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ABSTRACT

Understanding environmental factors that influence forest health, as well as the occurrence
and abundance of wildlife, is a central topic in forestry and ecology. However, the manual
processing of field habitat data is time-consuming and months are often needed to progress
from data collection to data interpretation. Computer-assisted tools, such as deep-learning
applications can significantly shortening the time to process the data while maintaining a
high level of accuracy. Here, we propose Habitat-Net: a novel method based on
Convolutional Neural Networks (CNN) to segment habitat images of tropical rainforests.
Habitat-Net takes color images as input and after multiple layers of convolution and
deconvolution, produces a binary segmentation of the input image. We worked on two
different types of habitat datasets that are widely used in ecological studies to characterize
the forest conditions: canopy closure and understory vegetation. We trained the model with
800 canopy images and 700 understory images separately and then used 149 canopy and
172 understory images to test the performance of Habitat-Net. We compared the
performance of Habitat-Net with a simple threshold based method, a manual processing by a
second researcher and a CNN approach called U-Net upon which Habitat-Net is based.
Habitat-Net, U-Net and simple thresholding reduced total processing time to milliseconds per
image, compared to 45 seconds per image for manual processing. However, the higher
mean Dice coefficient of Habitat-Net (0.94 for canopy and 0.95 for understory) indicates that
accuracy of Habitat-Net is higher than that of both the simple thresholding (0.64, 0.83) and
U-Net (0.89, 0.94). Habitat-Net will be of great relevance for ecologists and foresters, who
need to monitor changes in their forest structures. The automated workflow not only reduces
the time, it also standardizes the analytical pipeline and, thus, reduces the degree of
uncertainty that would be introduced by manual processing of images by different people
(either over time or between study sites). Furthermore, it provides the opportunity to collect
and process more images from the field, which might increase the accuracy of the method.
Although datasets from other habitats might need an annotated dataset to first train the
model, the overall time required to process habitat photos will be reduced, particularly for

large projects.

Index Terms: Habitat Interpretation, Image Segmentation, Convolutional Neural Network,

Deep Learning, canopy closure, understory vegetation density, forest
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1. INTRODUCTION

Understanding of the intricacies of natural forest ecosystems is important to better
manage and protect them. In both ecology and forestry there is a huge need for high quality
information about the forest structure to help understand the spatio-temporal changes of
forest habitat (Stojanova et al., 2010). Detailed, large-scale knowledge about forest habitat
and structure and how forests respond to anthropogenic disturbance will improve our ability
to mitigate the effects of disturbances. Canopy closure and understory vegetation density are
measurements that are commonly used in forest and land use research, monitoring,
management and planning (Jennings, Brown, & Sheil, 1999).

Canopy closure is the proportion of sky hemisphere obscured by vegetation when
viewed from a single point (Jennings, Brown, & Sheil, 1999). More rigorously defined,
canopy closure is defined as the percent forest area occupied by the vertical projection of
tree crowns (Paletto & Tosi, 2009). The canopy closure metric is an important part of forest
inventories (Korhonen et al., 2006; Chopping et al., 2008), linked with canopy architecture,
light regimes, solar radiation and leaf area index estimates in forest ecosystems. It is useful
for wildlife habitat assessment and monitoring (Paletto & Tosi, 2009) and is often used as a
multipurpose ecological indicator (Korhonen et al., 2006). For forestry practitioners,
measurements of the forest canopy serve as one of the chief indicators of the microhabitat
within the forest (Jennings, Brown, & Sheil, 1999). The forest canopy affects plant growth
and survival, hence determining the nature of the vegetation, and wildlife habitat.
Characterization of the understory vegetation is of equal importance in forestry as it plays a
central role in forest ecosystem structure and composition (Russell et al., 2014). Understory
vegetation provides key elements (and indicators) for biodiversity, nutrient cycling and forest
fuel loads, and shape overstory tree structure and diversity (Halpern and Spies, 1995,
Legare et al., 2002; Gilliam, 2007; Russell et al., 2014). Understory vegetation has become a
fundamental component of forest site classifications (Bergés Gégout, & Franc, 2006) and the
status of the understory composition and structure is a critical indicator of the condition of the
forest (D’Amato, Orwig, Foster, 2009).

For ecologists and wildlife managers there is also a great need to understand factors
influencing the occurrences and habitat preferences of species (Cristescu & Noyce, 2013),
as the ecology of many species is poorly understood hindering their effective management.
Therefore, accurate and quick habitat characterizations of the surveyed sites are needed

(Zeng et al., 2013). Canopy closure and understory vegetation are among the factors that
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75 are known to influence species occurrence at a site (Vickers & Palmer, 2000;
76 Brenes-Arguedas et al., 2011).
77 Despite the importance of quantitative estimates of canopy closure and understory
78  vegetation density, there are no efficient ways to obtain these values. A plethora of different
79 techniques have been developed to quantify forest canopy (Jennings, Brown, & Sheil, 1999).
80 Conventionally, information on canopy closure was collected using a spherical densiometer
81 (Jennings, Brown, & Sheil, 1999). This technique is very labour intensive and requires
82  researchers to spend a lot of time in the field. Currently, canopy closure information is often
83 obtained through manual processing of color digital canopy photographs to binary images of
84 vegetation and sky or through simple thresholding methods (Jonckheere et al., 2005; Nobis,
85 & Hunziker, 2005), which is less time consuming in the field but requires lots of manual
86 processing at the computer. One of the traditional methods to characterize understory
87  vegetation in the field is through the use of cover boards. Here an observer visually
88  estimates the relative proportion of a board of known dimensions that is being obscured by
89  vegetation from a given vantage point (Jones, 1968; Nudds, 1977). The subjectivity inherent
920 to the visual estimation by an observer is a widely acknowledged limitation of both the
N spherical densiometer and cover board field methods (Limb et al., 2007; Morrison, 2016).
92 Recently, the workflow for the processing of both canopy and understory images has
93 become digital due to advancements in digital photography and image processing of digital
94 vegetation photographs (Marsden et al, 2002; Jorgensen et al., 2013).
95 Currently, due to logistical and analytical challenges, and time consuming manual
96 processing of field data, several months, and sometimes up to years, are needed to progress
97 through the stages of data collection, data processing, and interpretation. The processing of
98  the habitat photograph datasets, which are usually large, is presently done using manual
99 methods or simple thresholding methods. This is highly unsatisfactory and prevents timely
100 evidence-based, effective action in both forestry and conservation applications. Fast,
101 reliable, and automated computer-assisted tools are therefore needed to describe the habitat
102 immediately after data collection. Using tools such as advanced machine learning, which
103 have gained popularity when solving many data driven tasks in other fields, is one option to
104 overcome the time demand associated with habitat interpretation. Some more advanced
105 techniques for the processing of habitat images, some of which exploit machine learning, do
106 exist, including traditional LiDAR-based and 3D image based techniques to segment canopy
107 and understory images (Stojanova et al., 2010; Tao et al., 2015; Hamraz et al., 2017). These
108 methods however, require expensive equipment to collect LIDAR or 3D images and

109 seldomly are these data available for forest inventories or ecological studies. Therefore most
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110 projects still rely on either labour intensive field methods, such as the use of spherical
1M densiometers, or on digital habitat photos, which later need manual processing. Thus, the
112 processing of thousands of simple digital habitat photographs desperately requires advances
113 in automated workflows.

114 Recently, computer vision has made an inroads to the ecological domain. There have
115 been limited attempts to use machine learning methods for automated interpretation of forest
116 habitat images, such as canopy closure photographs (Levner & Bulitko, 2004; Zhao et al.,
117 2010; Erfanifard, Khodaei, & Shamsi, 2014; Ahmed et al., 2015). Compared to these early
118 studies, more advanced deep learning techniques have been developed, particularly in the
119 field of medical imaging research. These methods have proved to be superior to earlier
120 techniques (Litieans et al., 2017), significantly shortening the time and increasing the
121 accuracy of the data interpretation and data processing. Specifically, Convolutional Neural
122 Networks (CNNs), which are deep feedforward neural networks that are inspired by the
123 visual cortex of the human eye and allow computers to ‘see’, have been shown to outperform
124 many state-of-the-art methods in various visual computing tasks across different domains
125 (Krizhevsky, Sutskever, & Hinton, 2012). CNNs are used to recognize images by processing
126 the original image through multiple layers of feature-detecting “neurons”. Each layer is
127 designed to detect a specific set of features such as lines, or edges. Increasing the number
128 of layers (typical CNNs use anywhere from 5 to 25 layers or more) allows the CNN to detect
129 more complex features enabling it to recognize the object in the image. Biomedical images
130 generated by a wide range of medical procedures, such as MRI and CT scans, have
131 complex textural patterns and are limited to small annotated datasets making it difficult to
132 apply machine learning techniques and classic CNNs. However, the U-Net model helped
133 overcome these challenges in biomedical image segmentation (Ronneberger, Fischer, &
134 Brox, 2015). This is due to the network architecture that consists of a contracting path, in
135 which the spatial information is reduced while feature information is increased, and an
136 expansive path, which combines the feature and spatial information from the contracting
137 path.

138 In practice, the application of CNNs to medical imaging is very similar to their
139 application in the field of ecology. Similar to medical images, canopy and understory images
140 contain a lot of color and textural information. In this work we focus on using computer vision
141 methods to automatically extract the relevant information about canopy closure and
142 understory vegetation density from in-situ digital photographs. We propose Habitat-Net, a
143 novel deep learning method based on U-Net, to segment in-situ habitat images of forests.

144 We extend the U-Net architecture to a new domain and improve on the performance of
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145 U-Net by implementing Batch Normalization. Our proposed framework has been designed to
146 feed color forest habitat (both canopy and understory) images as input to the network and,
147 after multiple convolutions, generates a binary segmentation raster of the original image. The
148 entire pipeline of the proposed method has been designed to work automatically without any
149 user interaction. Our only assumption is that during model training the input images are

150 accompanied by respective annotated images.

151 2. METHODS

152 2.1 Dataset Description

153 We conducted standardized vegetation surveys in Sabah, Malaysian Borneo
154 between 2014 and 2016. We collected a total of 949 canopy (128 x 128 pixels) and 872
155 understory vegetation (256 x 160 pixels) photographs that are used in this study. All photos
156 were taken using the built-in camera in GPS unit (Garmin® model 62sc). To collect our
157 canopy dataset in the field, we established a 20 x 20 m grid around the center point of our
158 survey station, which was located halfway between the two camera traps. The grid was
159 positioned along the north-south, east-west axes. We took canopy photographs at the
160 centerpoint and the NW, NE, SW, and SE corners of the plot. All canopy photos were taken
161 at an angle of approximately 90 degrees (directly overhead). The understory dataset was
162 collected by taking photos of a 1.5 x 1.0 m orange fly-sheet positioned 10 m in each cardinal
163 direction while standing at the centerpoint of the survey grid. The vegetation covering the
164 flysheet is used to estimate the understory vegetation density. The orange sheet used during
165 data collection separates the understory areas from the background providing a means to
166 segment the understory images. The photographs range in complexity from a completely
167 uncovered orange sheet with no understory visible (the reference is an entirely white image)
168 to images where the orange sheet is completely covered due to dense understory structure

169 (reference segmentation image is an entirely black image).

170 2.2 Manual segmentation - Deriving canopy closure and vegetation density from field
171 photographs

172 We used the free and open source image manipulation software Gimp to process the
173 canopy and understory images. We set color thresholds and used the binary indexing
174 feature in Gimp to convert the color canopy images into binary black and white images with
175 black representing foliage and white sky (Fig. 1). The processing of the understory
176 vegetation photos followed the same basic workflow, segmenting a binary image, but

177 included an additional preprocessing step in which we cropped the image to the extent of the
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178 orange flysheet that was being photographed from a 10 m distance. Similar to the canopy
179 closure this workflow resulted in a binary (black and white) raster with black representing
180  vegetation and white the orange flysheet (gaps in understory vegetation). Canopy closure
181 and vegetation density was then calculated from the classified binary images by
182 automatically counting black (vegetation) and white (non-vegetation) pixels using the

183 following R script:

184 # load image as raster and convert to matrix
185 r <- raster(files.tmplj])

186 r.matr <- as.matrix(r)

187 # set threshold value to split vegetation and sky/empty space: range = 0 - 256. 128 is medium grey (needed
188 because jpg creation from binary image introduces some artefacts which are then made binary again)
189 thresholdValue =128,

190 # consider as vegetation all pixels with value < thresholdValue

191 fraction_vegetation <- as.numeric(mean(r.matr < thresholdValue))

192 # the rest is sky/empty space

193 fraction_sky <- 1 - fraction_vegetation

194 Second manual segmentation
195 In order to compare the performance and consistency of manual segmentation by
196 different researchers, a second independent researcher performed the manual segmentation

197 on the test set of canopy and understory images.

198 2.3 Simple thresholding

199 Image thresholding is a simple, yet effective, image segmentation technique that
200 partitions an image into a foreground and background. We ran a simple thresholding
201 algorithm (scripts available in the Supplementary Material) to convert our color images to
202 monochrome images. We first converted field images to grayscale and then used Otsu's
203 method to automatically reduce the grayscale image to a binary image (Otsu, 1979). In short,
204 in Otsu's method we assume that the image contains two classes of pixels following a
205 bimodal histogram (foreground pixels and background pixels). We then calculate the
206 threshold that minimizes the intra-class variance (the variance within the class), defined as a

207 weighted sum of variances of the two classes by iterating through all possible threshold
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208 values. We implemented this in Python version 3.7.1 using the threshold_otsu function from

209 the package scikit_image version 0.14.1 (van der Walt et al., 2014).

210 2.4 Habitat-Net

211 The Habitat-Net architecture (Fig. 2) is based on the U-Net (Ronneberger, Fischer, &
212 Brox, 2015) convolutional network which provides pixel level localization by combining high
213 resolution features with upsampling layer outputs. The U-Net model architecture has a large
214 number of feature channels that allow the network to propagate context information to higher
215 resolution layers. As a consequence, the expansive path is symmetric to the contracting path
216 and yields a U-shaped architecture (Ronneberger, Fischer, & Brox, 2015).

217 The Habitat-Net consists of multiple 3 x 3 convolutions followed by a non-linear
218 activation using rectified linear unit (ReLU). The use of a small filter size helps to capture
219 finer details of the image. To achieve a numerically stable training procedure, we incorporate
220 a batch normalization (BN) layer (loffe & Szegedy, 2015) after every convolution layer as a
221 novel design choice in Habitat-Net. The batch normalization layer reduces the internal
222 covariate shift, which can boost segmentation performance and helps to make training more
223 resilient to the parameter scale using mini-batches. Batch normalization further reduces
224 overfitting to the minimum extent and replaces the need for a dropout layer in most cases
225  (Srivastava et al., 2019). Every batch normalization layer is followed by a 2 x 2 max pooling
226 operation, which operates independently on every depth slice of the input matrix and resizes
227 it spatially using the max operation. We increased feature channels by an order of two at
228 every downsampling step and halved the feature channels at each upsampling step. We
229 used a zero-padding hyperparameter to control the spatial size of the output volumes

230 (source code is provided in: https://github.com/Kanvas89/Habitat-Net).

231 Our final network includes a total of 33 convolutions including the final 1 x 1 out
232 convolution layer. The presence of many convolution layers helps to achieve better model
233 accuracy (Szegedy et al., 2015). The only trade-off of this increased accuracy is that the
234 network requires more time and resources to converge. We use a stochastic gradient
235  descent (SGD) optimizer with time-based decay, which handles limited datasets well. SGD
236 performs better in vision-based machine learning tasks and generalizes quicker than other
237 adaptive methods such as Adam, RMSProp, and AdaGrad (Wilson et al., 2017). SGD with
238 momentum helps the parameter vector to build up velocity in any direction with a constant
239 gradient descent so as to prevent oscillations, which leads to faster-convergence (Qian,
240 1999; Sutskever et al., 2013). The final output layer returns a one-channel grayscale

241 prediction image of the input habitat (canopy and understory) image. The binary raster is
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242 then run through the same R function that is used for the manual processing. All the
243 experiments have been run using Keras 2.2.2 with TensorFlow 1.10.0 using python 3.5 on a
244 gystem with a Nvidia 1080 Ti GPU.

245 2.4.1 Network training and testing

246 Here, we test our method using the canopy closure and understory density datasets.
247 The training datasets consist of a pair of images (either canopy or understory), the image to
248 be segmented and a manual segmentation raster drawn by an expert to be used as a
249 reference to train the model (Fig. 1). Deep neural networks typically perform better with more
250 training data. Models trained on small datasets do not generalize well and suffer from
251 overfitting (Perez & Wang, 2017). When a limited number of images with complex textural
252 and color patterns are available to train the model, it is imperative to exploit data
253 augmentation to increase the total number of training images. However, the non-linear
254 transformations used for augmenting cell images in U-Net (Ronneberger, Fischer, & Brox,
255 2015) can not be incorporated directly in Habitat-net due to domain specific properties. We
256 address this issue by artificially inflating the number of training images through rotations and
257 reflection of the image (Supplementary Figs. S1 & S2).

258 Of 949 color canopy images, the training consists of 800 image pairs (image and
259 respective reference segmentation raster). After applying the data augmentation technique
260 our training dataset has a total of 4000 image pairs. We use 3400 images for the training
261 dataset and the remaining 600 for validation during training. Of the 872 understory
262 vegetation photos 700 images (after augmentation 3500 images) were used in the training
263 dataset. Similar to the manual processing, it was necessary to perform the preprocessing
264 step of cropping the understory images to the extent of the orange flysheet as this could not
265 be automated. The code and the trained weights for Habitat-Net can be accessed at

266 https://github.com/Kanvas89/Habitat-Net. As the network converged faster and variance was

267 lower when batch normalization was used after each convolution layer (Supplementary Fig.
268 S3) we applied batch normalization in all results presented below.

269 After training Habitat-Net, we tested its performance on the remaining 149 canopy
270 images and 172 understory images (15% of the total dataset). To evaluate the performance
271 of Habitat-Net we used overlap ratio measures (Jaccard 1907; Dice 1945; Sgrensen, 1948),
272 which quantify the degree of similarity between two objects. In our case they are an indicator
273 of the overlap between our manually segmented reference images and those generated by
274 the Habitat-Net model. We report both the Dice coefficient and Jaccard index as

275  segmentation quality metrics to evaluate the performance of Habitat-Net. This is because
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276 although the Dice coefficient and Jaccard index are similar, the Jaccard index is numerically
277 more sensitive to mismatch when there is reasonably strong overlap. As the Jaccard index
278 penalizes single instances of bad classification more than the Dice coefficient, results of the
279 Dice coefficient typically "look nicer" because they are higher for the same pair of
280  segmentations and thus the Dice coefficient index is currently more popular than the Jaccard
281 index.

282 3.RESULTS

283 Based on researcher experience, the manual processing of a canopy closure image
284 requires about 45 seconds per image, while the processing of an understory image requires
285  about 65 seconds per image (this largely varies depending on the level of experience of the
286 individual researcher and quality of the images). Habitat-Net reduces total processing time to
287 around 15 milliseconds per image for both canopy and understory images. Similar simple
288  thresholding significantly reduces the time for 1 image to less than 1 second. For a typical
289  dataset of around 400 images, both Habitat-Net and simple thresholding reduce total
290 processing time to seconds compared to the manual processing for which 5 hours (canopy
291 images) or even 7.5 hours (understory images) were needed (Tables 1 and 2). Visual
292 inspection of the segmentation results (Fig. 3) from the three automated methods indicate
293  that Habitat-Net and U-Net (both machine learning methods) outperform the simple
294 thresholding method for the canopy images. However, the improved performance for the
295 understory images is not as obvious in many cases. However the quantitative assessment of
296  the performance of the different methods using the Dice and Jaccard similarity scores reveal
297 the greatest accuracy of Habitat-Net (Fig. 4, Tables 1 & 2). Particular for the canopy images
298  the similarity scores of the Habitat-Net were with 0.94 Dice and 0.88 (Jaccard) much higher
299  than for the other methods, including the U-Net upon which Habitat-Net is based (Table 1).
300 The differences for the understory images between the different methods were less strong,
301 as all methods had higher similarity scores. However again Habitat.-Net outperformed the
302 other methods with a Dice score of 0.95 and a Jaccard index of 0.92 (Table 2). Although
303 Habitat-Net generally outperformed other segmentation methods, there were a few extreme
304 outliers produced. We visually inspected the color photographs of the images with outlying
305 similarity scores for Habitat-Net (Fig. 4). For canopy images, the images with the poorest
306 similarity scores are “speckled” images that contain many small (sometimes single pixel)
307 openings in the canopy vegetation. However, for the canopy images the minimal similarity
308  score is 0.75, indicating that even when Habitat-Net performs poorly, the resulting

309 segmentation is still acceptable. There are, however, some more extreme outliers present for

10
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310 the understory images. These images are very dark, blurry, and either all or almost all of the
311 orange flysheet is covered, leaving only small openings in the vegetation. Although we
312 inspected the problems in images which were outliers in the Habitat-Net analysis similar
313 outliers, very likely in the same images were found in all methods, even in the manual

314 processing of a second researcher.

315 4. DISCUSSION

316 Deep convolutional networks have been shown to outperform many other methods in
317 various visual computing tasks and domains (Krizhevsky, Sutskever, & Hinton, 2012). CNNs
318 have, however, seen little application in the ecological domain. With Habitat-Net we present
319 an automated pipeline to process hundreds of color vegetation photographs (both canopy
320 and understory) in a standardized, efficient and reproducible way. Our approach saves a
321 huge amount of human labor and helps overcome the time demand associated with habitat
322 interpretation. Habitat-Net has two advantages over manual processing, segmentation is: (1)
323 significantly faster, and (2) more consistent. Habitat-Net produces binary segmentations with
324 a higher similarity to the manual reference segmentation than do the approaches using
325  simple thresholding or U-Net. For canopy images, the implementation of Habitat-Net led to a
326 significant increase in accuracy and consistency of the image segmentation. For the
327 understory images all methods produced a high similarity score, with Habitat-Net performing
328  best and edging out U-Net. Habitat-Net performed well to segment images with a wide range
329 of lighting conditions and sharpness, and the proposed method performed remarkably well
330 even in situations where very little sky or orange flysheet was visible in a photograph (Fig. 3).
331 The inclusion of a batch normalization layer after every convolution layer in Habitat-Net
332 avoided internal covariate shift and enabled faster learning rates. This proved to stabilize the
333 training (Fig. S3), boost the performance of Habitat-Net and improve the accuracy of
334 multi-channel segmentation. Habitat-Net also outperforms previous machine learning-based
335  methods for quantifying canopy closure. Previous research applying the ADaptive Object
336 REcognition (ADORE; Draper, Bins, & Baek, 2000) system to canopy closure segmentation
337 tasks produced a mean pixel-level similarity score (Dice coefficient) of 0.54 + 0.14 (Levner &
338 Bulitko, 2004). In contrast to canopy closure, so far there are no other automated pipelines
339 available for the analysis of understory photographs. Therefore, Habitat-Net is the first tool
340 that allows foresters and ecologist to describe quantitatively both the horizontal and vertical
341 forest structures.

342 In this study we only quantify understory vegetation density and we did not assess

343 vegetation complexity. However, the quantification of vegetation complexity, which provides

11
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344 further insight into forest structure, and thus into the ecosystem function of the understory
345 (Halpern and Spies, 1995, Legare et al., 2002; Gilliam, 2007; Russell et al., 2014) would also
346 be possible using the binary raster produced by Habitat-Net. In this case, researchers would
347 need to take many field photographs with the contrasting flysheet at different distances. As
348 the processing of these hundreds of photographs is automated with Habitat-Net these photo
349 series could be used to reconstruct the vegetation complexity, without the need of expensive
350  ground-based or airborne LiDAR scans.

351 For ecologists, the canopy and understory habitat are important indicators of forest
352 disturbance and, for some wildlife species, tracking these disturbances might be a warning
353 signal of potential population declines. Furthermore, the habitat information can be combined
354 with spatial statistics, such as species distribution models (SDMs) to assess species
355 occurrence or abundance data (Niedballa et al., 2015). This allows researchers to determine
356 habitat associations of little known species and the knowledge gained ecological about the
357 species can be used for more effective conservation efforts. Therefore, Habitat-Net has the
358 potential to be an efficient and effective tool for both foresters and wildlife ecologists.

359 Although our network is designed with small datasets in mind, deep learning works
360  best with large datasets (Goodfellow, Bengio, & Courville, 2016; Norouzzadeh et al., 2018).
361 Even with a relatively small training dataset available, Habitat-Net performed with a high
362 level of accuracy. Norouzzadeh et al. (2018) point out that the accuracy of deep learning
363 methods further improves as more labeled data are provided during training. Thus, as more
364 datasets become available the performance of the network may improve by building on
365 knowledge from multiple datasets in a process known as transfer learning (Norouzzadeh et
366 al, 2018).

367 A major limitation of manually processed images is the lack of standardization. The
368 manual processing of images by humans introduces observer bias. For example, within one
369  project a few people may do the manual processing, or in a long term monitoring program
370 the observer (for example forestry staff) changes with time. Both of these scenarios would
371 introduce bias and the subjectiveness inherent in the manual processing of images, making
372 comparisons between the photographs or years difficult. Our study showed that the similarity
373 scores between two different researchers doing the manual processing were lower than
374 using Habitat-Net. One of the biggest strengths of Habitat-Net is, therefore, the ability to
375  eliminate this user produced bias and standardize results which allows for inter-study site
376 comparisons and long term monitoring.

377 Automated workflows, by default, accept biased inputs and can, therefore, generate

378  undesired results. During manual processing the observer is able to sort out photos which
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379 are out of focus or of poor quality. These photos are, however, included in the automated
380  workflow, which may lead to inaccurate estimations. Such poor quality photos could
381 potentially be automatically removed, but this would require a high level of standardization in
382 how the photos are taken in the field. For all photos we used the GPS unit’s built-in camera,
383 which is a very basic camera that allows little control over camera settings. To increase
384  standardization to a level that could potentially allow for automated removal of poor quality
385  photos all images would have to be taken with the same camera, same settings and at the
386  same camera angle, framing and distance. Although this would require carrying an additional
387 higher quality camera into the field, as well as more time spent to set up equipment, we are
388 certain that such higher quality photographs will increase the performance of Habitat-Net
389  and, thus, the accuracy of the analysis. Currently it is not possible to automatically crop the
390 understory vegetation photos and, thus, each image still required a minimal amount of
391 manual processing. A satisfactory solution to do this for our images could not be found as
392 often most of the orange flysheet was covered by vegetation making the automated
393 recognition of the flysheet impossible. Common methods used to automatically crop images
394 cannot be applied to our understory vegetation photographs due to the lack of common
395  features that are always present (such as a frame). Other machine learning methods for
396  cropping focus on “salient” image regions. The basic idea is to use information learned by
397 the CNN about where human viewers fix their gaze to center a crop around the most
398  interesting region (Rahman et al., 2018). However, these methods are also not applicable for
399 our understory photographs since the photographs are cluttered with no one point of interest.
400 Such limitations could be overcome through innovative standardized practices in the field.
401 The best solution would be to always have the flysheet centered and then perform a batch
402 crop on all images to the specified area. This could be implemented in the field by placing a
403 “stencil” or guide over the camera lens that is used to frame the flysheet in the center of the
404 image. Then a technique called Object Localization and Detection could be implemented to
405 detect the bounding box or frame (Sermanet et al., 2013).

406 Habitat-Net provides a fast, accurate and standardized method to analyse canopy
407 closure and understory vegetation photographs. With some optimisations during the field
408 data collection, such as using a higher quality camera, placing a stencil over the camera lens
409 the accuracy of Habitat-Net could even be improved and the time consuming manual
410 cropping would not be necessary any more. With Habitat-Net, we can overcome the time lag
411 from data collection to data processing, which often hinders timely management decisions
412 and thus assist more sustainable forest management and conservation. Studies in other

413 habitats might need a preliminary annotated dataset to train the model, but the overall time
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414 required to process habitat photos will be reduced and the accuracy will be increased,
415 particularly for large projects. We hope that other users add additional datasets and their
416 modifications of the codes to github to expand the applications and focus of Habitat-Net
417 further. Through this a large repository of habitat images can be built, which would in turn

418 benefit both the ecology and machine learning communities.
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548 Figures

Image Manual Segmentation

549 Figure 1: The first column contains the digital color images from photographs of (A) canopy
550  and (B) understory taken in the field. The second column shows the manually segmented

591 binary images of the same (A) canopy and (B) understory photographs.
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553 Figure 3: Visual comparison of the quality of segmentation rasters predicted by Simple
554 thresholding, U-Net, and Habitat-Net to the manually segmented reference images for

555 different situations.
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556 Figure 4: Box plots of the similarity scores (Dice coefficient and Jaccard index) between the
557 image segmentation output by four methods and the reference manual segmentation for

558  canopy and understory images.
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559 Tables

560 Table 1: Mean processing time per photo and similarity scores for the canopy dataset using

561 four methods.

Processing Dice coefficient Jaccard index
Method time
(seconds) Mean SD Median | Mean SD Median
Manual 45 0.84 0.16 0.86 0.74 0.19 0.76
Simple 0.103 0.64 0.17 0.61 0.49 0.19 0.45
thresholding
U-Net 0.015 0.89 0.07 0.89 0.81 0.11 0.80
Habitat-Net 0.015 0.94 0.06 0.95 0.88 0.09 0.90

562 Table 2: Mean processing time per photo and similarity scores for the understory vegetation

563 dataset using four methods.

Processing Dice coefficient Jaccard index
Method time
(seconds) Mean SD Median | Mean SD Median
Manual 65 0.91 0.15 0.96 0.86 0.17 0.92
Simple 0.094 0.83 0.25 0.93 0.77 0.27 0.86
thresholding
U-Net 0.015 0.94 0.10 0.97 0.89 0.14 0.94
Habitat-Net 0.015 0.95 0.13 0.98 0.92 0.16 0.97
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Supplementary material
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Figure S1: An example of data augmentation for the canopy image dataset
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Figure S2: An example of data augmentation for the understory image dataset
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Figure S3: Convergence with and without batch normalization.
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