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HOMOTOPY TYPES OF THE HOM COMPLEXES OF GRAPHS

TAKAHIRO MATSUSHITA

Abstract. The Hom complex Hom(T,G) of graphs is a CW-complex associ-
ated to a pair of graphs T and G, considered in the graph coloring problem.
It is known that certain homotopy invariants of Hom(T,G) give lower bounds
for the chromatic number of G.

For a fixed finite graph T , we show that there is no homotopy invariant
of Hom(T,G) which gives an upper bound for the chromatic number of G.
More precisely, for a non-bipartite graph G, we construct a graph H such that
Hom(T,G) and Hom(T,H) are homotopy equivalent but χ(H) is much larger
than χ(G). The equivariant homotopy type of Hom(T,G) is also considered.

1. Introduction

The application of algebraic topology to the graph coloring problem started from
Lovász’s proof [13] of the Kneser conjecture. Lovász introduced the neighborhood
complex N(G) of a graph G and showed that if N(G) is n-connected, then the
chromatic number χ(G) of G is greater than n+ 2.

The Hom complex Hom(T,G) is a CW-complex associated to a pair of graphs
T and G, considered in the context of the graph coloring problem [1]. It is known
that the neighborhood complex N(G) and Hom(K2, G) are homotopy equivalent.

A graph T is a homotopy test graph [12] if the inequality

χ(G) > conn(Hom(T,G)) + χ(T )(1)

holds for every graph G. Here for a space X , conn(X) denotes the largest integer
n such that X is n-connected. Thus Lovász’s result implies that K2 is a homotopy
test graph. Other examples of homotopy test graphs are given by complete graphs
Kn with n ≥ 3 [1], odd cycles C2r+1 [2], bipartite graphs [15], and some of the
stable Kneser graphs [17]. For further development and related topics, we refer to
[4], [9], and [12].

Here we give a brief explanation of how to obtain the lower bound for χ(G) from
Hom(T,G). Consider a group action on the graph T . In many cases, we consider
a cyclic group Z2 of order 2 and a Z2-action flipping some edge of T . Then this
action on T induces a group action on Hom(T,G), and the graph homomorphism
f : G1 → G2 induces an equivariant map from Hom(T,G1) to Hom(T,G2). Thus if
there is no equivariant map from Hom(T,G) to Hom(T,Kn), then χ(G) is greater
than n, and we have a lower bound.

Therefore it is natural to ask that the chromatic number of G is determined
by the (equivariant) homotopy type of Hom(T,G). There are several works con-
cerning this question. Walker [18] showed that there are graphs G1 and G2 such
that Hom(K2, G1) and Hom(K2, G2) are Z2-homotopy equivalent but their chro-
matic numbers are different (see Section 12 of [18] or Example 3.2). The author
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constructed graphs H1 and H2 that Hom(K2, G1) and Hom(K2, G2) are homeo-
morphic but their chromatic numbers are different. Kozlov [11] considered simple
tests for the chromatic numbers, using the homology groups of the Hom complexes
(homology tests), and showed that there are differences between these tests and the
actual chromatic numbers.

Now we state the main result in this paper. This is a further generalization of
Walker’s example.

Theorem 1.1. Let T be a finite graph and G a non-bipartite graph. Then for each
integer n, there is a graph H such that Hom(T,G) and Hom(T,H) are homotopy
equivalent but χ(H) > n. Moreover, if G has no looped vertices, then neither has
H.

When T is a Z2-graph and the involution flips some edge of T , we can choose H
so that Hom(T,G) and Hom(T,H) are Z2-homotopy equivalent. This theorem is
deduced from Theorem 5.1 and Corollary 5.5.

Theorem 1.1 implies that there is no homotopy invariant of Hom(T,G) which
gives an upper bound for the chromatic number of G. In particular, the homotopy
type of Hom(T,G) does not determine χ(G) although T is a homotopy test graph.
In particular, consider the case T = K2. For a Z2-space X , we write indZ2

(X) to
indicate the smallest integer k such that there is a Z2-map from X to Sk. Since
Hom(K2,Kn) is Z2-homeomorphic to Sn−2 (see [1]), we have the inequality

χ(G) ≥ indZ2
(Hom(K2, G)) + 2(2)

for every graph G. It is known that the right of the inequality (2) is the largest
lower bound obtained from the Z2-homotopy type of Hom(K2, G) (see Theorem 1.6
and Theorem 1.7 of [4]). By Theorem 1.1 we cannot obtain more information than
the inequality (2) from the Z2-homotopy type of Hom(K2, G).

To explain the outline of the proof, we recall the following theorem. Here we
denote by g(G) the girth of G.

Theorem 1.2 (Erdős [5]). For a pair of positive integers m and n, there is a finite
graph G such that χ(G) > m and g(G) > n.

We now explain the outline of the proof of Theorem 1.1. By Theorem 1.2, there
is a graph X such that both of the girth and the chromatic number of X are quite
large. By the results of Section 3 and Section 4, we have the following: There is
a graph Y , and graph homomorphisms f : Y → X and g : Y → G such that f
induces a homotopy equivalence f∗ : Hom(T, Y ) → Hom(T,X). Next we consider
the “cylinder” Y × Ik of Y (see Section 2.3) for a sufficiently large integer k. Let H
be the graph obtained by attaching two ends of Y ×Ik by the graph homomorphisms
f : Y → X and g : Y → G.

The graphH has desired properties. In fact, since X is a subgraph of H , we have
χ(H) ≥ χ(X) > n. The reader who is familiar with algebraic topology may notice
that this construction is similar to the homotopy pushouts of spaces. In fact it turns
out that Hom(T,H) is the homotopy pushout of f∗ : Hom(T, Y )→ Hom(T,X) and
g∗ : Hom(T, Y ) → Hom(T,G). Since f∗ is a homotopy equivalence, Hom(T,H) is
homotopy equivalent to Hom(T,G). This is the outline of the proof.
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2. Preliminaries

In this section we review relevant facts and introduce the terminology. For a
concrete introduction to this subject, we refer to Kozlov’s book [12].

Let P be a poset. The order complex ∆(P ) of P is the abstract simplicial
complex whose vertex set is the underlying set of P and whose simplices are finite
chains of P . The classifying space of P is the geometric realization of ∆(P ), and
is denoted by |P |. We often identify the poset P with the space |P |, and assign
topological terminology to posets by the classifying space functor. For example, an
order-preserving map f : P → Q is a homotopy equivalence if the continuous map
|f | : |P | → |Q| induced by f is a homotopy equivalence.

2.1. Graphs. A graph is a pairG = (V (G), E(G)) consisting of a set V (G) together
with a symmetric subset E(G) of V (G)× V (G). Hence our graphs are undirected,
may have loops, but have no multiple edges. The reason why we admit looped
vertices will be found in Section 2.3 (see the definition of In). For a pair of vertices
v and w, we write v ∼ w if (v, w) belongs to E(G). A graph is simple if it has no
looped vertices. For a pair of vertices x and w of G, we write 〈x,w〉 to indicate the
subset {(x,w), (w, x)} of V (G)×V (G). The neighborhood N(v) of a vertex v is the
set of vertices adjacent to v. A graph homomorphism is a map f : V (G) → V (H)
with (f × f)(E(G)) ⊂ E(H).

For a non-negative integer n, let Kn be the complete graph with n-vertices,
namely, V (Kn) = {1, · · · , n} and E(Kn) = {(x, y) | x 6= y}. In terms of these
notions, an n-coloring of G is identified with a graph homomorphism from G to
Kn. The chromatic number of G is the number

χ(G) = inf{n ≥ 0 | There is an n-coloring of G.}.

Here we consider the infimum of the empty set is +∞.
The girth of a graph G is the minimal length of cycles embedded into G.

2.2. Hom complex. A multi-homomorphism from G to H is a map η : V (G) →
2V (H) \ {∅} such that (v, w) ∈ E(G) implies η(v)× η(w) ⊂ E(H). We write η ≤ η′

if η(v) ⊂ η′(v) for all v ∈ V (G). The Hom complex Hom(G,H) is the poset of
multi-homomorphisms from G to H with the above ordering. Note that a graph
homomorphism f : G→ H is identified with a minimal point of Hom(G,H).

We compare the definition of Hom complexes with others. Our definition of
the Hom complex is due to Dochtermann [3]. In [1], Babson and Kozlov give the
definition of the Hom complex as a certain subcomplex of products of simplices in
case T and G are finite. Then our Hom complex is isomorphic to the face poset of
their Hom complex. Thus the topological types of the two definitions coincide.

For a graph homomorphism f : G1 → G2, let f
∗ : Hom(G2, H) → Hom(G1, H)

be the order-preserving map defined by f∗(η) = η ◦ f . On the other hand, for a
graph homomorphism g : H1 → H2, let g∗ : Hom(G,H1) → Hom(G,H2) be the
order-preserving map defined by g∗(η)(x) = g(η(x)).

An involution of a graph T is a graph homomorphism α : T → T with α2 = idT .
An involution is flipping if there is a vertex x of T such that (x, α(x)) ∈ E(T ).
A Z2-graph T is flipping if the involution is flipping. It is easy to see that if
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T is a flipping Z2-graph and G is simple, then Hom(T,G) is a free Z2-space [1].
Moreover, the order-preserving map f∗ : Hom(T,G1)→ Hom(T,G2) induced by a
graph homomorphism f is Z2-equivariant.

2.3. ×-homotopy theory. Here we review the ×-homotopy theory established by
Dochtermann [3] as far as we need.

Let G and H be graphs. Graph homomorphisms f and g from G to H are ×-
homotopic if they belong to the same connected component of Hom(G,H). We write
f ≃× g to mean that f and g are×-homotopic. A graph homomorphism f : G→ H
is a ×-homotopy equivalence if there is a graph homomorphism g : H → G such that
gf ≃× idG and fg ≃× idH . A ×-homotopy equivalence is a graph homomorphism
f : G→ H such that there is a graph homomorphism g : H → G with fg ≃× idH
and gf ≃× idG.

Let a and b be integers with a ≤ b. Let I[a,b] be the graph defined by V (I[a,b]) =
{x ∈ Z | a ≤ x ≤ b} and E(I[a,b]) = {(x, y) | |x − y| ≤ 1}. We write In instead of
I[0,n]. For a pair of graph homomorphisms f, g : G→ H , a ×-homotopy from f to g
is a graph homomorphism F : G× In → H such that F (x, 0) = f(x) and F (x, n) =
g(x) for all x ∈ V (G). Here the notation “×” means the categorical product. Then
one can show that f and g are ×-homotopic if and only if there is a ×-homotopy
from f to g (Proposition 4.7 of [3]). By this characterization, one can easily show
that the inclusion ιc : T →֒ T × I[a,b], x 7→ (x, c) for a ≤ c ≤ b is a ×-homotopy
equivalence, whose ×-homotopy inverse is the projection p : X × I[a,b] → X .

Let T , G, and H be graphs, and let f and g be graph homomorphisms from G to
H . If f and g are×-homotopic, then the maps f∗, g∗ : Hom(T,G)→ Hom(T,H) are
homotopic (Theorem 5.1 of Dochtermann [3]. However, in his proof, he used Propo-
sition 2.1 mentioned below. A direct and simplified proof without using Proposition
2.1 was given in Section 5 in [16]). Thus if f is a ×-homotopy equivalence, then f∗
is a homotopy equivalence.

A vertex v ∈ V (G) is dismantlable if there is another vertex w such that N(v) ⊂
N(w). We write G \ v to indicate the induced subgraph of G whose vertex set is
V (G) \ {v}. If v is dismantlable, then the inclusion G \ v →֒ G is a ×-homotopy
equivalence. In particular, the following lemma holds:

Proposition 2.1 (Kozlov [10]). If v is dismantlable, then the inclusion Hom(T,G\
v) →֒ Hom(T,G) is a homotopy equivalence.

2.4. Some theorems in algebraic topology. We need the following theorems.

Theorem 2.2. Let X and Y be CW-complexes, and A a set. Let (Xα)α∈A (or
(Yα)α∈A) be an A-indexed family of subcomplexes of X (or Y ) which is a covering of
X (or Y , respectively). Let f : X → Y be a continuous map such that f(Xα) ⊂ Yα

for every α ∈ A. Suppose that for each finite subset {α1, · · · , αr} of A, the map

f |Xα1
∩···∩Xαr

: Xα1
∩ · · · ∩Xαr

→ Yα1
∩ · · · ∩ Yαr

is a homotopy equivalence. Then the map f is a homotopy equivalence.

Proof. This is well-known. See Theorem 2.4 of [16], for example. �

Theorem 2.3 (Theorem 2.4 of [7]). Let Γ be a finite group, and f : X → Y a
Γ-map between free Γ-CW-complexes. Then f is a Γ-homotopy equivalence if and
only if f is a homotopy equivalence.
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3. Deformations of box complexes

In this section we shall show that a certain subdivision of a graph does not
change the homotopy type of Hom(K2, G). We write B(G) instead of Hom(K2, G)
for short, and call it the box complex of G [14].

For a positive integer n, define the graph Ln by V (Ln) = {0, 1, · · · , n} and
E(Ln) = {(a, b) | |a− b| = 1}.

Let G be a graph and e = 〈v, w〉 an edge of G. We define the graph Ge as follows.
The vertex set of Ge is V (G)

∐

{0, 1} and the edge set is defined by

E(Ge) = (E(G) \ e) ∪ 〈0, 1〉 ∪ 〈0, v〉 ∪ 〈1, w〉.

Figure 1 illustrates the graph Ge. We have a natural homomorphism re : Ge → G
defined by the correspondence

re(x) =











x (x ∈ V (G))

w (x = 0)

v (x = 1).

s❆
❆
❍❍
✟✟

s

✏✏✏✏✏✏✂
✂✂
✏✏
❍❍❇
❇❇ s❆

❆
❍❍
✟✟
✟✟ ✟✟✂

✂✂
✏✏
❍❍❇
❇❇

s s

s

✲v

w

e v

w

0 1

G Ge

Figure 1.

In general re : Ge → G does not induce a homotopy equivalence between their
box complexes. For example, consider the cycles C6 and C4. On the other hand,
the following proposition holds.

Proposition 3.1. Let G be a graph, and e = 〈v, w〉 an edge of G. If there is no
graph homomorphism from L3 → G \ e which takes 0 to v and 3 to w, then the
map re : Ge → G induces a homotopy equivalence re∗ : B(Ge)→ B(G). Moreover,
B(G) is obtained from B(Ge) by collapsing two intervals to two points, respectively.

Proof. First we describe the inverse image of each point of B(G) with respect to
re∗. We note that r−1

e (x) = {x} if x 6= v, w, and r−1
e (v) = {v, 1}, r−1

e (w) = {w, 0}.
Let (σ, τ) ∈ B(G) and let (σ′, τ ′) ∈ r−1

e∗ (σ, τ). Suppose that σ contains neither v
nor w. Let x ∈ σ. Then we have x ∈ σ′. Since 0 and 1 are not adjacent to x in Ge,
τ ′ contains neither 0 nor 1. Thus we have τ ′ = τ . Similarly, if τ contains neither v
nor w, then we have r−1

e∗ (σ, τ) = {(σ, τ)}.
Next we consider the following cases.

(a) v ∈ σ, w ∈ τ , and there is x ∈ σ such that x 6= v.
(b) v ∈ σ, w ∈ τ , and there is x ∈ τ such that x 6= w.
(c) w ∈ σ, v ∈ τ , and there is x ∈ σ such that x 6= w.
(d) w ∈ σ, v ∈ τ , and there is x ∈ τ such that x 6= v.
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We first note that in the case (a), we have τ = {w}. In fact, if there is y ∈ τ such
that y 6= w, then we have a graph homomorphism f : L3 → G defined by

f(0) = v, f(1) = y, f(2) = x, f(3) = w.

This contradicts the hypothesis. Similarly, we have σ = {v} in the case (b), τ = {v}
in the case (c), and σ = {w} in the case (d). This means that an element of B(G)
satisfies at most one of the above four conditions. Moreover, if an element (σ, τ) of
B(G) satisfies the condition (i) for some i ∈ {1, · · · , 4}, then an element of B(G)
smaller than (σ, τ) (for the definition of the partial order of B(G), see Section 2.2)
does not satisfy the other conditions described above.

We now turn to the description of the inverse image of re∗. Suppose that (σ, τ)
satisfies the condition (a). Then we have τ ′ = τ = {w}. Since w ∈ τ ′ and v is not
adjacent to w in Ge, we have that v 6∈ σ′ and 1 ∈ σ′. Thus we have

σ′ = (σ \ {v}) ∪ {1}.

The cases of (b), (c), and (d) are similarly described.
Finally, we set I = r−1

e∗ ({v}, {w}) and J = r−1
e∗ ({w}, {v}). Clearly, we have

I = {({v}, {0}), ({v, 1}, {0}), ({1}, {0}), ({1}, {0, w}), ({1}, {w})}.

Figure 2 is the Hasse diagram of I. Thus its classifying space |I| is an interval.
Similarly, the classifying space |J | of J is an interval.

Let X be a topological spaces obtained from |B(Ge)| by collapsing |I| and |J |,
respectively. Let q : |B(Ge)| → X be the quotient map. Since |I| ∩ |J | = ∅ (see the
definitions of I and J), we have that q is a homotopy equivalence. Clearly, the map
|re∗| : |B(Ge)| → |B(G)| induced by re induces a continuous map f : X → |B(G)|.

Before constructing the inverse of f , we prepare some notation. Let R
(B(G))

denote the free R-module generated by B(G), and we consider its topology as
the direct limit of the finite dimensional R-submodules. For each element x ∈
B(G), we write ex to indicate the associated element of R(B(G)). For each chain
c = {(σ0, τ0), · · · , (σn, τn) | (σi, τi) < (σj , τj) if i < j} of B(G), we write ∆c to
indicate the n-simplex associated to the chain c. Namely, ∆c is the convex hull
of e(σ0,τ0), · · · , e(σn,τn) in R

(B(G)). To construct the inverse g : |B(G)| → X of
f : X → |B(G)|, we construct gc : ∆c → X for each chain c of B(G).

Let c = {(σ0, τ0), · · · , (σn, τn) | (σ0, τ0) < · · · < (σn, τn)} be a chain of B(G).
If σn contains neither v nor w, then c is a chain of B(Ge). Thus define gc by the
composition of the sequence

∆c ⊂ |B(Ge)| −→ X.

r

r

r

r

r✟✟✟✟✟✟❍❍❍❍❍❍✟✟✟✟✟✟❍❍❍❍❍❍
({v}, {0})

({v, 1}, {0})

({1}, {0})

({1}, {0, w})

({1}, {w})

The Hasse diagram of I.

Figure 2.
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The case that τ contains neither v nor w is similar, and these definitions of gc
coincide if both of σ and τ contain neither v nor w.

Next suppose that (σn, τn) satisfies the condition (a) mentioned above. Set

σ′
i =

{

(σn \ {v}) ∪ {1} (v ∈ σi)

σi (v 6∈ σi)

and set

c′ = {(σ′
0, τ0), · · · , (σ

′
n, τn)}.

Then c′ is a chain in B(Ge) and define ι : ∆c → ∆c′ be the simplicial map which
sends (σi, τi) to (σ′

i, τi). Define gc : ∆c → X by the composition of the sequence

∆c
ι

−−−−→ ∆c′ ⊂ |B(G)| −−−−→ X.

The cases (b), (c), and (d) can be similarly proved.
If c = {({v}, {w})} (or c = {({w}, {v})}), then define gc : ∆c → X by sending

the point e({v},{w}) of ∆c to the point of X obtained by collapsing |I| (or |J |,
respectively).

We want to show that the maps gc define a continuous map g : |B(G)| → X .
Let c and c′ be chains of B(G) and suppose c ⊂ c′. Then it suffices to show that

∆c
gc

−−−−→ X




y

∥

∥

∥

∆c′
g
c′−−−−→ X

(3)

is commutative. Have the left vertical arrow is the inclusion. Let (σ, τ) (or (σ′, τ ′))
be the maximal element of c (or c′, respectively). If σ′ contains neither v nor w,
then neither σ and it is clear that the above commutative diagram is commutative.
The case τ ′ contains neither v nor w is similarly proved.

If (σ′, τ ′) satisfies the condition (a) described as above. Then (σ, τ) satisfies (1),
σ contains neither v nor w, or (σ, τ) = ({v}, {w}) (see the remark given in the
paragraph after the condition (d)). It is straightforward to see that the diagram
(3) is again commutative. The cases of (b), (c), and (d) are similarly proved.

It is obvious that the diagram (3) is commutative when (σ′, τ ′) = ({v}, {w}) or
({w}, {v}), since in this case c′ is a minimal element of the poset of chains of B(G).
Thus the maps gc induce a continuous map g : |B(G)| → X .

By the description of the inverse image of re∗ : B(Ge) → B(G), it is clear that
g is the inverse of f . This completes the proof. �

Note that if the girth g(G) of a graph G is greater than 4, then the hypothesis
of Proposition 3.1 always holds.

Example 3.2 (Walker [18]). Let G1 and G2 be graphs illustrated in Figure 3.
Clearly, they have different chromatic numbers. On the other hand, the box com-
plexes B(G1) and B(G2) are Z2-homotopy equivalent. This fact can be deduced
from the direct verification or Proposition 3.1.
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�

✑
✑
✑
✁
✁

r r

r

❅
❅

❆
❆

◗
◗
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r
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r

�
�

✑
✑
✑
✁
✁

r r

r

❅
❅

❆
❆
◗
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◗

r r
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Figure 3.

4. Bipartite graphs

Throughout this section, T is a connected bipartite graph having at least one
edge. The goal of this section is to prove Proposition 4.3, which asserts that if the
girth of G is sufficiently large, then the subdivision considered in Proposition 3.1
does not change the homotopy type of Hom(T,G).

Proposition 4.1. Let X be a finite tree having at least one edge, let T be a finite
connected graph with χ(T ) = 2, and let u : K2 → T be a graph homomorphism.
Then u∗ : Hom(T,X)→ Hom(K2, X) is a homotopy equivalence.

Proof. We prove this by induction of the cardinality of V (X). Suppose that
#V (X) = 2, namely, X = K2. Since Hom(T,K2) ∼= S0 and Hom(K2,K2) ∼= S0, it
is clear that u∗ : Hom(T,K2) → Hom(T,X) is a homotopy equivalence. Suppose
that #V (X) > 2. Then X has a dismantlable vertex v (a leaf of X), and consider
the following commutative diagram:

Hom(T,X \ v) −−−−→ Hom(T,X)

u∗





y





yu∗

Hom(K2, X \ v) −−−−→ Hom(K2, X)

The horizontal arrows are the maps induced by the inclusion X \ v →֒ X . Then
Proposition 2.1 implies that the horizontal arrows are homotopy equivalences. On
the other hand, the inductive hypothesis implies that the left vertical arrow is a
homotopy equivalence. Thus the right vertical arrow is a homotopy equivalence. �

Lemma 4.2. Let T be a finite connected bipartite graph with positive diameter ∆,
and X a finite graph whose girth is greater than 2∆+ 4. Then the map

u∗ : Hom(T,X)→ Hom(K2, X)

induced by a graph homomorphism u : K2 → T is a homotopy equivalence.

Proof. Let Y be the family of connected subgraphs of X whose diameter is smaller
than ∆ + 2. Then every multi-homomorphism η from T to X factors through Y
for some Y ∈ F . Thus we have

Hom(T,X) =
⋃

Y ∈Y

Hom(T, Y ).

Similarly we have

Hom(K2, X) =
⋃

Y ∈Y

Hom(K2, Y ).

Thus to see that u∗ : Hom(T,X) → Hom(K2, X) is a homotopy equivalence, it
suffices to see the following assertion by Theorem 2.2: For a positive integer r and
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a finite subset {Y1, · · · , Yr} of Y, the map

u∗ :

r
⋂

i=1

Hom(T, Yi)→
r
⋂

i=1

Hom(K2, Yi)(4)

is a homotopy equivalence.
We first note that

r
⋂

i=1

Hom(T, Yi) = Hom
(

T,
r
⋂

i=1

Yi

)

,
r
⋂

i=1

Hom(K2, Yi) = Hom
(

K2,
r
⋂

i=1

Yi

)

Thus if every vertex of Y1 ∩ · · · ∩ Yr is isolated, then the both sides of the map (4)
are empty and hence the map is a homotopy equivalence.

On the other hand, suppose that Y1 ∩ · · · ∩ Yr has an edge. By Proposition
4.1, it suffices to show that Y1 ∩ · · · ∩ Yr is a tree. Note that Y1 has no embedded
cycle since its diameter is smaller than ∆ + 2 and the girth of X is greater than
2∆+4. Therefore Y1 ∩· · · ∩Yr has no embedded cycles. Thus it suffices to see that
Y1 ∩ · · · ∩ Yr is connected.

Before giving the proof, we note the following: Let x and y be vertices of X .
We call a graph homomorphism ϕ : Ln → X a path joining x to y if ϕ(0) = x and
ϕ(n) = y. Moreover, if there is no i ∈ {1, · · · , n−1} such that ϕ(i−1) = ϕ(i+1), we
call the path ϕ non-degenerate. It is straightforward to show that a non-degenerate
path ϕ : Ln → X joining x to y with n ≤ ∆+ 1 is unique since the girth of X is
greater than 2∆+ 4.

We now turn to the proof that Y1∩· · ·∩Yr is connected. Suppose that Y1∩· · ·∩Yr

is not empty and let x, y ∈ V (Y1 ∩ · · · ∩Yr). By the definition of Y, Yi is connected
and hence is a tree for each i = 1, · · · , r. Therefore let ϕi : Lni

→ Yi be the
shortest path joining x with y in Yi. Since Yi is a tree whose diameter is smaller
than ∆+ 2, we have that ni < ∆+ 2. Thus it follows from the previous paragraph
that ϕ1 = · · · = ϕr. This implies that x and y belong to the same connected
component of Y1 ∩ · · · ∩ Yr. �

Proposition 4.3. Let T be a finite connected bipartite graph with positive diameter
∆, and X a finite graph with girth greater than 2∆+ 4. For each edge e of X, the
map re : Xe → X induces a homotopy equivalence re∗ : Hom(T,Xe)→ Hom(T,X).

Proof. Consider the commutative diagram

Hom(T,Xe)
re∗−−−−→ Hom(T,X)





y





y

Hom(K2, Xe)
re∗−−−−→ Hom(K2, X).

The vertical arrows are homotopy equivalences by Lemma 4.2, and the lower hori-
zontal arrow is a homotopy equivalence by Proposition 3.1. �

5. Proof of the main theorem

The purpose of this section is to complete the proof of Theorem 1.1. We actually
prove Theorem 5.1 and Corollary 5.5, which are a little generalized assertions.

Let F be a (not necessarily small) family of finite connected graphs and suppose
that there is a positive integer m which satisfies the following conditions:

• The diameter of a graph belonging to F is smaller than m.
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• If T ∈ F is not bipartite, then the odd girth of T is smaller than m.

In this case, we call a family F uniformly small. Note that if F is a finite family of
finite graphs, then F is uniformly small. Therefore the main theorem (Theorem 1.1)
is deduced from the following theorem and Corollary 5.5 since Hom(T1

∐

T2, G) ∼=
Hom(T1, G)×Hom(T2, G).

Theorem 5.1. Let F be a uniformly small family of graphs and let G be a non-
bipartite graph. Then for every positive integer n, there is an inclusion f : G →֒ H
such that f induces a homotopy equivalence Hom(T,G) → Hom(T,H) for every
T ∈ F but χ(H) > n. Moreover, if G is finite and connected, then one can take H
to be finite and connected.

To prove this theorem, we recall some facts of homotopy pushouts. Here we
consider that all maps between CW-complexes are cellular, for simplicity. For a
more general treatment, we refer to [19].

Let f : X → Y and g : X → Z be cellular maps. The homotopy pushout of f
and g is the space

E(f, g) = (X × [0, 1])
∐

Y
∐

Z/ ∼,

where the equivalence relation is generated by (x, 0) ∼ f(x) and (x, 1) ∼ g(x) for
every x ∈ X .

Lemma 5.2 (Proposition 3.7 of [19]). Consider a commutative diagram

Y
f

←−−−− X
g

−−−−→ Z




y





y





y

Y ′ ←−−−− X ′ −−−−→ Z ′

of CW-complexes. If the all vertical arrows are homotopy equivalences, then the
map E(f, g)→ E(f ′, g′) is a homotopy equivalence.

A commutative square

X
f

−−−−→ Y

g





y





y

Z −−−−→ W

(5)

of CW-complexes is a homotopy pushout square if the map E(f, g) → W is a
homotopy equivalence.

Lemma 5.3 (Lemma 2.4 of [19]). If the diagram (5) is a pushout diagram and
either f or g is an inclusion, then the diagram (5) is a homotopy pushout square.

Lemma 5.4. Let f : X → Y and g : X → Z be cellular maps. If f is a homotopy
equivalence, then the inclusion Z →֒ E(f, g) is a homotopy equivalence.

Proof. Consider the commutative diagram

X X
g

−−−−→ Z

f





y

∥

∥

∥

∥

∥

∥

Y
f

←−−−− X
g

−−−−→ Z.
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Then Lemma 5.2 implies that E(idX , g) → E(f, g) is a homotopy equivalence.
Clearly, the inclusion Z →֒ E(idX , Z) is a homotopy equivalence. Thus the compo-
sition Z →֒ E(idX , g)→ E(f, g) is a homotopy equivalence. �

Now we turn to the proof of Theorem 5.1.

Proof of Theorem 5.1. Let m be a positive integer which satisfies the conditions
(1) and (2) in the beginning of this section. Let X be a finite connected graph such
that χ(X) > n and g(X) ≥ m. Since G is not bipartite, there is an integer k such
that there is a graph homomorphism C2k+1 → G. Let Y be the graph obtained by
replacing each edge ofX by the line L2k+1 with length 2k+1. It is clear that there is
a graph homomorphism from Y to C2k+1, and hence there is a graph homomorphism
g : Y → G. Since Y is obtained by iterating subdivisions considered in Proposition
3.1, it follows from Proposition 4.3 that there is a graph homomorphism f : Y → X
which induces a homotopy equivalence Hom(T, Y )→ Hom(T,X) if T is bipartite.

Let H be the colimit of the diagram

X
f

←−−−− Y
ι0−−−−→ Y × Im

ιm←−−−− Y
g

−−−−→ G,

where ιj : Y → Y × Im is defined by the correspondence y 7→ (y, j). Roughly
speaking, H is obtained by attaching the “ends of the cylinder Y × Im” by the
graph homomorphisms f : Y → X and g : Y → G. Let A = X ∪Y Y × Im−1 and
B = Y × I[1,m] ∪Y G and consider A and B as subgraphs of H .

Since the diameter of T is smaller than (m−2), every multi-homomorphism from
T to H factors through A or B. Thus we have

Hom(T,H) = Hom(T,A) ∪Hom(T,B).

Suppose that T is non-bipartite. Since the odd girth of T is smaller than the
girth of X , there is no graph homomorphism from T to X . Hence there is no graph
homomorphism from T to A since there is a graph homomorphism from A to X .
Thus we have Hom(T,A) = ∅ and Hom(T,H) = Hom(T,B). Since the inclusion
G →֒ B is a ×-homotopy equivalence, we have that Hom(T,G) →֒ Hom(T,B) =
Hom(T,H) is a homotopy equivalence. This completes the proof in case T is not
bipartite.

Next suppose that T is bipartite. Consider the following diagram

|Hom(T,A)| ←−−−− |Hom(T,A ∩B)| −−−−→ |Hom(T,B)|




y





y





y

|Hom(T,X)|
≃

←−−−− |Hom(T, Y )| −−−−→ |Hom(T,G)|.

Since the graph homomorphisms A→ X , A∩B ∼= Y ×I[1,m−1] → Y , and B → G are
×-homotopy equivalences, we have that the vertical arrows in the above diagram are
homotopy equivalences. Let E be the homotopy pushout of the upper horizontal
arrows and E′ the homotopy pushout of the lower horizontal arrows. Since the
upper horizontal arrows are inclusions, the natural map E → |Hom(T,H)| is a
homotopy equivalence (Lemma 5.3). Then we have the commutative diagram

|Hom(T,G)|
≃

−−−−→ E′

≃





y

x





≃

|Hom(T,B)| −−−−→ E
≃

−−−−→ |Hom(T,H)|.
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Since the inclusion G →֒ B is a ×-homotopy equivalence, the left vertical ar-
row is a homotopy equivalence. Other homotopy equivalences are deduced from
Lemma 5.2 and Lemma 5.4. Thus we have that the composition |Hom(T,G)| →֒
|Hom(T,B)| →֒ E → |Hom(T,H)| is a homotopy equivalence. �

We conclude this section with the following corollary.

Corollary 5.5. Let F be a uniformly small family of flipping Z2-graphs. Then
for every graph G with χ(G) ≥ 3 and for every positive integer m, there is an
inclusion f : G →֒ H such that f induces a Z2-homotopy equivalence Hom(T,G)→
Hom(T,H) for every T ∈ F but χ(H) > m. Moreover, if G is finite and connected,
then we can take H to be finite and connected.

Proof. If G has a looped vertex then put H = G. If G has no looped vertex, then
the graph H constructed in the proof of Theorem 5.1 has the desired properties.
Indeed, since G and H are simple and T ∈ F is a flipping Z2-graph, we have that
Hom(T,G) and Hom(T,H) are free Z2-complexes. Thus Theorem 2.3 implies that
i∗ : Hom(T,G)→ Hom(T,H) is a Z2-homotopy equivalence. �
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