
Planar triangulations, bridgeless planar maps and
Tamari intervals

Wenjie Fang ∗

Laboratoire en l’informatique du parallélisme
École normale supérieure de Lyon

January 16, 2018

Abstract

We present a direct bijection between planar 3-connected triangulations and bridge-
less planar maps, which were first enumerated by Tutte (1962) and Walsh and Lehman
(1975) respectively. Previously known bijections by Wormald (1980) and Fusy (2010)
are all defined recursively. Our direct bijection passes by a new class of combina-
torial objects called “sticky trees”. We also present bijections between sticky trees,
intervals in the Tamari lattices and closed flows on forests. With our bijections, we
recover several known enumerative results about these objects. We thus show that
sticky trees can serve as a nexus of bijective links among all these equi-enumerated
objects.

1 Introduction
Planar maps, which are embeddings of graphs on the plane, have been known to give
nice enumerative formulas, which can be explained by simple bijections (cf. [Sch15]).
Furthermore, using bijections, they can be related to other objects in enumerative
and algebraic combinatorics, which makes them a suitable tool for structural study.

In the enumeration of planar maps, we often consider rooted planar maps, in
which an edge called the root is marked and given an orientation. Seemingly different
classes of rooted planar maps can be enumerated by the same formula. It was first
proved by Tutte [Tut62] that the number of rooted planar 3-connected triangulations

∗Partially supported by Agence nationale de la Recherche under grant number ANR 12-JS02-001-01 “Car-
taplus”. The author is now affiliated to Institute of Discrete Mathematics, Technical University of Graz.
Email: fang@math.tugraz.at

1

ar
X

iv
:1

61
1.

07
92

2v
3

 [
m

at
h.

C
O

]
 1

5
Ja

n
20

18

with 3(n + 1) edges (thus n internal vertices) is given by

2
n(n + 1)

(
4n + 1
n− 1

)
. (1)

Later, it was proved by Walsh and Lehman [WL75] that (1) is also the number of
rooted loopless planar maps (thus also rooted bridgeless planar maps by duality)
with n edges. Both proofs used functional equations. Bijective explanations were
later given by Wormald [Wor80] and Fusy [Fus10], both with recursively-defined
bijections.

There are other combinatorial objects enumerated by (1), such as intervals in the
Tamari lattice of order n [Cha06] and closed flows on forests with n nodes [CCP14].
Tamari intervals are especially interesting, due to their rich structure and relation to
deep algebraic structures (cf. [BPR12]). Previous studies [BB09, BMFPR11] also hint a
link between planar maps and intervals in Tamari-like lattices to be further explored.

Our main results are thus two-fold, one relating two classes of planar maps, the
other relating planar maps to Tamari intervals. Our first result is a direct bijection be-
tween rooted bridgeless planar maps and rooted planar 3-connected triangulations,
via another structure called “sticky trees”. With different depth-first explorations, we
can transform bijectively both classes of planar maps into sticky trees, which leads
to our bijection. To the author’s knowledge, this is the first direct bijection between
these classes of planar maps.

Our second result is a series of bijections between sticky trees, Tamari intervals
and closed flow on forests, which give new proofs of some known enumerative re-
sults. These bijections preserve certain structures of the classes, and can be seen as
special cases of the ones in [FPR16]. A composition of our bijections gives an alter-
native to the bijection from Tamari intervals to planar triangulations in [BB09]. With
our bijections, we can see sticky trees as a nexus for bijections between classes of
objects counted by (1) mentioned above. Our work thus contributes as a unification
of bijective understandings about the relation between Tamari intervals and other
objects, especially planar maps.

This article is organized as follows. In Section 2, we introduce notions and def-
initions we need to establish our bijections. In Section 3, we define our bijections
between sticky trees, planar bridgeless map and planar triangulations, and prove
their validity. We then look at the bijection from sticky trees to Tamari intervals and
closed flows on forests in Section 4. We end this article with a discussion in Section 5.

2 Preliminaries
Planar maps are drawings of connected graphs on the sphere, defined up to orientation-
preserving diffeomorphism, such that edges cross only at their common endpoint
vertices. Planar regions split by edges of a planar map M are called its faces. In map
enumeration, we usually consider rooted maps, where an edge called the root is dis-
tinguished and oriented. The face on the left of the root is called the root face, which

2

Figure 1: Example of a planar triangulation and a bridgeless planar map

is drawn by convention as the face containing the point at infinity. We only consider
rooted planar maps from now on.

In the following, we will concentrate on two families of planar maps: planar 3-
connected triangulations (or simply planar triangulations hereinafter) and bridgeless
planar maps. A planar triangulation is a planar map with all faces of degree 3. A
planar triangulation is 3-connected if it has no loops or multiple edges. From now on,
we only consider planar triangulations that are 3-connected. A planar triangulation
always has 3n edges and n + 2 vertices for n ∈N+. A vertex v in a planar triangula-
tion is internal if v is not adjacent to the root face. A bridgeless planar map is a planar
map without bridges, i.e., edges whose deletion disconnects the map. Examples of
these planar maps are given in Figure 1. We denote respectively by Tn and Bn the
set of planar triangulations with n internal vertices and the set of bridgeless planar
maps with n edges.

To describe our bijection between Bn and Tn, we need an intermediate class of
objects called “sticky trees”. Given a plane tree S, its prefix order is a total order of
its nodes defined recursively: let u be the root node of S and S1, . . . , Sk the sub-trees
of u from left to right, then the prefix order of S is u followed by that of S1 then
those of S2, . . . , Sk. The prefix order is also the order of its nodes visited in a counter-
clockwise contour starting from its root node. The depth of a node in a plane tree
is its distance to the root node. As a special case, the root node of a plane tree has
depth 0. A sticky tree is a plane tree S = (V, E) associated with a labeling function
` : V →N on its nodes satisfying the following conditions:

1. For a node u of depth d, we have 0 ≤ `(u) ≤ d.

2. For each node u of depth d > 0, there is a node v in the sub-tree rooted at u
such that `(v) < d (we allow v = u).

3. For a node u of depth d and Su the sub-tree rooted at u, if there is a node v in
Su with `(v) = d (which is the depth of u), then all nodes in Su (including u)
that come before v in the prefix order have a label not smaller than d.

We denote by Sn the set of sticky trees with n edges. A non-root node in a sticky
tree is primary if its label is equal to its depth. All other non-root nodes are called
derived. It is clear that Condition 2 only needs to be checked against primary nodes.

3

Given a node u, the certificate of u is the first node in the prefix order that makes u
satisfy Condition 2. Every non-root node thus has a certificate, which is itself when
it is derived. We have the following lemma for the existence of primary nodes.

Lemma 2.1. Given a node v with a label d in a sticky tree S, its ancestor u of depth d must
be a primary node.

Proof. Condition 3 on u leads to `(u) ≥ d, while Condition 1 on u leads to `(u) ≤
d.

By applying Lemma 2.1 to v with a label d in Condition 3, we can see that Con-
dition 3 only needs to be checked against primary nodes as u.

The definition of sticky trees seems complicated, but we will see that it captures
the class of labeled trees we obtain from bridgeless planar maps by an exploration
process that we will now define. Readers may have already noticed that we reserve
the term node for trees and vertex for maps to distinguish where these objects live for
clarity. Our definition of sticky trees is inspired by that of decorated trees in [FPR16],
and their relations will be discussed in Section 4.

3 Bijections with planar maps
In this section, we present two bijections between sticky trees and two classes of
planar maps: bridgeless planar maps and planar triangulations. Together they form
a direct bijection between these two families of planar maps.

3.1 From bridgeless planar maps to sticky trees
We first describe an exploration process of planar maps that gives rise to a bijection
between bridgeless planar maps and sticky trees. During this process, vertices in a
map will be duplicated, but the number of edges will stay the same.

Given a planar map, we can cut all its edges in the middle, and we obtain a set of
vertices with attached half-edges. For a planar map M with its root er pointing from v
to u, we denote by hr the root half-edge, which is the half-edge of er adjacent to v. By
definition, each edge e gives two half edges he,1, he,2, and we define the involution τ

on the set of half edges such that τ(he,1) = he,2 for all e. We define a bijection σ on the
set of half-edges such that, for any half-edge h, its image σ(h) is the next half-edge
sharing the same vertex as h in clockwise order.

We now define an exploration algorithm of half-edges, starting from the root half-
edge hr (see Figure 2 for an example of its execution). When we explore a half-edge
h, we first mark h and τ(h) as already visited, then we try to explore in depth-first
manner the half-edges next to τ(h) in clockwise order, until we meet a half-edge that
is already visited upon inspection, and we finish the exploration of h. A pseudo-code
of the algorithm is provided in Algorithm 1.

4

Algorithm 1 Exploration algorithm for bridgeless planar maps

function Explore(Half-edge h)
Mark h and τ(h) as visited
h′ ← σ(τ(h))
while h′ is not visited do

Explore(h’)
h′ ← σ(h′)

end while
end function

0

1

2

3

0

1

2

1 3

3

1 0

Figure 2: An example of the depth-first exploration of edges on a bridgeless map

After the exploration, we draw the exploration tree S, whose nodes are some of
the half-edges in M. We will identify nodes in S as “copies” of vertices in M, where
a half-edge is regarded as its adjacent vertex. We now label both vertices in M and
nodes in S. For a vertex w in M, we find the node w′ in S corresponding to the first
visit of w, and we label both by the depth of w′ in S. The labels of other nodes of S
are those of their corresponding vertices in M. We denote by S(M) the labeled tree
we get after the exploration and labeling process above.

By construction, S(M) is a plane tree with all nodes labeled, and it has the same
number of edges as M. We also notice that S(M) is well-defined for all planar maps.
We have the following observations on plane trees obtained using S.

Proposition 3.1. Let B be a planar map. Then, given a node u in S(B) with a label d strictly
smaller than its depth, its ancestor u0 of depth d must be a primary node.

Proof. We first observe that, for vB a vertex in B, and v the node in S(B) correspond-
ing to the first visit to vB in the exploration, any node in S(B) corresponding to a
subsequent visit to vB in B is a descendant of v. The reason is that, once the ex-
ploration process reaches the vertex vB on B, that is, reaching v on S(B), it will not
backtrack from v until every half-edge of vB is visited. Indeed, if h is a half-edge of
vB that we visited, then when the exploration backtracks to h, the next half-edge σ(h)
is either already visited, or the exploration will continue on σ(h).

5

We now consider our claim. By definition, u corresponds to a visit to a certain
vertex uB in B, but not the first visit. Let u0 be the node in S(B) corresponding to
the first visit to uB. We know that u0 has the label d. Then by the definition of
exploration, the label of u0 is its depth in S(B), which means that u0 is a primary
node. By the first point, u0 is also an ancestor of u of depth d, which concludes the
proof.

Proposition 3.2. Let B be a planar map and u1, u2 two nodes in S(B) with the same label
d, with u1 coming before u2 in the prefix order. Suppose that u is the corresponding vertex in
B, and h1, h2 the half-edges of u leading to visits corresponding to u1, u2. Now let h0 be the
first half-edge of u visited in the exploration. Then, in the clockwise order starting from h0,
we also have h1 coming before h2.

Proof. Suppose that it is not the case, that is, h2 comes before h1 in clockwise order
starting from h0. Since u1 comes before u2 in the prefix order, either u1 is an ancestor
of u2 in S(B), or u2 is not an ancestor of u1 in S(B), but occurs before u1 in the
exploration.

For the case of u1 being an ancestor of u2, the path from u1 to u2 on the tree
corresponds to a cycle C on B, starting from some half-edge h3 explored in the explo-
ration of h1 and ending at h2. Now, by the exploration process, h3 must come after
h1, meaning that we have h0, h2, h1, h3 in clockwise order. Therefore, C separates h1

and h0 by planarity. Hence, the exploration starting from h0 cannot reach h1 before
visiting some half-edge on C, which would lead to a visit of h3 before that of h1,
which is impossible.

For the other case, let v be the lowest common ancestor of u1 and u2, with hv
0

the half-edge that links v to its parent in the exploration, and hv
1, hv

2 the half-edges
that leads to u1 and u2 respectively in the exploration. By the exploration process,
we must have hv

0, hv
2, hv

1 in clockwise order, since u1 comes before u2 in prefix order.
Therefore, the cycle C on B corresponding to the path from u0 to u2 via v separates
hv

1 and h1. By the same argument as in the previous case, it is impossible to have a
path from hv

1 to h1 in the exploration, leading to a contradiction. The same reasoning
also holds when v = u. We thus conclude the proof.

When the map is bridgeless, its image by S has the following property.

Proposition 3.3. If B ∈ Bn is a bridgeless planar map, then S(B) is a sticky tree in Sn.

Proof. We only need to prove that S(B) satisfies the conditions of sticky trees. Con-
dition 1 comes directly from the definition of S(B). We now deal with Conditions 2
and 3.

For Condition 2, we suppose that Condition 2 does not hold for some node w
with a label d in S(B), that is, every descendant of w in S(B) has a label at least d. We
can suppose that w is primary, since derived nodes satisfy Condition 2 automatically.
Let wB be the vertex that corresponds to w in B, eB the edge from which wB was first
visited in the exploration, and Sw the sub-tree of S(B) rooted at w. We consider

6

S(B)

eu

uB

u of depth d

u1

u2v1

v2

label d

label d

P ′

v
v

v

v1

h2 h1

D

P ′
B

Figure 3: The path between a node and its descendant with the same label on S(B)

the set of vertices Vw of B that are first visited during the construction of Sw, which
corresponds to primary nodes in Sw. For derived nodes, let u be a derived node with
label d′, and we have d′ ≥ d. Then by Proposition 3.1, its corresponding primary
node is the ancestor of depth d′ ≥ d, which is still a primary node in Sw. Therefore,
u corresponds to a visit to some vertex in Vw. Therefore, by the completeness of
exploration as explained in the proof of the first point of Proposition 3.1, the only
edge adjacent to a vertex in Vw that links to a vertex not in Vw is eB, which means eB

is a bridge, contradiction B ∈ Bn. We conclude that Condition 2 is satisfied for S(B).
For Condition 3, for u a node in S(B) of depth d and v1, v2 two descendants of u

such that v1 comes before v2 in the prefix order and `(v2) = d, we need to prove that
`(v1) ≥ d. By Proposition 3.1, `(v2) = d implies that u is primary, and we denote by
uB the vertex in B corresponding to u. We now track several related objects on B and
S(B), which are illustrated in Figure 3. Let Su be the sub-tree of S(B) rooted at u,
and hu the half-edge that leads the first time to uB on B in the exploration. We order
edges around uB clockwise, starting from hu. Let v be the lowest common ancestor
of v1 and v2, and P the path from u to v2 on S(B). The node v is clearly on the path
P. Let u1 (resp. u2) be the node with label d that comes just before v (resp. after v) in
the prefix order. Let P′ be the path from u1 to u2 in S(B), and P′B its counterpart in B.
We notice that P′ may not be always descending in terms of depth. Let h1 (resp. h2)
be the half-edge on B corresponding to the first (resp. the last) half-edge of P′B (again,
see Figure 3). We now consider the cycle C in B corresponding to the path from u to
u2. Since u1 comes before u2 in the prefix order, by Proposition 3.2, h2 comes after h1

in clockwise order around uB, and P′B clockwise encloses a region D in B away from
hu. Again by the exploration process, since v1 comes before v2, it must be enclosed
in D away from ancestors of u (see the right side of Figure 3). Therefore, `(v1) ≥ d,
and Condition 3 is satisfied.

From the proof above, we can see how the three conditions of sticky trees char-
acterize an exploration tree of bridgeless planar maps. Condition 1 ensures that a

7

0

1

2

3
3

0

11

2

3

3

11

3 3
2

0

1

2

1

3

3

1 0

3

3

2

Figure 4: Node-gluing procedure to get a bridgeless planar map from a sticky tree

sticky tree is an exploration tree of a certain map, while Condition 2 ensures that the
map is bridgeless, and Condition 3 ensures that the map is planar.

We now describe a procedure R that converts a sticky tree into a bridgeless planar
map. An example can be found in Figure 4. Given a sticky tree S, we put a plug on
the left of each node. Then for a node u with a label d that is not derived, we glue in
clockwise fashion the plugs of u and descendants of u with a label d in prefix order to
form a vertex. We notice that the positions of plugs make all descending half-edges
of a node u follow the ascending half-edge that links u to its parent in clockwise
order around the vertex obtained after gluing. By Lemma 2.1, each derived node has
a corresponding primary node to glue. After gluing all primary nodes in increasing
order of labels, we obtain a map denoted by R(S) with no plug left, rooted at the
right-most edge of the root node, pointing away from the root node. The process fails
if all plugs corresponding to a primary node are not in the same face at any point of
the process. The same gluing process is applied to all primary nodes in increasing
order of depth.

By construction, if succeeded, R(S) is a planar map. We have the following result.

Proposition 3.4. For S a sticky tree in Sn, the planar map R(S) is always defined and is in
Bn.

Proof. The number of edges is clearly preserved. We first prove that the gluing pro-
cess never fails. Suppose that a failure occurs at the primary node u with a label
d, after gluing another primary node v with a label d′ ≤ d. If v is not an ancestor
of u, then the gluing of v cannot affect that of u. Therefore, v must be an ancestor
of u, and d′ < d. In this case, for plugs gluing to u to be cut apart, there must be
a node v′ labeled by d′ in the sub-tree Su rooted by u, preceding a node u′ with a
label d in Su in prefix order, which violates Condition 3. Therefore, R(S) is always
defined. If there is a bridge e in R(S), then e must link a primary vertex u in S to its
parent, and u must violates Condition 2, which is a contradiction. Therefore, R(S) is
bridgeless.

With some detailed analysis, we can prove that R is in fact the inverse of S, which
makes them both bijections.

8

Theorem 3.5. For all n ≥ 1, the transformation S is a bijection from Bn to Sn, and R is its
inverse.

Proof. Since the size parameter is clearly conserved by the two bijections, we only
need to prove that S(R(S)) = S for every sticky tree S, and R(S(B)) = B for every
bridgeless planar map B.

We first prove that S(R(S)) = S. We observe that the edge exploration can be done
on arbitrary planar maps, thus we only need to prove that the tree structure of the
exploration tree is preserved in the intermediate planar maps after each plug-gluing
step.

We start by laying out some definitions. Without ambiguity, we refer to corre-
sponding edges in all intermediate maps by the same name. Let M1 be an intermedi-
ate map in the construction of R(S), and u0 a primary node or the root in S of depth d
that has not yet been glued up. As illustrated in Figure 5, we denote by u1, u2, . . . , uk
the descendants of u with a label d in the prefix order, by h0, . . . , hk the half-edges
linking each ui to its parent in S, and by L0, . . . , Lk the lists of descendant half-edges
of each ui from right to left. Here, we temporarily suspend the case where u0 is the
root vertex. Let M2 be the map obtained by gluing the plugs of u0, u1, . . . , uk into
a vertex u∗. Since a node always have its plug preceding its descendants, the half-
edges around u∗ in clockwise order are h0, L0, h1, L1, . . . , hk, Lk. Since other vertices
are not altered, the first visit of u∗ still comes by h0.

Suppose that the explorations on M1 and M2 act differently, with the last common
half-edge h∗, which must be marked visited during Explore(τ(h∗)), otherwise τ(h∗)
would also be common half-edge. Since M1 and M2 only differ on the glued vertex
u∗, the half-edge h∗ must be adjacent to u∗ on M2. Since the explorations of M1 and
M2 agree up to h∗, we must have h∗ = hi for a certain i. If Li is not empty, then the
next half-edge to visit after h∗ on both M1 and M2 will be the same, which is the
first half-edge of Li, but this situation violates the maximality of h∗. Therefore, Li is
empty, and the exploration in M1 will backtrack. Now, if i = k, since h0 must have
been visited, the exploration in M2 will backtrack too, and ending in the same half-
edge as in M1. Therefore, i 6= k. Since Li is empty, ui has no descendant in S, and
ui+1 is not a descendant of ui in S, which means that hi+1 is visited before h∗ = hi
in M1, and equally in M2. The exploration in M2 after visiting h∗ must backtrack,
and since the explored edges are the same in both M1 and M2, both explorations will
backtrack to the same half-edge. Thus, the next edge visited in both M1 and M2 will
be the same, which violates again the maximality of h∗. Therefore, M1 and M2 have
the same explorations on edges, meaning that the plug-gluing of a primary node
preserves the tree structure of the exploration tree, leading to S(R(S)) sharing the
same tree structure with S. We notice that the former argument also works for the
root node, since the role of h0 is to fix the first half-edge to visit, and we know that
for the root node. For labels, we observe simply that all primary nodes of S(R(S))
receives the same label as in S, and all derived nodes are thus also correctly labeled
by the constructions. We conclude that S(R(S)) = S.

We now prove that R(S(B)) = B for every bridgeless map B. We first observe

9

u0

u1

u2 u3

u4 u5

M1 M2

h0

h1

h2 h3

h4 h5

L0

L1

L2 L3

L4 L5

h0

L0 h1

L1

h2L2

h3

L3
h4

L4

h5
L5

h0

h1

h2

h3

h4

h5
L0

L1

L2L3

L4

L5

Figure 5: Example of half-edges around a glued vertex u∗

apex

base

Figure 6: A triangulation and its core

that R(S(B)) has the same underlying graph as B. Let u0 be a primary node or the
root node of S(B) of depth d. We now prove that there is only one way to glue u0

with its descendants labeled by d such that the result is still planar with the same
exploration tree. Let u1, . . . , uk be the descendants of u with a label d. As before (see
Figure 5), for 0 ≤ i ≤ k, we denote by hi the half-edge of ui leading to its parent,
and by Li the list of descendant half-edges of ui from right to left. Again, the case
where u0 is the root node can be treated similarly by the same argument as before.
Let u∗ be the vertex after gluing all ui. We give half-edges adjacent to u∗ an order
that starts from h0 and goes in clockwise direction. From the exploration process,
to preserve the exploration tree after gluing, half-edges in Li must follow hi around
u∗ in the order of Li. Therefore, the order of half-edges around u∗ must take the
form h0, L0, hi1 , Li1 , . . . , hik , Lik . It is then clear that the only such order that does not
introduce any crossing is h0, L0, h1, L1, . . . , hk, Lk. Therefore, by the uniqueness of
gluing, the order of half-edges around each vertex of R(S(B)) is the same as B, and
we have R(S(B)) = B.

10

(a) (b)

u′u′

e

v

u

e′

· · ·

e

v

u

e′

· · ·

u
· · ·
u
· · ·

e = e′

v = u′

0

0

0

0

0

0

1

1

1

0

0

0

1

1

1
2

2

0

0

1

1

1
2

2

3
0

4

0

0

1

1

1
2

2

3
0

4

3

4

0

0

1

1

1
2

2

3
0

4

3

0

0

1

1

1
2

2

3
0

4

3

0

0

1

1

1
2

2

3
0

4

Figure 7: (a) Unlabeled (above) and labeled (below) cases of edge deletion, where dashed
lines are edges deleted after visiting e (b) Example of exploration on the core of a planar
triangulation

3.2 From planar triangulations to sticky trees
We now present a bijection between planar triangulations and sticky trees. The core
C(T) of a triangulation T rooted at e = (u, v) is obtained by deleting u, v and all
their adjacent edges from T. Figure 6 shows an example. The apex of C(T) is the
remaining vertex of the outer face, and the base is the remaining vertex of the triangle
on the right of the root. The left (resp. right) boundary of C(T) is the leftmost (resp.
rightmost) path from the apex to the base (inclusive). Since T has no double edges,
the two boundaries are simple, i.e., without repeated vertices. However, the two
boundaries may share some vertices. To recover T from C(T), we put two vertices
u, v and link all vertices on the left (resp. right) boundary to u (resp. v), then draw
from v to u the root e such that the apex is outside. For T ∈ Tn, its core C(T) has
n + 1 vertices.

We now describe a clockwise depth-first exploration of vertices with edge deletion
on the core C(T) of a planar triangulation T to obtain a labeled tree. We first label
all vertices on the left boundary by 0 (including apex and base). Then we start the
exploration from the apex by its adjacent edge on the right boundary. Suppose that
we arrive at a vertex u of depth d − 1 in the exploration, and we are instructed to
start from a certain edge e0 adjacent to u. We start by exploring edges adjacent to u
in clockwise order, starting from e0. Let e be such an edge explored, which links u to
a new vertex v. Upon exploration of e, we delete some edges in the way illustrated

11

in Figure 7(a). Here is a detailed description. If v has no label yet, we label it by d,
and we delete consecutive edges adjacent to u that come after e in clockwise order,
until reaching an edge e′ that links u to a labeled vertex u′. These deleted edges link
u to unlabeled vertices, which are then labeled by d. If v is already labeled, we set
u′ = v and e′ = e. We then delete edges adjacent to u′ that comes after e′ in counter-
clockwise order, until e becomes a bridge (if impossible, the process fails). In the
end, if e′ 6= e, we also delete e′. After the deletions, we recursively explore v, starting
from the edge adjacent to v that is next to e in clockwise order. After the exploration
of v is finished, we look for the next (not-yet-deleted) edge adjacent to u next to e
in clockwise order, and perform the same procedure as for e. The exploration of u
finishes when all possibilities are exhausted. Figure 7(b) shows an example of this
process, where the partial exploration tree and the deleted edges are shown. Since
the exploration always leaves a visited vertex labeled and a visited edge becoming a
bridge, in the end we obtain from T a tree with all nodes labeled, denoted by P(T).

The exploration process above has the following properties.

Lemma 3.6. In the exploration of a planar triangulation T, whenever we arrive at some new
vertex u before any failure, if we delete all explored edges, we obtain several connected com-
ponents. Given a component C, let v be the vertex of C closest to the apex in the exploration
tree, which is on the boundary by planarity. The vertex v is called the lead vertex of C. Then
C satisfies the following properties:

1. All labeled vertices in C are on the boundary;

2. The labeled vertices of C form a consecutive simple chain P starting from v with de-
creasing labels in counter-clockwise order;

3. The label of v is not larger than its distance to the apex;

4. C without labels can be regarded as the core of a triangulation, with v the apex and
P the left boundary.

Proof. At the beginning of the exploration, there is only one component C(T) with its
vertices on the left boundary labeled by 0, which satisfies all the properties. We now
prove that these properties are kept after exploring an edge. From the exploration
process (see Figure 7(a)), when an edge {u, v} is explored, we split a component
C into two, the upper one C1 and the lower one C2. We suppose that C satisfies
all properties above, and we only need to prove that C1 and C2 also satisfy these
properties, with lead vertices u and v respectively. Let d be the distance of u to the
apex of T in the exploration tree.

For Property 1, by construction, all labeled vertices in both C1 and C2 are on their
boundaries.

Let P be the chain of labeled vertices in C. Property 2 on C1 is clear, since its
labeled vertices form a segment of the chain P, starting from its lead vertex u. For
the Property 2 on C2, by Property 2 and 3 applied to C, all vertices in C, which
include those in C2, have labels at most d. Only when v is not yet labeled before
exploring {u, v} do we have newly labeled vertices, which are all labeled by d + 1.

12

These newly labeled vertices precede already labeled vertices on the portion of P on
C2 to form a new path P′ with decreasing labels in clockwise order. Therefore, the
second property also holds on C2.

For Property 3, since it is also satisfied by C, we have `(u) ≤ d, which means that
C1 also satisfies Property 3. For C2, its lead vertex v has distance d + 1 to the apex.
If v has no label before the exploration, it receives a label `(v) = d + 1. Otherwise,
combining Properties 2 and 3 on C, we have `(v) ≤ `(u) ≤ d. In both cases, we have
`(v) ≤ d + 1, which makes C2 satisfy Property 3.

For Property 4, since it is satisfied by C, all internal faces of C, thus those of C1 and
C2, are triangles. Furthermore, the boundaries of C1 and C2 are simple, because they
are either a portion of a boundary of C, or created from edge deletion that involves
no double edges. Therefore, Property 4 is also satisfied by both C1 and C2.

Property 4 of Lemma 3.6 can also be seen as a recursive decomposition of cores
of triangulations. We also have the following simple observation on the exploration
process.

Proposition 3.7. Let T be a planar triangulation, and u its vertex. Suppose that the explo-
ration on T does not fail, meaning that P(T) is well-defined. Then the descendants of u in
P(T) are exactly those in the component Cu with u as apex on the first visit of u.

Proof. It is clear that, at the first visit of u, the edge e that leads to this visit was
already a bridge, and no other vertex in Cu other than u was visited yet. Since the
exploration does not fail, every vertex of Cu is visited during the exploration of u,
making them descendant of u in P(T).

Using these facts, we can prove that the image of P is the set of sticky trees.

Proposition 3.8. Let T be a planar triangulation with n internal vertices. Then P(T) is
always defined and is a sticky tree with n edges.

Proof. The size parameter is clearly preserved. To prove that P(T) is always defined,
we need to prove that the exploration never fails. We now use some terminologies
in Lemma 3.6. Suppose that the exploration arrives at a vertex u without failure.
We consider the component C with u as lead vertex, which is well-defined since
there is no failure up to u. We can thus apply Lemma 3.6 to C. We now consider
the exploration of v from u through the edge e. The vertex v is either labeled or
unlabeled upon visit. If v is labeled, by the exploration process and Properties 2 and 4
of Lemma 3.6, it must be on both the left and the right boundaries of C, thus a cut
vertex of C, and e can be made a bridge by edge-deletion. If v is unlabeled, then u′

must be on the left boundary of C again by Properties 2 and 4, and by planarity, the
edge e′ cuts C into two parts, meaning that the edge-deletion makes e a bridge. The
exploration can thus continue without failure.

It remains to prove that P(T) is a sticky tree. Condition 1 comes from Property
3 in Lemma 3.6 applied to P(T). For Condition 2, given a non-root node v in P(T),
we consider the first moment the exploration visits v in T from another vertex u of

13

distance d to the apex of T. If v is already labeled, by Properties 2 and 3 in Lemma 3.6
applied to the component of u, the label of v must be at most d, which is one less
than the distance of v to the apex of T. We remark that v corresponds to a derived
node in P(T) in this case. If v is not yet labeled, by the exploration process and
Proposition 3.7, the vertex u′ will be visited from a descendant of v, and u′ has a
label at most d. Condition 2 is also satisfied in this case.

For Condition 3, we consider a non-root node u of depth d in P(T). Let Cu be the
component with u the lead vertex upon the first visit of u in the exploration. The
descendants of u in P(T) are exactly vertices in Cu, as in Proposition 3.7. It is clear
that all new labels must be at least d + 1. Therefore, a descendant v1 of u with a label
d must have already been labeled in Cu. By Property 2 in Lemma 3.6, for a vertex v2

with a label strictly less than d, it can only come after v1 in counter-clockwise order
on the left boundary. We thus only need to prove that v2 also comes after v1 in prefix
order in P(T). Let w be the lowest common ancestor of v1 and v2 in P(T). If w is
equal to one of v1 and v2, then by their order on the left boundary of Cu, we must
have w = v1, and v2 indeed comes after v1 in prefix order. We now suppose that w
is different from either v1 or v2. Since Cw contains v1 and v2 by Proposition 3.7, it
must also contains in its left boundary a segment S of the left boundary of Cu from
v1 to v2. Let w1 (resp. w2) be the child of w in P(T) whose exploration leads to v1

(resp. v2). If w1 comes after w2 in the prefix order, then w1 will be visited first in
the exploration. As in the proof of Lemma 3.6, the exploration process will break
S into two parts, S1 and S2 in clockwise order, with Cw1 containing the latter part
S2. However, since v1 precedes v2 on S, we know that v1 ∈ S1 and v2 ∈ S2, which
leads to a contradiction to the definition of w1 and w2. Therefore, w1 comes before
w2 in the prefix order in P(T), meaning that v1 precedes v2 also in the prefix order.
Therefore, Condition 3 is satisfied.

We now describe the reverse direction from sticky trees to triangulations. Let S be
a sticky tree. We perform the following “triangulation reconstruction” as illustrated
in Figure 8. For a non-root node v of depth d in S, let u be its parent, v′ its certificate,
P the right-most branch of the sub-tree rooted at the child of u that precedes v in the
prefix order (just to the left of v), and e the edge from v to u. When v is primary,
we link u to the left of descendants of v with a label d in a non-crossing fashion. We
also link u to v′ by an edge e′, and then v′ to the right of nodes on P, if P exists, with
edges in counter-clockwise order around v′ after e′. When v is derived, we link v
itself to the right of nodes on P in the same way as the previous case when P exists.
We say that the new edges adjacent to u in the case where v is primary are of type A,
and all other new edges are of type B. We observe that type A edges link a node to
one of its descendants, while type B edges do not. This procedure is performed from
the last node in the prefix order up to the first one. We denote by Q′(T) the map we
get. We have the following proposition.

Proposition 3.9. Let S ∈ Sn be a sticky tree with n edges. The map Q′(S) obtained from S
is the core of a planar triangulation (denoted by Q(S)), with is apex the root of S and its base

14

u

v

P

v′

P

u

v

depth d− 1

depth d

depth d− 1

depth d

v primary v derived

0

1

2

3

3

00

3

1

2

3

(a) (b)

: label d
: label < d
: unknown

Type A

Type B Type B

Figure 8: (a) Two cases of adding edges in Q′(S) (b) Example of reconstruction

the last node in S in the prefix order.

Proof. We first prove that Q′(S) has no multiple edge nor loop. By definition, it is
clear that Q′(S) has no loop, and new edges do not double with edges in S. We now
discuss new edges by their types. Recall that there are two types of new edges: type
A that link a node to one of its descendants, and type B that do not. If there are
multiple edges, they must be of the same type. Type A edges come from linking the
parent u of a primary node v to descendants of v, which cannot be double because
each descendant of v links to u only once. Type B edges come from linking the
certificate of a node v to the right-most path P that comes just before v. Similarly,
they cannot be double because P is always simple.

Secondly, we prove that Q′(S) is planar. It is clear that new edges never cross
edges already in S, and type B edges do not cross each other by construction. Fur-
thermore, by the order we add edges, two edges sharing a vertex do not cross. Now
we will study other possibilities case by case.

We start by proving that there is no crossing between type A edges. Suppose that
two type A edges e1 = {u1, v1} and e2 = {u2, v2} cross each other, with ui an ancestor
of vi of depth di for i = 1, 2. The crossing implies that, without loss of generality, u1

is an ancestor of u2, which means d1 < d2. Furthermore, v1 and v2 have a common
ancestor u′ of depth d2 + 1, and v1 must precede v2 in the prefix order, or else e1 and
e2 will not cross each other. Figure 9(a) illustrates this case. Let u′′ be the ancestor
of v1 of depth d1 + 1. By the construction of type A edges, either v1 is the certificate
of u′′, or we have `(v1) = d1 + 1. In both cases, we have `(v1) ≤ d1 + 1. Since e2 is
a type A edge, either `(v2) = d2 + 1, or v2 is the certificate of u′. It is not possible
that `(v2) = d2 + 1, because it will violate Condition 3 of sticky trees on u′, whose
descendant v1 precedes v2 with `(v1) ≤ d1 + 1 < `(v2) = d2 + 1, which is the depth
of u′. It is also impossible that v2 is the certificate of u′, since u′ is of depth d2 + 1,
larger than the label of v1, and v1 precedes v2. Therefore, we reach a contradiction,
which means edges of type A never cross each other.

We now prove that there is no crossing between type A and B edges. Suppose
that a type A edge e1 from u1 to v1 crosses a type B edge e2 from u2 to v2 with disjoint
vertices. By the construction of type B edges, v2 is the certificate of some vertex v′2.

15

u1

u2

v1

v2

depth d1

u′

u′′

depth d2

depth d1

depth d2

u1

u2

v2

v′2

w

v1

u1

u′
1

u2

v2

v′2

w

v1

depth d2

depth d1

(a): A×A (b): A×B, case 1 (c): A×B, case 2

e1

e2

e1

e2

e2 e1

Figure 9: Cases of potential crossings in triangulation reconstruction

Let d1 be the depth of u1, d2 the depth of v′2, and w be the parent of v′2. We know
that `(v1) ≤ d1 + 1 and `(v2) < d2. According to either u1 precedes both u2 and v2

in the prefix order or lies in between, there are two possibilities for e1 to cross e2:
either v1 is in the sub-tree rooted at v′2 and precedes v2 in the prefix order, and u1 is
an ancestor of w (see Figure 9(b)); or u1 is in the sub-tree rooted at v′2, and one of its
child u′1 is a common ancestor of v1 and v2, while v1 follows v2 in the prefix order
(see Figure 9(c)). In the first case, since v1 is a descendant of v′2 that precedes v2,
which is the certificate of v′2, we must have `(v1) ≥ d2. Therefore, d1 + 1 ≥ d2, which
is impossible, since u1 should be an ancestor of w, thus also of v′2. In the second
case, we have d1 ≥ d2, and according to the construction of type A edges, either
`(v1) = d1 + 1 or v1 is the certificate of u′1. It is not possible that `(v1) = d1 + 1,
or else Condition 3 of sticky trees will be violated on u′1 and its two descendants v1

and v2. However, v1 cannot be the certificate of u′1, since v2 precedes v1 in the prefix
order, and we already have `(v2) < d2 < d1 + 1, with d1 + 1 the depth of u′1. We also
reach a contradiction for the second case, concluding that no type A edge crosses a
type B edge. We thus establish that Q′(S) is planar.

We finally prove that Q′(S) has the good number of edges to be the core of a
planar triangulation. We know that Q′(S) has n + 1 vertices, and let k` (resp. kr)
be the number of edges on their left (resp. right) boundary. By Euler’s relation, we
need to prove that there are 2n− k` − kr new edges. We first observe that the right
boundary of Q′(S) is the right-most branch Pr of S, and every node except those on
Pr contribute exactly one type B new edge, which makes n− kr new edges of type
B. We now prove that all nodes with a non-zero label contribute each exactly one
type A new edge. Let u be a non-root node. If u is primary, its label is not 0, and it
contributes the edge that links its parent to its certificate; if u is derived with a non-
zero label, it contributes the edge that links u to its ancestor of depth d− 1. Since the
nodes with the label 0 are exactly those on the left boundary, we have n− k` edges of
type A, which makes up the good total number. We conclude that Q′(S) is the core
of a triangulation.

Readers may remark that new edges added to S in the core of Q(S) for a vertex

16

u are exactly those removed when visiting u in the construction of P(Q(S)). The
following theorem is thus not a surprise.

Theorem 3.10. For all n ≥ 1, the transformation P is a bijection from Tn to Sn, and Q is its
inverse.

Proof. The size parameter is clearly preserved by the bijections. By Proposition 3.8
and Proposition 3.9, we only need to prove that Q(P(T)) = T for any planar triangu-
lation T, and P(Q(S)) = S for any sticky tree S. It is easy to see Q(P(T)) = T, since
the edges added to P(T) in the construction of Q(P(T)) are exactly those removed in
the construction of P(T).

To prove that P(Q(S)) = S, we observe that the exploration tree of Q(S) has
the same tree structure as S, since all edges added into Q(S) for a node v in S are
removed in the construction of P(Q(S)). We then only need to prove that P(Q(S))
has the same label as S on each vertex. Since S has the same tree structure as the
exploration tree of Q(S), primary vertices are correctly labeled in P(Q(S)). Let v be a
non-root primary node in S of depth d, and v′ its certificate. If there is a descendant
w of v with a label d in S, by Condition 3 of sticky trees, w must come before v in the
prefix order. Therefore, by construction, w is correctly relabeled by d in P(Q(S)). As
a consequence, all derived nodes of S with a label at least 1 are correctly relabeled in
P(Q(S)). The remaining nodes are obliged to be labeled 0, which are exactly those
on the left boundary of the core of Q(S). Therefore, we have P(Q(S)) = S.

From a more recursive point of view, Property 4 of Lemma 3.6 can be seen as a
recursive decomposition of cores of planar triangulations.

4 Bijections to other combinatorial structures
Other than planar bridgeless map and planar triangulations, the counting formula
(1) also counts other combinatorial objects, including intervals in the Tamari lattice
of order n [Cha06, BB09] and closed flows on forests with n nodes [CCP14]. For
Tamari intervals, its counting formula was first proved in [Cha06] using the symbolic
method, then a bijection from Tamari intervals to planar triangulations was given in
[BB09]. For closed flows on forests, it was proved in [CCP14] using a bijection to
interval posets, which are related to Tamari intervals. In the following, we will
briefly describe direct bijections from sticky trees to these objects.

We first introduce a function on nodes of a sticky tree, which is useful in both bi-
jections that we describe in the following. Let S be a sticky tree, its certificate-counting
function c maps nodes of S to values in N+, and for a node u in S, its value c(u) is
the number of nodes whose certificate is u.

A Dyck path is a path D on N2 composed by up steps u = (1, 1) and down steps
d = (−1, 1) that starts and finishes on the x-axis while crossing to the negative side.
It is clear that Dyck paths have even length. A Dyck path can also be seen as a word
in the alphabet {u, d}. We say that the ith up step ui is matched with a down step dj

17

0

01

0

2

1

1 1
=

Tamari interval closed flow on forestprimary nodes pointing
to certificates

function c

sticky tree0

1

1

00

1

0

0

2

0

0

1

12

0

1

3

0

Figure 10: Bijections from sticky trees to Tamari intervals and to closed flows on forests

in D if the factor Di of D between ui and dj (excluding ui and dj) is also a Dyck path.
We denote by `D(i) the length of Di. The Tamari lattice of order n is a partial order
�T defined on the set of Dyck paths of length 2n, where we have D �T E for two
Dyck paths D and E if and only if `D(i) ≤ `E(i) for all 1 ≤ i ≤ n, and in this case, the
pair [D, E] is called an interval [D, E] of the Tamari lattice of order n. We say that the
size of [D, E] is n in this case. Geometrically, it means that, if for both D and E we
draw a horizontal ray from the middle of their ith up step until it touches the same
Dyck path again, then the ray can extend longer on E than on D. Our definition
of the Tamari lattice here is not the standard one, but is an equivalent according to
Proposition 5 in [BMFPR11]. We also refer readers to [BMFPR11] for a more standard
and geometric definition illustrated therein.

We now introduce the related notion of synchronized intervals here. We first define
the type Type(D) of a Dyck path D of length 2n as follows: it is a word w of length
n− 1 in two letter N and E such that wi = N if the ith up step of D is followed by
a down step, and wi = E otherwise. A Tamari interval I = [D1, D2] is synchronized
if Type(D1) = Type(D2). Geometrically, it is equivalent to say that down steps of D1

and D2 occupy the same set of lines. See Figure 11 for an example of a synchronized
interval. More details of synchronized intervals can be found in [PRV16, FPR16].

To obtain a Tamari interval I(S) = [D(S), E(S)] from a sticky tree S, we first
do a counter-clockwise contour traversal of S, whose variation in depth gives the
upper path E(S). Let v1, v2, . . . , vk the non-root nodes of S in the prefix order, and the
lower path D(S) is given by D(S) = udc(v1)udc(v2) · · · udc(vk), where c is the certificate-
counting function. Figure 10 shows an example of this bijection. We can see that
D(S) is always a Dyck path, since the certificate of a node is always itself or its
descendant, therefore, in the traversal, we always encounter first a node, then its
certificate, giving more u than d in any prefix.

Proposition 4.1. For a sticky tree S with n + 1 nodes, I(S) is a Tamari interval of length
2n.

Proof. The fundamental reason is that the certificate of a node u is always a descen-
dant of u, therefore always comes after u in the prefix order. We now give a detailed
proof. Let v1, . . . , vn be the list of non-root nodes in S in prefix order. We now fix
i between 1 and n. Suppose that vi, vi+1, . . . , vi+k are the nodes in the sub-tree of S
rooted at vi. From the construction of E(S), we know that vj is first visited after the

18

jth up step uj in E(S), and we thus have `E(S)(i) = 2k. We now consider the portion
D[i,i+k] = udc(vi) · · · udc(vi+k) of D(S) given by vi, . . . , vi+k. Since the certificate of a
node w must be a descendant of w, we have ∑i+k

j=i c(vj) ≥ k. Therefore, the matching
step of the ith up step ui in D(S) must be in D[i,i+k]. However, there are exactly k up
steps in D[i,i+k] other than ui, and we have a Dyck path D′ between ui and its match-
ing step, which then contains at most k step. We thus conclude that `D(S)(i), which
is the length of D′, is at most 2k. We thus have `D(S)(i) ≤ `E(S)(i) for all 1 ≤ i ≤ n,
which means that I(S) is a Tamari interval.

We now turn to closed flow on forests. A forest is an ordered list F = (A1, . . . , Ak)

of plane trees. A flow on a forest F is a function f defined on nodes of F, also called
inputs on nodes, such that f (v) ≥ −1 for every node v, and the outgoing rate of each
node is non-negative. The outgoing rate of a node v is the sum of all the inputs of
nodes in the sub-tree of F rooted at v (including v). We say that a flow f on F is closed
if the outgoing rates of the roots of all Ai’s are all 0. Given a sticky tree S, let F be the
forest obtained by deleting the root of S, then the function f (v) = c(v)− 1 on nodes
of S based on the counting function c(v) gives a closed flow on F. See Figure 10 for
an example.

For a proof of the reversed direction of these two bijections from sticky trees to
Tamari intervals and closed forest flows, we first observe that both bijections rely on
the certificate-counting function c in a simple way. Thus, we only need to prove that
we can recover labels on a sticky tree from its certificate-counting function c. A direct
proof can be given, but we prefer to see this fact as a special case of a similar result
in [FPR16] for decorated trees, as illustrated in Figure 11.

We first recall the notion of decorated trees from [FPR16]. A decorated tree is a
rooted plane tree R with a label function ` that takes values only on leaves, satisfying
the following three conditions:

1’. For a leaf f attached to a node of depth d, we have −1 ≤ `(f) ≤ d− 1.

2’. For each internal node u of depth d > 0, there is at least one descendant leaf f
such that `(f) < d− 1.

3’. For t a node of depth d, u a child of t and Ru a sub-tree rooted at u, if there is
a leaf f in Ru with `(f) = d (which is the depth of t), then all leaves in Ru that
come before f in the prefix order have a label at least d.

For an internal node u of depth d > 0, its certificate is the first leaf in prefix order that
makes u satisfies the Condition (2’). We can see that the definition of sticky trees is
reminiscent to that of decorated trees. Indeed, sticky trees can be seen as a variant of
decorated trees. We need further definitions to clarify this point.

We define RSn as the set of decorated trees with n + 1 internal nodes and n + 1
leaves, such that each internal node has a leaf as its first child in the prefix order.
The upper-left corner of Figure 11 shows an example of a decorated tree in RS6. For
readers familiar with [FPR16], these decorated trees are in bijection with synchro-

19

0

0 1

1

0

0 0

Tamari intervalSticky tree

Synchronized interval of type (NE)n

−1

−1 0

0

−1

−1 −1

N E
N

E
N E

N E
N

E
N

E

Decorated tree with leaves as first child

Figure 11: Example of a decorated tree and its corresponding synchronized interval of type
(NE)n, and their corresponding sticky tree and Tamari interval

nized intervals of type (NE)n, which are in turn in bijection with Tamari intervals of
size n.

We now define the following bijection Ctr from RSn to Sn: let R ∈ RSn, we
delete all leaves in R and move their labels to their parent while adding 1 to labels to
obtain Ctr(R). This transformation is well-defined, since leaves and internal nodes in
trees in RSn are in one-to-one correspondence. It is also clear that Ctr is invertible,
and the inverse Ctr is given by adding a leaf to each node as the first child, then
move the labels on nodes to the leaves while subtracting 1. We have the following
proposition.

Proposition 4.2. The transformation Ctr is a bijection between Sn and RSn.

Proof. Let S be a tree with labels on all nodes and R a tree with only labels on
leaves such that S = Ctr(R). We only need to show that R ∈ RSn if and only
if S ∈ Sn. The proof consists of comparing the conditions of sticky trees and of
decorated trees under the transformation Ctr. From the definition of Ctr, the tree
S satisfies Conditions (1) of sticky trees if and only if R satisfies Conditions (1’)
of decorated trees. For Condition (2) and (2’), we only need to observe that the
certificate node of a node u in S is exactly the parent of the certificate leaf of the
corresponding node u′ in R. For Condition (3) and (3’), we observe that (3’) is a
condition on a sub-tree rooted at u, which is a child of t, a node of depth d. Therefore,
in R, we are dealing with labels d in a sub-tree of depth d + 1, while in S it is labels
d in a sub-tree of depth d. Since labels are incremented by 1 from R to S, the two
conditions are equivalent.

As we observed in the proof of Proposition 4.2, we have the following property
of certificates of both sticky trees and decorated trees in RSn.

20

Proposition 4.3. Let S be a sticky tree and R = Ctr(S) its corresponding decorated tree.
Suppose that f is the certificate of an internal node u in R, and the internal node v is the
parent of f . Let u′, v′ be the nodes corresponding to u and v in S. Then v′ is the certificate of
u′.

We now define the certificate-counting function c of a tree R in RSn, which is a
function on leaves of R, and for a leaf f , c(f) is the number of internal node u in R
such that f is the certificate of u. We thus have the following corollary.

Corollary 4.4. Let S be a sticky tree and R = Ctr(S), with cS and cR their certificate
function respectively. We have cS(u) = cR(f) for every node u in S, with f the first child of
the corresponding internal node u′ in R.

In [FPR16], the following proposition was implicitly proved, which states that
we can recover the labels of a decorated tree by their certificate-counting functions
(called “charges” in [FPR16]).

Proposition 4.5 (See Propositions 4.6 and 4.8 in [FPR16]). Let R be a decorated tree.
Given the tree structure and the certificate-counting function cR of R, we can recover leaf
labels of R, and this is a bijection.

Composing with the bijection Ctr, with Corollary 4.4, we have the following corol-
lary.

Corollary 4.6. Let S be a sticky tree. Given the tree structure and the certificate-counting
function cS of S, we can recover labels of S, and this is a bijection.

This is exactly what we need to establish bijections between sticky trees, Tamari
intervals and closed flows on forests.

We observe that, since the bijections from sticky trees to Tamari intervals and
closed flows on forests only rely on the certificate-counting function c of sticky trees,
we can construct a direct bijection from Tamari intervals to closed flows on forests.
Moreover, the upper path of a Tamari interval corresponds to the shape of its sticky
tree, which in turns determines the shape of the forest on which the corresponding
closed flow lives. Therefore, we have an alternative bijective proof of the following
theorem in [CCP14].

Theorem 4.7 (Theorem 4.1 in [CCP14]). Given a Dyck path D of length 2n, there is a
forest F(D) with n nodes such that the number of elements E smaller than D in the Tamari
lattice of order n is the number of closed flows on F(D).

By composing the bijection from sticky trees to Tamari intervals with the one
described in Section 3.2, we obtain a bijection from planar triangulations to Tamari
intervals. Experimentally, this new bijection is different from the one in [BB09]. Their
relation is to be investigated.

We also observe that, the bijection from Tamari intervals to sticky trees, when
restricted to synchronized intervals, gives sticky trees in a special form: all its internal

21

nodes are primary. It is because, for a synchronized interval [P, Q], an up step ui in P
is followed by a down step – which means the corresponding node vi in the resulting
sticky tree has c(vi) > 0 – if and only if its counterpart in Q is also followed by a
down step, which means the same node vi is a leaf. Let SSn be the set of these sticky
trees coming from synchronized intervals of length 2n. We check easily that, for a
tree S ∈ SSn, by removing labels on internal nodes and subtracting 1 from those on
leaves, we obtain a decorated tree S′, and this is a bijection. Therefore, we can also
see the bijections in [FPR16] between synchronized intervals and decorated trees as
a special case of the bijections here between Tamari intervals and sticky trees.

5 Discussion
We have seen bijections between sticky trees and various combinatorial objects. It is
not surprising that our bijections transfer interesting statistics and structures between
these objects. For instance, the number of primary nodes in sticky trees has the same
distribution as the number of vertices in bridgeless planar maps and the number of
vertices with a negative input in closed flows on forests. We can thus obtain non-
trivial structural results with our bijections. For instance, vertical symmetry is a
straight-forward involution on closed flows on forests, which means that the length
of the left-most and the right-most branch have the same distribution in sticky trees,
therefore the initial rise (i.e., the number of initial up steps) and the final descent (i.e.,
the number of final down steps) of upper paths also have the same distribution
in Tamari intervals. This non-trivial result is an immediate corollary of results in
[CCP14], and it can also be seen lucidly under our bijection. We thus expect further
study in this direction to reveal more hidden structures of these objects, similar to
what we have done in [Fan17] for non-separable planar maps, synchronized intervals
and related objects.

Another motivation comes from intervals in the m-Tamari lattice. In [BMFPR11],
it has been proved that the number of intervals in the m-Tamari lattice can be ex-
pressed by a formula similar to those in planar map enumeration. We thus want to
find a natural class of planar maps in bijection with these intervals. Although we can
cast m-Tamari intervals as generalized Tamari intervals with a canopy of the form
(NEm)n (cf. [PRV16]), the direct restriction of the bijection between non-separable
planar maps and generalized Tamari intervals in [FPR16] does not give a natural
class of planar maps. Our work here on sticky trees can be seen as an effort to adapt
the bijection in [FPR16] to m-Tamari intervals in the special case m = 1. It remains to
see if a similar adaptation applies for general m.

Acknowledgements
We thank Guillaume Chapuy, Eric Fusy and Louis-François Préville-Ratelle for their
inspiring discussions and useful comments. We also thank the anonymous referees

22

for their comments that greatly improves the presentation of this article.

References
[BB09] O. Bernardi and N. Bonichon. Intervals in Catalan lattices and realizers

of triangulations. J. Combin. Theory Ser. A, 116(1):55–75, 2009.

[BMFPR11] M. Bousquet-Mélou, É. Fusy, and L.-F. Préville-Ratelle. The number of
intervals in the m-Tamari lattices. Electron. J. Combin., 18(2):Research
Paper 31, 26 pp. (electronic), 2011.

[BPR12] François Bergeron and Louis-François Préville-Ratelle. Higher trivariate
diagonal harmonics via generalized Tamari posets. J. Comb., 3(3):317–
341, 2012.

[CCP14] F. Chapoton, G. Châtel, and V. Pons. Two bijections on Tamari intervals.
In 26th International Conference on Formal Power Series and Algebraic Com-
binatorics (FPSAC 2014), Discrete Math. Theor. Comput. Sci. Proc., AT,
pages 241–252. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2014.

[Cha06] F. Chapoton. Sur le nombre d’intervalles dans les treillis de Tamari. Sém.
Lothar. Combin., pages Art. B55f, 18 pp. (electronic), 2006.

[Fan17] W. Fang. A trinity of duality: non-separable planar maps, β-(1,0) trees
and synchronized intervals. submitted, arXiv:1703.02774, 2017.

[FPR16] W. Fang and L.-F. Préville-Ratelle. The enumeration of generalized
Tamari intervals. European J. Combin., 61:69–84, 2016.

[Fus10] É. Fusy. New bijective links on planar maps via orientations. European J.
Combin., 31(1):145–160, 2010.

[PRV16] L.-F. Préville-Ratelle and X. Viennot. An extension of Tamari lattices. To
appear in Transactions of the AMS, 2016. arXiv:1406.3787.

[Sch15] G. Schaeffer. Planar maps. In Handbook of Enumerative Combinatorics.
CRC Press, 2015.

[Tut62] W. T. Tutte. A census of planar triangulations. Canad. J. Math., 14:21–38,
1962.

[WL75] T. R. S. Walsh and A. B. Lehman. Counting rooted maps by genus. III:
Nonseparable maps. J. Combin. Theory Ser. B, 18:222–259, 1975.

[Wor80] N. C. Wormald. A correspondence for rooted planar maps. Ars Combin.,
9:11–28, 1980.

23

	1 Introduction
	2 Preliminaries
	3 Bijections with planar maps
	3.1 From bridgeless planar maps to sticky trees
	3.2 From planar triangulations to sticky trees

	4 Bijections to other combinatorial structures
	5 Discussion

