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Abstract

An infinite permutatation is a linear ordering of the set of natural
numbers. An infinite permutation can be defined by a sequence of real
numbers where only the order of elements is taken into account. In
the paper we investigate a new class of equidistributed infinite permu-
tations, that is, infinite permutations which can be defined by equidis-
tributed sequences. Similarly to infinite words, a complexity p(n) of
an infinite permutation is defined as a function counting the number of
its subpermutations of length n. For infinite words, a classical result of
Morse and Hedlund, 1938, states that if the complexity of an infinite
word satisfies p(n) ≤ n for some n, then the word is ultimately peri-
odic. Hence minimal complexity of aperiodic words is equal to n+ 1,
and words with such complexity are called Sturmian. For infinite per-
mutations this does not hold: There exist aperiodic permutations with
complexity functions growing arbitrarily slowly, and hence there are
no permutations of minimal complexity. We show that, unlike for
permutations in general, the minimal complexity of an equidistributed
permutation α is pα(n) = n. The class of equidistributed permutations
of minimal complexity coincides with the class of so-called Sturmian
permutations, directly related to Sturmian words.

1 Introduction

Infinite permutations can be defined as equivalence classes of real sequences
with distinct elements, such that only the order of elements is taken into
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account. In other words, an infinite permutation is a linear order on N.
An infinite permutation can be considered as an object close to an infinite
word where instead of symbols we have transitive relations < or > between
each pair of elements. So, many properties of such permutations can be
considered from a symbolic dynamical point of view.

Infinite permutations in the considered sense were introduced in [10]; see
also a very similar approach coming from dynamics [7] and summarised in
[2]. Since then, they were studied in two main directions: first, permuta-
tions directly constructed with the use of words are studied to reveal new
properties of words used for their construction [9, 17, 18, 19, 21, 22, 23]. In
the other approach, properties of infinite permutations are studied in com-
parison with those of infinite words, showing some resemblance and some
difference.

In particular, both for words and permutations, the (factor) complexity
is bounded if and only if the word or the permutation is ultimately periodic
[10, 20]. However, for minimal complexity in the aperiodic case the situa-
tions are different: The minimal complexity of an aperiodic word is n + 1,
and the words of this complexity are well-studied Sturmian words [16, 20].
As for the permutations, there is no “minimal” complexity function for the
aperiodic case: for any unbounded non-decreasing function, we can con-
struct an aperiodic infinite permutation of complexity ultimately less than
this function [10]. The situation is different for the maximal pattern com-

plexity [13, 14]: there is a minimal complexity for both aperiodic words and
permutations, but for permutations, unlike for words, the cases of minimal
complexity are characterised [3]. All the permutations of lowest maximal
pattern complexity are closely related to Sturmian words, whereas words
may have lowest maximal pattern complexity even if they have a different
structure [14].

Other results on the comparison of words and permutations include dis-
cussions of automatic permutations [12] and of the Fine and Wilf theorem
[11], and a study of square-free permutations [6].

In this paper we introduce a new class of equidistributed infinite permu-
tations and study their complexity. An equidistributed permutation then is
a permutation which can be defined by an equidistributed sequence of dis-
tinct numbers from [0, 1] with the natural order; and we show that this class
of permutations is natural and wide. Some of equidistributed permutations
can be defined using uniquely ergodic infinite words, or, equivalently, sym-
bolic dynamical systems. A very similar approach directly relating uniquely
ergodic symbolic dynamical systems and specific dynamical systems on [0, 1],
without explicitly introducing infinite permutations, was used by Lopez and
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Narbel in [15].
We prove that if we restrict ourselves to the class of equidistributed

permutations, then, contrary to the general case, the minimal complexity
exists and is equal to n. Moreover, equidistributed permutations of minimal
complexity are exactly Sturmian permutations in the sense of [19].

The paper is organized as follows. After general basic definitions and
a section on the properties of Sturmian words (and permutations), we in-
troduce equidistributed permutations and study their basic properties. The
main result of the paper, Theorem 5.1, characterising equidistributed per-
mutations of minimal complexity, is proved in Section 5.

Some of the results of this paper, for a much more restrictive definition
of an ergodic permutation, were presented at the conference DLT 2015 [5].

2 Basic definitions

In this paper, we consider three following types of infinite objects. First,
we need infinite words over a finite, often binary, alphabet: an infinite word
is denoted by u = u[0]u[1] . . . u[n] . . ., where u[i] are letters of the alphabet.
Then, we make use of infinite sequences of reals, denoted by a = (a[n])∞n=0.
We say that two infinite sequences (a[n])∞n=0 and (b[n])∞n=0 of pairwise dis-
tinct reals are equivalent, denoted by (a[n])∞n=0 ∼ (b[n])∞n=0, if for all i, j
the conditions a[i] < a[j] and b[i] < b[j] are equivalent. Since we consider
only sequences of pairwise distinct real numbers, the same condition can be
defined by substituting (<) by (>): a[i] > a[j] if and only if b[i] > b[j]. At
last, we consider infinite permutations defined as follows.

Definition 2.1. An infinite permutation is an equivalence class of infinite
sequences of pairwise distinct reals under the equivalence ∼.

So, an infinite permutation is a linear ordering of the set N0 =
{0, . . . , n, . . .}, and a sequence of reals from the equivalence class defining
the permutation is called a representative of a permutation. We denote
an infinite permutation by α = (α[n])∞n=0, where α[i] are abstract elements
equipped by an order: α[i] < α[j] if and only if a[i] < a[j] for a representative
(a[n]) of α. So, one of the simplest ways to define an infinite permutation
is by a representative, which can be any sequence of distinct real numbers.

Example 2.2. Both sequences (a[n]) = (1,−1/2, 1/4, . . .) with a[n] =
(−1/2)n and (b[n]) with b[n] = 1000 + (−1/3)n are representatives of the
same permutation α = α[0], α[1], . . . defined by

α[2n] > α[2n + 2] > α[2k + 3] > α[2k + 1]
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...

Figure 1: A graphic illustration of the permutation from Example 2.2

for all n, k ≥ 0. So, the sequence of elements with even indices is decreasing,
the sequence of elements with odd indices is increasing, and every element
with an even index is greater than any element with an odd index. A way to
represent the permutation α as a chart is given in Fig. 1; here the elements
which are bigger are higher on the image.

A factor of an infinite word (resp., sequence, permutation) is any finite
sequence of its consecutive letters (resp., elements). For j ≥ i, the factor
u[i] · · · u[j] of an infinite word u = u[0]u[1] · · · u[n] · · · is denoted by u[i..j],
and we use similar notation for sequences and permutations. The length of
such a factor f , denoted by |f |, is j − i + 1. Factors are considered as new
objects unrelated to their position in the bigger object, so, a factor of an
infinite word is just a finite word, and a factor of an infinite permutation can
be interpreted as a usual finite permutation. In particular, for the example
above for any even i we have α[i] > α[i+2] > α[i+3] > α[i+1] and thus can

write α[i..i+3] =

(

1 2 3 4
4 1 3 2

)

. However, in general infinite permutations

cannot be defined as permutations of N0. For instance, the permutation
from Fig. 1 has a maximal element.

An infinite word u is called ultimately (|w|)-periodic if u = vwww · · · =
vwω for some finite words v,w, where w is non-empty. An infinite per-
mutation α is called ultimately (t)-periodic if for all sufficiently large i, j the
conditions α[i] < α[j] and α[i+t] < α[j+t] are equivalent. The permutation
from Fig. 1 is ultimately 2-periodic, as well as the word 0010101 · · · = 0(01)ω .
A word or a permutation which is not ultimately periodic is called aperiodic.

The complexity pu(n) (resp., pα(n)) of an infinite word u (resp., permu-
tation α) is a function counting the number of its factors of length n. Both
for infinite words [20] and for infinite permutations [10], the complexity is a
non-decreasing function, and the bounded complexity is equivalent to peri-
odicity. However, for words, a stronger result holds: The complexity of an
aperiodic word u satisfies pu(n) ≥ n+1 [20]. The words of complexity n+1
are called Sturmian and are discussed in Section 4.
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As it was proved in [10], contrary to words, we cannot distinguish per-
mutations of “minimal” complexity: for each unbounded non-decreasing
function f(n) with integer values, we can find a permutation α on N0 such
that for n large enough, pα(n) < f(n). The required permutation can be
defined by the inequalities α[2n − 1] < α[2n + 1] and α[2n] < α[2n + 2] for
all n ≥ 1, and α[2nk−2] < α[2k−1] < α[2nk] for a sequence {nk}

∞
k=1 which

grows sufficiently fast (see [10] for further details).
In this paper, we introduce a new natural notion of an equidistributed

permutation and prove that the minimal complexity of an equidistributed
permutation is n. First, a sequence (a[n])∞n=0 of reals from [a, b] is called
equidistributed if for each t ∈ [a, b] the following limit exists and is equal to
t−a
b−a

:

lim
n→∞

♯{a[i]|a[i] < t, 0 ≤ i < n}

n
=

t− a

b− a
.

In particular, in an equidistributed sequence the fraction of elements from
an interval from [0, 1] is equal to the length of the interval.

Definition 2.3. We say that a permutation is equidistributed if it admits
a representative which is an equidistributed sequence (a[n]) on the interval
[0, 1].

We remark that such a representative is unique and we call it canonical.
Indeed, for an equdistributed representative (a[n]) and for every its element

a[i], taking t = a[i] we get that the limit limn→∞
♯{a[j]|a[j]<a[i],0≤j<n}

n
exists

and is equal to a[i]. So, the equidistributed representative of a permuta-
tion α, if it exists, is unique, and its element a[i] can be defined by the
permutation α as the limit

a[i] = lim
n→∞

♯{α[j]|α[j] < α[i], 0 ≤ j < n}

n
. (1)

Remark 2.4. Any equidistributed sequence on [0, 1] with pairwise distinct
elements is a canonical representative of an equidistributed permutation.
In other words, almost all sequences of numbers from [0, 1] are canonical
representatives of equidistributed permutations.

Note that in the preliminary version of this paper [5], a related notion
of an ergodic permutation has been considered. The definition of an ergodic
permutation requires the limit (1) to be uniform on all factors of α of length
n. So, all ergodic permutations are equidistributed, but the class of ergodic
permutations is a set of measure zero, while almost all permutations are
equidistributed.
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Example 2.5. Consider an aperiodic infinite word u = u0 · · · un · · · on
a finite ordered alphabet and the lexicographic order on its shifts T ku =
ukuk+1 · · · . This order defines a permutation, and as it was proved in [4]
(see also [15] for a very similar approach), if the word u is uniquely ergodic,
that is, if the uniform frequencies of factors of u are well-defined and positive,
then the permutation is equidistributed. However, some words which are not
uniquely ergodic (and in particular, almost all random words) also give rise
to equidistributed permutations.

The direct link between uniquely ergodic infinite words and equidis-
tributed sequences, which we call canonical representatives of respective
permutations, was investigated in [15]. It was proved basically that if such
a word is of low complexity, then the respective equidistributed sequence is
a trajectory of an infinite interval exchange.

Example 2.6. Since for any irrational σ and for any ρ the sequence of
fractional parts b[n] = {ρ + nσ} is equidistributed in [0, 1), a permutation
βσ,ρ whose representative is (b[n]) is equidistributed. Such permutations are
closely related to Sturmian words, and thus are called Sturmian permuta-

tions. We discuss Sturmian words below in Section 4.

Example 2.7. Consider the sequence

1

2
, 1,

3

4
,
1

4
,
5

8
,
1

8
,
3

8
,
7

8
, · · ·

defined as the fixed point of the following morphism over sequences of reals:

ϕtm : [0, 1] 7→ [0, 1]2, ϕtm(x) =

{

x
2 + 1

4 ,
x
2 + 3

4 , if 0 ≤ x ≤ 1
2 ,

x
2 + 1

4 ,
x
2 − 1

4 , if 1
2 < x ≤ 1.

As it was proved in [18], the permutation defined by this representative (or,
more precisely, by a similar one on the interval [−1, 1]) can also be defined by
the famous Thue-Morse word 011010011001 · · · [1] and thus can be called
the Thue-Morse permutation. The sequence above is equidistributed on
[0, 1] (see [4]) and thus is the canonical representative of the Thue-Morse
permutation. More details on morphic permutations can be found in [4].

3 Properties of equidistributed permutations

In this section we discuss general properties of equidistributed permutations,
in particular, we give certain necessary conditions for a permutation to be
equidistributed.
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Consider a growing sequence (ni)
∞
i=1, ni ∈ N, ni+1 > ni. The re-

spective subpermutation (α[ni])
∞
i=1 of a permutation α will be called N -

growing (resp., N -decreasing) if ni+1 − ni ≤ N and α[ni+1] > α[ni] (resp.,
α[ni+1] < α[ni]) for all i. A subpermutation which is N -growing or N -
decreasing is called N -monotone.

Proposition 3.1. If a permutation has a N -monotone subpermutation for

some N , then it is not equidistributed.

Proof. Suppose the opposite and consider a subsequence (a[ni]) of
the canonical representative a corresponding to the N -monotone (say, N -
growing) subpermutation (α[ni]). Consider b = limi→∞ a[ni] (which exists
since the sequence (a[ni]) is monotone and bounded) and a positive ε < 1/N .
Let M be the number such that a[nm] > b− ε for m ≥ M . Then the limit
frequency of elements a[i] which are in the interval [a[nM ], b] must be equal
to b − a[nM ] < ε. On the other hand, since all a[nm] for m > M are in
this interval, and ni+1 − ni ≤ N , this frequency is at least 1/N > ε. A
contradiction.

Corollary 3.2. If a permutation is equidistributed, then it is aperiodic.

Proof. In an ultimately t-periodic permutation α, the subpermutation
(α[ti])∞i=0 is ultimately t-monotone. Thus, α is not equidistributed due to
Proposition 3.1.

An element α[i], i > N , of a permutation α is called N -maximal (resp.,
N -minimal) if α[i] is greater (resp., less) than all the elements at the distance
at most N from it: α[i] > α[j] (resp., α[i] < α[j]) for all j = i−N, i−N +
1, . . . , i− 1, i + 1, . . . , i+N .

Proposition 3.3. In an equidistributed permutation α, for each N there

exists an N -maximal and an N -minimal element.

Proof. Consider a permutation α withoutN -maximal elements and prove
that it is not equidistributed. Suppose first that there exists an element
α[n1], n1 > N , in α which is greater than any of its N left neighbours:
α[n1] > α[n1 − i] for all i from 1 to N . Since α[n1] is not N -maximal, there
exist some i ∈ {1, . . . , N} such that α[n1 + i] > α[n1]. If there are several
such i, we take the maximal α[n1 + i] and denote n2 = n1 + i. By the
construction, α[n2] is also greater than any of its N left neighbours, and we
can continue the sequence of elements α[n1] < α[n2] < · · · < α[nk] < · · · .
Since for all k we have nk+1 − nk ≤ N , it is an N -growing subpermutation,
and due to the previous proposition, α is not equidistributed.
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Now suppose that there are no elements in α which are greater than all
their N left neighbours:

For each n > N, there exists some i ∈ {1, . . . , N} such that α[n−i] > α[n].
(2)

We take α[n1] to be the greatest of the first N elements of α and α[n2] to be
the greatest among the elements α[n1 + 1], . . . , α[n1 +N ]. Then due to (2)
applied to n2, α[n1] > α[n2]. Moreover, n2−n1 ≤ N and for all n1 < k < n2

we have α[k] < α[n2].
Now we take n3 such that α[n3] is the maximal element among α[n2 +

1], . . . , α[n2 + N ], and so on. Suppose that we have chosen n1, . . . , ni such
that α[n1] > α[n2] > · · · > α[ni], and

For all j ≤ i and for all k such that nj−1 < k < nj, we have α[k] < α[nj].
(3)

For each new α[ni+1] chosen as the maximal element among α[ni +
1], . . . , α[ni+N ], we have ni+1−ni ≤ N . Due to (2) applied to ni+1 and by
the construction, α[ni+1] < α[l] for some l from ni+1 −N to ni. Because of
(3), without loss of generality we can take l = nj for some j ≤ i. Moreover,
we cannot have α[ni] < α[ni+1] and thus j < i: otherwise ni+1 would have
been chosen as nj+1 since it fits the condition of maximality better.

So, we see that α[ni] > α[ni+1], (3) holds for i+1 as well as for i, and thus
by induction the subpermutation α[n1] > · · · > α[ni] > · · · is N -decreasing.
Again, due to the previous proposition, α is not equidistributed.

Proposition 3.4. For any equidistributed permutation α, we have pα(n) ≥
n.

Proof. Due to Proposition 3.3, there exists an n-maximal element αi,
i > n. All the n factors of α of length n containing it are different: in each
of them, the maximal element is at a different position.

4 Sturmian words and Sturmian permutations

To characterise equidistributed permutations of minimal complexity, we
have to consider in detail aperiodic words of minimal complexity, that is,
Sturmian words.

Definition 4.1. An aperiodic infinite word u is called Sturmian if its factor
complexity satisfies pu(n) = n+ 1 for all n ∈ N.

8



Sturmian words are by definition binary and are known to have the
lowest possible factor complexity among aperiodic infinite words [20]. This
extensively studied class of words admits various types of characterizations
of geometric and combinatorial nature (see, e.g., Chapter 2 of [16]). In this
paper, we need their characterization via irrational rotations on the unit
circle found already in the seminal paper [20].

Definition 4.2. The rotation by slope σ is the mapping Rσ from [0, 1)
(identified with the unit circle) to itself defined by Rσ(x) = {x+ σ}, where
{x} = x− ⌊x⌋ is the fractional part of x.

Considering a partition of [0, 1) into I0 = [0, 1−σ), I1 = [1−σ, 1), define
an infinite word sσ,ρ by

sσ,ρ[n] =

{

0 if Rn
σ(ρ) = {ρ+ nσ} ∈ I0,

1 if Rn
σ(ρ) = {ρ+ nσ} ∈ I1.

We can also define I ′0 = (0, 1 − σ], I ′1 = (1 − σ, 1] and denote the corre-
sponding word by s′σ,ρ. As it was proved by Morse and Hedlund, Sturmian
words on {0, 1} are exactly words sσ,ρ or s′σ,ρ for some irrational σ ∈ (0, 1).

Note that the same irrational rotation Rσ was used above to define a
class of Sturmian equidistributed permutations.

Definition 4.3. A Sturmian permutation β = βσ,ρ is defined by its repre-
sentative (b[n]), where b[n] = Rn

σ(ρ) = {ρ+ nσ}.

These permutations are obviously related to Sturmian words: indeed,
β[i + 1] > β[i] if and only if s[i] = 0, where s = sσ,ρ. Strictly speaking, the
case of s′ corresponds to a permutation β′ defined with the upper fractional
part.

Sturmian permutations have been studied in [19]; in particular, it is
known that their complexity is pβ(n) ≡ n (i.e., pβ(n) = n for all n).

To continue, we now need two more usual definitions concerning words.
A conjugate of a finite word w is any word of the form vu, where w = uv.
Clearly, conjugacy is an equivalence, and in particular, all the words from the
same conjugate class have the same number of occurrences of each symbol.

A factor s of an infinite word u is called right (resp., left) special if sa, sb
(resp., as, bs) are both factors of u for distinct letters a, b ∈ Σ. A word
which is both left and right special is called bispecial.

Now we recall a series of properties of a Sturmian word s = sσ,ρ. They
are either trivial or classical, and the latter can be found, in particular, in
[16].

9



1. The frequency of ones in s is equal to the slope σ.

2. In any factor of s of length n, the number of ones is either ⌊nσ⌋, or
⌈nσ⌉. In the first case, we say that the factor is light, in the second
case, it is heavy.

3. The factors of s from the same conjugate class are all light or all heavy.

4. Let the continued fraction expansion of σ be σ = [0, 1 + d1, d2, . . .].
Consider the sequence of standard finite words sn defined by

s−1 = 1, s0 = 0, sn = sdnn−1sn−2 for n > 0.

• The set of bispecial factors of s coincides with the set of words
obtained by erasing the last two symbols from the words sknsn−1,
where 0 < k ≤ dn+1.

• For each n, we can decompose s as a concatenation

s = p

∞
∏

i=1

skin sn−1, (4)

where ki = dn+1 or ki = dn+1 + 1 for all i, and p is a suffix of

s
dn+1+1
n sn−1.

• For all n ≥ 0, if sn is light, then all the words sknsn−1 for 0 < k ≤
dn+1 (including sn+1) are heavy, and vice versa.

5. A Christoffel word can be defined as a word of the form 0b1 or 1b0,
where b is a bispecial factor of a Sturmian word s. For a given b, both
Christoffel words are also factors of s and are conjugate of each other.
Moreover, they are conjugates of all but one of the factors of s of that
length.

6. The lengths of Christoffel words in s are exactly the lengths of words
sknsn−1, where 0 < k ≤ dn+1. Such a word is also conjugate of both
Christoffel words of the respective length obtained from one of them
by sending the first symbol to the end of the word.

We will make use of the following statement.

Proposition 4.4. Let n be such that {nσ} < {iσ} for all 0 < i < n. Then

the word sσ,0[0..n − 1] is a Christoffel word. The same assertion holds if

{nσ} > {iσ} for all 0 < i < n.

10
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Figure 2: Intervals for a bispecial word

Proof. We will prove the statement for the inequality {nσ} < {iσ}; the
other case is symmetric. First notice that there are no elements {iσ} in the
interval [1− σ, 1− σ+ {nσ}) for 0 ≤ i < n. Indeed, assuming that for some
i we have 1− σ ≤ {iσ} < 1− σ+ {nσ}, we get that 0 ≤ {(i+1)σ} < {nσ},
which contradicts the conditions of the claim.

Next, consider a word sσ,1−ε[0..n − 1] for 0 < ε < {nσ}, i.e., the word
obtained from the previous one by rotating by ε clockwise. Clearly, all the
elements except for s[0] stay in the same interval, so the only element which
changes is s[0]: sσ,0[0] = 0, sσ,1−ε[0] = 1, sσ,0[1..n − 1] = sσ,1−ε[1..n − 1].
This means that the factor sσ,0[1..n− 1] is left special.

Now consider a word sσ,1−ε′ [0..n− 1] for {nσ} < ε′ < mini∈{0<i<n}{iσ},
i.e., the word obtained from sσ,0[0..n − 1] by rotating by ε′ (i.e., we rotate
a bit more). Clearly, all the elements except for s[0] and s[n − 1] stay in
the same interval, so the only elements which change are s[0] and s[n − 1]:
sσ,0[0] = 0, sσ,1−ε′ [0] = 1, sσ,0[n − 1] = 1, sσ,1−ε′ [n− 1] = 0, sσ,0[1..n − 2] =
sσ,1−ε′ [1..n − 2]. This means that the factor sσ,0[1..n − 2] is right special.

So, the factor sσ,0[1..n − 2] is both left and right special and hence bis-
pecial. By the construction, sσ,0[0..n − 1] is a Christoffel word.

The proof is illustrated by Fig. 2, where all the numbers on the circle
are denoted modulo 1.

Note also that in the Sturmian permutation β = βσ,ρ, we have β[i] < β[j]
for i < j if and only if the respective factor s[i..j − 1] of s is light (and,
symmetrically, β[i] > β[j] if and only if the factor s[i..j − 1] is heavy).

5 Minimal complexity of equidistributed permu-

tations

The rest of the section is devoted to the proof of
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Theorem 5.1. The minimal complexity of an equidistributed permutation α
is pα(n) ≡ n. The set of equidistributed permutations of minimal complexity

coincides with the set of Sturmian permutations.

Due to Proposition 3.4, the complexity of equidistributed permutations
satisfies pα(n) ≥ n. In addition, the complexity of Sturmian permutations is
pα(n) ≡ n. So, it remains to prove that if pα(n) ≡ n for an equidistributed
permutation α, then α is Sturmian.

Definition 5.2. Given an infinite permutation α = α[0] · · · α[n] · · · , con-
sider its underlying infinite word s = s[0] · · · s[n] · · · over the alphabet {0, 1}
defined by

s[i] =

{

0, if α[i] < α[i+ 1],

1, otherwise.

Note that in some previous papers the word s was denoted by γ and
considered directly as a word over the alphabet {<,>}.

It is not difficult to see that a factor s[i+1..i+n− 1] of s contains only
a part of information on the factor α[i+1..i+n] of α, i.e., does not define it
uniquely. Different factors of length n−1 of s correspond to different factors
of length n of α. So,

pα(n) ≥ ps(n− 1).

Together with the above mentioned result of Morse and Hedlund [20], it
gives the following

Proposition 5.3. If pα(n) ≡ n, then the underlying sequence s of α is

either ultimately periodic or Sturmian.

Now we consider different cases separately.

Proposition 5.4. If pα(n) ≡ n for an equidistributed permutation α, then
its underlying sequence s is aperiodic.

Proof. Suppose the converse and let p be the minimal period of s. If
p = 1, then the permutation α is monotone, increasing or decreasing, so that
its complexity is always 1, a contradiction. So, p ≥ 2. There are exactly p
factors of s of length p − 1: each residue modulo p corresponds to such a
factor and thus to a factor of α of length p. The factor α[kp+i..(k+1)p+i−1],
where i ∈ {1, . . . , p}, does not depend on k, but for all the p values of i,
these factors are different.

Now let us fix i from 1 to p and consider the subpermutation

α[i], α[p + i], . . . , α[kp + i], . . .
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It cannot be monotone due to Proposition 3.1, so, there exist k1 and k2 such
that α[k1p+ i] < α[(k1 + 1)p + i] and α[k2p+ i] > α[(k2 + 1)p + i]. So,

α[k1p+ i..(k1 + 1)p + i] 6= α[k2p+ i..(k2 + 1)p + i].

We see that each of p factors of α of length p, uniquely defined by the residue
i, can be extended to the right to a factor of length p + 1 in two different
ways, and thus pα(p + 1) ≥ 2p. Since p > 1 and thus 2p > p + 1, it is a
contradiction.

So, Propositions 5.3 and 5.4 imply that the underlying word s of an
equidistributed permutation α of complexity n is Sturmian. Let s = sσ,ρ,
that is,

sn = ⌊σ(n+ 1) + ρ⌋ − ⌊σn+ ρ⌋.

In the proofs we will only consider sσ,ρ, since for s′σ,ρ the proofs are sym-
metric.

It follows directly from the definitions that the Sturmian permutation
β = βσ,ρ defined by its canonical representative b with b[n] = {σn + ρ} has
s as the underlying word.

Suppose that α is a permutation whose underlying word is s and whose
complexity is n. We shall prove the following statement concluding the proof
of Theorem 5.1:

Lemma 5.5. Let α be a permutation of complexity pα(n) ≡ n whose under-

lying word is sσ,ρ. If α is equidistributed, then α = βσ,ρ.

Proof. Suppose the opposite, i.e., that α is not equal to β. We will prove
that hence α is not equidistributed, which is a contradiction.

Recall that in general, pα(n) ≥ ps(n− 1), but here we have the equality
since pα(n) ≡ n and ps(n) ≡ n + 1. It means that a factor u of s of length
n − 1 uniquely defines a factor of α of length n which we denote by αu.
Similarly, there is a unique factor βu of β.

Clearly, if u is of length 1, we have αu = βu: if u = 0, then α0 = β0 =
(12), and if u = 1, then α1 = β1 = (21). Suppose now that αu = βu for
all u of length up to n − 1, but there exists a word v of length n such that
αv 6= βv.

Since for any factor v′ 6= v of v we have αv′ = βv′ , the only difference
between αv and βv is the relation between the first and last element: αv[1] <
αv [n+1] and βv[1] > βv[n+1], or vice versa. (Note that we number elements
of infinite objects starting with 0 and elements of finite objects starting with
1.)
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Consider the factor bv of the canonical representative b of β correspond-
ing to an occurrence of βv . We have bv = ({τ}, {τ + σ}, . . . , {τ + nσ}) for
some τ .

Proposition 5.6. All the numbers {τ + iσ} for 0 < i < n are situated

outside of the interval whose ends are {τ} and {τ + nσ}.

Proof. Consider the case of βv[1] < βv[n+1] (meaning {τ} < {τ + nσ})
and αv[1] > αv[n+1]; the other case is symmetric. Suppose by contrary that
there is an element {τ + iσ} such that {τ} < {τ + iσ} < {τ + nσ} for some
i. It means that βv[1] < βv[i] < βv[n + 1]. But the relations between the
1st and the ith elements, as well as between the ith and (n+1)st elements,
are equal in αv and in βv, so, αv [1] < αv[i] and αv [i] < αv[n + 1]. Thus,
αv [1] < αv[n+ 1], a contradiction.

Proposition 5.7. The word v belongs to the conjugate class of a Christoffel

factor of s, or, which is the same, of a factor of the form sknsn−1 for 0 <
k ≤ dn+1.

Proof. The condition “For all 0 < i < n, the number {τ + iσ} is not
situated between {τ} and {τ +nσ}” is equivalent to the condition “{nα} <
{iα} for all 0 < i < n” considered in Proposition 4.4 and corresponding to
a Christoffel word of the same length. The set of factors of s of length n
is exactly the set {sα,τ [0..n − 1]|τ ∈ [0, 1]}. These words are n conjugates
of the Christoffel word plus one singular factor corresponding to {τ} and
{τ +nσ} situated in the opposite ends of the interval [0, 1] (“close” to 0 and
“close” to 1), so that all the other points {τ + iσ} are between them.

Example 5.8. Consider a Sturmian word s of the slope σ ∈ (1/3, 2/5).
Then the factors of s of length 5 are 01001, 10010, 00101, 01010, 10100,
00100. Fig. 3 depicts permutations of length 6 with their underlying words.
In the picture the elements of the permutations are denoted by points; the
order between two elements is defined by which element is “higher” on the
picture. We see that in the first five cases, the relation between the first and
the last elements can be changed, and in the last case, it cannot since there
are other elements between them. Indeed, the first five words are exactly the
conjugates of the Christoffel word 1 010 0, where the word 010 is bispecial.

Note also that due to Proposition 5.7, the shortest word v such that
αv 6= βv is a conjugate of some sknsn−1 for 0 < k ≤ dn+1.

In what follows without loss of generality we suppose that the word sn
is heavy and thus sn−1 and sknsn−1 for all 0 < k ≤ dn+1 are light.
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0 0 01 1 00 1 000 0 1 0 01 00 1 01 00 1 1 0 01 1 0

Figure 3: Illustration for Example 5.8

Consider first the easiest case: v = s
dn+1
n sn−1 = sn+1. This word is

light, so, βsn+1 [1] < βsn+1 [|sn+1| + 1]. Since the first and the last elements
of αsn+1 must be in the other relation, we have αsn+1 [1] > αsn+1 [|sn+1|+1].
At the same time, since sn is shorter than sn+1, we have αsn = βsn and in
particular, since sn is heavy, αsn [1] > αsn [|sn|+ 1].

Due to (4), the word s after a finite prefix can be represented as an
infinite concatenation of occurrences of sn+1 and sn: s = p

∏∞
i=1 s

ti
nsn+1,

where ti = ki − dn+1 = 0 or 1. But both αsn and αsn+1 are permutations
with the last elements less than the first ones. Moreover, if we have a
concatenation uw of factors u and w of s, we see that the first symbol of
αw is the last symbol of αu: αu[|u|+ 1] = αw[1]. So, an infinite sequence of
factors sn and sn+1 of s gives us a chain of the first elements of respective
factors of the permutation α, and each next element is less than the previous
one. This chain is a |sn+1|-monotone subpermutation, and thus α is not
equidistributed.

Now let us consider the general case: v is from the conjugate class of
stnsn−1, where 0 < t ≤ dn+1. We consider two cases: the word stnsn−1 can
be cut either in one of the occurrences of sn, or in the suffix occurrence of
sn−1.

In the first case, v = r1s
l
nsn−1s

t−l−1
n r2, where sn = r2r1 and 0 ≤ l < t.

Then

s = p

∞
∏

i=1

skin sn−1 = pr2(r1r2)
k1−l−1

∞
∏

i=2

v(r1r2)
ki−t.

We see that after a finite prefix, the word s is an infinite catenation of words
v and r1r2. The word r1r2 is shorter than v and heavy since it is a conjugate
of sn. So, αr1r2 = βr1r2 and in particular, αr1r2 [1] > αr1r2 [|r1r2| + 1]. The
word v is light since it is a conjugate of stnsn−1, but the relation between
the first and the last elements of αv is different than between those in βv,
that is, αv[1] > αv[|v| + 1]. But as above, in a concatenation uw, we have
αu[|u| + 1] = αw[1], so, we see a |v|-decreasing subpermutation in α. So, α
is not equidistributed.

Analogous arguments work in the second case, when stnsn−1 is cut some-
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where in the suffix occurrence of sn−1: v = r1s
t
nr2, where sn−1 = r2r1. Note

that sn−1 is a prefix of sn, and thus sn = r2r3 for some r3. In this case,

s = p
∞
∏

i=1

skin sn−1 = pr2(r3r2)
k1

∞
∏

i=2

v(r3r2)
ki−t.

As above, we see that after a finite prefix, s is an infinite catenation of the
heavy word r3r2, a conjugate of sn, and the word v. For both words, the
respective factors of α have the last element less than the first one, which
gives a |v|-decreasing subpermutation. So, α is not equidistributed.

The case when sn is not heavy but light is considered symmetrically and
gives rise to |v|-increasing subpermutations. This concludes the proof of
Theorem 5.1.
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