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Abstract

The biodiversity crisis is still accelerating, despite increasing efforts by the inter-

national community. Estimating animal abundance is of critical importance to
assess, for example, the consequences of land-use change and invasive species on
community composition, or the effectiveness of conservation interventions. Vari-
ous approaches have been developed to estimate abundance of unmarked animal
populations. Whereas these approaches differ in methodological details, they all
require the estimation of the effective area surveyed in front of a camera trap.
Until now camera-to-animal distance measurements are derived by laborious,
manual and subjective estimation methods. To overcome this distance estima-
tion bottleneck, this study proposes an automatized pipeline utilizing monocular
depth estimation and depth image calibration methods. We are able to reduce
the manual effort required by a factor greater than 21 and provide our system at
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1. Introduction

The dramatic decrease in biodiversity and wild animal populations require
the accurate and large-scale monitoring of wildlife. Camera trapping has be-
come a widely used approach for surveying wildlife populations (Steenweg et al.|
2017). Animal abundance can be estimated from camera trap footage using
capture-recapture methods which require the individual identification of ani-
mals (O’Connell et al 2011). This is, however, challenging with species that
do not have unique individual markings. Therefore, a number of methods have
been developed for the estimation of abundance of unmarked animal popula-
tions that do not require identification of individuals (Gilbert et all [2021)).
These include the random encounter model (REM) (Rowcliffe et al., 2008), the
random encounter and staying time model (REST) (Nakashima et all 2018),
the time-to-event model (TTE), space-to-event model (STE), instantaneous es-
timator (IS) (Moeller et all [2018) and camera trap distance sampling (Howe|

et al} 2O17).
1.1. Problem statement: laborious distance estimation

Whereas the approaches differ in methodological details (Palencia et al.|

2021; |Gilbert et all [2021)), they all have in common that an estimate of the
effective area surveyed by a camera trap is needed. This is essential in order to
relate the number of animal observations to a measure of spatial survey effort.
The effective area surveyed is derived by the opening angle of the camera and
the effective detection distance. The effective detection distance is the distance
below which as many individuals are missed as are seen beyond
. With increasing distance from a camera trap, the detection prob-
ability of animals decreases due to occlusion. Not accounting for detection
probability and thus animals not seen, would lead to biased estimates of the
effective detection distance and thus the effective area surveyed. Effective de-
tection distances generally require that camera-to-animal observation distances
or distances to some objects in the detection zone can be derived. However,
currently all deployed camera traps are monoculai recording images or video
clips using a single lens at a time. These monocular images and videos do not
deliver distance information in a direct way. Related work shows two promi-
nent methods for estimating such depth information based on monocular camera
trap imagery.

Visual estimation by reference objects: distances between the camera
trap’s lens and the midpoint of each detected animal are estimated by compar-
ing animal locations in recorded video or picture to reference objects placed at
known distances from the camera trap (e.g., from 1m to 12m in 1 m intervals).
Reference objects can either be imaged only once when the camera traps are
installed (Howe et al., |2017) or be placed permanently in the scene

Camera traps including depth estimation are currently just subject to research on wildlife
monitoring (Haucke and Steinhage, [2021).




et all 2021)) to be visible in each observation. Permanently placed reference
objects might seem generally preferable, as their position can be compared with
animals in the same respective image under ideal conditions. However, they
might get obstructed by snow, growing plants or other objects, again requiring
comparing different images (one with the animal and another with the refer-
ence object unobstructed). Either way, comparing the locations of animals and
reference objects is not only very laborious but can also be subjective.

On-site distance measurement: distances between the camera trap loca-
tion and each previously observed animal are measured in the field, e.g., using a
measuring tape (Marcus Rowcliffe et al., 2011)) or an ultrasonic distance sensor
such the Vertex IV system of |Haglof Sweden AB| (Henrich et all [2021). The
on-site distance measurement is slightly less subjective than visual estimation
by reference images, but even more laborious, since the location of the cam-
era trap has to be visited in person to obtain measurements for each animal
observation.

1.2. Contribution: automating distance estimation

In this study, we propose a two-step pipeline to automate the estimation
of camera-to-animal distances from monocular camera images. (1) The cal-
ibration workflow delivers the automated calibration of the observed tran-
sect using reference images and measurements. (2) The distance estimation
workflow employs the calibration of the observed transect to automatically
estimate camera-to-animal distances in camera trap images showing observed
animals. Figure [l| depicts in the upper area the calibration workflow and in the
lower area the distance estimation workflow.

The calibration workflow starts with annotated reference images of the
transect. The annotation of a reference image depicts the exact distance between
the camera and a visible landmark (i.e., a distinct object placed on the transect
with just the exact distance to the camera). Generally, several reference images
are captured with landmarks placed at different distances, e.g., from 1 to 12
m. The calibration workflow generates from these given annotated reference
images of a transect a calibrated depth image of the transect with exact distance
measurements given in meters. These calibrated depth images are visualized
as heatmaps where the distance is lowest in blue and highest in red. This
calibration workflow is explained in more detail in section [3.1

The distance estimation workflow starts with a so-called observation
image, i.e., an image showing an animal observed in the transect. Using the
calibrated depth image of the transect (delivered by the calibration workflow),
an exact estimation of the camera-animal distance in meters is derived. This
distance estimation workflow is explained in more detail in section [3.2

2. Data material

The data for this study was collected in the conservation area ‘Hintente-
iche bei Biesenbrow’ located in the Biosphere Reserve Schortheide-Chorin. The
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Figure 1: The overall pipeline consists of the calibration workflow and the distance estimation
workflow. The calibration workflow is depicted in the upper area and derives the calibrated
target depth image (highlighted in blue) of the observed transect based on a number N
of reference images showing landmarks placed in different distances. It is explained and
visualized in more detail in section and fig. respectively. The distance estimation
workflow estimates the real distance of an observed animal based on the localization of the
animal in the observation image and an adjustment by the calibrated depth image of the
transect. It is explained and visualized in more detail in section [3:2:2] and fig. [B} respectively.

data material is comprised of videos from 29 transects, captured using Bushnell
Trophy CAM HD Agressor 119876 camera traps. The videos contain either
greyscale infrared frames (captured at nighttime) or RGB (red, green, blue)
color frames at 30 frames per second and a resolution of 1920 x 1080px. We
refer to greyscale and RGB images as intensity images. For each transect, a se-
quence of N reference intensity images IZrﬁf, with ¢ € {1,2,..., N} were sampled
manually from designated reference videos. Every such image shows a land-
mark with a known distance to the camera, in distances of 1 meter, 2 meters,
..., N meters. These landmarks are established by a person showing a paper
sheet depicting the distance to the camera by the number of meters. Figure 2]
depicts two reference images with the researcher and the paper sheet positioned
at a distance of 3 meters and 15 meters with respect to the camera, respec-
tively. From the videos depicting observed animals, we automatically sample
a single image every two seconds, from which both the manual as well as the
automated distance measurements are derived. We refer to those images as
observation images. To ensure no negative impact on further processing, we
further remove metadata embedded visually inside each reference and observa-
tion image by cropping the bottommost 80px, reducing the effective resolution
to 1920 x 1000px. We exclude five out of the 29 total transects (T03, T04, T07,
T11, T12) which were set up in a suboptimal way (c.f. section , which led
to poor results. Hence, we do not include these transects in our evaluation.



(a) Reference image at 3m (b) Reference image at 15m

Figure 2: Examples of two reference images with the researcher and the paper sheet acting
as a landmark positioned in a distance of 3 meters and 15 meters with respect to the camera,
respectively. Each landmark is manually annotated with a binary mask, highlighted in red
color. The binary masks of two or more landmarks together with the corresponding uncali-
brated disparity images are used to calibrate the target reference depth image, as described

in section E

Table [1| shows the distribution of reference and observation images with
respect to the transects.

Transect TO1 TO02 TO5 TO06 TO8 TO09 Ti0 T13 Ti4 T15 Ti6 T17
# Ref. Images 7 7 11 14 12 13 4 9 10 10 5 5
# Obs. Images 4589 5753 920 925 942 1220 3246 1949 769 886 140 59
Transect T8 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T30

# Ref. Images 12 15 6 6 7 10 10 15 10 7 13 13
# Obs. Images 160 1111 549 5135 425 1210 299 422 332 125 8356 279

Table 1: Distribution of reference and observation images over the 24 considered transects.
The total number of observation images is 39 801. Reference images are used to determine the
scale of the transect and observation images depict the animals to which the distance should
be estimated.

3. Methods

The challenge to overcome the distance estimation bottleneck in abundance
estimation of unmarked animal populations with simple monocular cameras, is
the derivation of precise distance estimations to objects in the observed scene
from just one single image.

Recent developments have shown that detailed distance estimations can be
derived from a single image in an end-to-end manner based on deep learning
approaches (Facil et al., 2019)). Meanwhile, various deep learning have shown
their effectiveness to address the monocular depth estimation (MDE). In this
study, we decide for the DPT (Dense Prediction Transformers) approach that
has shown superior quantitative and qualitative results in MDE. This is achieved
by training on millions of pairs of monocular camera images and the correspond-
ing distance estimations for each pixel (Ranftl et al.| 2020, 2021). The strength
of DPT stems from employing a wide variety of training data from multiple
sources.
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Figure 3: Calibration workflow, which is processed once per transect. The N reference inten-
sity images are used to estimate N corresponding uncalibrated disparity images, as described
in section These uncalibrated disparity images (top-center image pair) are then aligned
to a common scale (top-right image pair, c.f. equation . The median disparity value inside
each landmark binary mask is used together with the known metric landmark distances to
calibrate the single target reference disparity image (highlighted in blue, c.f. equation. The
target reference image is the reference image with the largest landmark distance.

3.1. Camera trap calibration

Calibration of a camera trap employs reference images that depict landmarks
of known distances to the camera. It is important to note that the reference
images may be acquired in a multitude of ways since our calibration method
is agnostic to the exact generation of the reference images. In this study, the
landmarks are established by a person showing a paper sheet depicting the
distance to the camera by the number of meters (cf. fig. .

8.1.1. Uncalibrated depth images via monocular depth estimation

For each camera trap, there are N reference images I*f with a correspond-
ing binary mask M covering the landmark (depicted red in fig. and the
corresponding true distance z; between camera and landmark for i € {1,..., N}.
We refer to the N-th reference image as the target reference image. The N
reference images I'*! are first propagated through the DPT (]Ranftl et al.L |2021[)
depth estimation model which results in N uncalibrated disparity images DI
depicting the pixel-wise inverse distances to scene objects in a relative way, i.e.,
depth image pixels in blue are closer than those in green that in turn are closer
than those in yellow which in turn are closer than those in red. More precisely:
the uncalibrated disparity images show inverse distance estimations up to an
unknown scale parameter m and an unknown shift parameter c.




8.1.2. Calibrated depth images via RANSAC

Therefore, at least two landmarks with known distances to the camera must
be used to determine both parameters. In this dataset, each of the N reference
images I:*f depicts exactly one landmark, i.e, the researcher with a paper sheet.
Since the landmarks are distributed over all N reference images I?f, prior to the
metric calibration, we align all uncalibrated disparity images to one common,
yet not calibrated, scale. To be precise, for each uncalibrated disparity image
Dief with ¢ € {1,...,N — 1}, we estimate two parameters m},c}, using the
RANSAC approach (Fischler and Bolles| |1981]), such that

N—-1
(m?,c;) ~ argmin Y [m; - D (M = 0) + ¢; - DR (MK =0)], (1)
m.i,c,; 121

where DIf(Mf = 0) depicts all pixels in the disparity image D! outside
the binary mask Mﬁef covering the landmark, i. e., all pixels depicting the
visible stationary components of the observed scene. This alignment ensures
the optimal alignment of all landmarks used in the next calibration step. Given
the N landmarks in the aligned uncalibrated disparity images Dgef with ¢ €
{1,..., N — 1}, the RANSAC approach (Fischler and Bolles| |1981)) is then used
to estimate the unknown scale parameter m and the unknown shift parameter
¢ with the objective of minimizing the absolute disparity error:

N
1
(m*,c*) ~ arg min g |m - median (m; - Dt (M = 1) + ) +e——=], (2
Zi

m,c :
? i=1

where D! (M!*f = 1) depicts all pixels in the disparity image D! within the bi-
nary mask M!*f covering the landmark. From these disparity values the median
value is chosen for minimization due to the improved robustness when facing
imperfect landmark masks compared to the mean. The real metric distance to
the respective landmark (i.e., the ground truth) is depicted with z;, the shift
and scale parameters of disparity image Dﬁ\e,f are given as mjy = 1 and ¢ = 0.
The resulting calibrated disparity images Ci*f and metric depth images Z:f are
then given by equations [3] and [ respectively:

Cif = m* Dy 4 " )

z5 = (C)7, @

Instead of metric distances with image values in [0,00] we can deal with
disparity values in [0, w] where w is the image width. This results in improved
numerical stability and induces lower weighting of more distant landmarks, re-
flecting the lower accuracy of the depth estimation at large distances. We refer
to C’Jf{?f and Zg\‘}f as the target reference disparity and depth images, respectively.
This target reference depth image is highlighted in blue in figure
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Figure 4: Workflow which is applied on each animal observation image. From the intensity
image, we estimate an uncalibrated disparity image, as described in section We subse-
quently calibrate the observation depth image by aligning the depth to the target reference
depth image (c.f. section. We then sample the 20th percentile of the calibrated depth inside
each detected animal bounding box to produce a single depth estimation for each animal (c.f.

section .

3.2. Animal distance estimation

For each detected animal observation, we have to estimate a single metric
distance to the animal. This objective demands to solve two requirements: (1)
deriving a calibrated depth image Z°P® of the camera trap image I°P® depicting
the observed animal, (2) localization of the observed animal in this calibrated
depth image Z°"*.

8.2.1. Deriving a calibrated depth image for each animal observation
Sampling accurate distance information for each observation image I°* em-
ploys the scale information of the calibration step described in section We
achieve this by transferring the scale of the calibrated reference disparity images
Crf to the estimated disparity images D° of each animal observation. One
might think that a simpler approach would be to just sample the depth of the
calibrated reference images. However, the scenes observed by the camera traps
are highly dynamic (due to trees falling over, plants gaining or loosing leaves,
etc.), leading to higher estimation errors when employing this strategy. There-
fore, we employ again the monocular depth estimation by DPT
(2021)) to estimate first an uncalibrated disparity image D°"® of each observa-
tion image I°"*. We then transfer the metric scale acquired during calibration
onto the uncalibrated disparity of each observation D°". From all possible N
calibrated reference disparity images C?f,z' € {1,...,N} to inform this metric
scale we use the calibrated target reference disparity Cﬁ\‘}f, i.e., the one repre-
senting the calibration landmark with the largest distance. This choice shows
the minimum number of pixels depicting the calibration landmark and therefore
the maximum number of image pixels with an associated depth value that depict



the scene where the animal is observed. We transfer the scale of the target depth
image to the uncalibrated observation disparity image by again estimating the
scale and shift parameters m and ¢ using RANSAC (Fischler and Bolles| |1981))
while minimizing the absolute disparity error over the entire images, while ex-
cluding the calibration landmark and bounding boxes of detected animals (c.f.

section [3.2.2)):

(m*,¢*) =~ argmin |m - CR (MY = 0) + ¢ — DW®S(MY® = 0)] (5)
m,c
Analogous to equation[d] the result is the calibrated depth observation image
Z°"s of the observation image I°P%. This workflow is visualized by figure

8.2.2. Localization of the observed animal in this calibrated depth image

For animal detection we employ MegaDetector (Beery et al.l 2019)), a deep-
learning animal detection model based on the Faster R-CNN (Ren et al., [2015)
and Inception Resnet (Szegedy et al., 2017) architecture. It is trained using
large amounts of images annotated by humans with bounding boxes for the
object classes animal, human, and vehicle. We use this trained MegaDetector
model and apply it to the observation image I°*®, resulting in a bounding box for
each animal observed in I°*. From all detected bounding boxes corresponding
to a single observation, we infer a binary mask M°P® which is set to one at
each pixel inside any detected bounding box and to zero everywhere else. This
binary mask is used in equation Then, we sample for each bounding the
20th percentile of the corresponding calibrated depth observation image Z°"s.
Figure [] shows two exemplary observation images with corresponding detected
bounding boxes, depth images and the locations of the sampled depth. This
procedure is simple but effective. It is also intuitive, as the animals are mostly
positioned on a much more distant background and slightly occluded by plants or
trees. The 20th percentile of the depth then presents an accurate estimate of the
true distance, as illustrated by figure ol We also evaluated more sophisticated
methods for precise localization such as class attention maps (CAMs, |Zhou et al.
(2016))) of species classification models (Microsoft Corporation} |2019) but found
these models to fail in many instances when the animals are strongly occluded.
The classification of animals is therefore performed by a human observer and
not automated.
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Figure 6: Examples of a calibrated animal observation image. Left: Color (daytime) or in-
frared (nighttime) observation images with a bounding box and the resulting sampled distance
via the 20th percentile. Center: The corresponding estimated and calibrated depth image.
Right: The target reference depth image corresponding to the calibration landmark with the
largest distance. As can be observed, the background changes slightly between both images.
This is due to the fact that both images were captured with a difference in time of two months.

3.2.8. Metrics for evaluating measurement error
For evaluation, we employ the mean absolute distance estimation error over
all observations m € {1,..., M}, defined as:

1 M
i Z |zt — 28 (6)

m=1
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and the mean distance estimation error in our evaluation, defined as:

1 M
TG (7)
m=1

where 2" and 28! represent the estimated and ground-truth distance of each
observation, respectively.

3.3. Distance Estimation Workbench

We implement the above methodology using the Python programming lan-
guage. The execution of the MegaDetector and DPT models is handled by the
TensorFlow (Abadi et al., |2015) and PyTorch (Paszke et al., [2019) libraries,
respectively. The RANSAC (Fischler and Bolles, [1981) implementation is pro-
vided by Scikit-learn (Pedregosa et al.l|[2011]). To make our methodology avail-
able to other researchers, we provide it in the form of a simple graphical user
interface, which we call Distance Estimation Workbench. The Distance Estima-
tion Workbench allows starting and stopping individual parts of the calibration
and distance estimation workflows. Input and output is follows a standard-
ized directory structure for image data and CSV spreadsheet files are used for
metadata and ground truth measurements. This allows efficient processing of
large datasets without manual interaction. The executable Distance Estima-
tion Workbench is available, together with accompanying documentation and a
minimal example dataset, at: |https://timm.haucke.xyz/publications/distance-
estimation-animal-abundance

4. Evaluation and discussion

For the resulting distance estimations to be usable for the various methods
available for the estimation of abundance of unmarked animal populations, it is
important that our estimation method produces a distance distribution as close
to the ground truth and as unbiased as possible. As can be seen in figure[7] the
distribution of estimated distances indeed reflects the ground truth distribution.
At 2m both distributions differ by about 4 percentage points while the difference
at 9m is about 1 percentage point. We achieve a mean distance error of 0.10 m
and a mean absolute distance error of 1.85m. The small positive bias of our
method can be explained by the distribution of distance values in the calibrated
depth images. Large parts of the depth images show background areas with
arbitrarily large distances. If an animal is falsely detected in such an area, a
very large distance is falsely estimated. Both the mean and the mean absolute
distance error measures depend strongly on the transect, as can be seen in figure
High estimation errors can be observed with dense vegetation directly in front
of the camera (e.g., T24), as the employed monocular depth estimation tends
to smooth out the estimated disparity images, which is especially damaging for
small cavities in the vegetation, in which the background then appears closer
than it truly is. In this case, the initial calibration (c.f. section fails
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Figure 7: Probability density of the ground truth and estimated distances obtained using
kernel density estimation. As can be seen, the distribution of estimated distances closely
matches the ground truth distance distribution.

because the known landmarks appear to be in a single plane. In other transects
(e.g., T02), the forest ground is only visible to a small degree. This apparently
also reduces monocular depth estimation accuracy because important context
information about the relative location of objects in the scene is lost.

4.1. Camera trap setup guidelines

The choice of scene and the camera setup is therefore an important factor
for the success of our method. A calibration result of a well-conditioned setup
can be seen in figure[0] We want to provide researchers with guidelines on where
and how to best place camera traps in the future to make the best use of our
method and therefore make the following recommendations:

e Camera traps should be tightly secured to stationary objects, i.e. trees.
This reduces camera motion and hence ensures a strong overlap of obser-
vation images with reference images

e generally, camera trapping benefits from a free field of view, therefore it
should be free of vegetation inside a radius of three meters

e at least the bottom third of the image produced by the camera trap should
be covered by the ground to ensure enough context information for the
monocular depth estimation

e if the situation allows, artificial (e.g. ranging rods) or natural (e.g. trees,
rocks, logs) (Palencia et al.l [2021)) reference objects could be permanently
placed in the scene and incorporated in our automated method. A min-
imum of two reference objects are required for our calibration workflow,
however, the more reference objects are captured, the more robust the
calibration becomes

12
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4.2. Evaluating distance estimation effort

To quantify the reduction of the manual distance estimation workload facil-
itated by our method, we conducted a user study with five users experienced
with wildlife monitoring using camera trap imagery. Out of the data described
in table |1} we randomly chose five transects, out of which we randomly sampled
five detection videos with no more than one single animal present at a time.
The participants of the study are then asked to apply the manual distance es-
timation process (cf. appendix @ We chose only observations with at most
a single animal present at a time to prevent ambiguous assignments between
multiple individuals over the participants and to therefore be able to quantify
the deviation of distance estimations between participants. The time needed by
a participant to compare the position of an observed animal in a video frame
to the different distances in the reference video clips and estimate the distance
has been measured to lie between 8.6s and 17.9s. The mean time needed per
observation is 12s.

We then estimate the workload of manual distance estimation of the complete
dataset by assuming that every observation image shows only a single animal.
Our comparison is therefore based on the processing time per observation image.
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This results in 130 person hours for the complete dataset of 39801 observation
images. However, about 4% of the 39801 total observation images contain more
than one animal. Therefore, the 130 person hours slightly underestimate the
manual distance estimation workload for the complete dataset by assuming that
every observation image shows only a single animal.

Our automated distance estimation pipeline requires 6 person hours for an-
notating 240 reference images and 24 hours for automated distance estimation
for all 39 801 observation images.

The ratio between the complete manual distance estimation effort (130h)
and the complete automated distance estimation effort (6h + 24h) is %—Oﬁl =
4.33. Since the time required for the manual distance estimation is underesti-
mated, this ratio of 4.33 is a lower bound of the speedup factor. The same holds
for the speedup factor of the purely manual workload, which is % = 21.66.

We also compared the quality of the manual distance estimations produced
by the participants. In 9% of cases, the participants disagree on whether an
animal is visible in the image. The mean standard deviation between the par-
ticipants over the remaining 91% of measurements is 62 cm, suggesting a lower

bound of the achievable accuracy.

5. Conclusion

Methods for abundance estimation of unmarked animal populations from
camera traps all require an estimate of the effective area surveyed, which is
usually done by deriving camera-to-animal observation distances. This is time-
consuming, error-prone and subjective, which motivates our automated distance
estimation method based on monocular depth estimation and a robust calibra-
tion workflow. Our method imposes no constraints on specific camera hardware
and is therefore applicable to a wide variety of datasets. In our experiments,
we succeed in closely matching the true distance distribution. Thereby we suc-
cessfully overcome the distance estimation bottleneck in abundance estimation
of unmarked animal populations. Our automated method achieves a mean dis-
tance error of only 0.14 m, it reduces the manual effort by a factor of 21.66
and the total processing time by a factor of 4.33. This facilitates large-scale,
automated abundance estimation of unmarked animal populations.

Future work could improve the temporal stability of monocular depth estimation
and in turn further improve the distance estimation accuracy. In cases where
videos or image sequences are available for each animal observation, multi-object
tracking approaches would likely reduce false positive and false negative obser-
vations by combining information from multiple frames.
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Appendices

A. Manual distance estimation process

Result: Manual distance estimations
open a spreadsheet
foreach transect do
note the transect and starting time in the spreadsheet
foreach observation video in transect do
open the respective video file
foreach video runtime from 0 to 58s in 2s steps do
pause the video
locate the animal
if an animal is present then
compare the position of the animal to the different
distances in the reference images
estimate the most accurate lower integer distance bound
and note it in the spreadsheet
else
note that no animal is present
end

end
end
note the elapsed time in the spreadsheet
end
Algorithm 1: Description of the manual distance estimation process which
we employed in the user study
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