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Abstract. Inspired by the paper of Bonichon, Bousquet-Mélou, Dorbec and Pen-
narun [1], we give a system of functional equations which characterise the ordinary
generating function, U(x), for the number of planar Eulerian orientations counted
by edges. We also characterise the ogf A(x), for 4-valent planar Eulerian orien-
tations counted by vertices in a similar way. The latter problem is equivalent
to the 6-vertex problem on a random lattice, widely studied in mathematical
physics. While unable to solve these functional equations, they immediately pro-
vide polynomial-time algorithms for computing the coefficients of the generating
function. From these algorithms we have obtained 100 terms for U(x) and 90
terms for A(x).

Analysis of these series suggests that they both behave as const·(1−µx)/ log(1−
µx), where we conjecture that µ = 4π for Eulerian orientations counted by edges

and µ = 4
√

3π for 4-valent Eulerian orientations counted by vertices.

1. Introduction

Recently the problem of enumerating planar Eulerian orientations with n edges
was considered by Bonichon, Bousquet-Mélou, Dorbec and Pennarun [1]. Enumer-
ation of Eulerian orientations on a given graph has been previously considered, for
example by Felsner and Zickfeld [3] who established rigorous bounds on the growth
constant for these and other combinatorial structures. The generating function for
the number of rooted planar Eulerian maps1 has been known since 1963 [9]. Indeed
it is algebraic, and is just

M(t) =
8t2 + 12t− 1 + (1− 8t)3/2

32t2
.

As pointed out by Bonichon et al., planar maps with additional structure are much
studied in both enumerative combinatorics and mathematical physics, and they
give several examples. They then focus on Eulerian orientations, which restrict
vertices to have equal in-degree and out-degree, and consider two classes of Eulerian
orientations; the general class, counted by edges, and 4-valent Eulerian orientations
counted by vertices. The latter is in the universality class of the celebrated six-
vertex model on a random lattice, a problem that has been studied by Kostov [8]
and Zinn-Justin [10]. Unfortunately, the nature of their solutions are not in the
form of a generating function that can be compared to the enumerative results of

1email: andrewelveyprice@gmail.com
2email: guttmann@unimelb.edu.au
1These are planar maps in which the degree of every vertex is even.
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Bonichon et al, or our own more extensive enumerations. However we would expect
the structure of the generating functions to be the same. Kostov gives the logarithm
of the partition function as

logZ ∼ c(T − Tc)2

log(T − Tc)
.

The generating function for the corresponding Eulerian maps should correspond to
the derivative of logZ, so the dominant term should behave as (T − Tc)/log(T − Tc).

Let U(x) be the generating function for planar Eulerian orientations, counted by
edges. In this paper we find a system of functional equations which characterises
the generating function U(x). Similarly, we find a system of functional equations
characterising the generating function A(x) for 4-valent planar Eulerian orientations,
counted by vertices. For each problem, these functional equations give rise to a
polynomial time algorithm for computing the coefficients.

Using these algorithms we have computed the first 90 coefficients of the generating
function A(x) and the first 100 coefficients of the generating function U(x). In the
final section we study these series and find that they behave as const.(1−µx)/ log(1−
µx), where we conjecture that µ = 4π = 12.5663 . . . for Eulerian orientations counted
by edges and µ = 4

√
3π for 4-valent Eulerian orientations counted by vertices.

In [1], a different approach was taken. Families of subsets and supersets were
counted. These sets were indexed by a parameter k, and the subsets and supersets
were found to have algebraic generating functions. However the calculational diffi-
culty increased with k, so that k = 5 was as far as they could go. With this data
they calculated the generating function to 15 terms, and obtained bounds for the
growth rate µ for Eulerian orientations counted by edges, 11.22 < µ < 13.047, and
gave the estimate µ ≈ 12.5.

2. Functional equations

In this section we derive a system of functional equations which characterise the
ordinary generating functions A(x) and U(x) for 4-valent rooted planar Eulerian
orientations counted by vertices and for rooted planar Eulerian orientations counted
by edges respectively.

Recall that a planar map is a connected graph embedded on a sphere (multiple
edges and loops are permitted, but edge crossings are not). A map is rooted if one of
its edges is both oriented and distinguished. We call this edge the root edge and we
call its source vertex the root vertex. In the following we will consider planar maps
to be embedded in the plane, rather than the sphere, using the convention that the
face to the left of the root edge is the outer face. Using this convention allows us to
distinguish between the inner faces and the outer face of any connected subgraph of
a rooted planar map.

A rooted planar Eulerian orientation is a rooted planar map in which each edge
is directed and each vertex has equal in-degree and out-degree. The direction of the
root edge is not required to match the direction assigned when rooting the map.
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Figure 1. An example of the transformation between an N -map (left of diagram)
and the corresponding Eulerian orientation (right of diagram).

Proposition 2.1. For any positive integer n, the number of N-maps with n edges
is equal to the number of rooted planar Eulerian orientations with n edges. Also, the
number of N-maps with n edges, where each face has degree 4 is equal to the number
of 4-valent rooted planar Eulerian orientations with n edges.

Proof. Given an N -map, we can construct a directed map by orienting each edge
from the lower number to the higher number. Then around each face, the number
of clockwise edges is equal to the number of anticlockwise edges. Hence the dual of
this map (where the orientations of the edges are defined by rotating the original
edges 90◦ clockwise) is an Eulerian orientation. By reversing each of these steps, we
see that this transformation is a bijection. Hence, the number of N -maps with n
edges is equal to the number of rooted planar Eulerian orientations with n edges.
Using the same bijection, we see that the number of 4-valent rooted planar Eulerian
orientations with n edges is equal to the number of N -maps with n edges, where
each face has degree 4. �

We will occasionally refer to the height of an edge or a corner of an N -map. An
edge is said to be at height m + 1/2 if it joins a vertex at height m to a vertex at
height m+1. The height of a corner is simply equal to the height of the vertex which
it contains. For any integer k ≥ 0, and any N -map Γ, let Σk(Γ) be the subgraph of
Γ defined by taking only the vertices and edges of Γ at height at least k. A (≥ k)-
component of Γ is a connected component of Σk(Γ). For any (≥ k)-component τ of
Γ, let τ̂ denote the connected subgraph of Γ made up of the vertices and edges in τ ,
along with all of the vertices and edges contained inside inner faces of τ . Given any
such (≥ k)-component τ , we can form an N -map Γ′ by contracting all of τ̂ onto a
single vertex v at height k. Then (Γ, τ̂) is called an upper expansion of (Γ′, v), and τ̂
is called the inserted component of the upper expansion. Conversely, (Γ′, v) is called
the upper contraction of (Γ, τ̂). We define lower expansions and lower contractions
similarly.

It will be convenient to enumerate N -maps in which the root edge joins the root
vertex to a vertex at height 1. We will call such a map an N+-map. Clearly for any
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Figure 2. On the left is an example of an N -map Γ with an emphasised (≥ 1)-
component τ . The upper contraction of (Γ, τ) is shown on the right.

n ≥ 1, exactly half of the N -maps with n edges are N+-maps. In an N+-map, we
will sometimes refer to the root vertex as the root-0 vertex, and the other vertex
incident on the root edge as the root-1 vertex. In order to enumerate these, we
define a number of generating functions which we will relate to each other. We will
start with the 4-valent case.

2.1. Functional equations for the 4-valent case. Let K(x) be the generating
function for N+ maps, where each face has degree 4, counted by edges. Then the
generating function Ã(x) for 4-valent Eulerian orientations, counted by edges is given
by Ã(x) = 1 + 2K(x). As the number of edges in a 4-valent orientation is exactly
twice the number of vertices, the generating function A(x) which counts these maps
by vertices is given by the equation A(x2) = 1 + 2K(x). The functions we use to
calculate coefficients of K will count the following generalisation of these N+-maps.
Define a 4∗-map to be an N+-map in which some vertices may be called contracted,
and some corners may be highlighted, which satisfies the following properties:

• Each inner face has degree 2 or 4.
• Every vertex around the outer face is at height 0 or 1.
• In each inner face with degree 2, one of the two corners is highlighted. No

other corners in the map are highlighted.
• For any highlighted corner, the corresponding vertex must be contracted.
• All vertices adjacent to any given contracted vertex have the same height.

A contracted vertex is called upper contracted if the adjacent vertices are lower than
it, and lower contracted otherwise.

Let Γ′ be a 4∗-map and let v be an upper contracted vertex of Γ′. We will call
an upper expansion (Γ, τ̂) of (Γ′, v) 4-valent if Γ is a 4∗-map and no vertices of τ̂ are
contracted. 4-valent lower expansions are defined similarly.

Now we are ready to define the functions which we will use to calculate K(x):
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Figure 3. An example of a 4∗ map with the root vertex emphasised. The con-
tracted vertices are coloured blue and the highlighted corners are shown by red
dots.

• Let J(x, c) be the generating function for 4∗-maps, with no contracted ver-
tices, where x counts the edges, and c counts the half-degree of the outer
face. We also include the graph in which the root vertex is the only vertex.
This graph contributes 1 to J(x, c).
• Let G(x, b, c) be the generating function for 4∗-maps with no contracted

vertices. Here x counts the edges, b counts the degree of the root-1 vertex
v1, and c counts the half-degree of the outer face. We also include the graph
with only 1 vertex, which contributes 1 to G(x, b, c).
• Let P (x, a, b, c) be the generating function for 4∗-maps, in which the root-0

vertex, v0, is the only contracted vertex. Here x counts the edges, a counts
the number of highlighted corners around v0, b counts the degree of the root-1
vertex v1, and c counts the half-degree of the outer face.
• Finally let Λz be the linear operator defined by Λz(z

n) = [cn]J(x, c).

Since there are only finitely many 4∗-maps with any given number of vertices, each
of these generating functions is a series in x where each coefficient is a polynomial
in the other variables. The first few terms of each series are as follows:

J(x, c) = 1 + cx+ 2c2x2 + (4c+ 5c3)x3 + . . .

G(x, b, c) = 1 + cbx+ (bc2 + b2c2)x2 + (2b2c+ 2b3c+ 2bc3 + 2b2c3 + b3c3)x3 + . . .

P (x, a, b, c) = bcx+ (ab2c+ bc2 + b2c2)x2

+ (a2b3c+ ab3c2 + ab2c2 + abc2 + b3c3 + 2b3c+ 2b2c3 + b2c+ 2bc3)x3 + . . .

Now we will prove that these series are characterised by the following system of
equations:
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Figure 4. On the left is an example of a 4∗-map Γ′ as in Proposition 2.2. The
upper contracted vertex v of lambda has height 2 and is surrounded by 3 highlighted
corners. The map in the centre is a possible upper expansion Γ of (Γ′, v) with the
inserted component τ̂ emphasized. On the right is the corresponding 4∗-map which
is counted by J(x, c), with its root vertex emphasised.

G(x, b, c) = 1 + Λz(P (x, z, b, c)),

J(x, c) = G(x, 1, c),

P (x, a, b, c) = x2b2
P (x, a, b, c)− P (x, a, 1, c)

b− 1

+ xbP (x, a, b, c)(a+ 2[c1]G(x, b, c))

+ xbc(1 + P (x, a, 1, c))G(x, b, c),

Λz (zn) = [cn]J(x, c) for n ≥ 0.

Moreover, we will show that the generating function K(x) is given by the equation

K(x) =
1

x
[c1]J(x, c).

Proposition 2.2. Let Γ′ be a 4∗-map with an upper contracted vertex v at height
k and let n be the number of highlighted corners around v. Then the generating
function Mv(x) for 4-valent upper expansions (Γ, τ̂) of (Γ′, v), counted by edges in τ̂
is given by Mv(x) = Λz(z

n) = [cn]J(x, c).

Proof. For any non-negative integer m, the coefficient [xm][cn]J(x, c) is equal to the
number of 4∗-maps, with no contracted vertices, which contain m edges and where n
is the half-degree of the outer face. We just need to prove that these are in bijection
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with 4-valent upper expansions (Γ, τ̂), where τ̂ contains m edges. Let e be a fixed
edge of Γ′ which is incident on v. For any 4-valent upper expansion (Γ, τ̂) of (Γ′, v),
we will consider the vertex of τ̂ which is incident on e to be the root vertex of τ̂ .
Now we will show that for any such upper expansion, the degree of the outer face
of τ̂ is 2n.

Let F be any inner face of Γ. There are three possibilities: either F is an inner
face of τ̂ , or F contains no edges in common with τ̂ or F contains two edges in
common with each of τ̂ and Γ \ τ̂ . In the first case, F does not correspond to a
face of Γ′. In the second case, F corresponds to a face of Γ′ with the same degree.
If F has degree 2, the highlighted corner of F involves the same vertex in Γ and
Γ′, in particular, since the vertices of τ̂ are not contracted, this vertex cannot be v.
In the final case, F must contain two (outer) edges of τ̂ , so the degree of the outer
face of τ̂ is equal to twice the number of these faces. Moreover, each of these faces
corresponds to a face of degree 2 in Γ′, with a highlighted vertex at v. Hence, the
number of these faces is equal to n, the number of highlighted corners around v.
Therefore, the outer face of τ̂ has degree 2n.

Since each outer edge of τ̂ is contained in one of these faces, this implies that each
outer vertex of τ̂ is contained in one of these faces. Hence, the outer vertices of τ̂
must each be at height k or k + 1. Hence, if we subtract k from the height of every
vertex in τ̂ to form a new map, then this new map is a 4∗-map with no contracted
vertices. Moreover, this transformation is reversible, so we can take any 4∗-map with
no contracted vertices, with m edges and an outer face of degree 2n, and construct
a corresponding upper expansion (Γ, τ̂) of (Γ′, v). This completes the proof that the
two sets are in bijection, which implies that Mv(x) = [cn]J(x, c) = Λz(z

n). �

Similarly to this Proposition, we obtain an equivalent result for lower expansions
if v is a lower contracted vertex.

Now we are ready to prove each of the equations.

Proposition 2.3. The generating function G is given by the equation

G(x, b, c) = 1 + Λz(P (x, z, b, c))

Proof. This result follows immediately from the fact that the non-atomic 4∗ maps Γ
which are counted by G are exactly the lower expansions around the root-0 vertex of
the maps Γ′ which are counted by P . The atomic map contributes 1 to G(x, b, c). �

Proposition 2.4. The generating function J is given by the equation

J(x, c) = G(x, 1, c).

Proof. By definition, J(x, c) and G(x, b, c) count the same maps, the only difference
is that in G there is a weight b which counts the degree of the root-1 vertex, v1.
Hence J(x, c) = G(x, 1, c). �
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Figure 5. The five different types of graphs which contribute to P (x, a, b, c). The
bottom two types are considered in the same case. In Proposition 2.5, The con-
tributions to P from the four cases are shown to be xbc(P (x, a, 1, c) + 1)G(x, b, c),
abxP (x, a, b, c), 2xbP (x, a, b, c)[c1]G(x, b, c) and x2b2(P (x, a, b, c)−P (x, a, 1, c))/(b−
1), respectively.

Proposition 2.5. The generating function P is given by the equation

P (x, a, b, c) = x2b2
P (x, a, b, c)− P (x, a, 1, c)

b− 1

+ xbP (x, a, b, c)(a+ 2[c1]G(x, b, c))

+ xbc(1 + P (x, a, 1, c))G(x, b, c)

Proof. Let Γ be a graph which is counted by P , and let vertices v0, v1 and edge e
be the root-0 vertex, root-1 vertices and root edge of Γ, respectively. First we will
consider the case where removing e disconnects the graph. In this case, let Γ0 be
the component containing v0, and let Γ1 be the component containing v1. Since Γ0

can be any 4∗-map, where v0 is the only contracted vertex, the possibilities for Γ0

are counted by P (x, a, 1, c) + 1. The +1 comes from the fact that Γ0 may be the
atomic map. Since Γ1 has no contracted vertices, the possibilities for it are counted
by G(x, b, c). The edge e obviously contributes one edge, increases the half degree of
the outer face by 1 and contributes 1 to the degree of v1. Hence, this case contributes
xbc(P (x, a, 1, c) + 1)G(x, b, c) to the generating function P .

Now we will consider the case where removal of e does not disconnect the graph.
Then, since the face immediately anticlockwise from e around v0 is the outer face,
the face on the opposite side of e must be an inner face. First we will consider the
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case where this face has degree 2. In this case, removing e forms another graph Γ′

which is counted by P . Since adding e adds 1 to the number of edges, the number
of faces with degree 2 around v0 and the degree of v1, the contribution from this
case is abxP (x, a, b, c).

In the remaining cases, e is adjacent to an inner face F0 with degree 4. Let
v0, v1, u, u1 be the vertices around this face (in clockwise order). Now we will consider
the case where v1 = u1. Let Γ1 be the map formed by the two edges of F0 between
u and v1 along with everything contained in inner faces formed by these edges. Let
Γ2 be the map formed from Γ by removing Γ1 and e. Then Γ is uniquely determined
by Γ2 and Γ1. Moreover, Γ2 can be any map counted by P , so the possible maps
Γ2 are counted by P (x, a, b, c). If u is labelled 0, then Γ1 can be any 4∗-map with
no contracted vertices, with outer degree 2. If u is labelled 2, then replacing every
label t in Γ1 with 2 − t yields any 4∗-map with no contracted vertices, with outer
degree 2. Hence, the possibilities for Γ1 are counted by 2[c1]G(x, b, c). Finally, the
outer degree of Γ is equal to the outer degree of Γ2, and the edge e contributes 1 to
both the number of edges and the degree of v1. Hence, the contribution from this
case is 2xbP (x, a, b, c)[c1]G(x, b, c).

Finally we are left with the case where the inner face F0 has vertices v0, v1, u, u1
with v1 6= u1. Let Γ1 be the map formed from Γ by identifying u1 with v1, then
removing e and one of the edges between v1 and u which borders the face with degree
2 formed between u and v1. Then Γ1 can be any map counted by the generating
function P . To reverse this procedure, we must duplicate an edge adjacent to v1 in
Γ1 and also duplicate the root edge, then split the vertex v1 into two vertices in such
a way that the two faces with degree 2 join to make a quadrangle. Assume that Γ1

contributes xnambkcl to P (x, a, b, c), then Γ1 has n edges, m faces with degree 2, the
outer face has degree 2l, and v1 has degree k. We will now calculate the contribution
to P (x, a, b, c) of all possible 4∗-maps Γ corresponding to this map.

There are k possible choices for the edge incident on v1 to duplicate so as to form
Γ, and for each choice, the k + 1 resulting edges are split between v1 and u1. For
each choice, the resulting degree of v1 is a distinct number between 2 and k + 1.
Hence, the possible graphs Γ are counted by

xn+2amcl(bk+1 + bk + . . .+ b2) = b2xn+2amcl
bk − 1

b− 1
,

We get the total contribution from this case by summing the above expression over
all maps Γ1 counted by P , which gives

x2b2
P (x, a, b, c)− P (x, a, 1, c)

b− 1
.

Adding the contributions from each of the four cases gives the desired result. �

Proposition 2.6. The generating function K(x) for N+ maps, where each face has
degree 4 is given by

K(x) =
1

x
[c1]J(x, c).
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Proof. The expression [c1]J(x, c) counts 4∗-maps with outer degree 2. If we remove
the edge on the outer face which is not the root edge from such a map, we get an N+

map, where each face has degree 4. Moreover, this procedure is clearly reversible.
Hence, since the procedure removes one edge, we get the desired equation. �

2.2. Functional equations for the general case. In this section we find a system
of functional equations which allow us to enumerateN+-maps by edges in polynomial
time. Let V (x) be the generating function for N+-maps, counted by edges. Then the
generating function U(x) for rooted planar Eulerian orientations counted by edges
is given by U(x) = 2V (x) + 1. Define an N∗ map to be an N+ map in which some
vertices may be called contracted such that all corners of the outer face have non-
negative height and all vertices adjacent to a given contracted vertex must be at the
same height. A contracted vertex is called upper contracted if the adjacent vertices
are lower than it, and lower contracted otherwise. Finally, we define the inner degree
of a vertex in an N∗-map to be the number of corners around that vertex which are
not corners of the outer face. Now we will define the other functions:

• Let F (x, c) be the generating function for N∗-maps with no contracted ver-
tices, where c counts the number of corners of the outer face at height 0 and
x counts the edges. In this count we also include the map in which the root
vertex is the only vertex. This contributes 1 to F (x, c).
• Let R(x, a, b) be the generating function for N∗-maps, where the outer face

has degree 2, in which the only contracted vertices are the root-0 vertex, v0,
and the root-1 vertex, v1, where x counts the edges, a counts the degree of
v0 and b counts the degree of v1.
• Let S(x, a, b) be the generating function for N∗-maps, where the outer face

has degree 2, in which the only contracted vertices are the root-0 vertex, v0,
and the root-1 vertex, v1, and there are exactly two edges between v0 and v1,
where x counts the edges, a counts the degree of v0 and b counts the degree
of v1.
• Let H(x, b, c) be the generating function for N∗-maps in which the root-1

vertex, v1, is the only contracted vertex, where x counts the edges, b counts
the degree of v1 and c counts the number of corners of the outer face at
height 0. In this count, we also include the map in which the root-1 vertex
is the only vertex. This contributes 1 to H(x, b, c).
• Let M(x, a, c) be the generating function for N∗-maps in which the root-0

vertex, v0, is the only contracted vertex, where x counts the edges, a counts
the inner degree of v0 and c counts the number of corners of the outer face
at height 0. We also include the map in which the root vertex is the only
vertex. This contributes 1 to M(x, a, c).
• Let T (x, a, b, c) be the generating function for N∗-maps in which the root-0

vertex, v0, and the root-1 vertex, v1 are the only contracted vertices, and the
root edge is the only edge between these vertices, where x counts the edges,
a counts the inner degree of v0, b counts the degree of v1 and c counts the
number of corners of the outer face at height 0.
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• Finally let Ωz be the linear operator defined by Ωz(z
0) = 1 and

Ωz(z
n) =

∞∑
j=0

(
n+ j − 1

n− 1

)
[cj]F (x, c),

for n > 0.

Since there are only finitely many N+-maps with any given edges, each of these
generating functions is a series in x where each coefficient is a polynomial in the
other variables. The first few terms of each series are as follows:

R(x, a, b) = xab+ x2a2b2 + x3
(
a3b3 + a3b2 + a2b3

)
+ . . .

S(x, a, b) = x2a2b2 + x3(a3b2 + a2b3) + x4
(
2a4b2 + a3b3 + 2a3b2 + 2a2b4 + 2a2b3

)
+ x5

(
5a5b2 + 2a4b3 + 8a4b2 + 2a3b4 + 5a3b3 + 10a3b2 + 5a2b5 + 8a2b4 + 10a2b3

)
+ . . .

F (x, c) = 1 + cx+ 2
(
c2 + c

)
x2 +

(
5c3 + 8c2 + 10c

)
x3 + . . .

H(x, b, c) = 1 +bcx+ x2
(
b2c2 + b2c+ bc2

)
+ x3

(
b3c3 + 2b3c2 + 2b3c+ 2b2c3 + b2c2 + 2b2c+ 2bc3 + 2bc2

)
+ . . .

T (x, a, b, c) = xbc+ x2(b2c2 + bc2) + x3
(
abc2 + b3c3 + b3c2 + 2b2c3 + 2bc3 + bc2

)
+ . . .

Now we will show that these are characterised by the following system of equa-
tions:

R(x, a, b) = abx+
1

abx
R(x, a, b)S(x, a, b),

S(x, a, b) = Ωz

(
x2a2b2 +

zS(x, a, b)− bS(x, a, z)

z(b− z)
R(x, a, z)b+

a2

z2
R(x, z, b)S(x, z, b)

)
,

H(x, b, c) = Ωz

(
1

xbz
T (x, z, b, c)R(x, z, b)

)
+ 1,

M(x, a, c) = Ωz

(
1

xaz
T (x, a, z, c)R(x, a, z)

)
+ 1,

F (x, c) = Ωz(H(x, z, c)),

Ωz(z
0) = 1,
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Ωz(z
n) =

∞∑
j=0

(
n+ j − 1

n− 1

)
[cj]F (x, c) for n > 0,

T (x, a, b, c) = Ωz

(
T (x, a, b, c)− T (x, a, z, c)

b− z
R(x, a, z)b

)
+ xb(c− a)H(x, b, c)M(x, a, c) + xabH(x, b, c).

Moreover,

V (x) = Ωy

(
Ωz

(
1

x2y2z2
R(x, y, z)S(x, y, z)

))
.

Proposition 2.7. Let Γ′ be an N∗-map with a lower contracted vertex v at height
0 and let n be the inner degree of v. Then the generating function Mv(x) for lower
expansions (Γ, τ̂) of (Γ′, v), where Γ is an N∗-map, counted by edges in τ̂ is given
by Mv(x) = Ωz(z

n).

Proof. Since (Γ, τ̂) is a lower expansion of (Γ′, v), and v is a vertex at height 0, all
outer vertices of τ̂ are contained in some (≤ 0)-component τ , so these vertices must
have non-positive height. If n = 0, then the inner degree of v is 0, so all outer
vertices of τ̂ are also outer vertices of Γ. But since Γ is an N∗-map, all of its outer
vertices have non-negative height. Hence the outer vertices of τ̂ must all have height
0, which is only possible if τ̂ is the graph with only one vertex. Hence in this case
Mv(x) = 1 = Ωz(z

0).
Now we will consider the case when n ≥ 1. First, highlight one of the edges in Γ′

which is incident on v. Since the outer vertices of τ̂ all have non-positive heights, we
can obtain an N∗-map τ ′ (without contracted vertices) by changing each height s in
τ̂ to −s, using the convention that the root vertex v0 of τ̂ is the vertex adjacent to the
image of the highlighted edge in Γ. Recall that these N∗-maps are enumerated by
F (x, c). Consider a specific N∗-map τ ′, which contributes xkcj to F (x, c). Then the
corresponding map τ̂ contains k edges and around the outer face there are j corners
at height 0. We will calculate the contribution of this map τ̂ to Mv(x). Clearly any
specific lower expansion (Γ, τ̂) contributes xk to Mv(x), so we just need to calculate
the number of lower expansions (Γ, τ̂) of (Γ′, v). Going clockwise around the outer
face of τ̂ , starting at v0, let p1, p2, . . . , pj be the paths between vertices at height
0, so these partition the boundary of τ̂ . Now let c1, c2, . . . , cn be the inner corners
around v in Γ′, in clockwise order starting from the highlighted edge. Then in the
lower expansion, each inner corner ci expands to contain a number ai of the paths
p1, . . . , pj. Since the vertices in τ̂ which are not at height 0 have negative heights,
each path pt must not be on the outside of Γ, so pt must be counted by one of the
terms ai. Moreover, due to the clockwise order, the lower expansion is uniquely
determined by the sequence a1, . . . , an, the only restrictions on this sequence being
that each term ai is a non-negative integer and the sum of the terms is j. The
number of such sequences is (

n+ j − 1

n− 1

)
.
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Hence the contribution of the N∗-map τ ′ to Mv(x) is(
n+ j − 1

n− 1

)
xk.

Summing this over all N∗-maps gives the desired result:

Mv(x) =
∞∑
j=0

(
n+ j − 1

n− 1

)
[cj]F (x, c) = Ωz(z

n).

�

Proposition 2.8. Let Γ′ be an N∗-map with an upper contracted vertex v at height 1
and let n be the degree of v. Then the generating functionMv(x) for upper expansions
(Γ, τ̂) of (Γ′, v), counted by edges in τ̂ is given by Mv(x) = Ωz(z

n).

Proof. The proof is identical to the one above except that c1, . . . , cn is the list of
all corners around v, and the N∗-map τ ′ is constructed by subtracting 1 from each
height in τ̂ . �

Proposition 2.9. The generating function R is given by the equation

R(x, a, b) = abx+
1

xab
R(x, a, b)S(x, a, b).

Proof. Let Γ be an N∗-map which is counted by R. Let v0, v1 and e be the root-0
vertex, root-1 vertex and root edge, respectively. Clearly the case where e is the
only edge contributes abx to R. Otherwise, there must be at least two distinct edges
between v0 and v1. Let e1 be the next edge clockwise around v0 which connects to
v1, and let e′ be the next edge anticlockwise around v0 from e, so e and e′ are the
two edges which border the outer face of Γ. Note that e1 and e′ may or may not be
the same edge. Let Γ1 be the map formed by e and e1 and everything contained in
the cycle formed by these edges. Similarly let Γ2 be the map formed by the edges e1
and e′ and everything they contain. Then Γ1 can be any map which is counted by S
and Γ2 can be any map which is counted by R, Hence the maps Γ are counted by the
product R(x, a, b)S(x, a, b). However, the edge e1 is counted twice in the product in
a, b and x. Hence the contribution from this case is

1

xab
R(x, a, b)S(x, a, b).

Adding the contribution from both cases gives the desired result. �

Proposition 2.10. The generating function S is given by the equation

S(x, a, b) = Ωz

(
x2a2b2 +

zS(x, a, b)− bS(x, a, z)

z(b− z)
R(x, a, z)b+

a2

z2
R(x, z, b)S(x, z, b)

)
.

Proof. Let Γ be an N∗ map which is counted by S. Let v0, v1 and e be the root-0
vertex, root-1 vertex and root edge of Γ. Let e′ be the other edge between v0 and v1.
In the case where vertices v0 and v1 both have degree 2, the edges e and e′ must be
the only edges in the graph. Hence, this case contributes x2a2b2 to S(x, a, b). Next
we will consider the case where v0 has degree 2 but v1 has degree greater than 2. Let
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Figure 6. The three different cases of graphs which contribute to S(x, a, b).
The contributions to S from the three cases are shown to be x2a2b2,

Ωz

(
a2

z2
R(x, z, b)S(x, z, b)

)
and Ωz (R(x, a, z)b(zS(x, a, b)− bS(x, a, z))/(bz − z2))),

respectively.

e1 be the next edge anticlockwise from e around v1, and let u0 be the other vertex
on edge e1. Let τ be the (≤ 0)-component containing u0 and let (Γ′, u0) be the lower
contraction of (Γ, τ̂). Finally, let ΓR be the map formed from Γ′ by removing v0 and
the two edges attached to it, and adding a new edge e2 between u0 and v1 so that
e1 and e2 are the only edges on the outer face of ΓR. Since u0 and v1 are contracted
vertices in ΓR, and the outer face has degree 2, ΓR is counted by R. Since there are
at least two edges between u0 and v1, this map cannot contain only a single edge.
However, for any other map ΓR counted by R, the transformations between Γ and
ΓR can be reversed, so ΓR can be any other map counted by R. Hence, the possible
maps ΓR are counted by

R(x, z, b)− xzb,
where x counts the edges, z counts the degree of u0 and b counts the degree of v1.
Since the transformation from ΓR to Γ′ just removes one edge between u0 and v1,
and adds two between v0 and v1, the possible maps Γ′ are counted by

xa2b

z
(R(x, z, b)− xzb) =

xa2b

z
R(x, z, b)− x2a2b2.

Since (Γ, τ̂1) can be any lower expansion of (Γ′, u0), the contribution to S(x, a, b)
from this case is

Ωz

(
xa2b

z
R(x, z, b)− x2a2b2

)
.

Using the previous Proposition, we can rewrite this as

Ωz

(
a2

z2
R(x, z, b)S(x, z, b)

)
.

Finally, we will consider the case where v0 has degree greater than 2. Let e0 be
the next edge clockwise from e around v0 and let u1 be the other vertex connected
to e0. Let τ be the (≥ 1)-component containing u1, and let (Γ′, u1) be the upper
contraction of (Γ, τ̂). Let ΓR be the map formed by all edges between v0 and u1
in Γ′ along with everything contained in the inner faces of these edges. Let Γ′′ be
the map formed from Γ′ by replacing all of ΓR with a single edge. Now let ΓS be
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Γ v0

u1
e0

e e′

v1

Γ′ v0

u1
e0

e e′

v1

Γ′′ v0

u1
e0

e e′

v1

ΓR

ΓS v0

e e′

v1 (= u1)

Figure 7. On the left is an example of a graph Γ counted in the third case of
Proposition 2.10, with the (≥ 1)-component τ highlighted. The other graphs shown
are Γ′, Γ′′, ΓR and ΓS, which are involved in the decomposition of Γ. The contracted
vertices are coloured blue and all other vertices are coloured green.

the graph formed from Γ′′ by deleting the edge e0 and identifying u1 with v1 (this
vertex in ΓS will be called v1). In ΓS, the edges e and e′ still form the outer face
and they are the only two edges between v0 and v1. Hence, ΓS is counted by the
generating function S. Assume that ΓS contributes xnamdk to S(x, a, d). So ΓS has
n edges, and the degress of v0 and v1 in ΓS are m and k, respectively. By analysing
the transformation from Γ′′ to ΓS, we can see that in Γ′′, the sum of the degrees of
u1 and v1 is k + 1, the number of edges is n+ 1 and the degree of v0 is m+ 1. The
degree of v1 must be at least 2, and the degree of u1 must be at least 1, but subject
to these restrictions, there is exactly one map Γ′′ for each choice of degrees of v1 and
u1. Hence, the possible graphs Γ′′ are counted by

xn+1am+1(b2zk−1 + b3zk−2 + . . .+ bkz) = xn+1am+1 b
k+1z − b2zk

b− z
,

where b counts the degree of v1 and z counts the degree of u1. Now, since the
possible maps ΓR are counted by R(x, a, z), and Γ′ is formed by combining any map
Γ′′ with any map ΓR, while removing one edge between v0 and u1, the possible maps
Γ′ are counted by

1

xaz
xn+1am+1 b

k+1z − b2zk

b− z
R(x, a, z) = xnam

bk+1 − b2zk−1

b− z
R(x, a, z).

Then, since (Γ, τ̂) can be any upper expansion of (Γ′, u1), The possible graphs Γ are
counted by

Ωz

(
xnam

bk+1 − b2zk−1

b− z
R(x, a, z)

)
.
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Summing this over all possible graphs ΓS gives the contribution from this case

Ωz

(
bS(x, a, b)− b2

z
S(x, a, z)

b− z
R(x, a, z)

)
.

Finally, adding the contributions from all three cases gives the desired result. �

Proposition 2.11. The generating function H is given by the equation

H(x, b, c) = Ωz

(
1

xbz
T (x, z, b, c)R(x, z, b)

)
+ 1.

Proof. Let Γ be an N∗-map which is counted by H such that Γ is not just a single
vertex. Let v0, v1 and e be the root-0 vertex, root-1 vertex and root edge of Γ,
respectively. Let τ be the (≤ 0)-component containing v0, and let (Γ′, v0) be the
lower contraction of (Γ, τ̂). Let ΓR be the map formed by all edges between v0 and
v1 in Γ′ along with everything contained in inner faces of these edges. Then the
outer face of ΓR has degree 2, so the possible maps ΓR are counted by R. Let ΓT
be the map formed from Γ′ by replacing all of ΓR with a single edge. In ΓT , there
is only one edge between v0 and v1, so ΓT is counted by the generating function T .
Assume that ΓR contributes xnzmbk to R(x, z, b). Then the transformation from Γ′

to ΓT decreases the number of edges by n − 1, the degree of v1 by k − 1 and the
inner degree of v0 by m − 1. Hence, if we let z count the inner degree of v0 in Γ′,
then the possible maps Γ′ are counted by

xn−1zm−1bk−1T (x, z, b, c).

Then, since Γ can be any lower expansion of (Γ′, v0), the possible maps Γ are counted
by

Ωz(x
n−1zm−1bk−1T (x, z, b, c)).

Summing over all possible maps ΓR gives the contribution

Ωz

(
1

xbz
T (x, z, b, c)R(x, z, b)

)
.

Finally, adding 1 for the case when Γ is a single vertex gives the desired result. �

Proposition 2.12. The generating function M is given by the equation

M(x, a, c) = Ωz

(
1

xaz
T (x, a, z, c)R(x, a, z)

)
+ 1.

Proof. Let Γ be an N∗-map which is counted by M such that Γ is not just a single
vertex. Let v0, v1 and e be the root-0 vertex, root-1 vertex and root edge of Γ,
respectively. Let τ be the (≥ 1)-component containing v1, and let (Γ′, v1) be the
upper contraction of (Γ, τ̂). Let ΓR be the map formed by all edges between v0 and
v1 in Γ′ along with everything contained in inner faces of these edges. Then the
outer face of ΓR has degree 2, so the possible maps ΓR are counted by R. Let ΓT
be the map formed from Γ′ by replacing all of ΓR with a single edge. In ΓT , there
is only one edge between v0 and v1, so ΓT is counted by the generating function T .
Assume that ΓR contributes xnamzk to R(x, a, z). Then the transformation from Γ′
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Figure 8. The three different types of graph which contribute to T (x, a, b, c). From
left to right, the types are counted by T0(x, a, b, c), T1(x, a, b, c) and T2(x, a, b, c).

to ΓT decreases the number of edges by n − 1, the degree of v1 by k − 1 and the
inner degree of v0 by m− 1. Hence, if we let z count the degree of v1 in Γ′, then the
possible maps Γ′ are counted by

xn−1am−1zk−1T (x, a, z, c).

Then, since Γ can be any upper expansion of (Γ′, v1), the possible maps Γ are counted
by

Ωz(x
n−1am−1zk−1T (x, a, z, c)).

Summing over all possible maps ΓR gives the contribution

Ωz

(
1

xaz
T (x, a, z, c)R(x, a, z)

)
.

Finally, adding 1 for the case when Γ is a single vertex gives the desired result. �

Proposition 2.13. The generating function F is given by the equation

F (x, c) = Ωz(H(x, z, c)).

Proof. Let Γ be an N∗ map which is counted by H, and let v0 be the root-0 vertex
of Γ. Let (ΓF , τ̂) be any lower expansion of (Γ, v0). Then the possible maps ΓF
are exactly those which are counted by F . It follows immediately that F (x, c) =
Ωz(H(x, z, c)). �

Proposition 2.14. The generating function T is given by the equation

T (x, a, b, c) = Ωz

(
T (x, a, b, c)− T (x, a, z, c)

b− z
R(x, a, z)b

)
+bx(c−a)H(x, b, c)M(x, a, c)+bxaH(x, b, c).

Proof. Let Γ be an N∗-map which is counted by T , and let v0, v1 and e be the
root-0 vertex, root-1 vertex and root edge of Γ, respectively. Let T0(x, a, b, c) be
the contribution to T from maps Γ in which v0 has degree 1. Let T1(x, a, b, c) be
the contribution from maps in which v0 has degree at least 2, but the removal of
e disconnects the graph. Let T2(x, a, b, c) be the contribution from maps in which
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Figure 9. On the left is an example of a graph Γ counted in the third case of
Proposition 2.14, with the (≥ 1)-component τ highlighted. The other graphs shown
are Γ′, Γ′′, ΓR and ΓT , which are involved in the decomposition of Γ.

the removal of e does not disconnect the graph (which implies that v0 has degree at
least 2). Then

T (x, a, b, c) = T0(x, a, b, c) + T1(x, a, b, c) + T2(x, a, b, c).

First we will calculate T0. Assume that Γ is counted by T0. Then if we remove
e and v0, we get a map Γ′ counted by H(x, b, c). Since the removal of v0 and e
decreases the degree of v1 by 1, the number of edges by 1 and the number of outer
corners at height 0 by 1, we have the equation

T0(x, a, b, c) = xbcH(x, b, c).

Now we will consider the case where removing e disconnects the graph. Clearly,
this case is enumerated by T0(x, a, b, c) + T1(x, a, b, c). In this case, let Γ0 be the
component containing v0, and let Γ1 be the component containing v1. Since Γ0

can be any N∗-map, where v0 is the only contracted vertex, the possibilities for Γ0

are counted by R(x, a, c). Similarly, Γ1 can be any N∗-map where v1 is the only
contracted vertex, so the possibilities for this are counted by H(x, b, c). The edge e
obviously contributes one edge, and adds one to the degree of v1, and also increases
the number of outer corners at height 0 by 1 (since v0 is on the outer face one further
time). Hence,

T0(x, a, b, c) + T1(x, a, b, c) = xbcM(x, a, c)H(x, b, c).

Now we will consider the case where v0 has degree at least 2, however we will ignore
the corner immediately clockwise from e around v0 in calculating the exponent of
c and a. So, this case is counted by T1(x, a, b, c)/c + T2(x, a, b, c)/a. Let e′ be the
next edge clockwise around v0, and let u1 be the other vertex connected to e′. Let
τ be the (≥ 1)-component containing u1, and let (Γ′, u1) be the upper contraction
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of (Γ, τ̂). Now let ΓR be the map formed by all edges between v0 and u1 in Γ′ along
with everything contained in the inner faces of these edges. Let Γ′′ be the map
formed from Γ′ by replacing all of ΓR with a single edge. Since v0 is contracted, u1
must have height 1. Now let ΓT be the graph formed from Γ′′ by deleting the edge
e joining v0 to v1 and identifying v1 and u1 as the single vertex t1. In ΓT , t1 is only
adjacent to vertices at height 0 and v0 is only adjacent to vertices at height 1, so
ΓT is counted by the generating function T . Assume that ΓT contributes xnambkcl

to T (x, a, b, c). So ΓT has n edges, there are l outer corners at height 0, the vertex
t1 has degree k and the vertex v0 in Γ′′ has inner degree m. In the transformation
from Γ′′ to ΓT , no inner corners are removed, except perhaps the corner between e
and e′, which we don’t count. Moreover, the sum of the degrees of u1 and v1 in Γ′′

is k + 1 and the number of edges in Γ′′ is n+ 1. Note that the transformation from
Γ′′ to ΓT does not affect the number of 0’s around the outer face, except perhaps at
the corner which we don’t count. Hence, the possible graphs Γ′′ are counted by

xn+1amcl(bkz + bk−1z2 + . . .+ bzk) = xn+1amcl
bz(bk − zk)
b− z

,

where b counts the degree of v1 and z counts the degree of u1. Clearly the possible
maps ΓR are counted by R(x, a, z). Hence, the possible maps Γ′ are counted by

1

xaz
xn+1amcl

bz(bk − zk)
b− z

R(a, z, c) = xnam−1cl
b(bk − zk)
b− z

R(a, z, c).

Since Γ can be any upper expansion of Γ′ at u1, the possible maps Γ are counted by

Ωz

(
xnam−1cl

b(bk − zk)
b− z

R(a, z, c)

)
.

Summing over all possible maps ΓT gives the contribution

Ωz

(
b(T (x, a, b, c)− T (x, a, z, c))

a(b− z)
R(a, z, c)

)
from this case. Hence,

1

c
T1(x, a, b, c) +

1

a
T2(x, a, b, c) = Ωz

(
b(T (x, a, b, c)− T (x, a, z, c))

a(b− z)
R(a, z, c)

)
.

Finally, combining the four equations relating T , T0, T1 and T2 gives the desired
result. �

Proposition 2.15. The generating function V for N+-maps counted by edges is
given by the equation

V (x) = Ωy

(
Ωz

(
1

xyz
R(x, y, z)− 1

))
.

Proof. Let Γ be an N+-map, and let v0, v1 and e be the root-0 vertex, root-1 vertex
and root edge of Γ respectively. Let τ0 be the (≤ 0)-component containing v0 and let
τ1 be the (≥ 1)-component containing v1. Now let (Γ′, v0) be the lower contraction
of (Γ, τ̂0) and let (Γ′′, v1) be the upper contraction of (Γ′, τ̂1). Finally let ΓR be the
map obtained by adding another edge e′ to Γ′′ between v0 and v1, on the outside
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of the map, so that e and e′ are the only edges on the outer face of ΓR. Since v0
and v1 are contracted vertices in ΓR, and the outer face has degree 2, ΓR is counted
by R. Since there are at least two edges between v0 and v1 in ΓR, this map cannot
contain only a single edge. However, for any other map ΓR counted by R, the
transformations between Γ and ΓR can be reversed, so ΓR can be any other map
counted by R. Hence, the possible maps ΓR are counted by

R(x, y, z)− xyz,
where x counts the edges, y counts the degree of v0 and z counts the degree of v1.
Since the transformation from ΓR to Γ′′ just removes one edge between v0 and v1,
the possible maps Γ′ are counted by

1

xyz
(R(x, y, z)− xyz) =

1

xyz
R(x, y, z)− 1.

Since (Γ′, τ̂1) can be any upper expansion of (Γ′′, v1), the possible graphs Γ′ are
counted by

Ωz

(
1

xyz
R(x, y, z)− 1

)
,

where x counts the edges in Γ′ and y counts the degree of v0. Similarly, since (Γ, τ̂0)
can be any upper expansion of (Γ′, v0), the possible graphs Γ are counted by

V (x) = Ωy

(
Ωz

(
1

xyz
R(x, y, z)− 1

))
.

�

3. The algorithms

From these functional equations, we use a dynamic program to calculate the
coefficients in polynomial time. For the case of general rooted planar Eulerian ori-
entations, this is possible, since if we calculate the coefficient of xn in each of the
functions T, S,R,H, F in that order, for n = 0, 1, 2, . . . , then each of these coef-
ficients is determined only by values which have been previously calculated. The
coefficients were calculated modulo a prime smaller than 231, repeated for several dif-
ferent primes, sufficient to calculate the coefficient by use of the Chinese Remainder
Theorem. In this way we calculated 90 terms of the generating function for pla-
nar Eulerian orientations counted by edges U(x), and 100 terms for the generating
function for 4-valent planar Eulerian orientations counted by vertices, A(x).

4. Analysis of generating functions

We first tried to analyse these series by the method of differential approximants
(DAs) [4, 6, 7]. The results were not totally straightforward. Assuming a power-law
singularity of the form

f(x) ∼ C(1− x/xc)α,
then for U(x) we found the closest singularity to the origin to be at xc ≈ 0.07957736,
with an exponent around α ≈ 1.24. However there was a second singularity very
close by, at x ≈ 0.0795789, with an exponent around 2.26, and a third, less precisely
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located singularity at around x ≈ 0.0798, with a complex exponent the value of
which is irrelevant.

For A(x) we found essentially identical results, just with a changed radius of
convergence. In particular we found the closest singularity to the origin to be at
xc ≈ 0.04594404, with an exponent around 1.23. There was a second singularity
very close by, at x ≈ 0.04594449, with an exponent around 2.23, and a third, less
precisely located, at around x ≈ 0.0459, with a complex exponent the value of which
is irrelevant.

This behaviour, where one has two singularities very close together, with an expo-
nent separated by about 1.0, is known to be characteristic of a confluent singularity,
and more precisely, a confluent singularity involving a logarithmic term. To illus-
trate this explicitly, we constructed a test series, chosen by our expectation that
series A(x) at least should be of the form given in the introduction, being derived
from Kostov’s [8] solution of the six-vertex model. It is

f(x) =
−x(1− µx)

log(1− µx)
,

where, anticipating our later results, we take µ = 4π = 12.56637061435917 =
1/0.0795774715459476678844418. Then

[xn]f(x) = c · µn/(n2 · log2 n),

[2]. We analysed the series with 3rd order differential approximants, using a series
of length 50 terms, i.e. up to O(x50).

This function is not D-finite, and is not well-represented by DAs. Indeed the DAs
are found to have two very close singularities, the most precisely located one is at
0.07957733, with an exponent 1.30−1.32, the other is at 0.0795782−0.0795786, with
exponent around 2.30 plus a nearby third singularity, much less precisely located,
at around 0.07955 − 0.07958 with an exponent of 2.5 − 3.5 plus a small imaginary
component. That is to say, very similar behaviour to that observed above for A(x)
and U(x).

The similarity in behaviour of the test series and both the series A(x) and U(x)
is very suggestive. Indeed, it is on this basis that we were led to conjecture that the
radius of convergence of U(x) is 1/(4π). Similarly, the radius of convergence of A(x)
is conjectured to be 1/(4

√
3π).

Having seen that the method of DAs has difficulties in estimating the critical
exponent in this case, we turned to ratio-based methods.

If the generating function behaves as in our test series, then

(1) [xn]f(x) =
c · µn

n2

(
1

log2 n
+

a

log3 n
+

b

log4 n
+

c

log5 n
+ o

(
1

log5 n

))
.

To extract asymptotics from numerical data is difficult when successive terms are
only weaker by a factor of a logarithm, which varies but slowly unless one has a vast
number of terms.
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The ratio of successive coefficients in this case behaves as

rn =
[xn]f(x)

[xn−1]f(x)
= µ

(
1− 2

n
− 2

n log n

(
1 +

c1
log n

+
c2

log2 n
+

c3

log3 n

)
+ o

(
1

n log4 n

))
.

We show in figures 10 and 11 the ratios for U(x) and A(x) plotted against 1/n. Both
plots exhibit slight concavity, due to the logarithmic corrections.

Figure 10. Ratio plot of coefficients of
U(x).

Figure 11. Ratio plot of coefficients of
A(x).

If we eliminate the O(1/n) term by constructing linear intercepts,
(2)

ln = n · rn − (n− 1) · rn−1 = µ

(
1 +

2

n log2 n
+

4c1

n log3 n
+

6c2

n log4 n
+ o

(
1

n log4 n

))
the corresponding plots of the linear intercepts against 1/(n · log2 n) are shown in
figures 12 and 13. Note that the ordinate is compressed by about a factor of 10,
and secondly, the plot exhibits more curvature, presumably reflecting competition
between subdominant logarithmic terms. Indeed, from the asymptotics, it is clear
that this sequence must eventually have a positive gradient as n increases, so must
pass through a maximum. We will see below that this occurs for sufficiently large
n.

These ratios are behaving quite smoothly, and it would be desirable to have many
more. It is not realistic to get vastly more terms exactly, but we can get them
approximately with high enough precision for our purposes by using the method of
series extension. The idea behind this method to obtain further ratios (or terms)
is simply to use the method of differential approximants to predict subsequent ra-
tios/terms. The detailed description as to how this is done is given in [5].

Suffice it to say, every differential approximant naturally reproduces exactly all
coefficients used in its derivation, and, being a D-finite differential equation, which
implies the existence of a linear recurrence for the coefficients, therefore implies the
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Figure 12. Plot of linear intercepts of
ratios of U(x) vs. 1/n log2 n.

Figure 13. Plot of linear intercepts of
ratios of A(x) vs. 1/n log2 n.

value of all subsequent coefficients. These subsequent coefficients will not be exact
(unless the solution is D-finite of sufficiently low degree that the DA is exact), but
are approximate. It is to be expected that the first approximate coefficient will be
the most accurate, while the accuracy will decline with increasing order of predicted
coefficients. In practice we construct many DAs. We then calculate the average
of the predicted coefficients (or ratios) across all constructed DAs, as well as the
standard deviation, and have experimentally found the true error to be between 1
and 2 standard deviations.

The number of terms we can predict varies from problem to problem. In this case
we are extremely fortunate, in that the standard deviation of the coefficient estimates
increases extremely slowly, and so we are confident in predicting 1000 extra ratios for
both series which we expect to be accurate to more than 10 significant digits. That
is more than enough for our purposes. Using these additional terms, we reconstruct
the plot shown in Figure 13 in Figure 14, using a further 1000 ratios. Note that the
locus passes through a maximum, reflecting competition between the subdominant
logarithmic terms, and the linear intercepts are now decreasing with increasing n, as
predicted by the asymptotic expression (2). In Figure 15, we show the same plot, but
with the abscissa restricted to ratios corresponding to 700 ≤ n ≤ 1100. The value
of the ordinate at the origin in Figure 15 is precisely 4

√
3π, and the extrapolated

locus is convincingly going through the origin.
The corresponding plots for planar orientations, given by the generating function

U(x), is shown in figures 16 and 17, where now the value of the ordinate at the
origin in Figure 17 is precisely 4π, and again the extrapolated locus is convincingly
going through the origin.
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Figure 14. Plot of linear intercepts of
ratios of A(x) vs. 1/n log2 n, using an
extra 1000 ratios.

Figure 15. Plot of linear intercepts of
ratios of A(x) vs. 1/n log2 n, using ratios
700 to 1100.

Figure 16. Plot of linear intercepts of
ratios of U(x) vs. 1/n log2 n, using an
extra 1000 ratios.

Figure 17. Plot of linear intercepts of
ratios of U(x) vs. 1/n log2 n, using ratios
700 to 1100.

Now that we have good grounds to conjecture the exact value of the critical points,
we are in a better position to estimate the exponent. From [2], p.385 we see that if

f(x) = (1− µ · x)−α
(

1

µ · x
log

1

1− µ · x

)β
,
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then

[xn]f(x) =
µn · nα−1

Γ(α)
(log n)β

(
1 +

c1
log n

+
c2

log2 n
+

c3

log3 n
+

c4

log4 n
+ o

(
1

log4 n

))
,

where

ck =

(
β

k

)
Γ(α)

dk

dsk
1

Γ(s)

∣∣∣∣
s=α

.

When α is a negative integer, the evaluation of the constants must be interpreted
as a limiting case as the Γ function diverges, so that certain constants vanish. In
particular, provided that α is a negative integer and β is not zero or a positive
integer, one has

[xn]f(x) = µn · nα−1(log n)β
(

c1
log n

+
c2

log2 n
+

c3

log3 n
+

c4

log4 n
+ o

(
1

log4 n

))
.

The ratio of successive coefficients is in the general case

rn =
[xn]f(x)

[xn−1]f(x)
= µ

(
1 +

α− 1

n
+

β

n log n
− c1

n log2 n
+ o

(
1

n log2 n

))
,

but in the case that α is a negative integer and β is not zero or a positive integer,
one has

rn =
[xn]f(x)

[xn−1]f(x)
= µ

(
1 +

α− 1

n
+

β − 1

n log n
+

d

n log2 n
+ o

(
1

n log2 n

))
,

where d = −c2/c1.
So one can estimate α from the sequence

αn =

(
rn
µ
− 1

)
· n+ 1 = α +

β

log n
− d

log2 n
+ o

(
1

log2 n

)
.

Plots of αn against 1/ log n for both U(x) and A(x) respectively are shown in figures
18 and 19, and it can be seen that having many more than 100 terms is essential.
In fact the minimum in both plots occurs at around n = 100, and it is only with
our extended data that the limit α = −1 becomes plausible.

To take into account higher-order terms in the asymptotics, we attempted a linear
fit to the assumed form (also assuming α is a negative integer, otherwise β replaces
β − 1),

(3)

(
rn
µ
− 1

)
· n+ 1 = α +

β − 1

log n
− d

log2 n
+ o

(
1

log2 n

)
.

We did this by solving the linear system given by setting n = m − 1, n = m, n =
m+1 in the preceding equation, and solving for α, β, d, with m ranging from 20 to
the maximum possible value 1100. We obtain an m-dependent sequence of estimates
of the terms α, β, d, which we show plotted against appropriate powers of 1/m.
These are shown in figures 20 and 21 for planar orientations. (The corresponding
plots for 4-valent orientations are similar in appearance, so are not shown).
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Figure 18. Plot of exponent α esti-
mates from U(x) vs. 1/ log n, using an
extra 1000 ratios.

Figure 19. Plot of exponent α esti-
mates from A(x) vs. 1/ log n, using an
extra 1000 ratios.

In this way we see that both α and β are plausibly going to −1, as appropriate
for a singularity of the form

c · µ · x · (1− µ · x)

log(1− µ · x)
.

Figure 20. Plot of exponent α esti-
mates from eqn (3).

Figure 21. Plot of exponent β − 1 es-
timates from eqn (3).
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Finally, if we accept that α = −1, we can refine the estimate of β, since in that
case

(4)

(
rn
µ
− 1 +

2

n

)
n log n = β − 1 +O

(
1

log n

)
.

The result is shown in Figure 22 which is plausibly tending to β = −1, though the
fact that the abscissa is 1/ log n means that one would really need many more terms,
around 22,000, even to get to 0.1 on the abscissa.

Figure 22. Plot of exponent β estimates from eqn (4).

5. Conclusion

We have derived a system of functional equations characterising the ordinary
generating functions A(x) and U(x) for 4-valent planar Eulerian orientations counted
by vertices and for planar Eulerian orientations counted by edges respectively. We
have then developed a dynamic programming algorithm to generate coefficients of
A(x) and U(x) of length 100 and 90 terms respectively. We then used the method
of series extension to generate a further 1000 terms in each case with an accuracy
of, we believe, at least 10 significant digits.

We analysed the exact and extended series in order to estimate the asymptotics.
We found that

A(x) ∼ const.(1− µ4z)/ log(1− µ4z)

and

U(x) ∼ const.(1− µz)/ log(1− µz),

where we conjecture that µ4 = 4
√

3π ≈ 21.76559 and that µ = 4π ≈ 12.56637.
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Given this proposed asymptotic form, the generating function cannot be D-finite.
Attempts to discover D-algebraic solutions from the known exact coefficients have
been unsuccessful, but this could well be because we have insufficient terms.

Nevertheless, being able to conjecture the exact value of the growth constants is
quite remarkable, and suggests that the problems may be exactly solvable.

After completion of this work, we realised that our conjecture for 4-valent Eulerian
orientations is, with hindsight, found in the work of Kostov [8], though the different
notation, and field theoretic methods used there make the connection difficult to
see. In Kostov’s language, one restricts to the special case of the 6-vertex model
known as the F-model (a restriction in which the weights of the different types of
vertices are all equal), and sets the parameter λ = 1

3
, (see eqn. (2.1) in [8]), then

from eqns. (2.10) and (3.40) the critical temperature is predicted to be T∗ = 4
√

3π.
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