, gr indic 0-4, ibgn etat Emedio, ibgn note 1)> 0.32 1.0
<(ibgn 0-10, ibgn etat Emedio, ibgn note 1)> 0.34 0.0303
<(ibgn note 1) 0.35 -0.738806
<(ibgn note 4) (ibgn etat TBE)> 0.34 -0.963176
. . . . . . . . .

Table 16: LTC for data using the ε-neighborhood approach

Sequential patterns Supp LTC

<(ibgn 11-15) (ibgn 16-20, gr indic 7-9)> 0.33 1.0
<(var taxo 21-30) (ibgn etat TBE, ibgn note 4)> 0.33 0.03125
<(gr indic 7-9) (ibgn 11-15, var taxo 21-30)> 0.36 0.01887
<(gr indic 7-9) (ibgn etat BE, ibgn note 3)> 0.31 -0.030928
<(var taxo 21-30) (var taxo 31-40)> 0.42 -0.215329
<(ibgn etat TBE, ibgn note 4) (var taxo 31-40, ibgn note 4)> 0.31 -0.905918
. . . . . . . . .
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In Table 16, we show some patterns found, their support and
their least temporal contradiction measure using ε-neighborhood spa-
tialization approach. In this table, sequential pattern <(ibgn 11-15)
(ibgn 16-20, gr indic 7-9)> appears for 33% of stations in the se-
quences database and it is never contradicted by the data over
time. In contrast, sequential pattern <(ibgn etat TBE, ibgn note 4)
(var taxo 31-40, ibgn note 4)> appears for 31% of stations but it is very
contradictory over time. Then, the first sequential pattern is more relevant.

To conclude, the support threshold allows us to extract the most spatially
frequent patterns, additionally, the LTC measure enables the ranking of the
most relevant spatiotemporal frequent patterns, i.e., those which are the least
contradicted over time. The LTC measure can be directly exploited by the
experts, for example bringing up patterns with a positive (w.r.t. negative)
LTC value or showing the top-k patterns (for example the first 20 least
contradicted sequential patterns).

4.4.2. Clustering of sequential patterns using S2MP measure

To compare the similarity between the sequential patterns obtained, we
have used the S2MP measure to identify the irregularities and to construct
homogeneous object classes. We have applied the S2MP algorithm on two
sets of results: (1) sequential patterns extracted using the watercourse ap-
proach, and; (2) sequential patterns obtained using the ε-neighborhood ap-
proach.

Table 17 shows some S2MP distances for sequential patterns discovered
using watercourse approach. It is important to notice that this measure
evaluate sequences at two levels: (1) S2MP compares itemsets and their
position in the sequence and; (2) S2MP compares the similarity of items in
the itemsets.

Table 17: S2MP distance for sequential patterns extracted using watercourse approach

Sequential patterns 1 Sequential patterns 2 distance

<(var taxo 21-30) > <(var taxo 21-30, ibgn etat Emoy)> 0.9
<(var taxo 21-30) > <(gr indic 5-6, var taxo 21-30, ibgn etat Emoy)> 0.833333
<(var taxo 21-30) > <(ibgn 11-15, var taxo 21-30, ibgn etat Emoy) > 0.833333
<(ibgn 11-15, gr indic 7-9)> <(ibgn 0-10, gr indic 0-4) > 0.75
<(ibgn 11-15, gr indic 7-9)> <(var taxo 31-40)(ibgn 11-15, var taxo 21-30) > 1.0
<(ibgn 11-15, var taxo 21-30, ibgn note 3) > <(ibgn note 4) > 0.833333
<(gr indic 7-9)(ibgn 16-20, var taxo 31-40)> <(gr indic 7-9) > 0.75
. . . . . . . . .
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A distance measure is widely used within another technique as a clus-
tering. In this work, we have grouped sequential patterns through a certain
number of clusters fixed a priori. For this, we will use a simplest unsuper-
vised learning algorithm called k-medoids (based on k-means method). This
technique aims to partition a number of patterns into k-medoid-based clus-
ters in which each pattern belongs to the cluster with the nearest mean. In
[27] the authors have adapted k-means algorithm to be used on sequential
patterns. The selection of k value (number of clusters to be formed) for
unsupervised methods based on k-means technic is a frequent problem in
data clustering [39]. In contrast to BDScan, DENCLUE and OPTICS are
examples of density based clustering algorithms where the value of k is au-
tomatically estimated. In k-means technique the correct choice of k is often
ambiguous.

As an example, we consider sequential patterns mined using watercourse
approach (overall 564 patterns). Sequential patterns shown in Table 18 have
been identified as medoids of clusters (w.r.t. centroids in k-means) for k
equal to 10. Many values of k have been tested in order to determine the k
value. Nonetheless, we have fixed the k value to 10 for two main reasons: the
rule of thumb value computed on the smaller number of obtained sequences
is slightly higher than 10 and finally, visualization of clusters is more difficult
to interpret using number k. It is important to notice that a medoid is a
sequential pattern that appears frequently in the cluster under exploration,
hence, these sequences may be regarded as interesting for the expert.

Table 18: Medoids for sequential patterns extracted using watercourse approach

Sequential patterns

<(var taxo 21-30)>
<(ibgn 16-20, var taxo 31-40, ibgn etat TBE)>
<(ibgn 11-15, ibgn etat Emoy)>
<(ibgn 11-15, gr indic 7-9)>
<(gr indic 7-9)(ibgn 16-20, var taxo 31-40)>
<(ibgn etat BE, ibgn note 3)(ibgn note 3)>
<(ibgn 11-15, ibgn note 2)(ibgn 11-15, var taxo 21-30)>
<(ibgn 11-15, gr indic 5-6)(var taxo 21-30)>
<(ibgn 11-15, var taxo 21-30)(ibgn note 2)>
<(ibgn 11-15, var taxo 21-30)(ibgn etat BE)>

For each of these sequential patterns - medoid of clusters -, we have
S2MP distances to other sequences positioned around. For instance, Ta-
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ble 19 shows the S2MP distance between medoid <(var taxo 21-30)> and
others sequences.

Table 19: Sequential patterns and their distance from medoid <(var taxo 21-30)>

Sequential patterns Distance

<(var taxo 21-30, ibgn etat Emoy)> 0.9
<(gr indic 5-6)> 0.75
<(gr indic 5-6, var taxo 21-30)> 0.9
<(gr indic 5-6, var taxo 21-30, ibgn etat Emoy)> 0.833333
<(ibgn 11-15, var taxo 21-30)> 0.9
. . . . . .

As we can see in Table 19, numerous sequential patterns have
the same distance from the medoid. To reduce the number of pat-
terns shown to experts, we have grouped sequential patterns having the
same distance and represent them as a single entity. For instance,
in Table 19, sequential patterns <(var taxo 21-30, ibgn etat Emoy)>,
<(gr indic 5-6, var taxo 21-30)> and <(ibgn 11-15, var taxo 21-30)>, have
the same distance - 0.9 - from medoid <(var taxo 21-30)>, thus, they will be
jointly represented. Table 20 shows the number of sequential patterns (Co-
incidences) having the same distance (Distance) from <(var taxo 21-30)>.

Table 20: Distance and number of coincidences for cluster represented by
<(var taxo 21-30)>

Medoid Distance Coincidences

<(var taxo 21-30)> 0.0 4
<(var taxo 21-30)> 0.75 1
<(var taxo 21-30)> 0.833333 16
<(var taxo 21-30)> 0.9 5
<(var taxo 21-30)> 1.0 2

Later, all sequential patterns included in cluster centered on sequential
pattern <(var taxo 21-30)> are displayed graphically considering the S2MP
measure. Sequence <(var taxo 21-30)> is located in the center of plane and
other sequential patterns, grouped by distance, are displayed around it.

Figure 8, represents sequential patterns for watercourse zoning where each
cluster and their center is represented by a different colored dot. For instance,
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sequential pattern <(var taxo 21-30)> and sequential patterns belonging to
the same cluster - grouped by distance - are represented by •.

In the same way, we have applied k-medoids algorithm for sequential
patterns mined using ε-neighborhood approach (overall 2082 patterns). Se-
quential patterns shown in Table 21 have been identified as medoid of clusters
using k-medoids algorithm for k equal to 10.

Table 21: Medoids for sequential patterns extracted using ε-neighborhood approach

Sequential patterns

<(gr indic 5-6, ibgn etat Emoy, ibgn note 2)>
<(ibgn 11-15,var taxo 21-30, ibgn etat Emoy)>
<(ibgn 16-20, gr indic 7-9, ibgn etat TBE, ibgn note 4)(ibgn 16-20, var taxo 31-40)>
<(ibgn etat Emoy, ibgn note 2)(ibgn etat BE, ibgn note 3)>
<(gr indic 0-4)(var taxo 31-40)>
<(ibgn etat BE, ibgn note 3)(ibgn 16-20, ibgn etat TBE, ibgn note 4)>
<(ibgn 11-15, gr indic 7-9)(ibgn 16-20)>
<(ibgn 11-15, gr indic 7-9)(var taxo 21-30)>
<(ibgn 11-15, var taxo 21-30)(ibgn note 3)>
<(ibgn 11-15, gr indic 5-6)(gr indic 5-6)(ibgn 11-15, gr indic 5-6)>

As we have done previously, to reduce the number of patterns shown
to experts, we have grouped sequential patterns having the same dis-
tance and represent them as a single entity. For instance, sequence
<(gr indic 5-6, ibgn etat Emoy, ibgn note 2)> has 52 sequences with a sim-
ilarity distance of 0.75 (c.f. Table 22).

Table 22: Distance and number of coincidences for cluster represented by
<(gr indic 5-6, ibgn etat Emoy, ibgn note 2)>

Center of cluster Distance Coincidences

<(gr indic 5-6,ibgn etat Emoy,ibgn note 2)> 0.0 5
<(gr indic 5-6,ibgn etat Emoy,ibgn note 2)> 0.75 52
<(gr indic 5-6,ibgn etat Emoy,ibgn note 2)> 0.833333 168
<(gr indic 5-6,ibgn etat Emoy,ibgn note 2)> 0.9 1

Figure 9 shows sequential patterns for ε-neighborhood zoning ap-
proach grouped by distance. Each cluster and their medoid have
been represented by a different colored dot. For instance, medoid
<(gr indic 5-6, ibgn etat Emoy, ibgn note 2)> represented by •, has sequen-
tial patterns strongly associated with it. In contrast, distances between
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medoid <(ibgn 11-15, gr indic 7-9)(ibgn 16-20)> and sequences around it,
- represented by • - are near to 1. An early interpretation is: ”the cluster of
sequential patterns represented by • is less interesting for the expert”.

Figure 8: Distance between medoid and other sequential patterns - grouping by distance
- for watercourse approach

Finally, Figure 10 shows the sequential patterns grouped by distance for
both approaches, i.e., watercourse and ε-neighborhood. In this figure, we can
note that the sequential patterns obtained using the watercourse approach
are slightly closer to center of plane. This difference can be seen through the
objective function called sum of squared errors or SSE. The SSE value for a
given cluster is computed by: for each instance in the cluster, summing the
squared differences between each attribute value and the corresponding one
in the cluster medoid. These values are summed up for each instance in the
cluster and for all clusters. The SSE value, which represent the cohesion of
clusters, is equal to 22.4136 using watercourse approach which is smaller than
the SEE value obtained for clusters using ε-neighborhood approach (around
25.3068). Indeed, the cohesion between instances using watercourse approach
is strongest than other approach and consequently they are more interesting
for experts.
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Figure 9: Distance between center and other sequential patterns - grouping by distance -
for ε-neighborhood zoning approach

5. Conclusion and future research directions

In this paper, we have presented a knowledge discovery process on hy-
drological data. In particular, we have applied a conventional algorithm for
sequential pattern extraction according to three spatialization approaches.
We highlighted the problems that are posed regarding choices made in terms
of spatialization and their influence on the number of extracted patterns.
We have proposed an objective measure of validation: the least temporal
contradiction measure which provides experts with an appropriate measure
for the evaluation of obtained patterns. We also applied a similarity mea-
sure to compare sequences of patterns extracted using the different spatial
proximities. Based on this measure, we display to experts coherent groups
of analogous patterns.

This work has been conducted blind, i.e., without the intervention of data
specialists. The results underline the difficulties involved in pre-processing
search data without a thorough knowledge of the study area in question.

The perspectives for this work are numerous. First, regarding the data
processed, additional elements to the determination of the pressures on water
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are currently in the acquisition phase. Indeed, the exact determination of
watercourse conditions requires other indicators that are absent from data
presently studied. Therefore, other bioindicators or physic-chemical parame-
ters are currently being acquired. Regarding the extraction phase, we would
like to compare different data mining techniques in terms of obtained pat-
terns.

Later, we will extend this approach by using pressure data, characterized
by land use and survey data. The methodological issues are numerous: How
to describe the pressures on watercourses based on land use data? How to
model the relationship between land uses and river quality? And how to take
into account data heterogeneity?

Figure 10: Deployment of sequential patterns - grouped by distance - around to medoids
for watercourse and the ε-neighborhood approaches

References

[1] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, Advances in knowledge
discovery and data mining, American Association for Artificial Intelli-
gence, Menlo Park, CA, USA, 1996, pp. 1–34.
URL http://dl.acm.org/citation.cfm?id=257938.257942

31

http://dl.acm.org/citation.cfm?id=257938.257942
http://dl.acm.org/citation.cfm?id=257938.257942
http://dl.acm.org/citation.cfm?id=257938.257942


[2] O. Brazhnik, Databases and the geometry of knowledge, Data &
Knowledge Engineering 61 (2), 2007, pp. 207–227.
URL http://www.sciencedirect.com/science/article/pii/

S0169023X06000917

[3] L. Cao, H. Zhang, Y. Zhao, D. Luo, C. Zhang, Combined mining: Dis-
covering informative knowledge in complex data, Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on 41 (3), 2011,
pp. 699 –712. doi:10.1109/TSMCB.2010.2086060

[4] W. Hsu, M. Lee, J. Wang, Temporal and Spatio-Temporal Data Mining,
Gale Virtual Reference Library, IGI Pub., 2008.
URL http://books.google.com/books?id=dpNyKGjM65cC
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[36] J. Azé, P. Lenca, S. Lallich, BenôıtVaillant, A study of the robustness
of association rules, in: R. Stahlbock, S. F. Crone, C. P. S. Lessmann
(Eds.), The 2007 International Conference on Data Mining (DMIN’07),
2007, pp. 132–137.

[37] T. Bie, Subjective interestingness in exploratory data mining, in:
A. Tucker, F. Hppner, A. Siebes, S. Swift (Eds.), Advances in In-
telligent Data Analysis XII, Vol. 8207 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2013, pp. 19–31. doi:10.1007/

978-3-642-41398-8_3

[38] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu,
Freespan: frequent pattern-projected sequential pattern mining, in:
Proc. of ACM SIGKDD, KDD ’00, ACM, New York, NY, USA, 2000,
pp. 355–359. doi:http://doi.acm.org/10.1145/347090.347167

[39] Y. Zhang, E. Cheng, An optimized method for selection of the initial
centers of k-means clustering, in: Z. Qin, V.-N. Huynh (Eds.), Integrated
Uncertainty in Knowledge Modelling and Decision Making, Vol. 8032 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013,
pp. 149–156. doi:10.1007/978-3-642-39515-4_13

36

http://dx.doi.org/10.1007/978-3-642-41398-8_3
http://dx.doi.org/10.1007/978-3-642-41398-8_3
http://dx.doi.org/10.1007/978-3-642-41398-8_3
http://doi.acm.org/10.1145/347090.347167
http://dx.doi.org/http://doi.acm.org/10.1145/347090.347167
http://dx.doi.org/10.1007/978-3-642-39515-4_13
http://dx.doi.org/10.1007/978-3-642-39515-4_13

	Introduction
	Related work
	A framework for mining spatiotemporal data
	General process
	Spatial pre-processing
	Sequential patterns mining
	Filtering with a new interest measure
	Restitution of extracted patterns

	Application to hydrological data
	Context and data
	Data pre-processing
	Data discretization
	Mining to consider three distinct spatial relationships

	Mining sequential patterns
	Sequential patterns post-processing
	Application of the least temporal contradiction
	Clustering of sequential patterns using S2MP measure


	Conclusion and future research directions

