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Abstract

Automatic detection systems are important in passive acoustic monitoring (PAM) systems, as these record large
amounts of audio data which are infeasible for humans to evaluate manually. In this paper we evaluated methods for
compensating class imbalance for deep-learning based automatic detection of acoustic chimpanzee calls. The prevalence of
chimpanzee calls in natural habitats is very rare, i.e. databases feature a heavy imbalance between background and target
calls. Such imbalances can have negative effects on classifier performances. We employed a state-of-the-art detection
approach based on convolutional recurrent neural networks (CRNNs). We extended the detection pipeline through
various stages for compensating class imbalance. These included (1) spectrogram denoising, (2) alternative loss functions,
and (3) resampling. Our key findings are: (1) spectrogram denoising operations significantly improved performance for
both target classes, (2) standard binary cross entropy reached the highest performance, and (3) manipulating relative
class imbalance through resampling either decreased or maintained performance depending on the target class. Finally,
we reached detection performances of 33 % F1 for drumming and 5 % F1 for vocalization, which is a > 7 fold increase
compared to previously published results. We conclude that supporting the network to learn decoupling noise conditions
from foreground classes is of primary importance for increasing performance.
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1. Introduction

Automatic detection of chimpanzee calls is of primary
importance for automatic monitoring of wild chimpanzee
populations. There is a multitude of monitoring appli-
cations, from assessing chimpanzee home ranges for be-
havioral studies to early-warnings systems for areas with
human-wildlife conflict.[1, 2]

Passive acoustic monitoring (PAM) is one of the most
widely employed methods for monitoring wild animals.
Here, autonomous recording units (ARUs) are distributed
over an area for constant soundscape recording. The main
advantages of PAM are: (1) minimal intrusion, as humans
are only required for installation and maintenance of de-
vices, (2) sampling over large spatial and temporal scales,
and (3) detection of animals in habitats where visual recog-
nition is limited, e.g. dense rain forests. However, PAM
also produces large amounts of audio data which quickly
become infeasible to curate manually by humans. Con-
sequently, algorithms for automatic detection of target
species are of primary importance for PAM settings.[2]
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Heinicke et al. [3] investigated an automatic system for
detecting calls of various primate species in PAM record-
ings of a tropical forest. Their algorithm employed a con-
ventional acoustic detection approach based on hand-crafted
features and gaussian mixture models. Algorithm perfor-
mances varied with respect to target species and call type,
from 10 % F1 for Diana monkeys and King colobus mon-
keys to 4 % for chimpanzee drumming and 0.2 % for chim-
panzee vocalizations. To the best of our knowledge, this
is the only paper to date which focused on automatic de-
tection of chimpanzee calls in a PAM setting. Dev’s Mas-
ter Thesis [4] also investigated classification of chimpanzee
calls, however for classification against the Urbansound8K
[5] dataset classes (e.g. car horn or gun shot) instead of
detection in natural soundscape recordings.

In recent years, deep-learning based methods have be-
come prevalent and have largely replaced approaches based
on hand-crafted features in automatic audio recognition
systems. In the annual DCASE-challenges, deep-learning
based systems became popular between 2016 and 2017 [6–
9]. Research teams working on automatic animal call de-
tection particularly adapted convolutional neural networks
(CNNs) with spectrogram inputs: Bergler et al. [10] ap-
plied Res-Net [11] variants for detection of orca calls in
long-term recordings; Bjorck et al. [12] applied Dense-
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Net CNNs [13] for detecting African forest elephants with
PAM; Oikarinen et al. [14] applied siamese CNNs with
stereo inputs to the detection of various marmoset mon-
key calls. Aodha et al. [15] investigated CNNs for bat
detection. In an open challenge for bird audio detection in
2017[16], the top placed system ”bulbul” likewise applied
CNNs to spectrogram inputs.

However, research is still lacking in some areas of auto-
matic primate call detection as well as automatic animal
call detection in general.

(1) Consideration of target class rarity in PAM set-
tings. The majority of recordings in long-term PAM record-
ings will comprise background noise rather than target
calls [3, 12, 14]. Consequently, databases feature a heavy
imbalance between background and target class. Numer-
ous studies showed that class imbalances can have detri-
mental effects on automatic system performances, as clas-
sifiers are usually biased towards the majority class [17–
19]. However, all previously mentioned studies worked
with databases with strongly reduced amounts of back-
ground samples, biasing the class distribution towards the
positive class. This bias was either already present in the
respective database, or produced by the authors through
discarding fixed percentages of noise samples. Addition-
ally, nearly all papers measured system performances with
metrics unsuited for unbalanced settings (accuracy or AUC
ROC). These give overly optimistic results in recordings
with heavy class imbalance as they are biased towards the
majority class [19].

(2) Time-continuous detection. All previously men-
tioned deep-learning based systems approached detection
tasks by classifying broader spectrogram patches of var-
ious seconds, e.g. 25-second patches [12]. An evaluated
temporal context receives a single class label. This ap-
proach decreases the temporal resolution of training anno-
tations as well as test time predictions. In general-purpose
detection tasks, convolutional recurrent neural networks
(CRNNs) with time-distributed outputs have recently be-
come more prevalent [20]. They are capable of predicting
each individual spectrogram time frame while incorporat-
ing broader spectrogram contexts. Such networks have not
yet been applied to animal call detection tasks.

In this study, we investigated time-continuous detec-
tion of chimpanzee calls using CRNNs. The target calls
were chimpanzee drumming and vocalizations in long-term
PAM audio recordings of an African rain forest (Täı Na-
tional Park, Côte d’Ivoire). We addressed a particular
challenge imposed by the severe imbalance between target
classes and background samples in the database, caused
by the rarity of chimpanzee calls. The test set, with a
total duration of 179 hours, contained merely ≈ 10 min-
utes of chimpanzee calls. Consequently, we studied various
methods for compensating this imbalance. These methods
comprised (a) spectrogram denoising for compensating the
absolute rarity of target classes, and (b) alternative loss
functions and resampling (over & undersampling). The
novel contributions of this paper are:

vocalization

drumming

Figure 1: Example spectrogram of target classes.

Figure 2: Histogram of call type durations

(1) the investigation of the feasibility of time-continuous
detection with CRNNs for chimpanzee detection. To the
best of our knowledge, this is the first application of this
approach for animal species detection in long-term record-
ings. (2) a dedicated investigation of various methods for
compensating class imbalance, including resampling, alter-
native loss functions and spectrogram denoising.

2. Materials and Methods

2.1. Dataset

The dataset was originally collected by AKK [1, 2] with
the aim of developing an automated approach for detecting
primate calls in PAM forest recordings [3]. Heinicke et al.
[3] present the evaluation of this automated system.

The recording site was the western section of the Täı
National Park, Côte d’Ivoire. The area sampled the ter-
ritories of two chimpanzee communities. The soundscape
of the park featured a wide variety of biogenic sounds, e.g.
birds, insects, anthropogenic sounds, rain, wind etc. The
recording setup comprised 20 ARUs distributed evenly across
an area of ≈ 35 km2. ARUs recorded in stereo with a
sampling rate of 16 kHz and 16 bit depth. The record-
ing period was from November 2011 to May 2012. ARUs
recorded daily from 6 am to 6 pm on the full hour for 30
minutes. A total of 12 889 h of audio data was collected.

The original automated approach [3] targeted chim-
panzees, Pan troglodytes ssp. verus, as well as three other
primate species. The present study focuses exclusively on
chimpanzees. Heinicke et al. defined two chimpanzee call
types for detection: (1) Drumming, which is produced
by chimpanzees when they repeatedly hit buttress roots of
trees with their hands and feet. (2) Vocalizations, refer-
ring primarily to chimpanzee pant-hoots and screams for
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long-distance communication. Drumming is characterized
by short energy bursts with low frequency. Vocalizations in
the data set are characterized by harmonic patterns with
an estimated frequency range of 200 - 2000 Hz. Figure
1 shows an example spectrogram excerpt with both call
types. For the remainder of this paper, we refer to call
types as classes and call instances as events in accordance
with the vocabulary established in general audio detection
research [21].

To construct sets for training and validation of the au-
tomated system, the data pool was sampled, partitioned
into sets of recordings, and annotated. Table 1 summarizes
the datasets used in this study: The complete test set cor-
responds to the original test set constructed by Heinicke et
al. [3]. They randomly sampled 358 recordings (of 30 min-
utes each) from the data pool, balanced across ARUs (one
file per ARU per week) and time of day. This procedure
ensured that the test set reflected diverse acoustic con-
ditions for varying seasons, daytimes and sampling sites.
We additionally constructed a reduced test set which com-
prised all recordings from the complete test set with at
least one chimpanzee event. We used the reduced test set
for repeated evaluation runs, as the complete test set was
computationally expensive due to its size. The training
set contained 44 additional recordings which were like-
wise randomly sampled (i.e. training and test set com-
prised of distinct recordings). Each individual recording
in the training and test set was 30 min long. The valida-
tion dataset contained 25 additional recordings collected
during a pilot study at the same location in 2010. Contrary
to the other sets, recordings in the validation set had vary-
ing lengths with a mean duration of 1.3 min. Two trained
experts for primate vocalizations annotated call events in
these recordings with precise start- and end times [3].

A central characteristic of the dataset is the rarity of
the target classes. The complete test set with approx-
imately one week of recording time merely contained a
total of 2.5 min of drumming and 7 min of vocalization
events. The relative amount for drumming and vocaliza-
tions was 0.02 % and 0.06 % respectively. This imbalance is
representative of the real-world prevalence of chimpanzee
calls obtained using PAM in natural settings. Even the re-
duced test set, which biased the class distribution in favor
of the target classes, contained 0.16 % and 0.47 % of drum-
ming and vocalization events respectively. The training set
contained 0.2 % and 0.35 % of drumming and vocalization
events respectively.

We highlight that the imbalance between the number
of positive class examples (i.e. target calls) and negative
class examples (i.e. background samples) has two effects,
according to the taxonomy of Weiss et al. [17]:

• Absolute rarity, i.e. low amounts of training exam-
ples for the target classes. This causes classifiers to
overfit individual examples rather than learning gen-
eralized patterns for the target classes, particularly
in deep-learning systems [21, 22].

Table 1: Dataset overview

test
complete

test re-
duced

train-
ing

valida-
tion

ARU
record.

# recordings 358 50 44 25

total
duration

179 h 25 h 22 h 0.7 h

% recordings
with at least
1 chimp. call

14 % 100 % 50 % 76 %

drum.

# events 100 100 78 29

total
duration

149 s 149 s 159 s 96 s

mean
duration

1.29 s 96 s 1.76 s 2 s

vocal.

# events 50 50 53 23

total
duration

431 s 431 s 270 s 88 s

mean
duration

5.72 s 5.72 s 4.35 s 3 s

• Relative imbalance between background class and
target class examples. This usually induces a pre-
diction bias into the classifier to favor the majority
class, while the minority class often is of greater in-
terest to the user [17–19, 23]. However, the magni-
tude of the negative effect depends on the complex-
ity of the classification task at hand. The algorithm
might be completely unaffected if classes are linearly
separable [19, 24].

2.2. Detection pipeline

Figure 3 gives an overview of the detection pipeline at
training and test time. The pipeline consist of a series of
pipeline stages which progressively process an input audio
signal (i.e. ARU recording). At training time, the pipeline
outputs a trained CRNN. At test time, the pipeline out-
puts indications on target class presence for spectrogram
time frames.

The general approach and stage arrangement of fea-
ture extraction, segmentation, CRNN, output concatena-
tion and output thresholding originates from Cakir et al.[20].
We additionally added the stages spectrogram denoising
and resampling. These stages, together with the choice
of the loss function, are the three components aimed at
compensating class imbalance investigated in this study.
Although Cakir’s pipeline is aimed at polyphonic detec-
tion tasks, we only considered single class detection in this
study, i.e. a separate CRNN must be trained for drum-
ming and vocalization. This restriction was imposed to
study the effects for both classes individually.

The pipeline stages function as follows:
(1) input : Input are ARU recordings xi ∈ Rli of length

li ∈ N as time-domain audio signals, where i is the signal
index. Signals are converted to mono and normalized to
a peak amplitude of 1 to equalize loudness across signals.
Ground truth annotations are tables which list occurrences
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+input
x[n]

annotations

ground truth
y[t]
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predictions
p̂[t]

ground truth
y[t]
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ŷ[t]

ground truth
y[t]
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resampling

training

T

feature extraction

CRNNloss

Ts
TestingTraining

Ts

CRNNCRNNCRNN

spectrogram denoising

output concatenation

output thresholding

(1)

(2)

(3)

(4)

(5)

(6)

(6)

(7)

(8)

Figure 3: Overview of the detection pipeline at training and
test time. In this example there is only one input signal x, so that
the index i is omitted.

of target calls with their start- and end times within sig-
nals.

(2) feature extraction: Signals xi are converted into

spectrograms Sin
i ∈ RTi×F in

, where Ti ∈ N is the re-
spective amount of spectrogram time frames and F in ∈
N is the amount of frequency bins. We employed mel-
scaled spectrograms as it currently is the most prevalent
choice in deep-learning based sound recognition systems
[7–9, 25]. We adapted the variant of the DCASE base-
line systems [26], which is the logarithm of a slaney-stile
mel-fitlerbank of the linear magnitude spectrogram. We
adapted the frame length of 40 ms and hop-length of 20 ms
from Cakir et al. We used F in = 80 mel-bands, i.e. we
doubled Cakir’s frequency resolution to reduce the loss of
potentially important frequency information, particularly
in view of the low signal-to-noise-ratio in this task. The
feature extraction process was implemented through the
python library librosa v.0.8. [27]. Ground truth an-
notations are likewise converted to binary target vectors
yi ∈ {0, 1}Ti , where yi[t] = 1 encodes presence and 0 en-
codes absence of the target class in time frame t (alias
”positive” and ”negative” example).

(3) spectrogram denoising : This stage applies a series
of denoising functions to spectrograms fden(Sin

i ) = Sden
i ∈

RTi×Fden

. While the time axis size Ti remains unchanged,

the frequency axis might be reduced to F den. This stage
also z-standardizes all spectrograms through global statis-
tics calculated on the training set.

(4) segmentation: While all spectrograms Sden
i contain

the same amount of frequency bands, the number of time
frames Ti might vary depending on the input duration for
signal i. However the CRNN requires inputs with equally
sized dimensions to be trained via mini batch training.
Therefore spectrograms are segmented across the tempo-
ral axis into non-overlapping segments of fixed temporal
length T seg. Consequently, Sden

i is represented as a list of

segments Si,j ∈ RT seg×Fden

, where j is the segment index.
For training, target vectors are likewise segmented into
yi,j ∈ RT seg

. In this study, we used a fixed segment length
of Ts=̂10 s as a balance between computational efficiency
and providing sufficient temporal context in spectrogram
segments for recognition of target classes. For signals with
Ti mod T seg 6= 0 (some signals in the validation set), the
last segment was partially overlapped with the penulti-
mate to cover Ti completely if the overlap was < 75 %, or
discarded otherwise.

(5) resampling : This stage alters the distribution be-
tween positive and negative examples through over and
undersampling of segments. This stage is only active for
training to not affect class distribution when validating
the system. Section 2.6 provides details on the resampling
procedure.

(6) CRNN prediction / training : The CRNN processes
spectrogram segments individually to produce correspond-
ing class probability vectors f crnn(Si,j) = p̂i,j ∈ [0, 1]Ts ,
i.e. p̂i,j [t] indicates the probability of the target class be-
ing present in frame t of segment j for signal i. At training
time, predictions are used for iterative optimization of net-
work weights. Section 2.4 provides details on the CRNN
configuration. We experimented with various loss func-
tions as described in section 2.5.

(7) output concatenation: The stage concatenates the
prediction segments to produce one target vector per input
spectrogram [p̂i,0, p̂i,1, ...] = p̂i ∈ RTi .

(8) output binarization: This stage binarizes predicted
probabilities through thresholding: ŷi = 1, if pi > C, else
0. We used the unbiased threshold C = 0.5 as in [20].

2.3. Spectrogram denoising

Spectrogram denoising is a common preprocessing step
in automatic animal call detection. The aim is to increase
the signal-to-noise-ratio, as recordings usually carry high
amounts of noise due to the nature of open field settings.
In this context, the signal is the target call of interest.
Noise refers to background sounds, i.e. geophony (envi-
ronmental sounds such as wind and rain), anthrophony
(noise generated by humans, such as traffic) and biophony
(sounds of animals not of interest). In the context of this
work, we employed spectrogram denoising as a method for
combating absolute rarity of target classes. Target event
examples are present for only few background noise condi-
tions, possibly causing the classifier to infer false coupling
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between noise conditions and event probability. Prior elim-
ination of variability between noise conditions can mitigate
this effect. [15, 28, 29]

Among the multitude of available methods, we chose to
evaluate: (1) frequency removal and (2) spectral subtrac-
tion, as they are among the most prevalent and straight-
forward methods in automatic animal call detection [15,
28, 29]. Both methods exploit the observation that back-
ground noise is fairly consistent over large periods of time,
while target classes are comparatively short and seldom.

2.3.1. Frequency removal

Animal target calls usually occupy narrow frequency
ranges. Therefore, many systems apply preprocessing fil-
ters to remove unneeded frequency ranges [18]. We calcu-
lated frequency ranges for target classes through the fol-
lowing proposed method:

The goal is to calculate a class mask r ∈ RF , whose
values r[f ] indicate the strength of association between
mel frequency bins f and the target class. let T start

e ∈ N
and T end

e ∈ N be the start and end time of event e ∈
{0, ..., E−1} indicated as spectrogram time frame indices.
Se ∈ RT×F and ye are the spectrogram and ground truth
vectors which contain event e at some points. te ∈ [T start

e −
T c, ..., T end

e + T c] is the list of time frames for event e,
padded by a fixed context size T c. Then, Scontext

e and
ycontext
e are the spectrogram and ground truth vector patches

corresponding to te, i.e. Scontext
e = {Se[t, f ] | t ∈ te}. For

each event, we obtain an event mask re ∈ RF by calculat-
ing the Pearson correlation between the mel frequency bin
f and the target vector as:

re[f ] =
cov(Scontext

e [f ],ycontext
e [f ])

σ(Scontext
e [f ]), σ(ycontext

e [f ])
(1)

The total class mask r is the average of all event masks:

r[f ] =
1

E

E−1∑
e=0

re[f ] (2)

The intuition behind this calculation method is as fol-
lows: Any call event causes an increase in energy of its as-
sociated frequency bands relative to the background noise.
If an event is surrounded by time invariant noise, this gain
is measurable as a positive correlation between a frequency
band’s energy and the target vector. The class mask value
range is −1 ≤ r[f ] ≤ +1, where +1/ − 1 indicates per-
fect association of a frequency band to the target vector
and 0 indicates no association. Positive correlations > 0
are attributed to the actual target class acoustic content,
i.e. energies active during target events. Negative correla-
tions < 0 indicate systematic absence of band energies
during events, which might be caused by other sounds
commonly preceding, succeeding or pausing during tar-
get events. Our approach is applicable for calculating fre-
quency ranges of arbitrary sound classes, if the mentioned
preconditions are met.

r[f
]

f

Figure 4: Class masks. Graphs indicate the strength of association
between mel frequency bands and target classes. r[f ] = 0 indicates
no association and r[f ] = +1/− 1 indicates perfect association. The
red line indicates the threshold under which we removed frequency
bands when applying frequency removal.

Figure 4 shows the class masks for both target classes.
These masks were calculated exclusively on events from
the training and validation set. The context length was
T c=̂1 min which roughly corresponds to the length of the
longest call event in our database. When applying fre-
quency removal, we set a correlation threshold Cr to re-
move frequency bands with r[f ] < Cr. We chose Cr =
0.025 as a rather low threshold to ensure no significant
target class information was lost. We exclusively consid-
ered positive correlations as only those were indicative of
the actual target class’ signal content. Negative correla-
tions, particularly > 2500 Hz, were attributed to variations
in the background noise conditions such as periodic insect
calls which we aimed to eliminate in this preprocessing
step.

This procedure retained the lowest 5 frequency bins
for drumming (range 0 − 152 Hz), and 39 frequency bins
for vocalization (range 267 − 2097 Hz). Those frequency
ranges correspond to estimations of previous studies [3].
Figure 5 visualizes the effect of frequency removal.

2.3.2. Spectral subtraction

Spectral subtraction removes background noise by sub-
tracting a noise profile from signals. If the noise profile
is assumed invariant across time/recordings, the profile
is commonly estimated by averaging each frequency bin
across all time steps inside a background noise region [28].
However, we observed that noise conditions vary strongly
between recordings due to time of day, season and ARU
location, but are fairly consistent within recordings. Con-
sequently, we estimated local noise profiles for recordings
as follows:

A spectrogram Si is segmented into non-overlapping

segments Si,j ∈ RT sub×F of length T sub similar to the seg-
mentation step in the processing pipeline. From each seg-
ment we subtract each frequency bin’s average value:

Sdenoised
i,j [t, f ] = Si,j [t, f ]− 1

T sub

T sub∑
t=0

Si,j [t, f ] (3)
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Figure 5: Visualization of preprocessing operations for an
example vocalization event. Top: Input spectrogram. Middle:
Effect of spectral subtraction (see sec. 2.3.2). Bottom: Effect of
frequency removal (see sec. 2.3.1)

If T sub is sufficiently large compared to the expected
target event duration, the average frequency band energy
is dominated by the noise profile rather than the target
class profile. Denoised spectrogram segments are then con-
catenated to reconstruct the input spectrogram progres-
sion. This method is similar to the one applied in study
[15]. Here we set T sub=̂3 min, so that even the maximum
expected call duration contains twice as much noise as the
target signal. Figure 5 visualizes the effect of spectral sub-
traction.

2.4. Convolutional Recurrent Neural Network

Figure 6 visualizes the network architecture scheme.
The scheme is largely adapted from Cakir et al. [20]. It
contains a sequence of network stages which process a spec-

trogram Si,j ∈ RT seg×Fden

to produce an output prediction
vector p̂i,j ∈ [0, 1]T

seg

. For simplicity, we denote these ele-
ments as S ∈ RT×F and p̂ ∈ RT in this section. A central
network property is that the temporal dimension T re-
mains intact throughout the network, i.e. the temporal
alignment between spectrogram frames and output time
steps is maintained.

2.4.1. Architecture Scheme

The input stage appends an empty channel dimension
to the spectrogram in preparation for the convolutional
stage RT×F 7→∈ RT×F×(C=1),

The convolutional stage consists of alternating convo-
lutional and pooling layers similar to conventional CNN
architectures [30]. Convolutional layers extract local fea-
tures via learned filter kernels. They retain the size of
the frequency and time dimension of their respective in-
puts through padding, but alter the channel dimension

according to the number of filter kernerls k, i.e. convk :
RT×F×C 7→ RT×F×C′=k. Pooling layers reduce the fre-
quency axis size through one-dimensional pooling accord-
ing to the pooling stride p, i.e. poolp : RT×F×C 7→ RT×(F ′=F/p)×C .
The stage outputs a volume ∈ RT×F conv×Cconv

, where F conv

is the frequency size remaining after several pooling oper-
ations and Cconv is the number of filter kernels in the last
convolutional layer.

The frequency integration stage removes the frequency
dimension by incorporating frequency into channel infor-

mation : RT×F conv×Cconv 7→ RT×Cfreqint

. This is done via a
time-distributed function, i.e. a function which is applied
equally at each time step t.

The recurrent stage contains a recurrent layer which
processes the output of the frequency integration stage se-
quentially at every time step. The output of the recurrent
layer at time step t depends on the input of the preceding
layer at the same time step t as well as the hidden states
of the recurrent layer at steps 0, ..., t − 1. The volume

dimensionality transformation is RT×Cfreqint 7→ RT×Crec

.
Finally, the output layer consists of a time-distributed

fully-connected layer RT×Crec 7→ RT , i.e. a single fully-
connected neuron which is applied with the same weights
at each time step. We initialized the bias parameter of
this neuron to the respective training class distribution
loge(pos/neg), where pos and neg are the amount of pos-
itive and negative time steps respectively. This way, net-
works start training with appropriate output distributions
which can prevent instability in the initial training steps,
as recommended by Lin et al. [31]

The central difference between Cakir’s scheme and ours
is the definition of the frequency integration stage as a
generic stage, while Cakir defined a single fixed integration
operation for flattening the frequency axis. The reason for
this change is that we identified the frequency integration
operation as one of the most important architecture hyper
parameters in our previous studies [32, 33]. We imple-
mented networks and training with tensorflow v.2.3.1.

2.4.2. Network Configuration

The following network parameters were fixed. For the
convolutional stage, all convolutional layers used kernel
sizes (5, 5) and strides of (1, 1). Convolutional layers were
always followed by a batch-normalization layer and ReLU
activation. Pooling layers always used max-pooling. The
recurrent stage contained a single recurrent layer with gated
recurrent units (GRU). Networks were trained with Adam
optimizer with standard parameters [34] and early-stopping
based on the validation set loss. All of these parame-
ters were chosen in accordance to the recommendations
of Cakir et al. [20].

The following network parameters were subjected to
a parameter search as part of the experimental setup in
this study (see section 2.8). The channel size ∈ N is the
number of filters in each convolutional or recurrent layer,
i.e. the number of filters/units is held constant across the
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Figure 6: Convolutional recurrent neural network architec-
ture scheme.

entire network. The conv. stage depth ∈ N determines the
number of convolutional layers. We chose to search these
parameters as they primarily determine the amount of net-
work weights and consequently the capacity to fit the data
[22]. The pooling size ∈ N determines the pooling size and
stride for all pooling layers. The frequency integration op-
eration ∈ RF×C 7→ RC′

is the time-distributed operation
for integration of the frequency dimension. We searched
for these parameters as we found them to be of primary
importance for generalization capability in prior studies
[32, 33]. Finally, recurrent bi-directional ∈ B determined
whether the recurrent layer was used bi-directionally. If
yes, half of the units run forward and half backwards. We
searched this parameter as we hypothesized it to be of pri-
mary importance for the network’s capability to precisely
locate frames of event activity.

Table 2 summarizes the search space. As explained
further in section 2.8, we investigated network configura-
tion in combination with the spectrogram denoising stage
setting. All search spaces were equal regardless of input
class and denoising setting, except for drumming when fre-
quency removal was applied, as this removed 93 % of the
input frequency axis size.

2.5. Loss

The choice of loss function is among the primary algorithm-
level methods for mitigating class imbalance in neural net-
works [19]. The standard loss for classification problems

Table 2: Search space for network configuration and spec-
trogram denoising. Table header shows input class, the top half
shows denoising setting, and the bottom half shows the search space
for network configuration parameters. The symbol ← indicates that
a search space corresponds to the respective left cell. Abbreviations:
GAP = 1d global average pooling, GMP = 1d global max pooling

input class vocal drumming

freq. removal no yes no yes

input size T × F 500× 80 500× 39 500× 80 500× 5

spectrl. subtr. {no, yes} {no, yes} {no, yes} {no, yes}

# units / layer {32, 64, 96} ← ← ←
# conv. layers {2, 3, 4} ← ← {1, 2}
pool size & stride {2, 3, 4, 5} ← ← {2, 3}

freq. integr. op.
{flatten,
GAP,
GMP }

← ← ←

with output neurons with sigmoid activations is binary
cross entropy [20, 22]:

BCE(p̂, y) =

{
−w1 log(p̂) , if y = 1

−w0 log(1− p̂) , else
(4)

where w1, w0 are optional weights for the background
and the target class. In standard binary cross entropy both
classes are weighted equally, i.e. w1, w0 = 1. Binary cross
entropy was the default loss used for network optimization.
As part of the experimental setup (see section 2.8), we
additionally evaluated a selection of the most prevalent
BCE variants [19] aimed at mitigating class imbalance.
These were:

• weighted binary cross entropy weighs classes ac-
cording to the relative count of examples: wk =
|Ck|/(|K| · |C|), where k ∈ K = {0, 1} is the class
index, Ck is the set of examples for class k, and C is
the total set of examples. This calculation method
originates from King et al. [35], as implemented with
scikit-learn v.0.23.

• focal loss down-weighs the loss of well-classified ex-
amples irregardless of the class trough: w0 = (ŷ)γ

and w1 = (1 − ŷ)γ . The hyper parameter γ deter-
mines the amount of down-weighting and is set to a
default value γ = 2 in the paper [31]. We used the
implementation of tensorflow-addons 0.11.2.

• weighted focal loss is the combination of focal loss
with class weights as previously described.

2.6. Resampling

Resampling is the most prevalent data-level technique
for mitigating relative class imbalance. Resampling seeks
to rebalance the distribution between class examples by
undersampling, i.e. discarding examples from the major-
ity class, and oversampling, i.e. duplicating examples from
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Table 3: Search space for loss and resampling

stage component default search space

training loss BCE
{weighted BCE, FL,
weighted FL}

resampling

oversampling
dupl. amount

2 {0, 2, 4, 8, 16}

undersampling
disc. percentage

75%
{0%, 50% 75%, 90%,
95%}

the majority class. Both techniques have been successfully
applied for deep-learning based systems in imbalanced set-
tings [19]. Among the set of available resampling tech-
niques, we chose to experiment with the most prevalent
and straight-forward implementations: random over and
undersampling.

We implemented resampling as follows. After the seg-
mentation step, each ARU recording was represented as
a list of spectrograms Si,j and target vectors yi,j where
i is the signal and j is the segment index. We separated
each list into disjoint subsets, those containing ”negative”
segments, i.e. segments with exclusively background time
steps Negi = {j | max(yi,j) = 0)}, and those containing
”positive” segments, i.e. segments with at least one time
step with a target call Posi = {j | max(yi,j) = 1)}.

The strength of undersampling is determined through
a parameter U ∈ [0, ..., 1] which indicates the percentage
of discarded negative examples. The strength of oversam-
pling is determined through a parameter O ∈ N which
indicates the number of duplications of all positive ex-
amples, e.g. O = 1 means that each positive example
is duplicated once. Undersampling and oversampling was
performed for each input signal separately. Using this ap-
proach, we ensured that the set of background examples
displayed a certain degree of diversity even for higher dis-
carding percentages, as noise had greater variance between
than within signals.

Table 3 shows the default settings and search space
for the resampling stage. As shown, the default setting
applies some amount of over- and undersampling, while
not completely balancing distributions. The reasons were
(a) decreasing training time for the initial experiments by
reducing the data set size, (b) ensuring that the extreme
imbalance in the training set does not prevent training
convergence [19], and (c) to imitate the default setting
commonly used in animal call detection systems, which
usually start with already undersampled databases [10, 12,
14].

2.7. Evaluation

We chose the following metrics for evaluation of system
performance: (1) average precision (AP ), also known as
the ”area under the precision-recall-curve”. This metric
is based on the un-binarized prediction probabilities, i.e.
comparing p̂ and y after the concatenation step described
in section 2.2 (predictions / ground truth vectors for all

signals were concatenated ). (2) F1, calculated on the
binarized prediction probabilities ŷ and y. Both metrics
are recommended for the evaluation of imbalanced class
distributions [12, 36]. All metrics were implemented with
scikit-learn v.0.23

We chose the segment based approach as the evaluation
method, i.e. metrics were based on comparing fixed-length
time intervals as evaluation instances [37]. We chose the
following temporal resolutions:

• Frame-wise resolution: Evaluation segments corre-
sponded directly to spectrogram frame indications p̂
or ŷ and y. Consequently, the evaluation segment
length was 20 ms. This resolution measures the sys-
tem capacity for precise localization of events. It im-
plicitly weighs target events according to the amount
of time frames, i.e. longer events influence metric
scores more than short events. This resolution was
noted through the subscript APfrm and F1frm.

• 5 second resolution: Ground truth and prediction
vectors were down-sampled to 5 s intervals as evalu-
ation instances. The down-sampling was performed
through max-pooling in non-overlapping segments
of 5 s length. This resolution measures the system
capacity for coarse localization of events. It also
compensates the effect of event importance being
weighted by length, as all events with length < 5 s
contribute the same amount of evaluation segments.
However, it also over-penalizes short false-positive-
peaks. This resolution was noted through the AP5

and F15.

• Averaged resolution: The average of both resolu-
tions, e.g. F1avg = (F1frm + F15)/2

We used APavg as the primary evaluation metric for the
following reasons. (1) It is independent of a binarization
threshold, which imposes another hyperparameter which
might require tuning. (2) End users for this application
prefer unbinarized predictions as being more informative
and (3) It summarizes the system capacity for precise and
coarse event localization. We indicated all metrics in the
range [0, ..., 1], where 0 is the worst and 1 is a perfect score.

2.8. Experimental Setup

The central goal of the experimenation was to evaluate
the influence of pipeline stages for mitigating class rar-
ity. Tables 2 and 3 summarize the stage’s search spaces
and default settings. However, the search space was too
large to exhaustively evaluate via a full-factorial design,
i.e. evaluating each possible combination of parameters
(”grid search”). Therefore, we split the experiment into
two rounds to investigate local combinations of stages full-
factorially:

Round 1: Optimization of network architecture
+ spectrogram denoising. For each setting of the de-
noising stage (no preprocessing / freq. removal / spec.
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sub. / freq. removal + spec. sub.) we performed a full ar-
chitecture grid search according to the search space shown
in Table 2. The goal was to identify the optimal combina-
tion of denoising setting and network architecture config-
uration. As this round performed hyper-parameter selec-
tion, performance was measured on the validation set. Re-
sampling and loss-stages used their default values as shown
in Table 3. The reason for optimizing these components
first were: (a) the network architecture is the central and
only obligatory part of the pipeline and thus of primary
importance for optimization, and (b) we hypothesized in-
teraction effects between denoising and network architec-
ture parametrization, since the denoising setting altered
the dimensionality and nature of the input features.

Round 2: Optimization of loss type + resam-
pling. For each loss variant, we investigated each possible
combination of over & undersampling according to Table
3. Network architecture and spectrogram denoising were
fixed to the optimal configuration found in round 1. We in-
vestigated these stages in combination, since we suspected
interaction effects, e.g. loss variants specialized in balanc-
ing stages might prefer less oversampling. For this round
we used the reduced test set for evaluation, as it more
accurately mirrors the real class distribution than the val-
idation set.

We performed all experiments separately for each class.
To reduce performance variability due to random model
initializations and dataset shuffling, we repeated each net-
work training and evaluation 5 times and averaged perfor-
mance results.

3. Results

3.1. Optimization of network architecture + spectrogram
denoising

Figure 7 shows the validation set performances achieved
by networks in the architecture grid search, grouped by
denoising operations. To statistically assess the influence
of the investigated parameters, we constructed conditional
inference trees (c-trees), shown in Figure 10. C-trees are
regression trees where the splitting criterion is the statis-
tical significance (p-value). At each node, the tree splits
instances into two subgroups based on a singular feature,
choosing the split with the highest significance, until no
significant split can be made. The advantage of c-trees
for statistical analysis are that (1) they indicate hyper-
parameter importance, as the globally most important hyper-
parameters occur higher to the root, and (2) they implic-
itly account for interaction effects, i.e. hyper-parameter ef-
fects only occurring in subgroups. We fit regression trees
on the validation performance APavg with all denoising
and architectural hyper-parameters as predictors. The p-
value-cutoff was 0.001 with Bonferroni-correction to limit
trees to the most essential effects. C-trees were imple-
mented with R-package party v 1.4-5 [38].

We highlight the following observations based on these
visualizations:

Figure 7: Performances of network configurations, grouped
by denoising operations. The x-axis indicates spectrogram de-
noising operations, the y-axis indicates validation performance. Each
data point presents the performance of a network configuration pro-
duced in the architecture grid search, averaged over 5 runs.

(1) Detection performance was drastically higher for
drumming than for vocalization, regardless of network ar-
chitecture and denoising setting (drumming APavg range:
.55 - .95, vocalization: .03 - .50). Drumming performances
reached up to almost perfect scores, while the worst drum-
ming performance was still higher than the best vocaliza-
tion performance.

(2) AP5 values were generally higher than APfrm values
for both target classes. This means that networks were
better at detecting rough localization of target events than
frame-precise localization (see Fig. 7).

(3) Both spectrogram denoising operations increased
performanceAPavg on average (i.e. over all network config-
urations constructed in the grid search). Using no denois-
ing operation yielded significantly (p < 0.0001) lower per-
formance than using either or both operations in combina-
tion. Using both operations simultaneously yielded a sig-
nificantly higher (p < 0.0001) performance than using ei-
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Table 4: Network architectures with highest validation performance per denoising setting. The underlined models were selected
for subsequent experiments regarding loss functions and resampling. ”Complete test performance” means that the complete test set was used
for testing (and not the reduced test set, see Table 1). Bold numbers highlight the highest performance reached for each class.

class denoising setting architectural hyperparameters val performance complete test performance

freq.
rem.

spec.
subtr.

conv.
stage
depth

pooling
size

channel
size

freq.
int.

bi-
direct. APfrm AP5sec APavg APfrm AP5sec APavg

drum.

False False 4 2 96 GAP True 0.791 0.901 0.846 0.025 0.059 0.042

True False 2 2 32 GMP True 0.794 0.928 0.861 0.084 0.214 0.149

False True 4 2 96 GAP True 0.808 0.939 0.873 0.044 0.079 0.061

True True 2 2 96 GAP True 0.839 0.957 0.898 0.162 0.294 0.228

voc.

False False 3 3 64 GAP True 0.171 0.34 0.256 0.008 0.013 0.01

True False 2 3 96 GAP True 0.283 0.498 0.39 0.015 0.02 0.018

False True 3 3 32 GMP True 0.325 0.511 0.418 0.011 0.014 0.013

True True 2 4 96 GAP True 0.382 0.488 0.435 0.016 0.02 0.018

ther or none. The performance difference between using ei-
ther operation individually was not significant (p > 0.01).

(4) Both spectrogram denoising operations increased
performance regarding the maximum APavg reached by a
model constructed in the architecture grid search. The
order was no preprocessing 7→ freq. rem. 7→ spec. sub 7→
freq. rem. + spec. sub for both classes.

(5) The usage of a bi-directional recurrent layer was the
most important network architecture property, i.e. it in-
creased performance for both classes with most denoising
operations. For vocalization, they only increased APfrm

and not AP5, i.e. they only increased the capability for
precise localization of target events while rough allocation
remained the same. The two clusters in Fig. 7 for drum-
ming with spec. sub. + freq. rem. are explained through
bi-directional layers.

(6) The influence of network architecture choices de-
creased when applying integration operations. This is ev-
idenced by the fact that both c-trees (Fig. 10) have the
largest depths in the paths without denoising operations.
The network features with the most influence were the
depth and the choice of frequency integration operation.
However, which depth and integration operation optimized
performance was dependent upon the denoising setting.
On average, performance increased with depth and global
average pooling for frequency integration.

Table 4 shows architectures with the highest validation
performance APavg per denoising setting and their test set
performances. We highlight the following observations:

(1) Test performances dropped drastically compared
to the validation set. This is largely due to the test set
containing far more negative examples than the validation
set (see Table 1).

(2) While frequency removal and spectral subtraction
performed similarly on the validation set, frequency re-
moval outperformed spectral subtraction on the test set.
Combining both operations yielded the highest test per-
formance for drumming, and performed on par with using
frequency removal alone for vocalization.

(3) For drumming, the importance of denoising func-
tions increased on the test set. The performance differ-
ence between using no and both operations was .05 on the
validation set, but .18 on the test set. For vocalization,
denoising importance decreased on the test set. The per-
formance difference between using none and both was .28
on the validation set, but only .08 on the test set.

For the experiments on loss function + resampling in
section 3.2 we used the setting with the highest valida-
tion performance APavg for each class, i.e. the underlined
models in Table 4.

3.2. Optimization of Loss Variant + Resampling
Figure 8 shows the results of the experiments on the

loss variant and resampling, measured on the reduced test
set as APavg. Additionally, we calculated the total ratio
of positive to negative segments resulting from the over /
undersampling settings (positive segment = segment with
at least one positive frame, see sec. 2.6). Figure 9 shows
the corresponding c-tree analysis analogous to the one of
section 3.1 (target: reduced test set APavg, predictors: loss
variant and resampling parameters + pos/neg ratio).

Loss and resampling had greater influence on drum-
ming than vocalization, i.e. performance range was .2 -
.5 for drumming and .05 - .09 APavg for vocalization. For
drumming:

(1) Both unweighted loss functions reached higher per-
formances than weighted functions. The global effect of
weighted vs unweighted functions was significant (p <
0.001). The global difference between unweighted cross
entropy and focal loss was not significant. However, stan-
dard cross entropy had significantly higher performance
than focal loss (p < 0.01) when undersampling ≤ 0.5.

(2) Performance decreased globally with increased un-
dersampling.

(3) For unweighted loss functions there was a signifi-
cant global association for increased performance with a
decreased ratio of positive/negative segments (p < 0.001).
This also means that performance decreased with increased
oversampling.
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drumming

vocalization

Figure 8: Influence of resampling grouped by loss functions Upper row: drumming, lower row: vocalization. The x-axes indicate the
the ratio of positive to negative segments. Oversampling is shown implicitly, where 5 data points per undersampling setting correspond to
oversampling duplication amounts {0, 2, 4, 8, 16}.

(drumming)

(vocalization)

Figure 9: Conditional inference trees for loss type and re-
samling

(4) The highest performance APavg = .49 was reached
with binary cross entropy using the ”raw” training database
without any resampling.

For vocalization, the only significant influence was stan-
dard binary cross entropy performing better than the other
loss functions, although the influence was still low in abso-
lute terms. Resampling had no systematic influence. The
highest value APavg = .09 was reached with no oversam-
pling and undersampling of 0.75.

Table 5 shows the final performance evaluation on the
complete test set for the best hyper-parameter settings
found in this study. The denoising settings and network
architecture setting correspond to the settings underlined
in Table 4. The loss type and resampling correspond to

the settings with the highest performance found on the
reduced test set (see figure 8 ). APavg values dropped
by approximately 60 % from the reduced to the complete
test set. This is due to the sevenfold increase of negative
examples compared to the complete test set, increasing the
amount of possible false positive predictions.

The baseline performance corresponds to the perfor-
mance achieved by Heinicke et al. [3]. Their F1 val-
ues were computed on event-based metrics with varying
event lengths based on the segmentation algorithm in their
study, i.e. they are not directly comparable to our segment-
based metrics. When comparing the baseline values to
F1avg-values, our performances were an improvement, in-
creasing baseline performance. For drumming the increase
was 30 %F1, which is a 7-fold increase. For vocalization,
the increase was 5 %F1, which is a 25-fold increase.

4. Discussion

The F1 scores of 33 % for drumming and 5 % for vocal-
ization might seem rather low in absolute terms. However,
one has to take into account that even for humans the
problem is exceptionally difficult. In addition to the rarity
of the target calls, they are also very faint and subtle. This
issue requires extensive training by human listeners to la-
bel calls reliably. Hence, although our results leave room
for further improvement, they represent an improvement
compared to previous methods.

The detection performance for chimpanzee drumming
was drastically higher than for vocalization, with and with-
out denoising/resampling. The same effect occurred in
Heinicke’s [3] method, although absolute values were lower.
We hypothesize that the following factors contribute to the
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Table 5: Final performane evaluation

class loss resampling pos/neg ratio train set complete test set performance

under-
samp.

over-
samp.

frm seg APfrm AP5 APavg F1frm F15 F1avg

base-
line F1
[3]

drum.
cross
entr.

0 0 0.002 0.012 0.308 0.385 0.347 34 % 32.6 % 33.3 % 4.6 %

voc.
cross
entr.

0.75 0 0.011 0.034 0.018 0.025 0.021 5 % 5.3 % 5.1 % 0.2 %

difficulty of detecting chimpanzee vocalizations: (1) Vo-
calizations are more complex with greater intra-class vari-
ability than drumming, as they encompass multiple call
types with respect to pant hoots and screams. In com-
parison, drumming has a more ”fixed” and stereotypical
pattern. (2) The frequency bands for chimpanzee vocal-
ization are also occupied by calls of other primate species
which are acoustically similar. However, drumming is the
only animal call occupying such low frequency bands in
our data set. In our experience, human listeners also have
greater difficulty in identifying chimpanzee vocalizations,
particularly because they confuse them for other animal
calls. Thus we reason that the vocalization class may have
needed more training examples to be learned effectively by
the network, given the greater difficulty of the task.

Both denoising operations, spectral subtraction and
frequency removal, increased performance significantly, par-
ticularly for drumming’s test set performance. This find-
ing is in accordance with other studies on animal call
detection which applied similar operations with success
[15, 28, 29]. We were particularly surprised by the mag-
nitude of increase in performance by frequency removal.
Theoretically, networks should learn to ignore irrelevant
frequency bands by themselves. We give two possible ex-
planations for this: (1) Positive class examples were only
present for few recordings. Possibly, this led the network
to infer a false association between noise conditions and
target call occurence. Removing uncorrelated frequencies
reduced the features which could be used for such false as-
sociations. (2) Possibly, the test set contained background
noise conditions which were drastically different from the
ones in the training set so that they occupy regions far
away from the learned manifold and cause faulty forward-
passes in the network, similar to adversarial examples [39].
We highlight that frequency removal carries the additional
advantage of decreasing computation time.

We found that taking relative class balance did not in-
crease performance. Drumming reached the highest per-
formances using standard binary cross entropy loss with-
out any data set resampling, i.e. using the raw, heav-
ily imbalanced training data. Vocalization also performed
best with vanilla cross entropy, but was insensitive to re-
sampling. We draw the conclusion that performance-wise,
combating relative class imbalance is unnecessary or even
harmful. For drumming, undersampling decreased the per-

formance regardless of the loss function, i.e. displaying
diversity of the background class is important even if ex-
amples might seem redundant for humans. Still, under-
sampling can reduce training time with minimal loss in
performance if used only slightly. Drumming reached es-
sentially the same performance using 0 % and 50 % of the
training data and began dropping when only using 25 %.
This finding is in contrast to other studies [17–19, 31],
which usually report positive effects for balancing meth-
ods. We give the following possible explanations for this
discrepancy: (1) Studies reporting positive effects of re-
sampling commonly worked with imbalanced training sets,
but balanced test sets [40, 41]. Consequently, the positive
effect of resampling could be attributed to approximating
class distributions between training and test set, and not
to compensating the imbalance within the training set. (2)
Studies reporting positive effects of class weights in classi-
fication settings usually performed multi-class single-label
classification with softmax activation as in multinominal
logistic regression [35, 42, 43]. However, we used binary
cross entropy for single-class prediction, which might be
inherently more robust to class imbalances. (3) When
Lin et al. reported focal loss to outperform binary cross
entropy, they performed multi-label detection [31] for 91
classes with one network for the COCO dataset. As the
influence of background class multiplicates across all pos-
itive classes in multi-label detection, loss balancing might
become beneficial in such multi-label settings.

In summary, our results show that supporting the net-
work to learn decoupling target class characteristics from
background class characteristics is of primary importance
for increasing performance. Spectrogram denoising ex-
plicitly supports this decoupling by discarding informa-
tion from signals which are assumed to only be associated
with background noise based on prior knowledge. Includ-
ing more examples from the background class (no under-
sampling) implicitly supports this decoupling by display-
ing a greater amount of background noise variability to the
network.

5. Conclusion and Future Work

In this paper we investigated the automatic detection
of chimpanzee drumming and vocalizations in long-term
forest recordings of PAM. The detection approach was
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Figure 10: Conditional inference trees for optimization of network architecture + denoising Nodes show hyper-parameters with
the p-value resulting from splitting the feature into groups indicated by the branches. Leafs show the performance distributions.

based on convolutional recurrent neural networks with spec-
trogram inputs. The particular challenge of this task was
the severe class imbalance and rarity of target calls. We
applied various extensions to the pipeline for compensat-
ing this imbalance: We evaluated two spectrogram denois-
ing operations frequency removal (i.e. removing frequency
bands outside the target call’s range) and spectral sub-
traction. Both operations significantly improved the per-
formance. For mitigating relative class imbalance, we eval-
uated various loss functions (weighted / unweighted cross
entropy / focal loss) as well as random over/undersampling
of segments. The best performing loss was unweighted
binary cross entropy. For drumming, any resampling de-
creased performance, i.e. training on heavily imbalanced
training data reached the highest performance. For vocal-
ization, resampling had no significant effect. From this we
conclude that a primary factor for increasing performance
in animal call detection in PAM settings is aiding the net-
work to learn decoupling background noise conditions from
target call characteristics. Final performance results were

an improvement on the previous baseline performance.
With an algorithm performance of about 30 % for the

detection of chimpanzee drumming, this approach may be-
come suitable for continuous field monitoring. As previ-
ously demonstrated, species occurrence [1] and movement
patterns [2] can be modeled using PAM data. Such ap-
plications may be enhanced using the detection process
proposed in this study.

We see the greatest chances for further improvement
by investigating the following areas:

(1) Applying methods for increasing diversity in the ex-
isting positive examples. The most straight-forward method
is data augmentation, i.e. applying perturbations to the
positive calls to diversify their patterns. Particularly mix-
up could prove successful to further teach decoupling of
noise and positive examples [44], i.e. randomly overlap-
ping positive segments with noise samples.

(2) Increasing the amount of positives examples. This
could be done by applying the algorithm to the yet unla-
beled data and collecting additional true positives. Alter-
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natively, one could generate synthetic examples through
generative adversarial networks (GANs).

(3) Methods for informed undersampling such as SMOTE.
Multiple studies show that informed undersampling can
outperform random undersampling [17–19]. Even if per-
formance could not be further improved through under-
sampling, it may be possible to reduce training time by
carefully selecting a representative subset of negative ex-
amples.
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