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On Ryser’s Conjecture for Linear

Intersecting Multipartite Hypergraphs∗

Nevena Francetić† Sarada Herke † Brendan D. McKay‡ Ian M. Wanless†

Abstract

Ryser conjectured that τ 6 (r− 1)ν for r-partite hypergraphs, where τ is the covering
number and ν is the matching number. We prove this conjecture for r 6 9 in the special
case of linear intersecting hypergraphs, in other words where every pair of lines meets in
exactly one vertex.

Aharoni formulated a stronger version of Ryser’s conjecture which specified that each
r-partite hypergraph should have a cover of size (r−1)ν of a particular form. We provide
a counterexample to Aharoni’s conjecture with r = 13 and ν = 1.

We also report a number of computational results. For r = 7, we find that there is no
linear intersecting hypergraph that achieves the equality τ = r − 1 in Ryser’s conjecture,
although non-linear examples are known. We exhibit intersecting non-linear examples
achieving equality for r ∈ {9, 13, 17}. Also, we find that r = 8 is the smallest value of r
for which there exists a linear intersecting r-partite hypergraph that achieves τ = r − 1
and is not isomorphic to a subhypergraph of a projective plane.

1 Introduction

A hypergraph H is a set of non-empty subsets, variously called lines, edges or hyperedges, of
a finite underlying vertex set V (H). The degree of a vertex v ∈ V (H), denoted deg(v), is the
number of lines in H that contain v. A hypergraph is r-uniform if every line contains exactly
r vertices. Thus a 2-uniform hypergraph is simply a graph.

Covers and matchings in hypergraphs are widely studied [6]. A cover of a hypergraph H is
a set of vertices C ⊆ V (H) such that every line of H contains at least one vertex of C. The
covering number of H , denoted τ(H), is the minimum size of a cover of H . A matching in H
is a set of pairwise disjoint lines of H and the matching number of H , denoted ν(H), is the
maximum size of a matching in H . Most hypergraphs in this paper are intersecting, meaning
that every pair of lines meets in at least one vertex; equivalently ν = 1.

The covering number and matching number of a hypergraph are related. First, for every
hypergraph, ν 6 τ since each cover contains at least one vertex from each line in any given
matching. Second, for every r-uniform hypergraph, τ 6 rν since a cover can be obtained from
the union of the lines in a maximal matching; this bound is sharp and is achieved, for example,
by projective planes of order r − 1.

A hypergraph is r-partite if its vertex set can be partitioned into r sets, called sides, such
that every line consists of exactly one vertex from each side. Hence every r-partite hypergraph
is necessarily r-uniform. An r-partite hypergraph can be constructed from a projective plane of
order r − 1 by removing a single vertex v and the r lines through v. The resulting hypergraph
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P ′
r is called a truncated projective plane and the r sides of P ′

r are defined by the sets of vertices
on each of the removed lines. Our notation hides the fact that there may be non-isomorphic
choices for the structure of P ′

r, but the distinction between the different choices will not matter
in our work.

The following famous conjecture is due to Ryser [9].

Conjecture 1.1. Every r-partite hypergraph with covering number τ and matching number
ν satisfies τ 6 (r − 1)ν.

Ryser’s Conjecture is far from being resolved. When r = 2, the conjecture is König’s The-
orem for bipartite graphs, which is also equivalent to Hall’s Theorem (see e.g. [12]). Using
topological methods, Aharoni and Haxell [4] proved a hypergraph generalisation of Hall’s The-
orem and Aharoni [2] used this result to prove Conjecture 1.1 for r = 3. Conjecture 1.1 was
proved for intersecting r-partite hypergraphs with r 6 5 by Tuza [11]. Haxell and Scott [7]
built on this result to prove that for r 6 5, there exists ǫ > 0 such that τ < (r − ǫ)ν for all
r-partite hypergraphs.

In this paper, we prove another restricted version of Ryser’s Conjecture for small r. A
hypergraph is linear if each pair of lines meets in at most one vertex. Hence, in a linear
intersecting hypergraph, each pair of lines intersects in exactly one vertex. In §2 we prove that
Conjecture 1.1 holds for r 6 9 when H is a linear intersecting hypergraph. The proof of the
r = 9 case is computational.

In an intersecting r-partite hypergraph each side is a cover and each line is also a cover.
In [3] the following strenthening of Conjecture 1.1 is recorded. The conjecture is due to Aharoni,
as are several generalisations that are also given in [3].

Conjecture 1.2. An intersecting r-partite hypergraph H has a side of size at most r− 1 or a
cover of the form e \ {v} for some e ∈ H and v ∈ e.

In §3.1 we show that Conjecture 1.2 is false, by providing a counterexample when r = 13.
Furthermore, in §3.3 we describe an infinite family of linear intersecting r-partite hypergraphs
with τ = r − 2, built from mutually orthogonal latin squares. Although this family of hyper-
graphs have covers consisting of an line with a vertex removed, they have the property that no
minimal cover is contained within a line or a side.

In studying Conjecture 1.1 it is natural to investigate hypergraphs that achieve the equality
τ = (r − 1)ν. A well-known infinite family of such hypergraphs with ν = 1 is the family of
truncated projective planes P ′

r (where r − 1 is a prime power). Note that τ 6 r− 1 since each
side of P ′

r has r − 1 vertices and τ > r − 1 since each vertex lies on r − 1 lines and the total
number of lines is (r − 1)2. However, P ′

r has more lines than is necessary in the sense that
many of its subhypergraphs achieve τ = r − 1. Conversely, we will report in §4 that for r 6 7
the only way to achieve τ = r − 1 in a linear intersecting r-partite hypergraph is to take a
subhypergraph of P ′

r. In particular, there are no linear intersecting 7-partite hypergraphs with
τ = 6, since P ′

7 does not exist. By contrast, it was shown in [1, 3] that there are non-linear
intersecting 7-partite hypergraphs with τ = 6. We also describe in §3.4 a linear intersecting
hypergraph having r = 8 and τ = 7 and which is not a subhypergraph of P ′

8. Moreover, in §3.2
we give examples of non-linear intersecting r-partite hypergraphs with r ∈ {9, 13, 17} which
have covering number r − 1.

1.1 Notation

We deal with r-partite hypergraphs throughout. To avoid degeneracies we always assume
that r > 2 and that every vertex has positive degree. The sides of our hypergraphs are
always denoted V0, V1, . . . , Vr−1 and we have V = ∪r−1

i=0Vi. The covering number, matching
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number, minimum degree and maximum degree of a hypergraph are denoted by τ , ν, δ and ∆,
respectively. The number of lines in a hypergraph H is denoted h or |H|. We often use discrete
interval notation [n1, n2] = {n1, n1 + 1, n1 + 2, . . . , n2}, where n1 and n2 are two integers and
n1 6 n2.

2 Ryser’s conjecture for linear intersecting hypergraphs

In this section we prove that Conjecture 1.1 holds for all linear intersecting hypergraphs with
at most nine sides. We begin by establishing some properties of a hypothetical counterexample.

2.1 General properties

Lemma 2.1. Let H be an intersecting r-partite hypergraph with τ(H) = r. Then

(i) Each side of H has size at least r.

(ii) Each vertex of H has degree at least 2.

(iii) Each line of H contains at most one vertex of degree 2.

Proof. Each side is a cover so it contains at least τ(H) vertices, hence (i) holds. If a vertex v
has degree 1 and ℓ is the line containing v, then ℓ\{v} is a cover of size r− 1, hence (ii) holds.
Finally, if there is a line ℓ containing distinct vertices u and v of degree 2, then we get a cover
of size r − 1 by taking ℓ\{u, v} ∪ {x}, where x is a vertex in the intersection of the (at most)
two lines other than ℓ that meet {u, v}. Therefore, (iii) is proved.

Lemma 2.2. Let H be an intersecting r-partite hypergraph with τ(H) = r. Then ∆ > 4.
Furthermore, if H is linear, then ∆ 6 r − 2.

Proof. By Lemma 2.1, we may assume that δ(H) > 2. Suppose there are h lines in H . If we
count the lines which intersect a given line, we find that h 6 (∆− 1)r+1 with equality only if
H is ∆-regular. If we count the lines incident with a side that contains a vertex of degree ∆,
we find that h > 2(r−1)+∆, with equality only if all other vertices on that side have degree 2.
The above observations together show that ∆ > 4.

Now suppose that H is linear and let v be a vertex of degree ∆. Without loss of generality,
assume that v is on side V0 and let u ∈ V0 \ {v} (such a u exists, since τ(H) > 1). Any line ℓ
through u meets the lines through v in ∆ distinct vertices on sides other than V0, since H is
linear and intersecting. Hence ∆ 6 r− 1. If ∆ = r− 1 then side V1 has at most r− 1 vertices.
Indeed, ℓ cannot contain any vertex on side V1 other than the vertices on lines through v. As
this is true for any line ℓ which does not contain v, there can only be r−1 vertices in V1, which
means that τ(H) 6 r − 1. We conclude that ∆ 6 r − 2.

Theorem 2.3. Let H be an intersecting r-partite hypergraph with τ(H) = r and maximum
degree ∆. Then

(r + 1/2)2∆2 + 4r2 > (8r2 − 2r)∆. (2.1)

Proof. Suppose that H contains di vertices of degree i for 2 6 i 6 ∆. Since each side of H is
a cover, there must be r2 + ε vertices in H for some ε > 0. Hence

r2 + ε =

∆
∑

i=2

di. (2.2)
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By counting vertex-line incidences we find that

rh =
∆
∑

i=2

idi. (2.3)

Also, since H is intersecting, we get the following inequality by counting incidences between
lines:

(

h

2

)

6

∆
∑

i=2

(

i

2

)

di. (2.4)

Our aim is to show that (2.4) cannot be satisfied unless (2.1) holds. Since, by Lemma 2.1(iii),
no line of H may contain more than one vertex of degree 2, d2 = h/2− ε′ for some ε′ > 0. Now
solving (2.2) and (2.3) for d3 and d∆ (recall that ∆ > 3 by Lemma 2.2) and substituting into
(2.4), we get

h2 − (∆r+∆/2 + 2r)h+ 3r2∆ (2.5)

6 3∆

∆−1
∑

i=4

di − (∆ + 2)

∆−1
∑

i=4

idi +

∆−1
∑

i=4

i(i− 1)di − 3∆ε− (∆− 2)ε′

6 −

∆−1
∑

i=4

(i− 3)(∆− i)di − 3∆ε− (∆− 2)ε′ (2.6)

6 −
∆−1
∑

i=4

(i− 3)(∆− i)di 6 0.

Hence, the discriminant of the quadratic in h given by (2.5) is non-negative, which implies (2.1).

In a linear intersecting r-partite hypergraph with τ = r, we have 4 6 ∆ 6 r − 2, by
Lemma 2.2. Substituting ∆ ∈ {4, 5, 6} into (2.1), yields an immediate contradiction. Hence:

Corollary 2.4. If there exists a linear intersecting r-partite hypergraph H such that τ(H) = r,
then ∆(H) > 7.

Corollary 2.5. Conjecture 1.1 holds for all linear intersecting r-partite hypergraphs when r 6 8.

2.2 Linear intersecting 9-partite hypergraphs

In this subsection we prove that a linear intersecting 9-partite hypergraph has covering number
at most 8. For a potential counterexample H , let h = |H| be the number of lines in H and
ε := |V (H)| − r2 > 0. First, we demonstrate some further properties that such a hypergraph
would have, if it were to exist. Note that we may assume that ∆ = 7, given Corollary 2.4 and
Lemma 2.2.

Lemma 2.6. If H is a linear intersecting 9-partite hypergraph with ∆ = 7 and τ = 9, then
h > 39.

Proof. Let u be a vertex of degree ∆ = 7, and without loss of generality, assume that u ∈ V0.
Let A be the set of vertices that lie on lines through u in the remaining eight sides. Then
|A| = 8 · 7 = 56. Let B = V (H) \ (V0 ∪ A). Then |B| > 16.

Let ℓ be a line through a vertex in B. Then ℓ is incident with a vertex other than u in side
V0 and it intersects all seven lines incident with u. That is, |ℓ ∩ A| = 7 and |ℓ ∩ B| = 1. Since
every vertex in B has degree at least 2, there are at least 2|B| > 32 such lines. Therefore,
h > 7 + 32 = 39.
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By (2.6),
h2 − (∆r +∆/2 + 2r)h+ 3r2∆ 6 −3∆ε. (2.7)

This inequality has no integer solution for h when ε > 5 if r = 9 and ∆ = 7. Otherwise,
together with Lemma 2.6, we obtain that hmin(ε) 6 h 6 hmax(ε) where hmin(ε) and hmax(ε)
are as follows:

ε 0 1 2 3 4
hmin 39 39 39 39 42
hmax 51 50 48 46 42

Lemma 2.7. If H is a linear intersecting 9-partite hypergraph with ∆ = 7 and τ(H) = 9,
then for every pair of degree 7 vertices on different sides there is a line of H that contains both
vertices.

Proof. Suppose to the contrary that v0 and v1 are degree 7 vertices on sides V0 and V1,
respectively, which do not lie on a common line. Let e1, . . . , e7 be the lines which contain v0
and f1, . . . , f7 be the lines which contain v1. For every i, j ∈ [1, 7], lines ei and fj meet at a
vertex in one of the last seven sides V2, . . . , V8.

Define V ′
0 = V0 \

(

(∪iei) ∪ (∪ifi)
)

and V ′
1 = V1 \

(

(∪iei) ∪ (∪ifi)
)

. Since |V0| > 9, there
exists y ∈ V ′

0 . Any line ℓ through y intersects each of f1, . . . , f7 in the last seven sides and thus
also intersects each of e1, . . . , e7 in the last seven sides. Hence ℓ contains a vertex in V ′

1 . By
symmetry, all lines through V ′

1 contain a vertex in V ′
0 . Let G be the bipartite graph induced on

V ′
0 ∪V ′

1 by H . Then G inherits from H the properties of having minimum degree at least 2 and
no line between vertices of degree 2. Therefore G has at least 5 vertices and at least 6 lines. It
follows that ε > 3 and hence h 6 46, from (2.7).

We have already encountered 20 distinct lines of H , namely e1, . . . e7, f1, . . . , f7 and at least
6 lines through V ′

0 . Let B be the set of vertices in the last seven sides which do not lie on any
of these 20 lines. Then |B| > 14, since B includes at least two vertices from each of V2, . . . , V8.
Let x ∈ B, and let g be a line through x. Since g intersects each line e1, . . . , e7, it follows that
g ∩ B = {x}. However x has degree at least 2. Therefore h > 20 + 2|B| > 48, which is a
contradiction.

Remark. Although the proof of Lemma 2.7 does not completely generalise to larger r, it does
demonstrate that if H is a linear intersecting r-partite hypergraph with ∆ = r − 2, τ = r and
ǫ 6 2, then each pair of degree ∆ vertices on different sides lie on a common line.

2.2.1 Degree sequences, line types, and side types

Recall that H is assumed to be a linear intersecting 9-partite hypergraph with τ(H) = r and
∆ = 7. For each h and ε within the bounds given by (2.7), we computed the set D(h, ε) of all
possible degree sequences that satisfy the equations (2.2), (2.3) and (2.4). Note that since H
is linear, equality is enforced in (2.4). From here on, we denote a degree sequence in D(h, ε)
by [d2, d3, . . . , d7], where di is the number of vertices of degree i, for i ∈ [2, 7]. For each of
the possible values of h and ε, we obtained the following number of degree sequences in the
set D(h, ε). An example souce code for this and other computational results in this section is
posted on the arXiv as an ancillary file with the priprint of this article.

ε\h 39 40 41 42 43 44 45 46 47 48 49 50 51
0 223 297 307 358 323 311 236 181 107 50 16 2 0
1 86 129 135 164 144 145 102 82 42 24 6 0 -
2 22 39 42 58 48 48 27 20 6 3 - - -
3 1 6 6 11 8 9 3 1 - - - - -
4 - - - 1 - - - - - - - - -
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Similarly, for given h and ε, we determined the set S(h, ε) of all possible degree sequences
of vertices on a side of H , and the set L(h) of all possible degree sequence of vertices on a
line of H . We arbitrarily order sets S(h, ε) and L(h) to easily index their elements. Then
for t ∈ {1, 2, . . . , |S(h, ε)|}, a side of type t in S(h, ε) is a sequence of non-negative integers
[st2, s

t
3, . . . , s

t
7, s

t
ε], in which sti denotes the number of vertices of degree i ∈ [2, 7], such that the

following conditions hold:

(i)

7
∑

i=2

sti = r + stε which is the length of a side;

(ii)
7

∑

i=2

isti = h since every line meets every side; and

(iii) stε 6 ε.

A line of type t in L(h), where t ∈ {1, 2, . . . , |L(h)|}, is a sequence of non-negative integers
[ℓt2, ℓ

t
3, . . . , ℓ

t
7], in which ℓti denotes the number of vertices of degree i ∈ [2, 7], such that the

following conditions hold:

(i)
7

∑

i=2

ℓti = r since every line meets every side;

(ii)
7

∑

i=2

iℓti = h+ r − 1 since H is linear intersecting; and

(iii) ℓt2 ∈ {0, 1} by Lemma 2.1(iii).

2.2.2 Pairwise conditions

Our next goal is to verify which degree sequences are feasible. We assume that h and ε are
given, and that D = [d2, d3, . . . , d7] is a degree sequence in D(h, ε). Suppose that there exists H ,
a linear intersecting hypergraph with r = τ = 9, ∆ = 7 on r2 + ε vertices with h lines and the
given degree sequence. For every t ∈ {1, 2, . . . , |S(h, ε)|}, let xt denote the number of sides of
type t that are contained in H . For every t ∈ {1, 2, . . . , |L(h)|}, let yt denote the number of lines
of type t that are contained in H . Then xt and yt are non-negative integers which satisfy some
obvious necessary conditions listed by equations (2.8)–(2.11). Equation (2.12) is a double count
of pairs of vertices of degree i and lines on which these vertices lie, for i ∈ [2, 7]. Since H is a
linear intersecting hypergraph, no pair of vertices is contained on two lines. Hence, the number
of pairs of vertices contained on a line or on a side cannot exceed the total number of pairs
given by the degree sequence. This condition is given by equations (2.13)–(2.15), depending on
whether we count pairs of vertices having the same degree, or pairs of vertices with different
degree. Putting all of these conditions together, we formulate an integer program on variables
xt and yt.
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∑

t

xt = r there are r sides (2.8)

∑

t

xts
t
ε = ε there are ε extra vertices (2.9)

∑

t

xts
t
i = di there are di vertices of degree i ∈ [2, 7] (2.10)

∑

t

yt = h there are h lines (2.11)

∑

t

ytℓ
t
i = idi i ∈ [2, 7] (2.12)

∑

t

xt

(

sti
2

)

+
∑

t

yt

(

ℓti
2

)

6

(

di
2

)

i ∈ [2, 6] (2.13)

∑

t

xt

(

st7
2

)

+
∑

t

yt

(

ℓt7
2

)

=

(

d7
2

)

by Lemma 2.7 (2.14)

∑

t

xts
t
is

t
j +

∑

t

ytℓ
t
iℓ

t
j 6 didj distinct i, j ∈ [2, 7] (2.15)

This integer program has a feasible solution only for the following twelve degree sequences
D = [d2, d3, . . . , d7]. For all of these, ε = 0.

h = 45 D = [22, 3, 7, 2, 15, 32], h = 46 D = [23, 2, 1, 7, 13, 35],
h = 46 D = [23, 1, 3, 7, 11, 36], h = 46 D = [23, 0, 6, 4, 12, 36],
h = 46 D = [23, 0, 5, 7, 9, 37], h = 46 D = [22, 2, 5, 5, 10, 37],
h = 46 D = [23, 0, 4, 10, 6, 38], h = 46 D = [22, 1, 7, 5, 8, 38],
h = 46 D = [22, 0, 10, 2, 9, 38], h = 47 D = [23, 0, 3, 5, 10, 40],
h = 47 D = [22, 1, 4, 6, 6, 42], h = 47 D = [21, 2, 6, 4, 5, 43].

2.2.3 Assignment of lines to vertices

If a linear intersecting 9-partite hypergraph H with τ(H) = 9 exists, then it has 81 vertices
(ε = 0), h ∈ {45, 46, 47}, and one of the twelve degree sequence listed at the end of §2.2.2. Let
D be one of these degree sequences. Next we generated the set S(D) of all possible non-negative
integer solutions for the system of equations (2.8), (2.9), and (2.10). Let S = [x1, x2, . . . , x|S(h,0)|]
denote a particular solution in S(D). We formulate another system of linear equations which
takes D and S as input values.

Let V = V (H) be the vertex set of H which is partitioned into 9 sides of equal size. Then
the set of degree sequences of vertices in the sides of H corresponds to a solution S ∈ S(D).
We change the notation slightly, to let svj denote the number of vertices of degree j in the side
that contains vertex v.

As before, let yt be the number of lines of type t from the set L(h) present in H . Define
zvt to be the number of lines of type t incident with a vertex v ∈ V . If a line of type t has no
vertices of degree deg(v) then zvt = 0. Otherwise, zvt is a non-negative integer. In addition to
equations (2.11)–(2.15), the following equations hold for yt and zvt , where t ∈ {1, 2, . . . , |L(h)|}
and v ∈ V .
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∑

t

zvt = deg(v) for all v ∈ V ; (2.16)

∑

t

zvt (ℓ
t
i − 1) 6 di − svi for all v ∈ V where i = deg(v); (2.17)

∑

t

zvt (ℓ
t
7 − 1) = d7 − sv7 for all v ∈ V such that deg(v) = 7; (2.18)

∑

t

zvt ℓ
t
j 6 dj − svj for all v ∈ V and all j ∈ [2, 7], j 6= deg(v); (2.19)

∑

v∈Vk

zvt = yt for all t ∈ {1, 2, . . . , |L(h)|} and all k ∈ [1, r]; (2.20)

∑

v,deg(v)=i

zvt = ytℓ
t
i for all i ∈ [2, 7] and t ∈ {1, 2, . . . , |L(h)|}. (2.21)

Note that since S ∈ S(D) is given, now values xt in equations (2.11)-(2.15) are constants.
The total number of lines incident with a vertex equals the degree of that vertex, which is given
by (2.16). Two vertices are neighbours if there is a line containing both of them. Observe that,
for each vertex v in a given side, the number of neighbours of v which have degree j is at most
the total number of degree j vertices in the remaining sides, for j ∈ [2, 7]. Equations (2.17)-
(2.18) correspond to counting the number of neighbours of v which are of the same degree
as v, whereas (2.19) counts the neighbours of v which have degree different from deg(v). The
equality in (2.18) is implied by Lemma 2.7. Since every line contains exactly one vertex in each
side, each side is incident with as many lines of a type t as there are lines of type t present in
the hypergraph, which is given by (2.20). Finally, (2.21) is a double count of pairs of lines of
type t and vertices of degree i incident with these lines.

We found a feasible solution for the integer program given by (2.11)–(2.21) only for two
pairs of input values of a degree sequence D and S ∈ S(D) which we consider more closely in
the following subsection.

2.2.4 Remaining cases

The two cases for which the integer program in the previous section has a feasible solution both
have h = 46. Below we give the input degree sequence D and a matrix representation of S.
Here, a column of S corresponds to a side, and each entry is the degree of a vertex in that side.
Each matrix S is given uniquely, up to permutation of sides and permutation of vertices within
each side.

Case 1 Case 2

D = [23, 1, 3, 7, 11, 36] D = [23, 0, 5, 7, 9, 37]

S =























2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2
4 4 4 2 2 3 2 2 2
5 5 5 6 6 5 5 5 5
6 6 6 6 6 6 7 7 7
6 6 6 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7























S =























2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2
4 5 2 2 4 4 2 2 2
5 5 6 6 4 4 5 5 5
6 5 6 6 6 6 7 7 7
6 6 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7























Case 1: Suppose there exists a linear intersecting 9-partite hypergraph H with τ(H) = 9,
h = 46 lines and degree sequence D = [23, 1, 3, 7, 11, 36]. First, we consider the set of types of
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lines in H . Since H has 46 lines and d2 = 23, every line in H contains a vertex of degree 2.
Also, ℓti 6 di for all i ∈ [3, 7]. Hence, the possible line types L in H are

L = {[1, 0, 0, 0, 4, 4], [1, 0, 0, 1, 2, 5], [1, 0, 0, 2, 0, 6], [1, 0, 1, 0, 1, 6], [1, 1, 0, 0, 0, 7]} ⊂ L(46).

Note that H has one vertex v such that deg(v) = 3. Let e1 and e2 be two lines which contain v.
Then e1 and e2 have the same line type, namely [1, 1, 0, 0, 0, 7], since this is the only line type
in L which contains a vertex of degree 3. Let u1 and u2 be the vertices of degree 2 on e1 and
e2, respectively. If u1 and u2 belong to two different sides, then let w be the vertex of degree 7
on e2 which is on the same side as u1. By Lemma 2.7, there is a distinct line through w and
each of the degree 7 vertices on e1. Hence, deg(w) > 8, which is a contradiction. Therefore, u1

and u2 are on the same side in H . Let f be the line other than e1 which contains u1 and let
w′ be the vertex in which e2 and f intersect. Then deg(w′) = 7. Again by Lemma 2.7, there is
a line through w′ and every degree 7 vertex on e1 which is not on the same side as w′. Hence,
deg(w′) > 2 + 6 = 8, which is a contradiction. Therefore, such a hypergraph does not exist.

Case 2: Suppose there exists a linear intersecting 9-partite hypergraph H with τ(H) = 9,
h = 46 lines and degree sequence D = [23, 0, 5, 7, 9, 37]. Moreover, without loss of generality,
assume that the degrees of vertices in V = V (H) are given by S for a suitable permutation of
sides and permutation of vertices within each side. Let L ⊆ L(46) be the set of all possible
line types which may occur in H . As in the previous case, line types in L satisfy the obvious
constraints on degrees. Hence

L = {[1, 0, 0, 0, 4, 4], [1, 0, 0, 1, 2, 5], [1, 0, 0, 2, 0, 6], [1, 0, 1, 0, 1, 6]}.

For clarity, we index the line types in L by A, B, C and D, respectively. Then for
t ∈ {A,B,C,D}, yt is the number of lines of type t in H and (yA, yB, yC, yD) satisfies the
equations (2.11)–(2.15). In this case, many of these equations are dependent and it is enough
to consider equations (2.11), (2.12) for i ∈ {4, 5}, and (2.14) to obtain the unique solution
(yA, yB, yC, yD) = (1, 15, 10, 20).

Moreover, for each t ∈ {A,B,C,D} and each v ∈ V , zvt denotes the number of lines of
type t incident with the vertex v and the set of all values {zvt : v ∈ V, t ∈ {A,B,C,D}}
satisfies equations (2.16)–(2.21). We restrict our attention to vertices of degree 7 and compute
all possible solutions to the system of equations given only by (2.16), (2.18) and (2.19) for
j ∈ [2, 6]. For each 0 6 k 6 8, the possible solutions (zvA, z

v
B, z

v
C , z

v
D) for v ∈ Vk, where

deg(v) = 7, are given in the table below.

V0 V1 V2, V3, V4, V5 V6, V7, V8

(0, 1, 2, 4) (0, 1, 1, 5) (1, 0, 3, 3) (1, 1, 2, 3)
(0, 2, 2, 3) (0, 3, 1, 3)

Let e be a line of type C. Line e intersects each of the 20 lines of type D exactly once.
Moreover, line e intersects a line of type D either in its vertex of degree 2 or in one of its 6
vertices of degree 7. Observe that vertices of degree 7 in sides V0 and V1 are incident with 4 and
5 lines of type D, respectively; all other vertices of degree 7 are always incident with exactly 3
lines of type D. Depending on whether e intersects a line of type D in its vertex of degree 2 or
not, it is easy to see that, in order for e to meet 20 lines of type D, e either contains exactly
one vertex of degree 7 on side V0 or exactly one vertex of degree 7 on side V1, but not both.
Since zvC = 2 if v ∈ V0 and zvC = 1 if v ∈ V1 when deg(v) = 7, there are at most 2 · 3 + 1 · 3 = 9
lines of type C, which gives a contradiction. Therefore, such a hypergraph does not exist.

We conclude that there does not exist a linear intersecting 9-partite hypergraph with cov-
ering number 9 and ∆ = 7. Together with Corollary 2.5 we have shown:

Theorem 2.8. For 2 6 r 6 9 every linear intersecting r-partite hypergraph has covering
number at most r − 1.
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3 Hypergraph constructions

In this section we describe several hypergraph constructions that are of interest. First we define
some additional notation. Let H be an r-partite hypergraph. In each side Vk, we label the
vertices by (k, 0), (k, 1), . . . , (k, |Vk|−1), which we abbreviate to 0, 1, . . . , |Vk|−1 when the side
is clear from context. We say that a vertex (k, l) ∈ Vk is at level l in side Vk. We denote a line e
in H by [l0, l1, l2, . . . lr−1], where e contains the vertex at level lk in side Vk, where k ∈ [0, r− 1].
When presenting a specific example, we omit the square brackets and commas to make the
notation cleaner. The cyclic 1-shift of a line [l0, l1, l2, . . . , lr−1] is the line [lr−1, l0, l1, . . . , lr−2]
and the cyclic t-shift of a line e, denoted et, is the line obtained from e by applying t cyclic
1-shifts. In particular, e0 = e = er. An r-partite hypergraph is cyclic if its automorphism
group contains a cyclic subgroup of order r acting transitively on the sides. A cyclic r-partite
hypergraph can be obtained by developing a set of starter lines by cyclic shifts.

3.1 A counterexample to Conjecture 1.2

In this subsection we give a counterexample to Conjecture 1.2.

Theorem 3.1. For at least one value of r there is an intersecting r-partite hypergraph H such
that each of its sides has size r and e \ {v} is not a cover for any e ∈ H and any v ∈ e.

Proof. Let r = 13. We give an example of a cyclic linear intersecting r-partite hypergraph
H in which every side has size r. The 3r lines of H are obtained by taking all possible cyclic
shifts of the following three starter lines.

e1 = 0 1 4 2 3 5 6 6 5 3 2 4 1

e2 = 0 3 7 1 2 8 9 9 8 2 1 7 3

e3 = 0 2 10 3 1 11 12 12 11 1 3 10 2

(3.1)

Vertices at level 0 in H have degree 3, vertices at levels 1, 2 and 3 have degree 6, and all other
vertices have degree 2.

We claim that H is a linear intersecting hypergraph. Observe that |et1i ∩ et2j | = |ei ∩ et2−t1
j |

for any i, j ∈ {1, 2, 3} and 0 6 t1 6 t2 < r. Hence, it suffices to show that for any i, j ∈ {1, 2, 3}
and 0 6 t < r where (j, t) 6= (i, 0), lines ei and etj intersect in exactly one vertex.

First we consider the case when i = j. By construction, e3i has the underlying structure of a
4-extended Skolem sequence of order 6, namely 6420246531135. For example, this sequence is
obtained from e31 by relabelling the levels using the permutation (1, 2, 6)(3, 5). For definitions
and background on Skolem sequences, see [5]. In our case, the result is that for every t ∈
[1, r−1

2
], there is a unique pair (k, l) and (k′, l) of vertices in ei with k′ − k ≡ t (mod r). Hence

ei ∩ eti = {(k′, l)} and ei ∩ er−t
i = {(k, l)}.

Now assume that i 6= j. Suppose that there are two distinct vertices (k1, l1) and (k2, l2) in
ei ∩ etj . Since ei ∩ ej = {(0, 0)}, we may assume that t ∈ [1, r − 1]. Then by inspection, we
must have l1, l2 ∈ {1, 2, 3} (the relevant entries are shown in bold in (3.1)). For the different
possible pairs (l1, l2) the following table shows the feasible distances k2 − k1 (mod r).

l1, l2 distances in e1 distances in e2 distances in e3
1, 1 ±2 ±6 ±5
2, 2 ±6 ±5 ±2
3, 3 ±5 ±2 ±6
1, 2 ±2,±4 ±1,±6 ±3,±5
1, 3 ±3,±5 ±2,±4 ±1,±6
2, 3 ±1,±6 ±3,±5 ±2,±4
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Since there is no row of the table where the same distance occurs in different columns, we
conclude that

|ei ∩ etj | 6 1. (3.2)

Since ei and ej intersect in the vertex (0, 0), and both have a pair of vertices on each level
l ∈ {1, 2, 3}, there are 1 + 3 · 4 = 13 vertices in which ei intersects the set of all cyclic shifts of
ej . It follows that we must have equality in (3.2) for each i, j, t. Thus H is a linear intersecting
hypergraph. Since δ(H) = 2, it follows that for every line e ∈ H and each vertex v ∈ e, the set
of vertices e \ {v} is not a cover.

For the linear intersecting 13-partite hypergraph constructed in the proof of Theorem 3.1
we found by computation that τ(H) = 9. The following set of vertices is a 9 cover for H :

{(0, 1), (0, 2), (0, 3), (2, 0), (5, 0), (8, 0), (10, 1), (10, 2), (10, 3)}.

3.2 Cyclic intersecting hypergraphs with τ = r − 1

Next we give an example of a cyclic intersecting r-partite hypergraph which has covering number
r − 1 for r ∈ {9, 13, 17}. The methodology for building these hypergraphs is similar to the
construction given in the proof of Theorem 3.1. However, in each case below the hypergraph
we construct is non-linear.

Lemma 3.2. Let (r, s) ∈ {(9, 4), (13, 5), (17, 6)}. Then there exists a cyclic intersecting r-
partite hypergraph H such that H has sr lines and τ(H) = r − 1.

Proof. The sr lines of H are obtained by taking all possible cyclic shifts of lines in the starters
given below.

r = 9

e1 = 4 3 2 1 0 1 2 3 4
e2 = 3 6 5 4 0 4 5 6 3
e3 = 1 2 4 6 0 6 4 2 1
e4 = 3 0 2 6 7 6 2 0 3

r = 13

e1 = 6 5 4 3 2 1 0 1 2 3 4 5 6
e2 = 9 6 1 8 7 5 0 5 7 8 1 6 9
e3 = 7 2 9 1 3 10 0 10 3 1 9 2 7
e4 = 5 3 2 6 9 7 0 7 9 6 2 3 5
e5 = 9 5 2 6 3 7 11 7 3 6 2 5 9

r = 17

e1 = 3 12 11 4 1 10 2 9 0 9 2 10 1 4 11 12 3
e2 = 1 8 7 6 5 4 3 2 0 2 3 4 5 6 7 8 1
e3 = 14 3 9 7 15 11 6 4 0 4 6 11 15 7 9 3 14
e4 = 6 2 5 11 14 12 4 10 0 10 4 12 14 11 5 2 6
e5 = 11 10 14 1 7 3 12 8 0 8 12 3 7 1 14 10 11
e6 = 7 4 13 5 9 1 11 12 0 12 11 1 9 5 13 4 7

We found by computation that the covering numbers for these three hypergraphs are 8, 12 and
16, respectively.

Remark. The hypergraphs with r = 9, r = 13 and r = 17 in Lemma 3.2 are intrinsically
non-linear; each has the property that it does not contain a linear subhypergraph with covering
number r − 1.

First, if H is the hypergraph with r = 9, then |e2 ∩ e4| = 2, but deleting either e2 or e4
reduces the covering number. Below are covers of size 7 for H\{e2} and H\{e4}, respectively.

{(5, 6), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 6)}

{(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}
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Similarly, if H is the hypergraph with r = 13, then |e1 ∩ e5| = 2 and below are covers of
size 11 for H\{e1} and H\{e5}, respectively.

{(0, 7), (1, 3), (2, 3), (3, 7), (8, 0), (8, 1), (8, 3), (8, 5), (8, 6), (8, 7), (12, 2)}

{(1, 9), (4, 6), (6, 0), (6, 1), (6, 2), (6, 3), (6, 6), (6, 7), (6, 9), (8, 6), (11, 9)}

Finally, consider the hypergraph H in Lemma 3.2 with r = 17. Let H1 be the subhy-
pergraph obtained from all of the cyclic shifts of starter lines e2, e3, e4, e5, e6. Then H1 is a
linear intersecting hypergraph with covering number 15, where the following set of vertices is
a minimal cover:

{(4, 5), (4, 8), (4, 11), (5, 4), (5, 7), (10, 0), (10, 4), (10, 6),

(10, 7), (10, 14), (15, 4), (15, 7), (16, 5), (16, 8), (16, 11)}.

Let E1 be the set of all cyclic shifts of the starter line e1. Observe that E1 is linear intersecting.
Furthermore, each line e ∈ E1 intersects exactly 12 lines of H1 more than once. For every
non-empty subset E∗ ⊆ E1, define H∗

1 to be the hypergraph obtained from H1 by adding the
lines of E∗ and removing every line of H1 that intersects a line of E∗ more than once. We
computationally checked that each of the 217 − 1 such linear intersecting hypergraphs H∗

1 has
covering number less than 16 (in fact, they each have covering number between 10 and 14).
Therefore, H has no linear intersecting subhypergraph with τ = 16.

3.3 Linear intersecting hypergraphs built from latin squares

Next we describe a family of linear intersecting r-partite hypergraphs which do not have a
minimal cover that consists of a single side or that consists of a subset of a line.

A latin square of order n is an n × n array of n symbols such that each symbol appears
exactly once in each row and exactly once in each column. If L is a latin square, L[r, c] denotes
the symbol in row r and column c of L. A pair of latin squares of order n are orthogonal if,
when the two squares are superimposed, each of the n2 possible ordered pairs of symbols occurs
exactly once. A set of latin squares is called mutually orthogonal if each pair of latin squares
in the set are orthogonal. For more on latin squares, see [12].

Lemma 3.3. If there exist k mutually orthogonal latin squares of order n > 3, then there exists
a linear intersecting (n+2)-partite hypergraph H with τ(H) = k+1 such that no side or subset
of a line is a minimal cover.

Proof. Let L0, . . . , Lk−1 be k mutually orthogonal latin squares of order n. Assume that each
Li has [0, 1, . . . , n− 1] as its first row. For i = 0, 1, . . . , k − 1, let Mi be the column inverse of
Li, that is, Mi[r, c] = s if and only if Li[s, c] = r. Since each Li has its first row in reduced
form, each Mi has symbol 0 on the main diagonal. Set M ′

0 = M0 and for i = 1, . . . , k − 1 let
M ′

i be the latin square obtained from Mi by replacing symbol 0 with symbol n+ i− 1.
Next we define the lines of an (n + 2)-partite hypergraph H . Let V0, . . . , Vn+1 be the sides

of H . Sides V0, . . . , Vn each have n + k − 1 vertices and side Vn+1 has n + 1 vertices. If a line
[l0, l1, . . . , lr−1] is a concatenation of two lists, we use the notation [l0, . . . , li]⊕ [li+1, . . . , lr−1].

For i = 0, . . . , k − 1 define Ei := {M ′
i [x] ⊕ [i, x] : 0 6 x 6 n − 1}, where M ′

i [x] is row x of
the latin square M ′

i . Further, define E∗ := {[x, x, . . . , x, k + x− 1, n] : 1 6 x 6 n− 1}.
It is straightforward to check that each line in Ei intersects each line in E∗ exactly once, and

that the lines in E∗ meet each other exactly once. Since M ′
i is a latin square, two distinct lines

in Ei intersect only at the vertex (n, i). We next show that lines of Ei and Ej also intersect
linearly for i 6= j. Consider a line ℓ1 = M ′

i [x] ⊕ [i, x] ∈ Ei and a line ℓ2 = M ′
j [y] ⊕ [j, y] ∈ Ej

where i 6= j. Since Li and Lj are orthogonal latin squares, there is a unique cell (r, c) where
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Li[r, c] = x and Lj [r, c] = y. If x = y, then r = 0 and Mi[x, x] = Mj [x, x] = 0, and thus, by
the relabelling of symbol 0 in M ′

1, . . . ,M
′
k−1, the lines ℓ1 and ℓ2 intersect only at the vertex

(n + 1, x). If x 6= y, then r 6= 0 and thus M ′
i [x, c] = r = M ′

j [y, c] and therefore the lines ℓ1 and
ℓ2 intersect only at the vertex (c, r). It follows that H = E∗ ∪ E0 ∪ E1 ∪ · · · ∪ Ek−1 is a linear
intersecting (n+ 2)-partite hypergraph with kn+ n− 1 lines.

Since H has maximum degree n and kn + n − 1 lines, no set of k vertices is a cover. It is
straightforward to check that the vertices at levels 0, 1, . . . , k − 1 of side Vn together with the
vertex (n+ 1, n) form a cover of size k + 1. Therefore τ(H) = k + 1.

It is well-known that there are at most n − 1 mutually orthogonal latin squares of order n
(see e.g. [12]), so k + 1 6 n. Observe that for k > 2 each side has size at least n + 1, whereas
τ(H) = 2 < n when k = 1. Hence, no side is a minimal cover. Also, since H is linear and each
line contains exactly one vertex of degree 1, it follows that the only covers which are subsets of
a line have size at least n+ 1. Thus, no side or subset of a line is a minimal cover of H .

The following corollary follows immediately from the existence of complete sets of mutually
orthogonal latin squares of prime power orders [12].

Corollary 3.4. If n is a prime power then there exists a linear intersecting (n + 2)-partite
hypergraph H with τ(H) = n such that no side or subset of a line is a minimal cover.

Example: Below are the lines of a hypergraph built from 3 mutually orthogonal latin squares
of order 4, as described in Lemma 3.3. This hypergraph is also maximal with respect to the
property of being linear and intersecting.

031200 423110 512320 111134
302101 241311 153221 222244
120302 314212 235122 333354
213003 132413 321523

3.4 An 8-partite linear hypergraph with τ = 7

We close this section by giving a construction for an interesting 8-partite linear hypergraph
H38 that achieves equality in Conjecture 1.1.

Let F denote the Fano plane constructed by developing the triple {0, 1, 3} modulo 7. Let G
denote the stabiliser of the point 0 in F . Note that |G| = 24. Let C denote the set of 7-cycles
obtained by conjugating the cycle (0123456) by elements of G.

For each permutation p ∈ C we add one line to H38 which includes the vertex (i, p[i])
for i ∈ [0, 6]. If p1, p2 ∈ C then p−1

1 p2 has at most one fixed point. We can make the lines
corresponding to p1 and p2 meet on side V7 if and only if p−1

1 p2 has no fixed points. This
produces 8 vertices of degree 3 in V7, and completes the description of the lines corresponding
to the cycles in C. Next we add two new vertices v1, v2 to V7. For each i ∈ [0, 6] we put a line
through v1 and the vertices (j, i) for j ∈ [0, 6]. For each i ∈ [0, 6] we put a line through v2, (i, i)
and all vertices (a, b) for which {i, a, b} is a triple of F .

The construction just described results in H38, which has 38 lines and an automorphism
group isomorphic to PSL(2, 7). For i ∈ [0, 6] the vertex (i, i) has degree 2. All other vertices
on sides V0, . . . , V6 have degree 6. On V7 the vertices v1 and v2 have degree 7 and the other
8 vertices have degree 3. Since V7 has 10 vertices it is clear that H38 is not isomorphic to
a subhypergraph of P ′

8. Nevertheless, it is routine to check that H38 is a linear intersecting
8-partite hypergraph. Suppose that X is a 6-cover of H38. Then X must include v1 and v2
since otherwise it cannot cover the lines through those vertices. The 24 lines that avoid v1 and
v2 induce a subhypergraph with maximum degree 4, which thus cannot be covered by fewer
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than 6 vertices. This contradiction shows that X does not exist. Since V0 is a 7-cover, we must
have τ(H38) = 7.

Some further properties of H38 are discussed in the next section.

4 Computational results

In this section we describe a computational proof of the following result.

Theorem 4.1.

1. For r 6 7 the only linear intersecting r-partite hypergraphs to achieve equality in Ryser’s
conjecture are subhypergraphs of P ′

r. In particular, there are none for r = 7.

2. No subhypergraph of H38 has τ = 7 and is isomorphic to a subhypergraph of P ′
8.

3. The smallest subhypergraph of H38 with τ = 7 has 22 lines. The smallest subhypergraph
of P ′

8 with τ = 7 also has 22 lines.

Clearly, by part (1), every 7-partite linear intersecting hypergraph satisfies τ 6 5. There are
a number of non-isomorphic ways to achieve τ = 5, including by the construction in Lemma 3.3.
For 7-partite intersecting non-linear hypergraphs with τ = 6, see [1, 3].

Let H be a 7-partite linear intersecting hypergraph with h = |H| lines and τ > 6. By an
argument similar to the proof of Lemma 2.2 we know that ∆(H) 6 6. We next argue that
∆(H) > 4. Let H have xi vertices of degree i = 1, . . . ,∆. Note that no line of H can include
two vertices of degree 1, otherwise the remaining vertices on the line would provide a 5-cover.
Hence x1 6 h. Together with [3, Lem2.1] and [3, Thm2.7], we can then deduce that if ∆ 6 4
and x4 6 7 then x1 = h = 17, x3 > 38 and hence x2 < 0. It follows that ∆ > 4. Also if ∆ = 4
then x4 > 7 so some side of H has at least 2 vertices of degree 4 on it.

We next describe the computation that established Part 1 of Theorem 4.1. By the above
comments, we can split the problem for r = 7 into three subcases ∆ = 4, ∆ = 5 and ∆ = 6.
We started with a vertex of degree ∆ on side V0. (In the ∆ = 4 case, we then added a second
vertex of degree ∆ to V0 in all possible ways up to isomorphism.) Subsequent lines were added
one at a time, ensuring that all pairs of lines intersected in a single point and that the assumed
maximum degree was not violated. After each line was added, we tested for isomorphism and
kept only one representative of each isomorphism class. For isomorphism checking we converted
the hypergraphs into vertex-coloured graphs and applied the software nauty [8]. For ∆ = 4, 5, 6
the largest hypergraphs we obtained had 16, 25, 18 lines respectively. All hypergraphs that we
built had a 5-cover, proving the claim that no linear 7-partite intersecting hypergraph achieves
τ = 6.

For r 6 6, we performed computations as just described, except that there was no need to
split the problem into subcases according to the maximum degree. Every hypergraph that we
encountered could be extended to P ′

r.
For r > 8 the above method is not practical for a complete enumeration. However, we did

a partial enumeration and found a number of linear intersecting 8-partite hypergraphs that
are maximal (no lines can be added), have τ = 7 and yet are not isomorphic to P ′

8. Most
of these have the property that a few lines can be removed to get something isomorphic to a
subhypergraph of P ′

8. However, the hypergraph H38 described in §3.4 seems to be of a very
different nature, which is why we tested its properties more thoroughly.

In Table 1 and Table 2 all 2098796663 isomorphism classes of subhypergraphs of P ′
8 with

τ = 7, and all 17892655 isomorphism classes of subhypergraphs of H38 with τ = 7 are classified

14



|H| Number
22 833
23 2168877
24 58227758
25 224055209
26 368614512
27 401984117
28 351960321

|H| Number
29 268297692
30 183765292
31 114391098
32 64949914
33 33653522
34 15894680
35 6828374

|H| Number
36 2660309
37 936491
38 296473
39 84035
40 21221
41 4757
42 953

|H| Number
43 179
44 32
45 8
46 3
47 1
48 1
49 1

Table 1: Number of isomorphism classes of subhypergraphs H of P ′
8, with τ(H) = 7.

|H| Number
22 5
23 42310
24 1550265
25 5027821
26 5332373

|H| Number
27 3376797
28 1625274
29 644482
30 215066
31 60609

|H| Number
32 14308
33 2803
34 462
35 67
36 9

|H| Number
37 3
38 1

Table 2: Number of isomorphism classes of subhypergraphs H of H38, with τ(H) = 7.

by their size. The tables were prepared by exhaustive enumeration, using a heuristic upper
bound for the covering number to quickly eliminate most subhypergraphs with τ(H) 6 6, and
employing nauty to remove isomorphs.

We end with an example of a subhypergraph of P ′
8 that has 22 lines and τ = 7:

03426434 04505645 06663521 11264344 15636215 16055456
22642443 24366152 25550564 32133654 34624066 35345331
43331546 44453313 46246660 51313465 55462606 56534133
60444555 61651632 62516326 63165263

and an example of a subhypergraph of H38 that has 22 lines and τ = 7:

00000008 03615429 10536249 20361454 22222228 24510635
25043169 26105341 31402659 33333338 36541026 42016356
43562101 44444448 46320519 54306123 56413204 60425136
62503412 63140253 64251309 65312047

Both these hypergraphs have an automorphism group of order 3, which is the largest achieved
by subhypergraphs with h = 22 and τ = 7 within P ′

8 and H38, respectively.
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