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Abstract

The cop number of a graph G is the smallest k such that k cops win the game of cops and robber on G. We
investigate the maximum cop number of geometric intersection graphs, which are graphs whose vertices are
represented by geometric shapes and edges by their intersections. We establish the following dichotomy for
previously studied classes of intersection graphs:

• The intersection graphs of arc-connected sets in the plane (called string graphs) have cop number at
most 15, and more generally, the intersection graphs of arc-connected subsets of a surface have cop
number at most 10g + 15 in case of orientable surface of genus g, and at most 10g′ + 15 in case of
non-orientable surface of Euler genus g′. For more restricted classes of intersection graphs, we obtain
better bounds: the maximum cop number of interval filament graphs is two, and the maximum cop
number of outer-string graphs is between 3 and 4.

• The intersection graphs of disconnected 2-dimensional sets or of 3-dimensional sets have unbounded cop
number even in very restricted settings. For instance, we show that the cop number is unbounded on
intersection graphs of two-element subsets of a line, as well as on intersection graphs of 3-dimensional
unit balls, of 3-dimensional unit cubes or of 3-dimensional axis-aligned unit segments.

Keywords: intersection graphs, string graphs, graphs on surfaces, interval filament graphs, cop and
robber, pursuit games, games on graphs

1. Introduction

The game of cops and robber on graphs has been introduced independently by Quilliot [23, 24] and by
Winkler and Nowakowski [19]. In this paper, we investigate the game on geometric intersection graphs.

Rules of the Game. The first player, called the cops, places k cops on vertices of a graph G. Then the
second player, called the robber, places the robber on a vertex. Then the players alternate. In the cops’
move, every cop either stays in its vertex, or moves to one of its neighbors. More cops may occupy the same
vertex. In the robber’s move, the robber either stays in its vertex, or moves to a neighboring vertex. The
game ends when the robber is captured which happens when a cop occupies the same vertex as the robber.
The cops win if they are able to capture the robber. The robber wins if he is able to escape indefinitely.

IThe conference versions of parts of this paper appeared in ISAAC 2013 [10] and ISAAC 2015 [11]. For a structural dynam-
ical diagram of the results of this paper, see http://pavel.klavik.cz/orgpad/cops_on_intersection_graphs.html (supported
for Firefox and Google Chrome). The third, the fourth, and the fifth authors are supported by CE-ITI (P202/12/G061 of
GAČR), the first, the fourth and the fifth authors are supported by Charles University as GAUK 196213.

Email addresses: gavento@kam.mff.cuni.cz (Tomáš Gavenčiak), pgordin@p.lodz.pl (Przemys law Gordinowicz),
jelinek@iuuk.mff.cuni.cz (Vı́t Jeĺınek), klavik@iuuk.mff.cuni.cz (Pavel Klav́ık), honza@kam.mff.cuni.cz (Jan
Kratochv́ıl)
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Maximum Cop Number. For a graph G, its cop number cn(G) is the least number k such that k cops have
a winning strategy on G. For a class of graphs C, the maximum cop number max-cn(C) is the maximum cop
number cn(G) of a connected graph G ∈ C, possibly +∞. The restriction to connected graphs is standard: if

G has connected components C1, . . . , Ck, then cn(G) =
∑k

i=1 cn(Ci). Therefore, a graph class closed under
disjoint union cannot have a bounded maximum cop number if we omit this restriction. Throughout the
paper, we only work with connected graphs.

Known Results. Graphs of the cop number one were characterized already by Quilliot [24] and by
Nowakowski and Winkler [19]. These are the graphs whose vertices can be linearly ordered v1, v2, . . . , vn
so that each vi for i ≥ 2 is a corner of G[v1, . . . , vi], i.e., vi has a neighbor vj for some j < i such that vj
is adjacent to all other neighbors of vi. Andreae [2] proved that k-regular graphs have the maximum cop
number equal +∞ for all k ≥ 3.

For k part of the input, deciding whether the cop number of a graph is at most k has been shown to
be NP-hard [9], PSPACE-hard [17] and very recently EXPTIME-complete [14], confirming a 20 years old
conjecture of Goldstein and Reingold [13]. In order to test whether k cops suffice to capture the robber on
an n-vertex graph, we can search the game graph which has O(nk+1) vertices to find a winning strategy for
cops. In particular, if k is a fixed constant, this algorithm runs in polynomial time.

For general graphs on n vertices, it is known that at least
√
n cops may be needed (e.g., for the incidence

graph of a finite projective plane [21]). Meyniel conjecture states that the cop number of a connected
n-vertex graph is O(

√
n). For more details and results, see the book [5].

Geometrically Represented Graphs. We want to argue that the geometry of a graph class heavily
influences the maximum cop number. For instance, the classical result of Aigner and Fromme [1] shows that
the maximum cop number of planar graphs is 3. This result was generalized to graphs of bounded genus by
Quilliot [25] and improved by Schroeder [27]:

cn(G) ≤ 3

2
g + 3, (1)

where g is the (orientable) genus of G. For non-orientable surfaces, a similar result was obtained by Clarke
et al. [6]:

cn(G) ≤ 3

2
g′ +

3

2
, (2)

where g′ is the Euler genus of G (also called the crosscap number of the surface G is drawn on). However,
the exact value of the maximum cop number is not known already for toroidal graphs (g = 1).

We study intersection representations in which a graph G is represented by a map ϕ : V → 2X for some
ground set X such that the edges of G are described by the intersections: uv ∈ E ⇐⇒ ϕ(u) ∩ ϕ(v) 6= ∅.
The ground set X and the images of ϕ are usually somehow restricted to get particular classes of intersection
graphs. For example, the well-known interval graphs have X = R and every ϕ(v) is a closed interval.

All these graph classes admit large cliques, so their genus is unbounded and the bound (1) of the maximum
cop number does not apply. On the other hand, existence of large cliques does not imply big maximum cop
number since only one cop is enough to guard a maximal clique. For instance, chordal graphs, which are
intersection graphs of subtrees of a tree, may have arbitrary large cliques but their maximum cop number
is 1.

String Graphs. The class of string graphs (STRING) is the class of intersection graphs of strings: X = R2

and every ϕ(v) is a bounded curve, i.e., a continuous image of the interval [0, 1] in R2. It is known that
every intersection graph of arc-connected sets in the plane is a string graph. For instance, boxicity d graphs
(d-BOX), which are intersection graphs of d-dimensional intervals in Rd, are string graphs when d ≤ 2.

The class of outer-string graphs (OUTER-STRING) consists of all string graphs having string represen-
tations with each string in the upper half-plane, intersecting the x-axis in exactly one point, which is an
endpoint of this string.

The class of interval filament graphs (INTERVAL FILAMENT), introduced by Gavril [12], consists of
intersection graphs of interval filaments, where an interval filament ϕ(v) defined on an interval [a, b] is the
graph of a continuous function fv : [a, b] → R such that fv(a) = fv(b) = 0 and fv(x) > 0 for all x ∈ (a, b).
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g-EULER-GENUS STRING

1

2
g′

1

3 ≤ max-cn ≤ 10g′ + 15

STRING

3 ≤ max-cn ≤ 15

EULER-GENUS g

1

2
g

1

3 ≤ max-cn ≤
3

2
g′ + 3

2
[6]

PLANAR

max-cn = 3 [1]

d-BOX

max-cn = +∞

2-BOX

2 ≤ max-cn ≤ 15

OUTER-STRING

3 ≤ max-cn ≤ 4

INTERVAL FILAMENT

max-cn = 2

CIRCLE

max-cn = 2

CIRCULAR-ARC

max-cn = 2

FUNCTION

max-cn = 2

CHORDAL

max-cn = 1 [4]

INTERVAL

max-cn = 1 [4]

ℓ-INTERVAL

max-cn = +∞

2-UNIT BALL

3 ≤ max-cn ≤ 9 [4]

K4

K6

Figure 1: The Hasse diagram of inclusions of the considered classes of graphs, together with bounds on the maximum cop
number. The classes with previously known bounds are depicted in white, and the classes with the bounds proved in this paper
are depicted in gray. Bounded boxicity of bounded genus graphs has been shown in [8].
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In our description, we identify the filament ϕ(v) with the function fv, i.e., we use ϕ(v)(x) instead of fv(x).
It holds that INTERVAL FILAMENT ( OUTER-STRING ( STRING. (The first inequality is strict from
Theorem 1.1(i) and (ii), the second follows from [26].)

Let S be an arbitrary orientable surface of genus g. We consider a generalization of string graphs for
X = S and every ϕ(v) is a bounded curve in S, and we denote this class by g-GENUS STRING. It can be seen
that any intersection graph of arc-connected subsets of S belongs to g-GENUS STRING. It is known that every
graph embeddable to a surface of genus g can be represented by a contact representation of disks on a suitable
Riemann surface of genus g; so GENUS g ( g-GENUS STRING. (It is strict since arbitrarily large complete
graphs belong to g-GENUS STRING, but not to GENUS g.) Similarly. let g′-EULER-GENUS STRING denote
intersection graphs of bounded curves on a (possibly non-orientable) surface of Euler genus g′ (equal to the
crosscap number of the surface).

Note that while we could work only with Euler genus for both orientable and non-orientable surfaces,
the bounds obtained for orientable genus are significantly lower that for Euler genus (since g′ ≤ 2g is the
best possible general bound).

Intersection Graphs of Disconnected and Higher Dimensional Sets. As stated, all intersection
classes of graphs of arc-connected sets in the plane are subclasses of string graphs. Other classes of inter-
section graphs are obtained either for disconnected sets, or for sets in dimensions higher than two.

For a graph G, it line-graph, denoted by L(G), is the intersection graph of the edges of G. Let LINE
denote the class of all line-graphs. Observe that each line-graph can be represented as an intersection
graph of two-element subsets of a line. Thus, line-graphs provide a simple example of intersection graphs of
disconnected sets. As shown by Dudek et al. [7], the cop number of L(G) is related to the cop number of G
via the inequalities ⌈

cn(G)

2

⌉
≤ cn(L(G)) ≤ cn(G) + 1.

In particular, the cop number of line-graphs is unbounded.
Many other geometric intersection classes can be seen as generalizations of line-graphs. Among the most

studied are the `-interval graphs (`-INTERVAL) where X = R and every ϕ(v) is a union of ` closed intervals.
And for its subclass `-unit interval graphs (`-UNIT INTERVAL), all ` intervals of ϕ(v) have the length one.
It follows that the cop number is unbounded on all these classes.

For sets in higher dimensions, notice that every graph has a representation by 3-dimensional strings.
Therefore, to get interesting classes of graphs, we have to further restrict geometry of the sets. Aside
already described d-BOX, we consider the following classes for X = Rd: the intersection graphs of axis
parallel segments d-GRID, the intersection graphs of d-dimensional unit cubes d-UNIT CUBE, the intersection
graphs of d-dimensional balls d-BALL, and the intersection graphs of d-dimensional unit balls d-UNIT BALL.

Our Results. It has been asked at several occasions, last during the Banff Workshop on Graph Searching
in October 2012, whether intersection-defined graph classes (other than interval graphs) have bounded
maximum cop numbers. The classes in question have included circle graphs, intersection graphs of disks
in the plane, graphs of boxicity 2, and others. A recent paper [4] shows that the maximum cop number of
intersection graphs of unit disks (2-UNIT BALL) is between 3 and 9. We solve this question in a general way
by proving a dichotomy for previously studied classes of geometric intersection graphs in Theorems 1.1 and
1.3. For an overview of the results presented in this paper, see Fig. 1.

Theorem 1.1. The following bounds for the maximum cop number hold:

(i) max-cn(INTERVAL FILAMENT) = 2.

(ii) 3 ≤ max-cn(OUTER-STRING) ≤ 4.

(iii) 3 ≤ max-cn(STRING) ≤ 15.

(iv) 1
2g

1
3 ≤ max-cn(g-GENUS STRING) ≤ 10g + 15.

(v) 1
2g
′ 13 ≤ max-cn(g′-EULER-GENUS STRING) ≤ 10g′ + 15.
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We note that the strategies of cops in all upper bounds are geometric and their description is constructive,
using an intersection representation of G. If only the graph G is given, we cannot generally construct
these representations efficiently since recognition is NP-complete for string graphs [15] and interval filament
graphs [20], and open for the other classes. Nevertheless, since the state space of the game has O(nk+1)
states and the number of cops k is bounded by a constant, we can use the standard exhaustive game space
searching algorithm to obtain the following:

Corollary 1.2. There are polynomial-time algorithms computing the cop number and an optimal strategy
for the cops for any interval filament graph in time O(n3), outer-string graph in time O(n5), string graph
in time O(n16) and a string graph on a surface of a fixed genus g (resp. Euler genus g′) in time O(n10g+16)
(resp. O(n10g

′+16)), even when representations are not given. �

Furthermore, our results can be used as a polynomial-time heuristic to prove that a given graph G is
not, say, a string graph, by showing that cn(G) > 15. For instance, a graph G of girth 5 and the minimum
degree at least 16 is not a string graph since cn(G) > 15: in any position of 15 cops with the robber on v,
at least one neighbor of v is non-adjacent to the cops.

On the other hand, when sets are not arc-connected, we prove that even in very restricted geometric
settings that cop numbers are unbounded. The main lemma states that when we subdivide all edges of
a graph G by a same number of vertices, cn(G) increases by at most one. Since all these classes contain
certain subdivisions of all graphs or all cubic graphs, we get the following:

Theorem 1.3. The classes LINE, 2-INTERVAL, 2-UNIT INTERVAL, 3-GRID, 3-BOX, 3-UNIT CUBE, 3-BALL,
and 3-UNIT BALL have the maximum cop number equal +∞.

Outline. In Section 2, we show that max-cn(INTERVAL FILAMENT) is 2. In Section 3, we show that
max-cn(OUTER-STRING) is between 3 and 4. Aigner and Fromme [1] show the classical result that one cop
can guard a shortest path in any graph. In Section 4, we extend this result to show that five cops can guard
a shortest path together with its neighborhood. This is used in Section 5 to show that max-cn(STRING) is
at most 15. In Section 6, we combine the previous result with the approach of Quilliot [25] to simultaneously
show the bounds for bounded-genus orientable surfaces and bounded-Euler-genus non-orientable surfaces. In
Section 7, we prove that cop numbers are unbounded for intersection graphs of disconnected or 3-dimensional
sets.

Preliminaries. Let G = (V,E) be a graph. For D ⊆ V , we let G[D] denote the subgraph of G induced by
D, and G−v = G[V \{v}]. For a vertex v, we use the open neighborhood N(v) = {u : uv ∈ E} and the closed
neighborhood N [v] = N(v)∪{v}. Similarly for V ′ ⊆ V , we put N [V ′] =

⋃
v∈V ′ N [v] and N(V ′) = N [V ′]\V ′.

Let ϕ : V → 2R
2

be a string representation of G. Without loss of generality, we may assume that there
is only a finite number of string intersections in the representation, that strings never only touch without
either also crossing each other, or at least one of them ending, that no three or more strings meet at the
same point, and that no string self-intersects. This follows from the fact that strings can be replaced by
piece-wise linear curves with finite numbers of linear segments without affecting their intersection graph.
For more details see [16]. We always assume and maintain these properties.

Suppose that we have some strategy for the cops. For a vertex v ∈ V , the robber cannot safely move to
v if the strategy ensures that he is immediately captured after moving to v. Let D,P ⊆ V . We say that
the strategy guards P if it ensures that the robber cannot safely move to any vertex in P . We say that the
robber is confined to D, if the strategy ensures that the robber is immediately captured by moving to any
vertex in V \D. Notice that the robber is confined to D if and only if he stands in D and N(D) is guarded.

2. Capturing Robber in Interval Filament Graphs

In this section, we show that the maximum cop number of interval filament graphs is equal to two, thus
establishing Theorem 1.1(i).
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ϕ(t1)

ϕ(t2)ϕ(t3)

ϕ(t4)

ϕ(t5) ϕ(t6)

ϕ(t7)

Figure 2: An example of a sequence of top filaments. Only the top part of each ϕ(ti) is depicted in bold.

If a filament ϕ(u) is defined on [a, b], we call a the left endpoint and b the right endpoint of ϕ(u). We
assume that the filaments have pairwise distinct endpoints and the defining intervals are always non-trivial.
In the description, we move the cops on the representation ϕ, and we say that a cop takes a filament ϕ(u)
if it is placed on the vertex u which this filament represents. We shall assume that the robber never moves
into the neighborhood of a vertex taken by a cop, and a cop capture the robber immediately if he stands on
a neighboring vertex.

Filaments and Regions. It is important that each filament splits the half-plane into two regions: the
unbounded top region and the bottom region. A filament ϕ(u) is nested in a filament ϕ(v) if ϕ(u) is contained
in the bottom region of ϕ(v). We say that the robber is/stays in a region if he is/stays on filaments entirely
contained in this region. The robber is confined by ϕ(u) if a cop is placed in ϕ(u) and the robber is in the
bottom region of ϕ(u).

Lemma 2.1. Suppose that the robber is confined by ϕ(u). Then he stays in the bottom region of ϕ(u) as
long as there is a cop on ϕ(u).

Proof. To move from one region to another, the robber has to use a filament ϕ(v) which crosses ϕ(u). But
then v is a neighbor of u, and the cop captures the robber in the next turn. �

A filament ϕ(u) is called top in x if it maximizes the value ϕ(v)(x) over all filaments ϕ(v) defined for x.
Suppose that ` is the left-most and r is the right-most endpoint of the representation. We have a sequence

of top filaments
{
ϕ(ti)

}k
i=1

as we traverse from ` to r. We note that one filament can appear several times
in this sequence. See Fig. 2 for an example.

Let ϕ(ti) be top in x. Each filament ϕ(ti) together with the upward ray starting at
(
x, ϕ(ti)(x)

)
separates

the half-plane into three regions: the left region, the bottom region and the right region. The key property
is that there is no filament intersecting the left and right regions and avoiding ϕ(ti). Also note that the
division of filaments into the regions is the same for all x in the same top part of ϕ(ti).

Lemma 2.2. Suppose that a cop stands on ϕ(ti) and the robber is in the right region of ϕ(ti). If the cop
moves to a neighboring filament ϕ(tj) with j > i, the robber cannot move to the left region of ϕ(tj).

Proof. Let ϕ(ti) be on [a, b] and ϕ(tj) on [c, d] and we have c < b. Suppose that the cop moves from ϕ(ti)
to ϕ(tj) and the robber stands on a filament ϕ(u) defined on [e, f ]. We know that c < b < e < f , so ϕ(u)
does not intersect the left region of ϕ(tj). And since ϕ(tj) is top, there is no path going to the left region
which avoids ϕ(tj). So the robber cannot move there. �

Proof of Theorem 1.1(i). We are ready to prove that the maximum cop number of interval filament
graphs is equal to two.

Proof (Theorem 1.1(i)). Since interval filament graphs contain all cycles Cn, one cop has no winning
strategy. (Note that C4 is a circle, circular-arc and function graph.) Therefore two cops are necessary.

We describe a strategy how to capture a robber with two cops. We call one cop the guard, and the other
one the hunter. The strategy proceeds in phases. Every phase starts with both cops on a filament ϕ(u) such

6



that the robber is confined by it. The guard stays on ϕ(u) till the robber is either captured, or confined by
the hunter in some filament ϕ(v) nested in ϕ(u). By Lemma 2.1, the robber can only move in the bottom
region of ϕ(u). If the confinement by ϕ(v) happens, then the guard moves to the filament ϕ(v) taken by the
hunter, ending the phase. In the next phase the hunter proceeds with capture the robber inside the bottom
region of ϕ(v).

For the initial phase, we imagine that the guard takes some imaginary filament above all filaments of ϕ
so the robber is confined to its bottom region, i.e., to the entire graph G. We can choose both cops to start
the first phase at a filament ϕ(v) with left-most left endpoint and therefore top in G.

Suppose that we are in a phase where the guard is placed on ϕ(u). Let Gu be the subgraph of G induced
by the vertices whose filaments are nested in ϕ(u), and let Cu be the connected component of Gu containing
the vertex occupied by the robber. Since the guard stays at ϕ(u) till the robber is confined in some nested
ϕ(v), the strategy ensures that the robber must remain in Cu throughout the phase, because any vertex in
N(Cu) is adjacent to the vertex u guarded by the guard.

Let
{
ϕ(ti)

}k
i=1

be the sequence of top intervals in the restriction of ϕ to the vertices of Cu. The hunter
first goes to ϕ(t1). When he arrives to ϕ(t1), the robber cannot be in the left region of ϕ(t1) since there
is no filament of Cu contained there. Now suppose that the hunter is in ϕ(ti) and assume the induction
hypothesis that the robber is not in the left region of ϕ(ti). If the robber is confined in ϕ(ti), the phase
ends with the guard moving towards ϕ(ti). If the robber is in the right region of ϕ(ti), the hunter moves to
the neighbor ϕ(tj) with maximal index j. By Lemma 2.2 the robber cannot move to the left region of ϕ(tj)
so he is either in the bottom, or the right region. The robber cannot stay in the right regions forever since
ϕ(tk) has no filament of Cu contained in the right region, so eventually the robber is confined in ϕ(ti) or
captured directly.

Since there are only finitely many filaments nested in each other, the strategy proceeds in finitely many
phases and the robber is captured. �

With a small modification, we can prove that this strategy captures the robber in O(n) turns. Suppose
that initially both cops are placed in the filament with the left-most endpoint ` and there are p phases. Let
Ci be the graph the robber is confined to by the guard on ui in the phase i, so C1 = G and let Cp+1 = ∅.
Let Di = Ci \ Ci+1, and note that Di contains all top filaments of Ci.

During the i-th phase the hunter moves to any top filament of Ci in at most 2 moves (note that there
must be a filament in G which simultaneously intersects ϕ(ui) and a top filament of Ci), then to the left-most
top filament of Ci in at most |Di| moves using a shortest path in Di, then takes at most |Di| steps over the
top filaments of Ci. Finally, when the hunter confines the robber in Ci+1, it takes the guard at most |Di|+2
steps to get to ui+1 by a similar argument. Since

∑ |Di| = n and the number of phases is also bounded by
n, we have used O(n) turns.

3. Capturing Robber in Outer-String Graphs

In this section, we prove that the maximum cop number of outer-string graphs is between 3 and 4, thus
establishing Theorem 1.1(ii). Our strategy is similar to the one described in Section 2.

String Pairs and Regions. For a given outer-string representation of G, let v1, . . . , vn be the ordering of
the vertices of G by the x-coordinates of the unique intersection of ϕ(vi) with the x-axis. We say that vi is
on the left of vj and vj is on the right of vi if i < j.

Every pair of intersecting outer-strings (vi, vj) divides the half-plane into at least two regions: the
unbounded top region, the bottom region incident with an interval of the x-axis, and possibly several middle
regions. The middle regions do not play any role in our strategy since no string is entirely contained in
them. The strings entirely contained in the bottom region are surrounded by ϕ(vi) and ϕ(vj), a robber on
a vertex surrounded by ϕ(vi) and ϕ(vj), each occupied by a cop, is confined by ϕ(vi) and ϕ(vj).

The following lemma can be proved the same way as Lemma 2.1:

Lemma 3.1. Suppose that the robber is confined by ϕ(vi) and ϕ(vj). Then he stays in the bottom region of
(vi, vj) as long as there are cops on vi and vj. �

7



ϕ(x1)

ϕ(x2)
ϕ(x3)

ϕ(x4)

ϕ(xk)

Figure 3: An outer-string representation with the sequence of external strings depicted in bold.

The strings partition the upper half-plane into several regions, of which exactly one is unbounded. We
say that a string ϕ(x) is external, if it has at least one point on the boundary of the unbounded region. We

have a sequence of external strings
{
ϕ(xi)

}k
i=1

sorted by their appearance on the boundary of the unbounded
region, each external string may appear several times in the sequence. See Fig. 3 for an example.

Lemma 3.2. Suppose that a cop is placed in an external string ϕ(xi) and the robber is in some non-
intersecting string on the right of ϕ(xi). If the cop stays in ϕ(xi), the robber cannot move to a string on the
left of ϕ(xi).

Proof. Observe that ϕ(xi) separates non-intersecting strings on the left of it from those on the right. Thus,
to get to a string on the left of ϕ(xi), the robber has to move to N [xi] and the cop captures him. �

Proof of Theorem 1.1(ii). We are ready to prove that the maximum cop number of outer-string graphs
is equal to three or four.

Proof (Theorem 1.1(ii)). Figure 4 shows a connected outer-string graph with the cop number 3. It
remains to show that four cops are always sufficient.

Among the four cops, there are two guards and two hunters. The strategy is divided into phases. During
each phase, the two guards stand on a pair of intersecting strings ϕ(v`) and ϕ(vr) confining the robber. For
the initial phase, we imagine that the guards take some imaginary strings around the entire representation,
so the robber is confined to their bottom region, i.e., to the entire graph G. We can choose all cops to start
the first phase in the leftmost string ϕ(v1) which is external.

In each phase, let ϕ(v`) and ϕ(vr) be the pair of adjacent strings occupied by the guards, confining the
robber. Let G`,r be the subgraph induced by the strings entirely contained in the bottom region, and let
C`,r be the connected component of G`,r containing the vertex with the robber. By Lemma 3.1, the robber

Figure 4: The 3-by-5 toroidal grid and its outer-string representation. Its cop number is three since in any position of two cops
with at least one cop adjacent to the robber, there is at least one safe vertex adjacent to the robber.

8



is confined to C`,r. The hunters move in C`,r and either capture the robber, or make the robber confined
to a smaller subgraph by taking two intersecting strings ϕ(v`′) and ϕ(vr′) such that the robber is placed in
their bottom region. Then the guards move to ϕ(v`′) and ϕ(vr′), and the next phase begins.

Let
{
ϕ(xi)

}k
i=1

be the sequence of external strings in the restriction of ϕ to the vertices of C`,r. The
hunters start by taking ϕ(x1) and its rightmost neighbor ϕ(xi). Suppose that after several moves the hunters
take intersecting external strings ϕ(xp) and ϕ(xq). We want the strategy to preserve the following property:
either the robber occupies a string between ϕ(xp) and ϕ(xq), or he occupies a string on the right of ϕ(xq).
It is certainly satisfied in the beginning since there are no strings on the left of ϕ(x1).

Suppose that the property holds when the hunters occupy ϕ(xp) and ϕ(xq), where p < q. The hunter
taking ϕ(xq) stays there, while the other hunter moves from ϕ(xp) to the rightmost external neighbor ϕ(xr)
of ϕ(xq). By Lemma 3.2, the robber cannot move from the right of ϕ(xq) to the left of it. Therefore, the
robber either appears between ϕ(xq) and ϕ(xr), or he is on the right of ϕ(xr). Since the sequence of external
strings is finite, the hunters either capture the robber, or he is confined by some ϕ(xp) and ϕ(xq), so the
phase ends after finitely many steps.

Since there are only finitely pairs of intersecting strings nested in each other, the strategy proceeds in
finitely many phases and the robber is captured. �

Similarly as in Section 2, we can show that the strategy requires at most a linear number of moves.

4. Guarding Shortest Paths and Curves in String Graphs

In this section, we build a crucial tool for designing our strategy to capture the robber using 15 cops
in any string graph. The main result shows that 5 cops are able to guard a shortest curve in a string
representation together with the strings intersecting it.

Guarding Shortest Paths. We recall a classical lemma of Aigner and Fromme [1]:

Lemma 4.1 ([1]). Let P be a shortest path between a pair of vertices of a graph G. Then a single cop has
a strategy to guard P , after a finite number of initial moves.

In [1], this result is essential to prove that the maximum cop number of planar graphs is three. The idea
is that one can cut the planar graph by protecting several shortest paths. Consider a planar embedding.
The strategy is to protect two shortest paths P1 and P2 from u to v such that the robber is confined to the
subgraph D between P1 and P2. A third shortest path P3 in D is chosen and guarded by the third cop. The
robber has to choose one of the smaller subgraphs D′ of D to which he is confined. It is shown that N(D′)
can be guarded by just two paths, so one of the cops can be freed and the strategy can be iterated.

Guarding Retracts. There is the following simple generalization of Lemma 4.1. It was stated in [3] (in a
different form) and we believe that this statement should be more known. A retract from G = (VG, EG) to
an induced subgraph H = (VH , EH) is a map f : VG → VH such that f(v) = v for all v ∈ VH , and for every
uv ∈ EG either f(u)f(v) ∈ EH , or f(u) = f(v).

Lemma 4.2. Let H be a retract of G. Then cn(H) cops have a strategy in H to position one of them, in
finite number of steps. After the positioning, the cop can guard H while the remaining ones are free.

Proof. The strategy for cn(H) cops plays on H as if a robber standing on r ∈ V (G) is placed on f(r). By
the definition of the retract, f(r) moves by the distance at most 1 with each turn of the game. Therefore,
cn(H) cops have a strategy to “capture” f(r) in finitely many turns. The cop standing on f(r) can then
follow the robber, to be always on f(r) for the current robber’s position r. If the robber steps on V (H), he
is immediately captured by the cop. Note that the remaining cops are no longer required. �

This implies Lemma 4.1 since a shortest path is a retract and paths have the cop number equal to 1.

Guarding Neighborhoods of Shortest Paths. We want to apply a similar idea to string graphs.
Unfortunately, guarding a shorting path P is not sufficient to prevent the robber to move from one side of
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Figure 5: (a) To guard a shortest curve π defined by a path P , five cops guard consecutive strings of π. A string r crossing π
may not be in P , but it belongs to N [P ]. (b) The necessity of five cops to guard N [P ]. With the robber standing on r, there
needs to be a cop on each of the vertices pi−2, . . . , pi+2, otherwise the robber could safely move to N [P ].

P to the other one. We need a stronger tool to geometrically restrict the robber. We show that five cops
are sufficient to guard N [P ] which prevents to the robber to use any string crossing the protected path; see
Fig. 5.

Before stating the lemma, we add another definition. Suppose that the robber is confined by the strategy
to D ⊆ V . We say that a path P in G is shortest relative to D, if it is shortest in G[P ∪D]. The path does
not have to be shortest in G, it just have to be shortest with respect to the robber’s confinement to D:

Lemma 4.3. Let P be a shortest path relative to D ⊆ V and let the robber be confined to D. Then five cops
have a strategy to guard N [P ], after a finite number of initial moves.

Proof. It follows from Lemma 4.1 applied to G[D ∪ P ] that one cop, called the sheriff, has a strategy to
guard P since the robber can only move in D. The four additional cops, called the deputies, follow the
sheriff and stand at neighboring vertices of P . More precisely, suppose that the path P consists of the
vertices p0, p1, . . . , pk. When the sheriff stands at pi, the deputies stand at pi−2, pi−1, pi+1 and pi+2 (with
the convention that p−1 and p−2 here refer to the vertex p0, and pk+1 and pk+2 refer to pk). As the sheriff
moves along the path according to the strategy, the deputies follow him. The initial setup procedure is
analogous to the one in Lemma 4.1.

Assume that the robber moves to a vertex r, and suppose that r is adjacent to a vertex q, which is
adjacent to pi. Then the strategy necessarily moves the sheriff to one of the vertices pi−2, . . . , pi+2, since
otherwise the robber could step on P in two moves without being immediately captured by the sheriff,
contradicting the properties of the strategy. Therefore, after the cops’ move, there is at least one cop on pi,
and so if the robber moves to q, he is captured immediately. �

To guard N [P ] with the cops moving only on P , five cops are necessary as shown in Fig. 5b. When we
say that five cops start guarding a path, we do not explicitly mention the initial time required to position
them onto the path and assume that the strategy waits for enough turns.

Unfortunately, the result of Lemma 4.3 cannot be straightforwardly extended to retracts. Even if the
retract has bounded degree (so the number of deputies required to guard the vertices in distance at most 2
is bounded), it is not possible to move the deputies together with the sheriff in the required way.

Guarding Shortest Curves. Our strategy for string graphs is geometric, based on string representations.
To simplify its description, we introduce the concept of shortest curves as particular curves through the
string representation of some shortest path.

Let G be a string graph together with a fixed string representation ϕ. Suppose that the robber is confined
to D ⊆ V and let P be a shortest path relative to D from u to v. Suppose that we choose and fix two points
A ∈ ϕ(u) and B ∈ ϕ(v). Let π ⊆ ϕ(P ) be a curve from A to B such that for every p ∈ P , the curve π has a
connected intersection with ϕ(p), and these intersections are ordered on π in the same order as the vertices
of P . We call π a shortest curve of P , relative to D with endpoints A and B. A curve π is called a shortest
curve relative to D if it is a shortest curve of some shortest path relative to D. We may omit D when it is
clear from the context.

The shortest path corresponding to a shortest curve π is uniquely defined by the sequence of strings
whose intersection with π has non-zero length. By guarding a shortest curve π, we mean guarding N [P ] of
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the corresponding shortest path P . The length of π is the number of its strings; we note that its Euclidean
length plays no role.

Corollary 4.4. Let the robber be confined to D and let π be a shortest curve relative to D in a string
representation. Then five cops can prevent the robber from entering any string intersecting π, after a finite
number of initial moves.

Proof. Let P be the shortest path defining π. By guarding N [P ], five cops prevent the robber from entering
strings intersecting π. See Fig.5a for illustration. �

Observation 4.5. Any sub-curve of a shortest curve relative to D is a shortest curve relative to D. �

5. Capturing Robber in String Graphs

In this section, we show that the maximum cop number of string graphs is at most 15. Our strategy is
inspired by the strategy for 3 cops in planar graphs [1]. The key difference is that we use Lemma 4.3 instead
of Lemma 4.1, so we require 5 cops for each shortest path instead of 1. Therefore, our strategy requires
3 · 5 = 15 cops.

Segments, faces and regions. Consider a set C of curves/strings in R2. The topological arc-connected
components of R2 \ C are called faces and their topological closures are closed faces; every face is an open
set. We assume that the number of intersections of C is finite, so the number of faces is also finite.

A segment of a curve π ∈ C is a maximal arc-connected subset of π not containing any intersection with
another curve in C. The number of segments is also finite. A region is a closed subset of R2 obtained as a
closure of a union of some of the faces.

Consider a string representation ϕ. For X ⊆ R2, we denote the topological closure of X by X, the
topological interior by int(X), and the boundary ∂X = X \ int(X). We say that a vertex v is contained in
X if ϕ(v) ⊆ int(X). We denote the subgraph of G induced by the vertices contained in X by GX . Two
curves sharing only their endpoints are said to to be internally disjoint.

Lemma 5.1. Let π1 and π2 be two internally disjoint curves with endpoints a and b, let F be the closed
face of R2 \ (π1 ∪ π2) containing the string with the robber, and let D be the connected component of GF

containing the robber. If π1 and π2 are shortest curves with respect to D, each guarded by five cops, then
the robber is confined to D.

Proof. It follows from Corollary 4.4 applied to π1 and π2. �

Additionally, below we use the following topological lemma.

Lemma 5.2. Let π1 and π2 be two internally disjoint simple curves from a to b, where a 6= b. Let F be a
closed face of R2 \ (π1 ∪ π2). Let π3 ⊆ F be a simple curve from a to b, going through at least one inner
point of F . Then every face R of F \ (π1 ∪ π2 ∪ π3) is bounded by two simple internally disjoint curves π′i
and π′3, where π′i ⊆ πi for some i ∈ {1, 2} and π′3 ⊆ π3.

Proof. Without loss of generality, we may assume that F is the inner face of R2 \ (π1 ∪ π2), otherwise we
can apply the circular inversion. We know that R is an open arc-connected set by definition, so ∂R is a
simple closed Jordan curve.

We first establish that ∂R ⊆ (πi ∪ π3) for some i ∈ {1, 2}. Observe that ∂R ⊆ πj would imply that πj is
not a simple curve. There is a point r3 ∈ (∂R∩ π3) \ (π1 ∪ π2). The reason is that otherwise we would have
∂R = π1 ∪ π2, so R = F , which contradicts that π3 intersects int(F ).

We argue that it is not possible that there exist both r1 ∈ (∂R∩π1)\(π2∪π3) and r2 ∈ (∂R∩π2)\(π1∪π3).
If both would exists, there would be a curve π′ ⊆ (R ∪ {r1, r2}) from r1 to r2 separating a from b in F , not
intersecting π3. By Jordan curve theorem, this contradicts that π3 is a curve from a to b through F ; see
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Figure 6: (a) The proof of Lemma 5.2: there cannot be both r1 and r2 as in the proof. (b) A disconnected π′1 (bold line)
implies that π3would cross R.

Fig. 6a. However, we necessarily have one such ri, for i ∈ {1, 2}. Without loss of generality, we assume that
r1 exists and no r2 exists, so ∂R ⊆ π1 ∪ π3.

Let π′1 = (∂R ∩ π1) \ π3. Let cu be the first point of π′1 going along π1 from a to b and cv last such
point. If π′1 was not connected, let c′ 6= cu, cv be an endpoint of one segment of π′1; necessarily, c′ ∈ π3
since ∂R ⊆ π1 ∪ π3. However, it is not possible since π3 would have to contain a point of R ∪ (R2 \ F )∪ π′1,
as shown in Fig. 6b, contradicting the definitions of π3 and R. Therefore π′1 is connected and we can take
π′3 = ∂R \ π′1, getting a connected curve π′3 ⊆ π3. �

Restricted Graphs and Strategies. Given a closed region R ⊆ R2, let G restricted to R, denoted G|R,
be the intersection graph of the strings of ϕ ∩ R. This restriction may remove vertices (represented by
the strings outside R), may remove edges (intersections outside R) and may split vertices whose strings
leave and reenter R at least once; every arc-connected part of ϕ(v) ∩ R forms a new vertex vi. The newly
obtained vertices vi are called the splits of v. The graph G|R = (V |R, E|R) is again a string graph with its
representation, denoted by ϕ|R, directly derived from ϕ. Note that this operation preserves the faces and
strings in int(R) and all representation properties assumed above, namely the vertex set of G|R is finite.
Also, the number of segments does not increase.

Lemma 5.3. Let R be a region. If π is a shortest curve relative to D, and π′ ⊆ R is a sub-curve of π, then
π′ is a shortest curve relative to D ∩ V |R in G|R and ϕ|R.

Proof. Observe that the underlying path P ′ of π′ is preserved, and if any p ∈ P ′ is split in G|R, we use pi
intersecting π′. The rest follows from Observation 4.5, and the fact that no path is shortened in G|R. �

We now show that certain strategies for a restricted graph can be used in the original graph.

Lemma 5.4. Let R be a region such that the robber is confined to GR. Suppose that there exists a strategy
S ′ capturing the robber in G|R, confining him for the entire strategy to GR. Then there exists a strategy S
for the same number of cops capturing the robber on G, if the robber is initially confined to GR.

Proof. The strategy S proceeds as S ′, with the following exception. When S ′ moves a cop to a split
vi ∈ VG|R of v ∈ VG, the strategy S move this cop to v; note that this move is always possible. It is key that
the robbers choices in GR are not extended, so he is confined to it by S and captured. �

Proof of Theorem 1.1(iii). We are ready to prove that the maximum cop number of string graphs is at
least 3 and at most 15.

Proof (Theorem 1.1(iii)). The lower bound of 3 cops follows from the graph in Fig. 4. It remains to
argue that there exists a strategy using 15 cops. Our strategy proceeds in phases, monotonously shrinking
the confinement of the robber. In the beginning of each phase, the robber is confined to D ⊆ V either (A)
by a single cop guarding a cut-vertex separating D from the rest of the graph, or (B) by ten cops guarding
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two shortest curves forming a simple (non-self-intersecting) cycle surrounding D. In each phase, we decrease
the number of vertices in V or D, so the robber is caught after finitely phases.

Let B be the union of the currently guarded paths and vertices; by Lemma 4.3, if the robber moves to
N [B], he is captured. Let D be the component of G \N [B] containing the vertex with the robber, and let
Q = N [B] ∩N [D]. Since our strategy confines the robber to D for the rest of the game, we can leave out
the remaining vertices and assume that V = D ∪Q ∪B. Let s be the number of segments of ϕ.

Claim 5.5. Let V = D ∪Q ∪B, the robber stands on r ∈ D, and one of the following holds:

(A) |B| = 1 and 1 cop guards a vertex c ∈ B.

(B) |B| ≥ 2, 10 cops guard two shortest curves π1 and π2 relative to D between points a to b such that
π1 ∪ π2 forms a simple cycle, and additionally G = G|F where F is the closed face of R2 \ (π1 ∪ π2)
containing ϕ(r).

Then 15 cops have a strategy to capture the robber.

Proof (Claim). We prove this claim by induction on s and |D|. The claim obviously true when s ≤ 1 and
|D| = 0. The strategy proceeds differently according to which of (A) and (B) is satisfied.

Case (A). If Q = {q}, then move the cop guarding c to start guarding q. Let G′ = G−c, we further leave
out the irrelevant vertices, so V ′ = D′ ∪Q′ ∪ {q} as above. The rest follows from the induction hypothesis,
with the assumption (A), applied to G′ with s′ ≤ s and D′ ( D.

Let Q = {q1, . . . , qk} for k ≥ 2. Let ai be a point of ϕ(c) ∩ ϕ(qi). We choose π1 be a shortest curve in
ϕ(V \ {c}) between some ai and aj , and π2 be the subcurve of ϕ(c) between ai and aj . Without loss of
generality, π1 ∪ π2 forms a simple cycle; if not, we can shorten it by choosing different points ai and aj .

We start guarding π1 and π2 with 10 cops. Let F ′ be the closed face of R2 \ (π1 ∪ π2) containing a
string with the robber. We denote G′ = G|F ′ , we leave out the irrelevant vertices, so V ′ = D′ ∪Q′ ∪ B′ as
above. We use the induction hypothesis, with the assumption (B), applied to G′ for s′ ≤ s and D′ ( D. By
Lemma 5.4, the strategy on G′ from the induction hypothesis implies a strategy on G.

Case (B). First suppose that there exists no shortest curve in ϕ between a and b intersecting int(F ).
By Menger theorem, there must be a cut-vertex c ∈ B ∪ Q separating D from B. Our strategy guards c
with one cop, and then stops guarding B. Let G′ = G

[
(V \ B) ∪ {c}

]
, leaving out the irrelevant vertices,

so V ′ = D′ ∪Q′ ∪ {c} as above. The rest follows from the induction hypothesis, with the assumption (A),
applied to G′ with s′ < s and D′ ⊆ D.

Otherwise, let π3 be a shortest curve relative to D in ϕ from a to b intersecting int(F ). The strategy
starts guarding π3 with the five free cops. Then, let F ′ be the closed face of R2 \ (π1 ∪ π2 ∪ π3) containing
the string on which the robber stands. By Lemma 5.2, we have that ∂F ′ = π′i ∪ π′j where π′i is a subcurve
of πi, π

′
j is a subcurve of πj , and π′i ∪ π′j form a simple cycle. We free the five cops stop guarding πk, where

k 6= i, j, and we restrict the guarding of πi and πj to π′i and π′j , which are shortest curves by Observation 4.5.
Let G′ = G|F ′ , leave out the irrelevant vertices, so V ′ = D′ ∪ Q′ ∪ B′ as above. The rest follows from

the induction hypothesis, with the assumption (B), applied to G′ with s′ ≤ s and D′ ( D. By Lemma 5.4,
the strategy on G′ from the induction hypothesis implies a strategy on G. �

The theorem follows by guarding an arbitrary vertex c with one cop, so B = {c}. We leave out the
irrelevant vertices, so V ′ = D ∪Q ∪B. We use Claim 5.5 with the assumption (A) for G′ = G|V ′ . �

6. Capturing Robber in String Graphs on Bounded Genus Surfaces

In this section, we generalize the results of the previous section to graphs having a string representation
on a fixed surface, and we prove Theorem 1.1(iv).

Definitions. We assume familiarity with basic topological concepts related to curves on surfaces, such as
genus, Euler genus, non-contractible closed curves, the fundamental group of surfaces and graph embedding
properties. A suitable treatment of these notions can be found in [22, 18].
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A walk W in a graph G is a sequence w0, w1, . . . wk of vertices where wi and wi+1 adjacent; repetitions
of vertices and edges are allowed. A walk is called closed if w0 = wk. Let |W | denote the length k of W .
For walks W = w0, w1, . . . , wk and W ′ = w′0, w

′
1, . . . , w

′
` with wk = w′0, we denote the concatenation by

W +W ′ = w0, w1, . . . , wk, w
′
1, w

′
2, . . . , w

′
`. Let −W be the reversal of W and let W1 −W2 = W1 + (−W2).

A curve π is a continuous function from the interval [0, 1] to the surface, and it is closed if π(0) = π(1).
The concatenation of curves π1 + π2 is defined naturally whenever π1(1) = π2(0), and similarly −π is the
reversal and π1 − π2 = π1 + (−π2). We use the following topological lemma, following from the properties
of the fundamental group; see [22].

Lemma 6.1 ([22]). Let π1, π2 and π3 be three curves on a surface S from a to b. If the closed curve π1−π2
is non-contractible, then at least one of π1 − π3 and π2 − π3 is non-contractible.

Consider a string representation ϕ of G on a surface S. We represent the combinatorial structure of ϕ
by an auxiliary multigraph A(ϕ) embedded on S defined as follows. The vertices of A(ϕ) are the endpoints
of the strings of ϕ and the intersection points of pairs of strings of ϕ. The edges of A(ϕ) correspond to
segments of strings of ϕ, i.e., to subcurves connecting pairs of vertices appearing consecutively on a string
of ϕ. By representing ϕ by A(ϕ), we can use the well-developed theory of graph embeddings on surfaces.

Walks Imitating Non-contractible Curves. We introduce a relation between a walk in G and a curve
on S, allowing us to easily transition between the two. We say that a walk W = w0, w1, . . . wk in G
imitates a curve π ⊆ ϕ(G) on the surface S if π can be partitioned into a sequence of consecutive subcurves

π0, π1, . . . , πk of positive length such that π =
∑k

i=0 πi and πi ⊆ ϕ(wi). A closed walk W imitates a
non-contractible curve if there is a non-contractible curve π ⊆ ϕ(G) imitated by W .

Lemma 6.2. Let ϕ be a string representation of G on an orientable (resp. non-orientable) surface S of
genus g > 0 (resp. Euler genus g′ > 0) and let W be a closed walk in G imitating a non-contractible curve.
Then every connected component of G \ N [W ] has a string representation on a surface of genus at most
g − 1 (resp. Euler genus at most g′ − 1).

Proof. Note that the proof and te arguments are the same for orientable genus and Euler genus.
If A(ϕ) has an embedding on a surface of genus g − 1 (resp. Euper genus g′ − 1), then G has a string

representation on this surface and we are done. Suppose then that this is not the case, i.e., A(ϕ) is a graph
of genus g (resp Euler genus g′). Therefore its embedding on S is a 2-cell embedding, i.e., every face of S−ϕ
is homeomorphic to a disk.

Let π be the non-contractible curve imitated by W . The curve π traces a closed walk W ′ in A(ϕ). Since
π is non-contractible, W ′ contains a non-contractible simple cycle C of A(ϕ). By standard results on 2-cell
embeddings (see [18, Chapter 4.2]), the genus (resp. the Euler genus) of every connected component of
A(ϕ) \ C is strictly smaller than the genus of A(ϕ).

Let ϕ′ be the string representation ϕ|V \N [W ]. The auxiliary multigraph A(ϕ′) is a subgraph of A(ϕ)\C,
and hence each of its connected components has an embedding on a surface of genus g − 1 (resp. Euper
genus g′−1). This embedding corresponds to a string representation of a connected component of G\N [W ]
on a surface of genus g − 1 (resp. Euper genus g′ − 1). �

Lemma 6.3. If G has no string representation in the plane, then for every string representation ϕ of G on
a surface S there is a closed walk W in G imitating a non-contractible curve.

Proof. Since A(ϕ) is not planar, the embedding of A(ϕ) contains a non-contractible cycle (see [18, Chapter
4.2]), which corresponds to a non-contractible curve on S. This curve is imitated by a closed walk W of G.
�

Lemma 6.4. Let ϕ be a string representation of G on a surface S, let u, v ∈ V be two vertices, and let W1,
W2, W3 be three walks from u to v. If W1 −W2 imitates a non-contractible closed curve, then at least one
of W1 −W3 and W2 −W3 imitates a non-contractible closed curve.
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Figure 7: The situation in the proof of Lemma 6.5.

Proof. Let π12 be a non-contractible closed curve imitated by W1 − W2. Looking at the consecutive
subcurves of π12 corresponding to vertices of W1 −W2, we have that π12 = π1 − π2 with π1 imitated by W1

and π2 imitated by W2. Let x ∈ ϕ(u) be the first point of π1 and y ∈ ϕ(v) be the last point of π1.
Now let π3 be any x-y curve imitated by W3 and observe that π1 − π3 is imitated by W1 −W3 and

π2− π3 is imitated by W2−W3. By Lemma 6.1, at least one of π1− π3 and π2− π3 is non-contractible and
the lemma follows. �

Lemma 6.5. On a graph G with a string representation ϕ on a surface S and a shortest closed walk W
imitating a non-contractible curve, 10 cops have a strategy to guard N [W ] after a finite number of initial
moves.

Proof. If |W | ≤ 10, the cops may occupy every vertex of W for the rest of the game and we are done.
Otherwise we divide W into two almost-equally long walks W1, W2, where Wi is from ui to vi, where u1u2,
v1v2 are edges. We have |W1| ≥ |W2| ≥ |W1| − 1, such that W = W1 + v1v2 −W2 − u1u2; see Fig. 7. Note
that |W | = |W1|+ |W2|+ 2.

We claim that both W1 and W2 are shortest paths in G. If W1 is not a shortest path, let W3 be a
shortest path from u1 to v1, so |W3| < |W1|. Then both closed walks W1 −W3 and W3 + v1v2 −W2 − u1u2
would be shorter than W :

|W1 −W3| = |W1|+ |W3| < 2|W1| ≤ |W1|+ |W2|+ 1 < |W |,

|W3 + v1v2 −W2 − u1u2| = |W2|+ |W3|+ 2 < |W1|+ |W2|+ 2 = |W |.
By Lemma 6.4, at least one of them is non-contractible which contradicts the assumption. Similarly, there
exists no path W ′3 from u2 to v2 with |W ′3| < |W2|.

Therefore we may use Lemma 4.3 (with D = V ) to guard N [W1] and N [W2] with ten cops. �

Proof of Theorem 1.1(iv,v). We are ready to prove that the maximum cop-number of g-GENUS STRING

graphs is at least 1
2g

1
3 and at most 10g + 15, and of g′-EULER-GENUS STRING graphs is at least 1

2g
′ 13 and

at most 10g′ + 15.

Proof (Theorem 1.1(iv,v)). For the lower bound, consider the incidence graph G of a projective plane

of order k = d 12g
1
3 e. It has at most than 2k3 edges, so its genus is at most g. It is (k+ 1)-regular graph with

girth 6, so cn(G) ≥ k + 1 ≥ 1
2g

1
3 (in fact, cn(G) = k + 1, as shown by Pra lat [21]). A similar lower bound

works for non-orientable surfaces since g′ ≤ 2g.
For the upper bound, we proceed by induction on the genus g in case of orientable surfaces, resp. by the

Euler genus g′ in case of non-orientable surfaces. The proof here is the same for both parameters. Note that
a non-orientable surface may become orientable after removing a non-contractible curve (as in Lemma 6.2),
the proof for Euler genus does not depend on the underlying surface being non-orientable.

The cases g = 0 and g′ = 0 are proved by Theorem 1.1(iii). Suppose now that g > 0 (resp. g′ > 0) and fix
a string representation ϕ of G on a surface of genus g (resp. Euler genus g′). Let W be a shortest closed walk
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in G imitating a non-contractible curve. By Lemma 6.5, 10 cops prevent the robber from entering N [W ] till
the end of the game; see Fig. 8.

Thus, after a finite number of moves the robber will remain confined to a connected component G′ of
G \N [W ]. By Lemma 6.2, G′ has a string representation on a surface of genus at most g − 1 (resp. Euler
genus g′). By the induction hypothesis, 15 + 10(g − 1) cops (resp. 15 + 10(g′ − 1) cops) have a strategy to
capture the robber on G′ and, together with 10 cops gurading W , also on G. �

7. Unbounded Cop Number of Intersection Graphs of Disconnected or 3-Dimensional Sets

In this section, we prove Theorem 1.3 stating that the maximum cop number is +∞ even for very simple
intersection classes of disconnected or 3-dimensional sets.

Cop Number of Subdivisions. For a graph G = (V,E) and an integer d ≥ 1, let G(d) denote the graph
obtained from G by replacing each edge e = xy ∈ E by a path Pe of length d connecting x and y. In other
words, G(d) is obtained from G by subdividing each edge of G by d − 1 new vertices. The vertices of G(d)

that subdivide an edge of G are the subdividing vertices, while the vertices of G(d) belonging to G are the
branching vertices. The path Pe is the edge-path corresponding to e.

Lemma 7.1. For a connected graph G = (V,E) and an integer d ≥ 1, we have

cn(G) ≤ cn(G(d)) ≤ cn(G) + 1.

Proof. Part 1: the inequality cn(G) ≤ cn(G(d)). On G(d), we consider the (d, d)-game which is a modifi-
cation of the standard game of cops and robber. In it, both the robber and the cops are allowed to make d
consecutive moves in each turn, instead of just one move. In other words, in the (d, d)-game the robber and
the cops are allowed to move, in each turn, to any vertex at distance at most d from their current position.
Note that if the cops have a winning strategy for the standard game on a graph H, then they also have a
winning strategy for the (d, d)-game on H: a d-fold move of the robber can be interpreted as a sequence of
d simple moves, and each can be reacted according to the winning strategy for the standard game.

We say that a vertex v̄ of the graph G approximates a vertex v of G(d) if the following holds: either v is
a branching vertex and v̄ = v, or v is a subdividing vertex belonging to an edge-path Pe and v̄ ∈ e. Notice
that if u and v are two vertices at distance at most d in G(d), and if ū is a vertex of G approximating u,
then there is a vertex v̄ ∈ V approximating v such that ū and v̄ have distance at most one in G.

Let S be a winning strategy for k cops in the (d, d)-game on G(d). We now describe a winning strategy
for k cops playing the standard game on G. Each cop playing on G is identified with one cop in S. When

W
N(W )

G−N [W ]

Figure 8: Cutting a surface handle after guarding N [W ] where W is a closed walk imitating a non-contractible curve. Note
that our proof is general and works for any non-contractible curve.
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the strategy S moves the cop to a vertex v in G(d), the corresponding cop moves to a vertex v̄ of G that
approximates v. As argued above, this is always possible, so each move in G(d) can be performed by an
approximating move in G. When the robber moves from u to v in G, this move can be translated into a
d-fold move from u to v in G(d). Therefore, the strategy S can be used to find the corresponding response
on G, approximating the response on G(d). Since S captures the robber, the cops win the game in G.

Part 2: the inequality cn(G(d)) ≤ cn(G) + 1. Suppose that k cops have a winning strategy S for the
standard cops and robber game on G. We use k + 1 cops on G(d). The first k cops, called the regular cops,
are identified with the k cops of S, while the remaining cop, called the tracker, follows a special strategy. In
the beginning of the game, the tracker follows a shortest path towards the vertex initially occupied by the
robber. As soon as the tracker reaches a vertex previously occupied by the robber, he only moves along the
edges previously used by the robber. More precisely, if the tracker stands in a vertex x, he moves through
the edge that was used by the robber during his most recent departure from x.

Suppose that the robber moves from u to v. We say that this move is a hesitant move if either the robber
stays in a vertex (so u = v), or the robber retraces an edge (his immediately preceding move was from v
to u). When the robber makes a hesitant move, his distance to the tracker decreases. Thus, the tracker
ensures that the robber can only make a limited number of hesitant moves without getting captured.

The strategy of the regular cops works as follows. Recall that each regular cop corresponds to a cop
in S. For simplicity, we first assume that the robber never makes a hesitant move. In the beginning of the
game, the regular cops occupy the initial positions prescribed by S. They wait at these positions until the
robber first reaches a branching vertex u; the robber makes no hesitant moves so he must reach a branching
vertex within the first d moves. Suppose that the robber moves from the branching vertex u to a subdividing
vertex of an edge-path Pe, where e = uv is an edge of G. Since the robber makes no hesitant moves, he
moves along Pe all the way to v. After the robber enters Pe, each cop looks up in S the prescribed response
to the robber’s move from u to v. If S says a cop should move from a vertex x to a vertex y along an edge
e′, the corresponding cop spends d moves moving from x to y along Pe′ . Thus, after d rounds of the play,
both the regular cops and the robber will again occupy branching vertices, and the sequence of d rounds
corresponded to a single round of S. The regular cops then repeat the same process, imitating the moves
of S, until the robber is caught.

It remains to deal with the robber’s hesitant moves. If the robber stays in a vertex, all regular cops stay
in their vertices as well. If the robber retraces an edge, all regular cops also retrace their last used edges. So
if the robber starts moving from u to v along Pe in G(d) and then starts moving back, the regular cops mimic
him: if a regular cop moves from x to y along Pe′ , he keeps the same distance on Pe′ to x as the robber on
Pe to u. (Notice that each change in the direction of the robber’s moves on Pe is a hesitant move.) Since
the robber has a limited number of hesitant moves to avoid getting captured by the tracker, the strategy S
applies and he is captured by one of the regular cops. �

Proof of Theorem 1.3. We are ready to prove that the maximum cop number of intersection graphs of
disconnected or higher dimensional sets is +∞.

Proof (Theorem 1.3). As mentioned in the introduction, the class LINE of line graphs has unbounded
cop number by results of Dudek et al. [7]. Moreover, each line graph can be represented as the intersection
graph of two-element subsets of the real line, and therefore the classes 2-UNIT INTERVAL and 2-INTERVAL
contain LINE as a subclass. It follows that these classes have unbounded cop number as well.

Let us now deal with geometric intersection classes of higher-dimensional objects. The class 3-GRID (and
thus also 3-BOX) contains G(3) for all graphs G: the vertices are represented by long parallel segments, say,
in the direction of the z-axis, having pairwise different x and y coordinates. Each edge is represented by
an L-shape (consisting of two segments), connecting the parallel segments representing the corresponding
vertices. We may even assume that each segment of the representation has unit length.

For 3-CUBE and 3-BALL, draw any graph G in space without crossing of edges in such a way that all
edge-curves have the same length. Also ensure that around every vertex there is a ball containing only the
initial parts of the incident edge-curves and that these parts are straight segments. Let a be the minimum of
all the diameters of these balls and the distances between edge-curves outside of the balls, note that a > 0.

17



Now replace every branching vertex by a cube/ball of size sufficiently smaller than a and notice that
then there are disjoint tubular corridors of a positive diameter around every edge-curve outside the vertex
cubes/balls. Therefore there exists a suitable value of d (depending on G and the curve representation) such
that G(d) can be represented by chains of sufficiently small cubes/balls within these corridors.

For 3-UNIT CUBE and 3-UNIT BALL a similar construction works for cubic graphs G where we addition-
ally require that the angles of edge-curves at the branching vertices are 120◦. The rest of the construction
is analogous. �

8. Conclusions

In this paper, we have determined the maximum cop number of circle, circular arc, function and interval
filament graphs, and we gave bounds for outer-string graphs, string graphs, and string graphs on both
orientable and non-orientable bounded genus surfaces. The following open problems remain.

Problem 1. Improve lower and upper bounds for the maximum cop number of string graphs, outer string
graphs and other intersection graphs of arc-connected sets in the plane such as 2-dimensional segments,
boxes, disks, unit disks, convex sets, etc.

We note that it is proved in [4] that the maximum cop number of unit disk graphs is at most 9. Their
strategy is similar to our strategy for string graphs, by applying Lemma 4.3. The difference is that further
geometric properties of intersections of unit disks are proved which allows to guard a neighborhood of a
shortest path with just 3 cops instead of 5.
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