
1 

 

Data augmentation approaches for improving animal audio 

classification 

Loris Nannia Gianluca Maguoloa* Michelangelo Pacib 
a DEI, University of Padua, viale Gradenigo 6, Padua, Italy. loris.nanni@unipd.it 

b BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön 

katu 34, D 219, FI-33520, Tampere, Finland 
*Corresponding author, email: gianluca.maguolo@phd.unipd.it 

 

Abstract. In this paper we present ensembles of classifiers for automated animal audio classification, exploiting 

different data augmentation techniques for training Convolutional Neural Networks (CNNs). The specific animal audio 

classification problems are i) birds and ii) cat sounds, whose datasets are freely available. We train five different CNNs 

on the original datasets and on their versions augmented by four augmentation protocols, working on the raw audio signals 

or their representations as spectrograms. We compared our best approaches with the state of the art, showing that we 

obtain the best recognition rate on the same datasets, without ad hoc parameter optimization. Our study shows that 

different CNNs can be trained for the purpose of animal audio classification and that their fusion works better than the 

stand-alone classifiers. To the best of our knowledge this is the largest study on data augmentation for CNNs in animal 

audio classification audio datasets using the same set of classifiers and parameters. Our MATLAB code is available at 

https://github.com/LorisNanni. 
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1. Introduction 

In the current context of constantly increasing environmental awareness, highly accurate sound 

recognition systems can play a pivotal role in mitigating or managing threats like the increasing risk 

of animal species loss or climate changes affecting the wildlife fauna [1]. Sound classification and 

recognition has been included among the pattern recognition tasks for different application domains, 

e.g. speech recognition [2], music classification [3], environmental sound recognition or biometric 

identification [4]. In the traditional pattern recognition framework (preprocessing, feature extraction 

and classification) features have generally been extracted from the actual audio traces (e.g. Statistical 
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Spectrum Descriptor or Rhythm Histogram [5]). However, the conversion of audio traces into their 

visual representations enabled the use of feature extraction techniques commonly used for image 

classification. The most common visual representation of audio traces displays the spectrum of 

frequencies of the original traces as it varies with time, e.g. spectrograms [6], Mel-frequency Cepstral 

Coefficients spectrograms [7] and other representations derived from these. A spectrogram can be 

described as a bidimensional graph with two geometric dimensions (time and frequency) plus a third 

dimension encoding the signal amplitude in a specific frequency at a particular time step as pixel 

intensity [8]. For example, Costa et al. [9,10] applied many texture analysis and classification 

techniques to music genre classification. In [10] the grey level co-occurrence matrices (GLCMs) [11] 

were computed on spectrograms as features to train support vector machines (SVMs) on the Latin 

Music Database (LMD) [12]. Similarly, in [9] they used one of the most famous texture descriptor, 

the local binary pattern (LBP) [13], again to train SVMs on the LMD and the ISMIR04 [14] datasets, 

improving the accuracy of their classification with respect to their previous work. Again in 2013 [15], 

they used the same approach, but using local phase quantization (LPQ) and Gabor filters [16] for 

feature extraction. This actually marked an interesting parallel in the development of more and more 

refined texture descriptors for image classification and their application also to sound recognition. In 

2017, Nanni et al. [3] presented the fusion of state-of-the-art texture descriptors with acoustic features 

extracted from the audio traces on multiple dataset, demonstrating how such fusion greatly improved 

the accuracy of a system based only on acoustic or visual features. However, with the diffusion of 

deep learning and the availability of more and more powerful Graphic Processing Units (GPUs) at 

accessible costs, i) the canonical pattern recognition framework changed and ii) the attention was 

polarized on visual representations of acoustic traces. The optimization of the feature extraction step 

had a key role in the canonical framework, especially with the development of handcrafted features 

that place patterns from the same class closer to each other in the feature space, simultaneously 

maximizing their distance from other classes. Since deep classifiers learn the best features for 
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describing patterns during the training process, the aforementioned feature engineering lost part of its 

importance and it has been coupled with the direct use of the visual representation of audio traces, 

letting the classifiers selecting the most informative features. Another reason for representing the 

patterns as images at the beginning of the pipeline is the intrinsic architecture of the most famous 

deep classifiers, such as convolutional neural networks (CNN), which require images as their input. 

This motivated researchers using CNNs in audio classification to advance methods for the conversion 

of audio signals into time-frequency images. 

Among the first studies using deep learning for audio images, Humphrey and Bello [17,18] explored 

CNNs as alternatives to addressed music classification problems, defining the state of the art in 

automatic chord detection and recognition. Nakashika et al. [19] performed music genre classification 

on the GTZAN dataset [20] converting spectrograms into GCLM maps to train CNNs. Costa et al. 

[21] fused canonical approaches, e.g. LBP-trained SVMs with CNNs, performing better that the state 

of the art on the LMD dataset. 

In addition to approaches derived directly from image classification, few studies focused on different 

classification aspects, in order to make such process more specific for sound recognition. Sigtia and 

Dixon [22] aimed to adjust CNN parameters and structures, and showed how the training time was 

reduced by replacing sigmoid units with Rectified Linear Units (ReLu) and stochastic gradient 

descent with the Hessian Free optimization. Wang et al. [23] proposed a novel CNN called a sparse 

coding CNN for sound event recognition and retrieval, obtaining competitive and sometimes better 

results than most of the other approaches when evaluating the performance under noisy and clean 

conditions.  Another hybrid approach by Oramas et al. [24] combined different modalities (album 

cover images, reviews and audio tracks) for multi-label music genre classification using deep learning 

methods appropriate for each modality and outperforming the unimodal methods. 

The clear improvement in classification performances introduced by the use of deep classifiers, 

led to apply sound recognition also to other tasks, such as the biodiversity assessment or monitoring 
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animal species at risk. . For example, birds have been acknowledged as biological indicators for 

ecological research. Therefore, their observation and monitoring are increasingly important for 

biodiversity conservation, with the additional advantage that the acquisition of video and audio 

information is minimally invasive. To date, many datasets are available to develop classifiers to 

identify and monitor different species such as birds [25,26], whales [27], frogs [25], bats [26], cats 

[28]. For instance, Cao et al. [29] combined a CNN with handcrafted features to classify marine 

animals [30] (the Fish and MBARI benthic animal dataset [31]). Salamon et al. [32] investigated the 

use of fusing deep learning (using CNN) and shallow learning for the problem of bird species 

identification, based on 5,428 bird flight calls from 43 species. In both these works, the fusion of 

CNNs with mode canonical techniques outperformed the single approach. 

One of the main drawbacks of deep learning approaches is the need of great amount of training 

data [33], in this case audio signals and consequently their visual representations. In case of limited 

amount of training images, data augmentation is a powerful tool. Animal sound datasets are usually 

much smaller than necessary, since the sample collection and labelling can be very expensive. 

Commonly, audio signals can be augmented in the time and/or in the frequency domains directly on 

the raw signals or after their conversion into spectrograms. In  [34] different augmentation techniques 

were applied to the training set for the BirdCLEF 2018 initiative (www.imageclef.org/node/230) that 

included over 30,000 bird sound samples ranging over 1,500 species. Bird audio signals were first 

augmented in the time domain by e.g. extracting chunks from random position in each file, applying 

jitter to duration, add two audio chunks from random files background noise and background 

atmospheric noise, applying random cyclic shift and time interval dropout. Every augmented audio 

chunk was then converted into spectrogram and then further augmented in the frequency domain by 

pitch shift and frequency stretch, piecewise time stretch and frequency stretch and applying color 

jittering. The influence of the complete augmentation led improve by almost 10% the identification 

performance quantified as Mean Reciprocal Rank. In the field of animal audio classification, Sprengel 
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et al. [35] used standard audio augmentation techniques for bird audio classification, such as time and 

pitch shift. Besides, they created more samples by summing two different samples belonging to the 

same class. This is motivated by the fact that the sound of two birds from the same class should still 

be correctly classified. Pandeya et al. [28] demonstrated that audio signal augmentation by simple 

techniques as  random selection of time stretching, pitch shifting, dynamic range compression, and 

insertion of noise on the domestic cat sound dataset, described in Section 5 of this paper, improved 

accuracy, F1-score and area under ROC curve. In particular, the performance improvement increased 

by including more augmented clones (one to three) per single original audio file. Conversely, 

Oikarinen et al. [36], showed that augmenting their spectrograms by translations, adding random 

noise, and multiplying the input by a random value close to one, did not significantly improve their 

classification of marmoset audio signals. Of note, the aim of Oikarinen et al. was not the classification 

of species or call types only, e.g. from publicly available datasets, but the identification of call types 

and the source animal in a complex experimental setup consisting of multiple cages in one room, each 

cage containing two marmosets. Other techniques, inherited from e.g. speech recognition, are also 

suitable for animal sound classification. For instance, Jaitly et al. [37] proposed Vocal Track Length 

Perturbation (VTLP), which alters the vocal tract length during the extraction of a descriptor to create 

a new sample. They show that this technique is very effective in speech recognition. Takahashi et al. 

[38] used large convolutional networks with strong data augmentation to classify audio events. They 

also used VTLP and introduced a new transformation that consists in summing two different 

perturbed samples of the same class. 

In this work, we compare different sets of data augmentation approaches, each coupled with 

different CNNs. This way, an ensemble of networks is trained. Finally, the set of classifiers is 

combined by sum rule. The proposed method is tested in two different audio classification dataset: 

the first related to domestic cat sound classification ([28]), the latter on bird classification ([1]). Our 

experiments were designed to compare and maximize the performance obtained by varying 
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combinations of data augmentation approaches and classifiers and they showed that our augmentation 

techniques were successful at improving the classification accuracy. 

Our main contributions to the community are the following: 

 Different methods for audio data augmentation are tested/proposed/compared in two datasets; 

 Exhaustive tests are performed on the fusions among ensemble system based on CNNs trained 

with different data augmentation approaches; 

 All MATLAB source code used in our experiments will be freely available at 

https://github.com/LorisNanni  

 

2. Audio Image Representation 

In order to get image representations for the audio signals we applied a Discrete Gabor 

Transform (DGT) to the signal. The DGT is a particular case of Short-Time Fourier Transform where 

the window function is a Gaussian kernel. The continuous Gabor transform is defined as the 

convolution between a Gaussian and the product of the signal with a complex exponential: 

𝐺(𝜏, 𝜔) =  
1

𝜎2
∫ 𝑥(𝑡)𝑒𝑖𝜔𝑡𝑒−𝜋𝜎2(𝑡−𝜏)2

  𝑑𝑡
+∞

−∞

 

where 𝑥(𝑡) is the signal, 𝜔 is a frequency and 𝑖 is the imaginary unit. The parameter 𝜎2 is the 

width of the Gaussian window. The discrete version of the DGT uses the discrete convolution. The 

output 𝐺(𝜏, 𝜔) is a matrix whose columns represent the frequencies of the signal at a fixed time. We 

used the DGT implementation provided in http://ltfat.github.io/doc/gabor/sgram.html [39]. 

 

3. Convolutional Neural Networks 

In this work, we used CNNs both for feature extraction (to train SVMs) and for direct 

classification. CNNs, introduced in 1998 by LeCun et al. [40], are deep feed-forward neural networks 

where neurons are connected only locally to neurons from the previous layer. Weights, biases and 

https://github.com/LorisNanni
http://ltfat.github.io/doc/gabor/sgram.html
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activation functions are iteratively adjusted during the training phase. In addition to the input layer, 

i.e. the image or its part to be classified, and the output/classification (CLASS) layer, composed by 

one neuron for each class to classify, a CNN contains one or more hidden layers. The different types 

of hidden layers are convolutional (CONV), activation (ACT), pooling (POOL) and fully-connected 

(FC). The CONV layers perform feature extraction from the input volume by convolving a local 

region of the input volume (receptive field) to filters of the same size, thus a single integer of the 

output volume (feature map). Then the filter slides over the next receptive field of the same input 

image by a defined stride and again the convolution between the new receptive field and the same 

filter is computed. Doing this for the whole input image provides the input for the next layer. After 

each CONV layer, a non-linear ACT layer is applied to improve classification and the learning 

capabilities of the network. Common activation functions are the non-saturating ReLU function 

𝑓(𝑥) = max(0, 𝑥) or the saturating hyperbolic tangent 𝑓(𝑥) = tanh (𝑥), 𝑓(𝑥) = |tanh (𝑥)|, or the 

sigmoid function 𝑓(𝑥) = (1 + 𝑒−𝑥)−1 . POOL layers are required to perform non-linear 

downsampling operations (e.g. max or average pool) aimed at reducing the spatial size of the 

representation while simultaneously decreasing 1) the number of parameters, 2) the possibility of 

overfitting, and 3) the computational complexity of the network. POOL layers are commonly present 

between two CONV layers. FC layers are usually the last hidden layers: they have neurons fully 

connected to all the activations in the previous layer. The output CLASS layer performs the final 

classification: SoftMax is a commonly used activation function for the CLASS layer. 

We adapt  CNNs that were previously pre-trained on ImageNet [41] or Places365 [42] datasets 

to our classification problems. In detail, we keep the original pre-trained network architectures but 

the last three layers are replaced by i) an FC layer, ii) an ACT layer using SoftMax and iii) a CLASS 

layer. Then we retrain the whole CNNs, using as starting values for the network weights, the original 

values of the pre-trained networks.  We test and combine two different CNN architectures: 

1. GoogleNet [43]. This CNN is the winner of the ImageNet Large Scale Visual Recognition 
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Competition (ILSVRC) challenge in 2014. Its structure includes 22 layers that require 

training and five POOL layers. It also introduces a new “Inception” module (INC), i.e. a 

subnetwork made of parallel convolutional filters whose outputs are concatenated, greatly 

reducing the amount of learnable parameters. Two pre-trained GoogleNets are used: the one 

trained on ImageNet database [41] and the one trained on the Places365 [42] datasets.  

2. VGGNet [44]. This CNN placed second in ILSVRC 2014. It is a very deep network that 

includes 16 (VGG-16) or 19 (VGG-19) CONV/FC layers. The CONV layers are extremely 

homogeneous and use very small (3x3) convolutional filters with a POOL layer after every 

two or three CONV layers (instead after each CONV layer as in e.g. AlexNet [45]). Both 

VGG-16 and VGG-19 are trained on ImageNet database [41]. 

 

 

4. Data Augmentation approaches 

In this paper, we tested the following four augmentation protocols. For the third and fourth 

protocols we used the methods provided Audiogmenter [46], an audio data augmentation library for 

MATLAB. 

 

4.1 Standard Image Augmentation 

Our first data augmentation protocol (StandardIMG, Fig. 2) combines standard data 

augmentation techniques in computer vision. We independently reflect the image in both the left-

right (RandXReflection) and the top-bottom (RandYReflection) directions with 50% probability. We 

also linearly scale the image along both axes by two random numbers in [1, 2] (RandXScale and 

RandYScale). Besides, we apply random rotation by an angle in [-10, 10] (RandRotation) and a 

translation by a number of pixels in [0, 5] (RandXTranslation and RandYTranslation).  
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Figure 1. Effect of the seven standard image augmentation built-in in MATLAB techniques on one 

illustrative spectrogram produced from the original audio signal. To make more clear each 

transformation, to produce this figure the parameters were increased compared to those listed in 

Section 4.1 (scaling in [1, 10] and translation in [0, 20]). 

 

4.2 Standard Signal Augmentation 

Our second data augmentation protocol (StandardSGN) relies on the MATLAB built-in data 

augmentation methods for audio signals. We create 10 new signals for each training signal by 

applying the following transformations with 50% probability: 

1. Signal speed scaling by a random number in [0.8, 1.2] (SpeedupFactoryRange). 

2. Pitch shift by a random number in [−2,2] semitones (SemitoneShiftRange). 

3. Volume increase/decrease by a random number in [−3,3] dB (VolumeGainRange). 

4. Addition of random noise in the range [0, 10] dB (SNR). 

5. Time shift in the range [−0.005, 0.005] seconds (TimeShiftRange). 
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Figure 2. Effect of the five standard audio transformations built-in in MATLAB. Spectrograms were 

produced from the transformed audio signals. 

 

4.3 Spectrogram Augmentation 

Our third data augmentation protocol (Spectro, Fig. 3) works directly on spectrograms, 

producing six transformed versions of each original spectrogram. We implemented following six 

different functions (reported in italic): 

1. spectrogramRandomShifts randomly applies pitch shift and time shift. 

2. spectrogramSameClassSum creates a new image by summing the spectrograms of two 

random images from the same class. 

3. Vocal Tract Length Normalization (VTLN) creates a new image by applying a random 

crop followed by a VTLP [37]. VTLP cuts the spectrogram into 10 different temporal 

slices and to each of them applies the formula 
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𝐺(𝑓) = {

𝛼𝑓,                                              0 ≤ 𝑓 < 𝑓0

𝑓𝑚𝑎𝑥 − 𝛼𝑓0

𝑓𝑚𝑎𝑥 − 𝑓0

(𝑓 − 𝑓0) + 𝛼𝑓0, 𝑓0 ≤ 𝑓 ≤ 𝑓𝑚𝑎𝑥
 

 

where 𝑓0 , 𝑓𝑚𝑎𝑥  are the basic and maximum frequency, and 𝛼 ∈ [𝑎, 𝑏]  is randomly 

chosen. We set a and b to 0.9 and 1.1, respectively. 

4. spectrogramEMDAaugmenter applies the Equalized Mixture Data Augmentation 

(EMDA) [47] to create 𝑛 new images, where 𝑛 is the size of the original dataset, by 

computing the weighted average of two randomly chosen spectrograms with same label. 

We also apply i) a time delay, randomly selected in [0, 50], to one spectrogram and ii) 

a perturbation to both of them according to the formula 𝑠𝑎𝑢𝑔(𝑡) = 𝛼Φ(𝑠1(𝑡), 𝜓1) +

(1 − 𝛼)Φ(𝑠2(𝑡 − 𝛽𝑇), 𝜓2) 

where 𝛼, 𝛽 are two random values in [0,1], 𝑇 is the time shift and Φ is an equalizer 

function parametrized by the vector 𝜓 = (𝑓0, 𝑔, 𝑄). 𝑓0 is the central frequency and it is 

randomly sampled in [𝑓0min, 𝑓0max] = [100, 6000] . 𝑔 is the gain, which is randomly 

sampled in [−𝐺𝑎𝑖𝑛𝑀𝑖𝑛, 𝐺𝑎𝑖𝑛𝑀𝑎𝑥] =  [−8, 8]. The 𝑄-factor 𝑄 is randomly sampled in 

[𝑄𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥] = [1, 9]. All these parameters can be chosen by the user, the value here 

reported are those used in our experiments. 

5. randTimeShift applies time shift by randomly picking the shift 𝑇 in [1, 𝑀], where 𝑀 is 

the horizontal size of the input spectrogram, and cutting the spectrogram into two 

different images 𝑆1 and 𝑆2, taken before and after the time 𝑇. We obtain the new image 

by inverting the order of 𝑆1 and 𝑆2. 

6. randomImageWarp applies Thin-Spline Image Warping [48] (TPS-Warp) to the 

spectrogram. TPS-Warp perturbs the original image by randomly changing the position 

of a subset 𝑆 of the input pixels and adapts the ones that do not belong to 𝑆 using a linear 
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interpolation. We only change the spectrogram on the horizontal axis. Besides, we apply 

frequency and time masking, which is performed in practice by setting to zeros the 

entries of two rows and one column of the spectrogram. We set the width of the rows to 

5 pixels and the width of the column to 15 pixels. 

 

 

Figure 3. Effect of the six transformations included in the Spectro augmentation protocol and applied 

to one illustrative spectrogram after the raw audio signal conversion into visual representation. 

 

4.4 Signal Augmentation 

Our fourth protocol (Signal, Fig. 4) works directly on the raw audio signals, producing 11 

transformed versions of the input signal. It consists in the following 10 functions (reported in italic): 

1. WowResampling applies wow resampling to the original signal. Wow resampling is a 

variant of pitch shift where the intensity changes along time. The transformation is given 

by: 

𝐹(𝑥) = 𝑥 + 𝑎𝑚

sin(2𝜋𝑓𝑚𝑥)

2𝜋𝑓𝑚
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where x is the input signal, and we chose 𝑎𝑚 = 3  and 𝑓𝑚 = 2. 

2. Noise adds white noise such that the ratio between the signal and the noise is 𝑋 dB, 

where 𝑋 can be chosen by the user. We used 𝑋 = 10. 

3. Clipping normalizes the audio signal leaving the 10% of the samples out of [-1, 1]. The 

out-of-range samples x are then clipped to sign(x). 

4. SpeedUp increases or decreases the speed of the audio signal. In our experiments we 

applied a 15% speed augmentation. 

5. HarmonicDistortion applies quadratic distortion to the signal 5 times consecutively: 

𝑠𝑜𝑢𝑡 = sin5(2𝜋𝑠𝑖𝑛) 

where sin5() represents the sine function applied five times. 

6. Gain increases the gain of the audio signal by a specific number of dB. In our 

experiments we applied a 10 dB augmentation. 

7. randTimeShift randomly breaks each audio signal in two parts, swaps them and mounts 

them back into a new randomly shifted signal, i.e. if 𝑠𝑖𝑛 = [𝑠0, 𝑠𝑥] ∪ [𝑠𝑥, 𝑠𝑜𝑢𝑡],  the 

output signal is 𝑠𝑜𝑢𝑡 = [𝑠𝑥, 𝑠𝑜𝑢𝑡] ∪ [𝑠0, 𝑠𝑥]. 

8. soundMix sums two different audio signals from the same class to create a new synthetic 

signal. 

9. applyDynamicRangeCompressor applies the Dynamic range compression (DRC) [49] 

to the input audio signal. DRC is a technique that boosts the lower intensities of an audio 

signal and attenuates the higher intensities according to an increasing and piecewise 

linear function, thus compressing the audio signal's dynamic range.  

10. pitchShift shifts the pitch of an audio signal by a specific number of semitones. We 

chose to increase it and decrease it by two semitones. Fig. 4 reports two examples of 

pitch shift: pitchShiftA increases pitch by two semitones and pitchShiftB decreases it 

by two semitones. 
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Figure 4. Effect of the 11 transformations included in the Signal augmentation protocol and applied 

to one illustrative raw audio signal before its conversion into spectrogram. 

 

5. Experimental results 

We assessed the effects of data augmentation using a stratified ten-fold cross validation protocol 

and the recognition rate as the performance indicator (i.e. the average accuracy over the different 

folds). We tested our approach on the following two datasets of animal audio recordings: 

 BIRDZ, the control and real-world audio dataset used in [1]. The real-world recordings were 

downloaded from the Xeno-canto Archive (http://www.xeno-canto.org/), selecting a set of 11 

widespread North American bird species. The classes are: 1) Blue Jay, 2) Song Sparrow, 3) 

Marsh Wren, 4) Common Yellowthroat, 5) Chipping Sparrow, 6) American Yellow Warbler, 

7) Great Blue Heron, 8) American Crow, 9) Cedar Waxwing, 10) House Finch and 11) Indigo 

Bunting. The dataset includes different types of spectrograms: constant frequency, frequency 
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modulated whistles, broadband pulses, broadband with varying frequency components and 

strong harmonics. Globally, BIRDZ contains 2762 bird acoustic events with 339 detected 

“unknown” events corresponding to noise and other unknown species vocalizations.  

 CAT, the cat sound dataset was presented in [28,50]. It includes 10 balanced sound classes 

(about 300 samples/class). The classes are: 1) Resting, 2) Warning, 3) Angry, 4) Defence, 5) 

Fighting, 6) Happy, 7) Hunting mind, 8) Mating, 9) Mother call and 10) Paining. The average 

duration of a sound is about 4s. The author of this dataset collected the cat sounds from 

different sources: Kaggle, Youtube and Flickr. 

 

In the following Tables 1 and 2 we report the accuracy obtained by the four data augmentation 

protocols, comparing them with no augmentation (NoAUG) as baseline, for the CAT and BIRDZ 

datasets, respectively.  

 

We trained the CNNs for 30 epochs, except for StandardIMG where due to its slow convergence 

we have run the training for 60 epochs. We used a batch size of 30 for NoAUG and 60 for all the 

other protocols, to reduce the training time. The learning rate (LR) was set to 0.0001, except for the 

two GoogleNets in StandardIMG (we used LR=0.001 due to their low performance with 

LR=0.0001). The CNN named ‘VGG16 – batchSize’ is the standard VGG16 where the batch size 

is always fixed to 30.  

Moreover, in Tables 1 and 2 we reported also five fusion approaches, based on the assumption that 

“the collective decision produced by the ensemble is less likely to be in error than the decision made 

by any of the individual networks” [51]: 

1. GoogleGoogle365, sum rule among GoogleNet and GoogleNet – places 365 trained using 

each of the data augmentation protocols;  
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2. Fusion – Local, sum rule among the five CNNs trained using each of the data augmentation 

protocols; 

3. Fusion No+Si+Sp, sum rule among fourteen CNNs, i.e. the four CNNs trained with NoAUG, 

the five trained with Spectro and the five trained with Signal (for each protocol a different 

training is performed); 

4. Fusion Si+Sp, as the previous fusion, but not considering the NoAUG CNNs. Only the five 

CNNs trained with Spectro and the five trained with Signal are combined by sum rule; 

5. Fusion Si+Sp+SSG, as the previous fusion, with the addition of the five CNNs trained with 

the augmentation protocol StandardSGN. 

 

VGG16 could show a convergence problem: if it did not converge in the training phase, we re-run 

the training a second time. To avoid numeric problems in the fusions by sum rule, all the scores 

with not-a-number value were considered as zero. Another numeric problem is that VGG16 can 

assign the same scores to all the patterns, e.g. when VGG16 does not converge in the training data 

(random performance in the training set). Also in this case we considered all the scores as zeros. 

 

CAT NoAUG StandardIMG StandardSGN Signal Spectro 

GoogleNet 82.98 76.44 85.12 85.25 88.68 

VGG16 84.07 77.02 86.64 88.20 90.71 

VGG19 83.05 78.47 85.59 86.71 90.68 

GoogleNet – places365 85.15 72.20 86.34 88.27 89.19 

VGG16 - batchSize --- 78.15 84.71 88.47 91.22 

GoogleGoogle365 85.86 78.15 87.83 88.34 89.83 

Fusion - Local 87.36 82.71 89.22 89.05 91.73 

Fusion No+Si+Sp 90.14 

Fusion Si+Sp 91.08 
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Fusion Si+Sp+SSG 90.71 

 

Table 1. Performance on the cat dataset (mean accuracy over the ten-fold cross validation). 

StandardIMG: combination standard image augmentation techniques. StandardSGN: combination of 

standard MATLAB functions for audio signal processing. Spectro: combination of seven functions 

working on the spectrograms of the audio signals. Signal: combination of 11 methods for processing 

of raw audio signals.  *convergence problems of VGG16. 

 

 

 

Table 2. Performance on the BIRDZ dataset (mean accuracy over the ten-fold cross validation).  

 

The following conclusions can be drawn by the reported results: 

1. The best performance trade-off performance on the two tested dataset is obtained by 

“Fusion Si+Sp”.  

BIRDZ NoAUG StandardIMG StandardSGN Signal Spectro 

GoogleNet 92.41 83.76 94.66 95.32 90.51 

VGG16 95.30 91.45 95.59 95.88 90.83 

VGG19 95.19 91.27 95.77 96.06 92.26 

GoogleNet – places365 92.94 85.85 94.81 95.51 92.41 

VGG16 - batchSize --- 90.85 95.84 26.98* 91.24 

GoogleGoogle365 94.10 86.25 95.51 95.96 93.59 

Fusion - Local 95.81 92.89 96.16 96.56 94.30 

Fusion No+Si+Sp 96.72 

Fusion Si+Sp 96.80 

Fusion Si+Sp+SSG 96.85 
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2. There is not a single data augmentation protocol that outperforms all the others in all the 

tests. Spectro has the best performance in CAT and Signal in BIRDZ. However Signal 

outperforms NoAUG in both the datasets; 

3. The best stand-alone CNN is VGG16 coupled with Signal, although its performance is 

clearly lower than those obtained by the ensembles; 

4. The standard approaches StandardIMG used in computer vision for image augmentation 

obtain the worst results, also in comparison to NoAUG. Since spectrograms have time and 

frequency on their axes, standard image augmentation techniques, e.g. reflection, will 

hardly make sense.  For example, if a bird call is characterized by an increasing pitch over 

the duration of the call, its spectrogram augmented by reflection would represent a 

completely different sound where the pitch decreases over the duration of the call.  This 

shows the importance of using specific augmentation techniques for audio signals and 

their spectrograms.  

 

 In the following Table 3 we compare our best approach Fusion Si+Sp with our Fusion-Local and 

the literature data, showing how it outperforms the state of the art performance in both the datasets.  

 

Descriptor BIRDZ CAT 

Fusion - Local Signal 96.6 89.1 

Fusion - Local Spectro 94.3 91.7 

Fusion Si+Sp 96.8 91.1 

[52] 96.3 --- 

[3] 95.1 --- 
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[1] 93.6 --- 

[50] --- 87.7 

[28] --- 91.1 

[28] - CNN --- 90.8 

[53] 96.7* --- 

 

Table 3. Comparison of Fusion Si+Sp with our Fusion-Local and literature data. *: Inaccurate 

comparison, the authors used a different testing protocol. 

 

Of note, the comparison with [53] is inaccurate. We used ten-fold cross validation while in that 

work a different testing protocol was used: in each of 10 trials, they randomly split the dataset into 

60% training and 40% test. 

  We report the results of two approaches extracted from Pandeya et al., named [28] and  [28] – 

CNN, where the latter is based on an ensemble of CNNs for feature extraction to represent the audio 

signals. 

Unfortunately, in the field of audio animal classification, several papers focus only on a single 

dataset. Here, we have evaluated our protocols on two different datasets to provide a more robust 

analysis of their general performance. Nevertheless, both datasets tested in this paper were freely 

available and they were tested here with a clear and unambiguous testing protocol. In this way we 

report a baseline performance for the audio classification that can be used to compare other methods 

developed in the future. In terms of computing time, the most expensive activity is the conversion of 

the audio signal into its spectrogram since it is run on the CPU and not on GPUs. A single audio file 

of 1.13 seconds required 0.28 seconds for conversion on a machine equipped with i7-7700HQ 2.80 

GHz processor, 16 GB RAM and GTX 1080 GPU. The average classification time for a single 

spectrogram was 0.03 seconds on GoogleNet, 0.01 seconds on VGG16 and 0.01 seconds on VGG19. 
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Conclusion 

In this paper we explored how different data augmentation techniques improve the accuracy of 

automated audio classification of natural sounds (bird and cat sounds) by means of deep network.  

Different types of data augmentation approaches for audio signals were proposed, tested and 

compared. Because of the nature of these signals, data augmentation methods were applied on both 

on the raw audio signals and on their visual representation as spectrogram. A set of CNNs was trained 

using different sets of data augmentation approaches (that we organized in four protocols), then these 

CNNs were combined by sum rule.  

Our results demonstrated that an ensemble of different fine-tuned CNNs maximizes the performance 

in the two tested audio classification problems, outperforming previous state-of-the-art approaches. 

To the best of our knowledge this is the largest study of data augmentation for CNNs in audio 

classification. We also want to warn about the use of standard data augmentation protocols: 

augmentation techniques specifically developed for images could be useless, or in the worst case 

detrimental, when classifying specific dataset. For example, our results show that StandardIMG 

performs worse than classification with no augmentation. Therefore, when choosing an augmentation 

protocol for a classification problem, the nature of the dataset to classify must be always taken into 

consideration. 

This work will be further developed by assessing which of the proposed augmentation methods, 

here grouped in Standard Image Augmentation and Standard Signal Augmentation, are the most 

beneficial to classify animal sounds, and which ones can be excluded. We also aim i) to include other 

datasets, e.g. [27,54], in order to obtain a more comprehensive validation of the proposed ensemble 

of CNNs, ii) to test our ensemble on other sound classification tasks (e.g. whale and frog 

classification) as well as iii) to assess how different CNN topologies, parameters in the re-tuning step, 

and data augmentation methods could improve or degrade the ensemble performance.  
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The MATLAB code for the methods presented in this paper is freely available for comparison at 

https://github.com/LorisNanni . 
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