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Abstract

We show that the independence number of a countably infinite connected HH-
homogeneous graph that does not contain the Rado graph as a spanning sub-
graph is finite and present a classification of MB-homogeneous graphs up to
bimorphism-equivalence as a consequence.
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1. Introduction

The symmetry of graphs, or more generally relational structures, is usually
measured by such numbers as the degree of transitivity or homogeneity of the
natural action of their automorphism group. One of the strongest notions of
symmetry is ultrahomogeneity, defined as the property that any isomorphism
between two finite induced subgraphs can be extended to an automorphism.
This notion was generalized by Cameron and Nešetřil, in [1], to homomorphism-
homogeneity, requiring that any local homomorphism (that is, a homomorphism
between finite induced substructures) extends to an endomorphism of the am-
bient structure. By specifying the type of local homomorphism and endomor-
phism, several new morphism-extension classes were introduced by Lockett and
Truss (see [2]), each denoted by a pair of characters as XY and defined by
the condition that any local X-morphism extends to a global Y -morphism.
Here X ∈ {H,M, I} stands for homo, mono or iso and Y ∈ {H,A, I,B,E,M}
stands for homo, auto, iso, bi, epi or mono. Thus, for example, the notion of
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homomorphism-homogeneity above is what we will call HH-homogeneity, and
ultrahomogeneity is IA-homogeneity. In this paper, we will focus on the class
of MB-homogeneous graphs, where any local monomorphism is a restriction of
a bijective endomorphism (bimorphism) of the ambient graph.

One of the main tasks in this area is classification, i.e., determining, given a
language L and a set of axioms T , all countable L-structures satisfying T that
fall into individual morphism-extension classes. A classic example of successful
classification is the Lachlan-Woodrow theorem [3], which in our notation is a
classification of IA-homogeneous graphs. Classification theorems can have broad
implications because some of the classes appear in other areas of mathematics.
For example, IH-homogeneous graphs appear in the area of graph limits [4]
and HH-homogeneous structures appear as weakly oligomorphic structures that
have found application in the research of infinite-domain CSPs [5]. We consider
the extended family of classes as defined by Lockett and Truss consisting of 18
morphism-extension classes for general structures, which in the case of countable
structures collapse to the fifteen presented in Figure 1.

IH

IM IE MH

IB MM ME HH

II=IA MB HM HE

MI=MA HB

HI=HA

Figure 1: Morphism-extension classes of countable structures, partially ordered by
⊆. See [2] for more details.

A first approach to the problem of classifying countable homomorphism-
homogeneous L-structures satisfying the axioms in T is to determine the partial
order of morphism-extension classes of such L-structures, because some of the
classes in Figure 1 may turn out to be equal for the L-structures in question.
In the case of graphs, progress even in this simpler question has been slow:
in the original 2006 paper, Cameron and Nešetřil asked whether the classes
HH and MH are equal for countable graphs, and the equality of these classes
was established in 2010 for countable graphs by Rusinov and Schweitzer [6]. It
was only last year that all the equalities and inequalities between morphism-
extension classes of countable graphs were settled. We now know the partial
order of morphism-extension classes of graphs. For related results regarding the
equality of MH and HH in binary structures, we refer the reader to [7] and [8].

Among the first results in the area is the fact that any countable graph that
contains the Rado graph R as a spanning subgraph is HH-homogeneous. Apart
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from these and some trivial cases like disjoint unions of complete graphs, no
countable graphs were known to exist in the class HH at the end of [1], prompt-
ing the authors of the original paper to ask for examples of countably infinite,
connected, HH-homogeneous graphs that do not contain R as a spanning sub-
graph.

The first examples of such graphs were presented by Rusinov and Schweitzer
in [6], but up to the date of this writing, a full classification of countable HH-
homogeneous graphs, or, more ambitiously, IH-homogeneous graphs (by which
we mean a “reasonable,” list of the contents of each morphism class) does not
exist. We hasten to mention here that the qualifier “reasonable” is important
and in general means “up to the appropriate equivalence relation, depending on
the class.”

Most of the morphism-extension classes of countable graphs are uncount-
able (the exceptions are the countably infinite IA and the finite MI=MA and
HM=HI=HB=HA), but uncountability by itself does not preclude a class from
being classifiable. Cherlin successfully classified the uncountably many ultraho-
mogeneous directed graphs in [9] into countably many classes, one of which is
uncountable. This is an example of the type of classification to which we aspire:
only countably many classes, and few of them, preferably only one, uncountable.

In classes where a Fräıssé theorem is known, the uniqueness conditions for
the limit are the gold standard for classification. This does not mean, however,
that a given class is actually classifiable up to that equivalence relation. For
ultrahomogeneous structures, limits are unique up to isomorphism, but, as we
have seen, the classification of ultrahomogeneous directed graphs includes a class
with uncountably many pairwise non-isomorphic structures.

Most of the Fräıssé-type theorems for morphism-extension classes XY were
found by Coleman [10], improving previous results of C. Pech and M. Pech [11],
though no Fräıssé-type theorem is known for some morphism-extension classes.

For MB-homogeneous structures, the equivalence relation coming from the
Fräıssé-type theorem is B-equivalence, which holds when every partial isomor-
phism with finite domain between two MB-homogeneous L-structures of the
same age can be extended to a bimorphism. In the case of MB-homogeneous
graphs, isomorphism or even the weaker notion of B-equivalence have been
shown to produce uncountably many equivalence classes. By Theorem 3.20
from [12], there exist 2ℵ0 countably infinite, pairwise non-B-equivalent graphs
in the bimorphism-equivalence class of the Rado graph. This rules out a classi-
fication up to B-equivalence. The next best candidate for equivalence relation
in a classification of MB-homogeneous graphs is bimorphism-equivalence.

The main contribution of this paper is Theorem 26, an analogue of the
Lachlan-Woodrow theorem for MB-homogeneous graphs, providing a positive
answer to Problem 4.12 from [12] (i.e., a classification of MB-homogeneous
graphs up to bimorphism-equivalence). Theorem 26 arises as a consequence of
a preliminary result in our efforts towards a classification of HH-homogeneous
graphs. Along with this result, we give a bound on the independence number
of a countable connected HH-homogeneous graph that does not contain R as a
spanning subgraph, in terms of the highest independence number of the neigh-
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bourhood of a vertex. In short, HH-homogeneity implies that in such a graph
G there is a finite upper bound σ(G) on the independence number of induced
subgraphs defined as N(v), and the independence number of G cannot be “too
large” compared to σ(G).

The paper is organized as follows: first we prove in Section 2 that HH-
homogeneous graphs that do not contain the Rado graph as a spanning subgraph
have finite independence number, and then we use that result in Section 3 to
classify MB-homogeneous graphs.

2. The independence number of countable HH-homogeneous graphs

We start by fixing notation and recalling or introducing a few definitions.

Definition 1.

1. A graph is a set equipped with a binary irreflexive symmetric relation. As
such, a graph is a pair G = (V,E), where V is a set and E ⊂ V 2 satisfies
(x, y) ∈ E → (y, x) ∈ E and for all x ∈ V the pair (x, x) is not in E. The
elements of V are called vertices, the elements of E are edges, and the
pairs of distinct vertices that do not satisfy E are called nonedges. Most
of the time we will not distinguish between a graph and its vertex set. We
will use the symbol ∼ to denote the edge relation.

2. For any set X, [X]<ω denotes the set of finite subsets of X, and
(
X
k

)
denotes the set of subsets of X of size k. Abusing notation, when G is a
graph we always think of A ∈ [G]<ω as the finite subgraph induced by A
in G (definition below, item 8).

3. In a graph G, a vertex u is a neighbour of v if u ∼ v holds. The neigh-
bourhood of v ∈ G is the set {w ∈ G : w ∼ v}. For S ∈ [G]<ω, N(S) is the
set {v ∈ G : ∀s ∈ S(v ∼ s)}. We call N(S) the common neighbourhood
of S. When S is a singleton, we write N(v) for N({v}).

4. The degree of a vertex v in G is the cardinality of N(v); its codegree is
the cardinality of G \ (N(v) ∪ {v}).

5. A set of vertices I ⊂ G is independent if for all u, v ∈ I we have u 6∼ v.
The independence number of a graph G, denoted by α(G), is defined as
sup{|X| : X is an independent subset of G}.

Let G = (V,E) and H = (V ′, E′) be graphs.

6. The complement of G is the graph G = (V, V 2 \ (E ∪ {(v, v) : v ∈ V })).
7. A homomorphism from G to H is a function h : V → V ′ that preserves

edges: if x ∼ y in G, then h(x) ∼ h(y) in H. A monomorphism is an
injective homomorphism and a bimorphism is a bijective homomorphism.

8. H is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. If V ′ = V , then H is a
spanning subgraph of G. If E′ = E∩(V ′)2, then H is an induced subgraph
of G.
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9. Age(G) is the set of isomorphism types of finite induced subgraphs of G.
We think of the elements of Age(G) as graphs on disjoint vertex sets that
do not contain vertices from G, and we view the induced subgraphs of G
as images of elements of Age(G) under embeddings.

10. Let X ∈ [G]<ω. If c ∈ N(X), we call c a cone over X. If d 6∼ x for all
x ∈ X and d /∈ X, then we refer to d as a co-cone over X. Note that d is
a co-cone over X if and only if d is a cone over X in G.

11. A graph G has property (4) if every finite induced subgraph of G has a
cone in G.

12. A graph G has property (∴) if every finite induced subgraph of G has a
co-cone in G.

The Rado graphR is the unique countable graph with the following property:
for all disjoint A,B ∈ [R]<ω, there exists a vertex x ∈ R such that x is a cone
over A and a co-cone over B. R is ultrahomogeneous and its age is the set of
isomorphism types of finite graphs.

It is easy to prove that a countably infinite graph satisfies (4) iff it contains
the Rado graph as a spanning subgraph. Property (∴) holds for G exactly when
G has (4).

Definition 2. Let G be an infinite graph.

1. Define K(G) as the subset of Age(G) consisting of all A for which there
exists an embedding e : A→ G such that G contains a cone over e[A]

2. Define K(G) as the subset of Age(G) consisting of all A ∈ Age(G) for
which there exists an embedding e : A→ G such that no vertex in G \ e[A]
is a cone in G over e[A]

In any graph G it is true that Age(G) = K(G)∪K(G) because any X ∈ [G]<ω

either has a cone in G or doesn’t, but K(G) and K(G) are seldom disjoint. For
example, in the two-way infinite path P , the element of the age isomorphic
to a nonedge is in K(P ) ∩ K(P ) because it can be embedded in P as a pair
at distance 2 or a pair at a larger distance. The reader should not make the
mistake of confusing K(G) with the set of structures in Age(G) with copies in
G that have a co-cone in G.

Proposition 3. If G is an HH-homogeneous graph and S ∈ [G]<ω, then the
subgraph of G induced by N(S) is an HH-homogeneous graph.

Proof. Consider A,B ∈ [N(S)]<ω and a homomorphism f : A → B. Then we
can extend f to f ′ : A∪S → B ∪S by fixing each v ∈ S, and the result is still a
homomorphism. By HH-homogeneity, there exists an endomorphism F : G→ G
that extends f ′. This F maps N(S) into N(S), so F |N(S) is an endomorphism
of N(S).

In particular, the neighbourhood set of any vertex is an HH-homogeneous
graph. Homomorphism-homogeneity also implies some uniformity of degrees:
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Proposition 4. Let G be a countably infinite HH-homogeneous graph. If G
contains a vertex of infinite degree, then all vertices have infinite degree.

Proof. Suppose that v0 ∈ G has infinite degree. By Ramsey’s theorem, one of
the following two cases holds:

1. N(v0) contains an infinite independent set I: In this case, it follows that
G has property (4). Indeed, consider any A ∈ [G]<ω and B ⊂ I with
|B| = |A|. Any bijection h : B → A is a homomorphism because I is
independent, and so by HH-homogeneity there exists an endomorphism
H with H|B = h. The image of v0 under H is a cone over A. Clearly, if
G satisfies (4) then every vertex has infinite degree.

2. N(v0) contains an infinite clique K: Let w be any vertex of G. The map-
ping v0 7→ w is a homomorphism, so by HH-homogeneity it extends to an
endomorphism H of G. By definition, the restriction of an endomorphism
to a clique is injective, and therefore N(w) contains an infinite clique and
in particular w has infinite degree in G.

In a partial order (P,≤), we call X ⊂ P downward closed if given any x ∈ X
and y ∈ P , y ≤ x implies y ∈ X. Similarly, Y ⊂ P is upward closed if for all
y ∈ Y and all x ∈ P , x ≥ y implies x ∈ Y . Naturally, we consider the empty
set to be upward and downward closed.

Throughout the paper, we will prove the possibility of extending a homo-
morphism with finite domain f to an endomorphism by proving that f can be
extended to a homomorphism f ′ whose domain is the domain of f plus any new
vertex; in fact we may assume that the new vertex is a cone over the domain of
f , as finding an image for a cone implies finding an image for any vertex. This is
known as the one-point extension property (or weak one-point extension property
if we assume the new vertex is a cone), and it is known that homomorphism-
homogeneity is equivalent to either of these properties for finite and countably
infinite structures, see [13], particularly section 2.3.

Write A � B if there exists a surjective homomorphism A → B. This
relation is a partial order on Age(G). Observe that in this order A � B implies
|A| ≥ |B|. The next two propositions characterise countable HH-homogeneous
graphs with vertices of infinite degree. The first one is the one-point extension
property adjusted to our language; the second statement is almost-known in the
sense that the proof appeared in [6] for connected HH-homogeneous graphs but
in fact only requires the weaker hypothesis of infinite degree for all vertices. We
include the proofs because the results are crucial for subsequent arguments.

Proposition 5. Let G be a countable graph. Then G is HH-homogeneous iff
the following two conditions hold.

1. K(G) ∩ K(G) = ∅ and

2. K(G) upward-closed in (Age(G),�) (equivalently, K(G) downward-closed
in (Age(G),�) )
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Proof. Suppose first that G is HH-homogeneous.
The first condition is clearly necessary because an isomorphism is a homo-

morphism: if C ∈ K(G) ∩ K(G), then we can find X,Y ⊂ G isomorphic to C
and such that there is a cone c over X in G, but no vertex of G is a cone over Y .
An isomorphism X → Y is a homomorphism between finite substructures of G,
but it cannot be extended to an endomorphism of G since there is no possible
image for c.

The first condition allows us to abuse notation and simply say D ∈ K(G)
(or D ∈ K(G)) for a finite D ⊂ G, without mentioning the embedding, if G is
HH-homogeneous. Formally, D ∈ K(G) means that there is an copy of D in G
such that G contains a cone over D, but as we have seen, this is true of any
copy of D in G, or, equivalently, true for every embedding of the element of the
age isomorphic to D into G.

Next, we prove the equivalence of the two conditions in item 2 if condition
1 holds. As noted before, K(G) ∪ K(G) = Age(G) for any graph, so condition
1 says that K(G) and K(G) form a partition of Age(G). If K(G) is upward-
closed in (Age(G),�) and A ∈ K(G), then for any B � A it must be the case
that B ∈ K(G), as otherwise we obtain B ∈ K(G) and by upward-closedness
A ∈ K(G), contradicting K(G) ∩K(G) = ∅. The other direction follows from a
similar argument.

If G is HH-homogeneous and A ∈ [G]<ω has a cone c ∈ G, then for any
surjective homomorphism h : A→ B, an extension H will necessarily map c to
a cone over B, so condition 2 is satisfied.

For the converse, suppose that conditions 1 and 2 hold and let f : A → B
be a surjective homomorphism between finite induced subgraphs of G. We will
show that f can be extended to any superset A ∪ {a} as a homomorphism.

We need only to consider the cases B ∈ K(G) and B ∈ K(G). If B ∈
K(G), then the new vertex a can be mapped to any cone c over B, and the
resulting function is still a homomorphism. And if B ∈ K(G), then A ∈ K(G)
by Condition 2 and given any c /∈ A:

1. If c 6∼ v for all v ∈ A, it follows that f ∪ {(c, d)} is a homomorphism for
any d.

2. If N(c)∩A 6= ∅, then c is a cone over C := N(c)∩A and f |C is a surjective
homomorphism from C to its image, so f [C] has a cone d by condition 2.
Since d /∈ f [C] (which happens automatically because the edge relation
implies inequality), f ′ := f ∪ {(c, d)} is a homomorphism and extends f .

This concludes our proof.

We will use End(G) to denote the endomorphism monoid of G.

Proposition 6. If G is a countable HH-homogeneous graph with vertices of
infinite degree, then for every C ∈ K(G) there exists an infinite clique K ⊂ G
such that every vertex of K is a cone over C.

Proof. Take C ∈ [G]<ω and suppose that c ∈ G is a cone over C. Since the
degree of c is infinite, there exists u ∈ N(c) \ C. The mapping h : C ∪ {u} →
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C ∪ {c} given by

h(v) =

{
v if v ∈ C
c if v = u

is a homomorphism, so there is H ∈ End(G) that extends it. The image of c
under H is a cone over C ∪{c}. This argument proves that the set of cones over
C is an infinite HH-homogeneous graph (Proposition 3) that contains no finite
⊆-maximal cliques. Since every clique is contained in a maximal one, there
exists an infinite clique consisting of cones over C.

The complete bipartite graph K1,n is sometimes called an n-star. The fol-
lowing result is part of Proposition 2.1 in [1].

Proposition 7. Suppose that G is an HH-homogeneous graph. If G does not
satisfy (4), then there is a finite N such that G does not embed n-stars for any
n > N .

Proof. If G embeds arbitrarily large n-stars, then we can follow the proof of
Case 1 in Proposition 4 to show that G satisfies (4).

Definition 8. Let G be a graph. Define the star number of G as

σ(G) := sup{α(N(v)) : v ∈ G}

if the supremum is finite, and as ∞ otherwise.

We can rephrase Proposition 7 above as saying that if G is HH-homogeneous
with ¬(4), then σ(G) is finite. In particular, there exists a finite n such that
each N(v) is a Kn-free HH-homogeneous graph (Proposition 3).

Definition 9. With the notions from above:

1. If D,X are subsets of G, we say that D dominates X if

X ⊆
⋃
{N(d) : d ∈ D}.

A set D is a dominating set of G if D dominates G \D.

2. Let G be a graph with finite star number σ(G) ≥ 1 and I ⊆ G. We say
that I is a directory of G if I is an independent dominating set of G and

(a) |I| = α(G) if α(G) is finite, or
(b) |I| ≥ 2σ(G)− 1 if α(G) is infinite.

3. Let I be a directory of G. The address of x ∈ G with respect to I, denoted
by addressI(x) or simply address(x), is given by

addressI(x) =

{
N(x) ∩ I if x /∈ I
{x} otherwise.

We will write addressI(A) instead of
⋃
{addressI(a) : a ∈ A}.
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Every maximal independent set in G dominates G, but not every maximal
independent set is a directory. The two notions are not very far from one
another, however. There are only two ways in which a maximal independent
subset I of a graph G with finite star number fails to be a directory, namely:

1. I contains fewer than α(G) elements and α(G) is finite, or
2. I contains fewer than 2σ(G)− 1 elements and α(G) is infinite.

We also remark that not all maximal independent subsets of an HH-homo-
geneous graph have the same size. The difference can be seen in the original
examples of connected HH-homogeneous graphs with ¬(4) from [6], which we
reproduce below.

Example 1. Given n ≥ 3, take an independent set An = {a0, . . . , an−1} and an
infinite clique disjoint from An, partitioned into n infinite subsets C0, . . . , Cn−1.
Finally, add all edges of the form {c, aj} where c ∈

⋃
{Ci : i 6= j}, and call the

resulting graph RS(n). It is clear from the construction that the finite subgraph
An does not have a cone in RS(n), and HH-homogeneity is easy to verify using
Proposition 5. In RS(n), each pair {c, ai} with c ∈ Ci is a maximal independent
set, but An is the only directory of RS(n).

In an HH-homogeneous graph with infinite independence number, we cannot
simply require the size of the directory to be α(G) because HH-homogeneity
does not guarantee the existence of an infinite independent set in G when α(G)
is infinite. All we know in that case is that G embeds arbitrarily large finite
independent sets. Our next example illustrates this point.

Example 2. Let G be the complement of the disjoint union of {Kn : n ∈ ω}.
Then G satisfies (4) and is therefore HH-homogeneous, has infinite indepen-
dence number, and does not embed an infinite independent set.

Notation 1. Let G be a graph with finite star number. If I is a directory of
G and S ⊆ I, then KS := {v ∈ G : N(v) ∩ I = S}. We call KS the exact
neighbourhood of S (with respect to I).

Lemma 10. Let G be a graph with finite star number. If I is a directory of G,
then for any S ∈

(
I

σ(G)

)
, KS = N(S).

Proof. It is clear that KS ⊆ N(S) even when |S| < σ(G). Consider v ∈ N(S);
if v ∈ N(S) \ KS , then S ( N(v) ∩ I, and so α(N(v)) > σ(G), impossible.
It follows that v ∈ KS and the exact and common neighbourhoods of S are
equal.

Proposition 11. Let G be a graph with finite star number, and suppose that
I is a directory of G. Then for any disjoint S, T ∈

(
I

σ(G)

)
, there are no edges

v ∼ w with v ∈ KS and w ∈ KT .

Proof. Suppose that S, T ∈
(

I
σ(G)

)
are disjoint, an let v ∈ KS , w ∈ KT . If

v ∼ w, then {w} ∪ address(v) would be an independent set of size σ(G) + 1
contained in N(v), impossible by the definition of σ(G) (see Figure 2).
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KS KT

S T

I

m+ 1

v w

Figure 2: Proposition 11. If the dotted line were an edge, then the dashed set would
be an independent subset of size σ(G) + 1 in the neighbourhood of v.

Lemma 12. Let G be a countably infinite HH-homogeneous graph with vertices
of infinite degree and finite star number satisfying α(G) ≥ 2σ(G)− 1. Suppose
that I is a directory of G. Then for all non-disjoint S, T ∈

(
I

σ(G)

)
and all

v ∈ KS, the set N(v) ∩KT is infinite.

Proof. If S = T , then KS is an infinite HH-homogeneous graph (Propositions
3 and 6) with finite independence number (bound by the star number of G), so
all its vertices have infinite degree within KS (Propositions 4 and 6), and thus
the result holds in this case. We may now assume S 6= T .

Write m for σ(G). The proof consists of two pairs of claims of increasing
strength. We start with the simplest case:

Claim 13. If S, T ∈
(
I
m

)
satisfy |S∩T | = 1, then every v ∈ KT has a neighbour

in KS.

Proof. Let S = {c1, . . . , cm} and T = {cm, . . . , c2m−1}. Take u ∈ KS and
v ∈ KT , and consider the setD = {c1, . . . , cm−1, v}. Since cm is the only element
common to S and T , D is an independent set of size m. By HH-homogeneity, D
has a cone z. Observe that z /∈ I because it has edges to elements of I. Observe
also that if N(z) ∩ T = ∅, then {z, cm, . . . , c2m−1} would be an independent
set of size m+ 1 contained in N(v), which is a contradiction, so there must be
exactly one edge with one endpoint z and another d ∈ T (see Figure 3). An
endomorphism of G extending the homomorphism f : {c1, . . . , cm−1, d, v} →
S ∪ {v} that fixes c1, . . . , cm−1, v and maps d 7→ cm sends z to a neighbour of v
in KS .

Claim 14. If S, T ∈
(
I
m

)
satisfy S ∩T 6= ∅, then every v ∈ KT has a neighbour

in KS.

Proof. Claim 13 is the first step of an inductive argument on |S ∩ T | up to
|S ∩ T | = m− 2.
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KS KT

S T

I

u v

∃z

!

d

Figure 3: Claim 13. By HH-homogeneity, the dashed set has a cone z. If the heavier
edge were not there, then the dotted set would be a large independent set in N(v), so
exactly one such edge is forced.

Let 1 ≤ k ≤ m − 3, such that every v ∈ KT has a neighbour in KS if
|S ∩ T | = k. Let S, T ∈

(
I
m

)
with |S ∩ T | = k + 1. Pick a vertex x ∈ S ∩ T .

Because k + 1 ≥ 2 and α(G) ≥ 2σ(G) − 1, there exists w ∈ I \ (S ∪ T ). Now
the independent set S′ = (S ∪ {w}) \ {x} has m elements and |S′ ∩ T | = k,
and so KS′ contains a neighbour u′ of v, by the induction hypothesis. Define
f : S′ ∪ {v} → S ∪ {v} as

f(s) =

{
s if s ∈ (S′ ∪ {v}) \ {w}
x if s = w.

This function is a homomorphism, so by HH-homogeneity it has an extension
F ∈ End(G). The image of S′ under F is S, so the cone u′ over S′ is mapped
by F to a cone over S (that is, an element of KS), which is a neighbour of v.

The preceding two claims, together with Proposition 11, show that in a
connected HH-homogeneous graph G with finite star number, if I is a directory
of G, then the structure of the set of vertices with σ(G) neighbours in I is closely
related to that of the intersection graph of

(
I

σ(G)

)
. Indeed, if we define a graph

whose vertices are the exact neighbourhoods of the elements of
(

I
σ(G)

)
, with an

edge KS ∼ KT if there exist v ∈ KS and w ∈ KT such that v ∼ w in G, then
we obtain the intersection graph of

(
I

σ(G)

)
.

Claim 15. If S, T ∈
(
I
m

)
satisfy S∩T 6= ∅, then all sets of the form N(u)∩KT

with u ∈ KS are finite or all are infinite.

Proof. For any u,w ∈ KS , the map h fixing S ∪ T and sending w 7→ u is a
homomorphism, and any global extension H of h will map N(w) ∩ KT to a
subset of N(u)∩KT . If N(u)∩KT is finite and N(w)∩KT is infinite then some
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vertex in N(u)∩KT has infinite preimage under H in N(w)∩KT . The preimage
of a vertex under a homomorphism is an independent set, and therefore α(N(w))
is infinite, contradicting the finiteness of σ(G).

Claim 16. If S, T ∈
(
I
m

)
satisfy S ∩ T 6= ∅, then N(u) ∩KT is infinite for all

u ∈ KS.

Proof. Suppose for a contradiction that N(u) ∩KT is the finite set A. Then u
is a cone over S∪A, and by Proposition 6 there exist infinitely many cones over
this set. But being a cone over S is equivalent to being in KS , and so there is
an infinite clique C contained in KS such that for any a ∈ A and c ∈ C we have
c ∼ a.

Now we prove that this is not possible in an HH-homogeneous graph with
finite star number. Let w be any element of A and h : S ∪ T ∪ {u,w} → S ∪
T ∪ {u,w} be any bijection that fixes S ∩ T , maps T \ S to S \ T , sends w to
u and vice versa. Then h is an homomorphism, and an endomorphism H that
extends h will map N(w)∩KS into N(u)∩KT . This contradicts our hypothesis
because the infinite clique C needs to be mapped by H into the finite graph A.

This concludes the proof of Lemma 12.

Definition 17. Let G be a graph and I be a directory of G. We define the
domination number of S ∈ [G]<ω over I (or its I-domination number) as the
value of the function dI : [G]<ω → N given by

dI(S) =

{
min{|A| : A ⊂ I and A dominates S} if S ∩ I = ∅
|S ∩ I|+ dI(S \BS) otherwise.

In the second case, BS = {x : ∃s ∈ S ∩ I(x ∈ N(s))} ∪ (S ∩ I).

Lemma 18. Let G be a countably infinite HH-homogeneous graph with vertices
of infinite degree, σ(G) ≥ 2, and α(G) ≥ 2σ(G)− 1, and let I be a directory of
G. Then there exist copies of K3 in G with I-domination number 2.

Proof. Choose and fix S, T, U ∈
(

I
σ(G)

)
with |S ∩ T | =

⌊
σ(G)
2

⌋
and U ⊆ S4T ,

so that S ∩ T ∩ U = ∅ and |S ∪ T ∪ U | = σ(G) +
⌈
σ(G)
2

⌉
. We know from

Lemma 12 that any v ∈ KS has infinitely many neighbours in KT and KU , so
fix v ∈ Ks, and let w ∈ KT and z ∈ KU be neighbours of v. Suppose that w ∼ z.
Then v, w, z form a copy C of K3. We claim that dI(C) = 2. This follows from
two facts: first, any finite Y ⊂ G is dominated by some X ⊆ address(Y ); and
second, if a single vertex c ∈ I dominates Y , then c is by definition contained in⋂
{N(y)∩ I : y ∈ Y }. But since S ∩T ∩U = ∅ and these sets are the addresses

of the vertices in C, we know that the I-domination number of C is at least 2.
Clearly, the set containing one vertex from S∩T and one from T ∩U dominates
C.

12



Suppose now that w 6∼ z. Let w′ ∈ KT and z′ ∈ KU form an edge, and
define f : S ∪T ∪U ∪{w, z} → S ∪T ∪U ∪{w′, z′} be the map fixing S ∪T ∪U
pointwise and sending w 7→ w′, z 7→ z′. This is a homomorphism, and the image
v′ of v under a global extension forms a triangle with w′ and z′ and is in KS

because f fixes S pointwise. Now the argument from the preceding paragraph
proves that {w′, z′, v′} is a copy of K3 with I-domination number 2.

Lemma 19. Let G be a graph with finite star number and let I be a directory
of G. If a finite set X ⊂ G contains a vertex x such that |address(x)| = σ(G),
and z ∈ G is a cone over X, then address(z)∩ address(x) 6= ∅. In particular, if
X consists of vertices with addresses of size σ(G), then address(z)∩address(X)
dominates X.

Proof. The result is trivial if z ∈ I, so assume z /∈ I. If address(z) ∩ address(x)
were empty, then {z}∪address(x) would be an independent set of size σ(G) + 1
in N(x). This is a contradiction, hence the first statement follows.

For the second assertion, suppose for a contradiction that address(z) ∩
address(X) does not dominate X. Then there exists x ∈ X such that x /∈⋃
{N(v) : v ∈ address(z) ∩ address(X)}, so {z} ∪ address(x) is an independent

subset of size σ(G) + 1 in N(x), impossible.

Theorem 20. If G is an countably infinite connected HH-homogeneous graph

with finite star number σ(G) ≥ 2, then α(G) < 2σ(G) +
⌈
σ(G)
2

⌉
− 1.

Proof. Suppose for a contradiction that α(G) ≥ 2σ(G) +
⌈
σ(G)
2

⌉
− 1. Then

there is a directory I with at least 2σ(G) +
⌈
σ(G)
2

⌉
− 1 vertices. We find X ∈

K(G), Y ∈ K(G) such that X and Y induce isomorphic subgraphs of G.
Take S ∈

(
I

σ(G)

)
and a copy C1 of K3 in KS (we can find C1 because

KS = N(S) contains an infinite clique by Propositions 3 and 6). This C1

clearly has I-domination number 1, as witnessed by any s ∈ S.

Select T,U, V ∈
(

I
σ(G)

)
such that T ∩ V ∩ U = ∅, |T ∩ V | =

⌊
σ(G)
2

⌋
, and

U ⊆ V4T . Now, as in the proof of Lemma 18, there is a copy C2 of K3 in G
with I-domination number 2 such that T,U, V are the addresses of its vertices.
Pick any set D1 with σ(G)− 1 vertices from I \S and let X be C1 ∪D1. Define
Y as C2 ∪D2, where D2 is any subset of I \ address(C2) with σ(G)− 1 vertices.
Then X and Y are isomorphic to the union of K3 and an independent set of
size σ(G)− 1.

We claim that X has a cone in G. To see this, consider the set W = D1∪{s},
where s is any element of S. Let z be any element of KW . It is known that
in a connected HH-homogeneous graph each vertex has infinite degree (Lemma
4 of [6]), so we can apply Lemma 12 to conclude that N(z) ∩ KS is infinite.
Now Proposition 6 and the finiteness of σ(G) imply that it contains an infinite
clique, so in particular there is a copy of K3, say C ′1 contained in N(S ∪ {z}).
Let f : S∪D1∪C ′1 → S∪D1∪C1 be the homomorphism fixing S∪D1 pointwise

13



S T

U

V

KS

D1 = D2

KT KU KV

C1
C2

I

Figure 4: The choice of addresses and triangles in the proof of Theorem 20 with

σ(G) = 5. To simplify the diagram, we assumed a |I| ≥ 3σ(G) +
⌈
σ(G)

2

⌉
− 1, so

that D1 = D2 is possible. The square vertices in S and T ∪ V dominate C1 and C2,
respectively.

and mapping C ′1 to C1 bijectively. The image of z under any extension of f is
a cone over X.

Next, we prove that Y does not have a cone. By our choice of addresses, each
vertex v of C2 satisfies |address(v)| = σ(G), so by Lemma 19 the address of a
cone z over C2 contains a dominating set Pz for C2, which in fact is address(z)∩
address(C2). By our choice of address and D2, it is not possible for Y to have
a cone, as the neighbourhood of z would contain D2 ∪ Pz, an independent set
of size at least σ(G) + 1.

The last two paragraphs contradict Condition 1 in Proposition 5 and estab-
lish the Theorem.

The bound on α(G) from Theorem 20 above is tight. In RS(3) (see example

1), we have σ(G) = 2 and α(G) = 3 = 2σ(G) +
⌈
σ(G)
2

⌉
− 2.

Corollary 21. If G is an infinite connected HH-homogeneous graph with infinite
independence number, then G satisfies (4).

Proof. If G satisfies ¬(4), then the star number of G is finite, by Proposition
7. Hence, by Theorem 20 α(G) is finite, too— a contradiction.

3. MB-homogeneous graphs

In this section we use Corollary 21 to classify MB-homogeneous graphs up to
bimorphism-equivalence. We remind the reader that two relational structures
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G and H are bimorphism-equivalent if there exist bijective homomorphisms
F : G → H and J : H → G. “Bimorphism-equivalent” and “isomorphic” are
distinct notions only for infinite structures. For graphs, bimorphism-equivalence
means that G is (isomorphic to) a spanning subgraph of H and H is (isomorphic
to) a spanning subgraph of G.

The following theorem is an amalgamation of results from Cameron-Nešetřil
[1] and Coleman-Evans-Gray [12]:

Theorem 22. A countably infinite graph with property (4) contains the Rado
graph as a spanning subgraph. If in addition it satisfies (∴), then it is bimorphism-
equivalent to the Rado graph.

An important fact from Coleman-Evans-Gray [12]:

Theorem 23. If G is a MB-homogeneous graph, then its complement G is also
MB-homogeneous.

Remark 24. Any MB-homogeneous graph is MH-homogeneous because a bi-
morphism is a homomorphism. It follows from the fact that MH=HH for graphs
(see [6]) that MB-homogeneous graphs are HH-homogeneous.

Given two graphs G and H with disjoint vertex sets, we can form the graph
composite or lexicographic product of G and H, denoted by G[H], as follows: the
vertex set is G×H and (g, h) ∼ (g′, h′) if g ∼ g′ in G or g = g′ and h ∼ h′ in H.
In G[H], each set of the form {g}×H induces an isomorphic copy of H and for
any function f : G → H, the set {(g, f(g)) : g ∈ G} with its induced subgraph
structure in G[H] is isomorphic to G. We will use Iκ to denote an independent
set of size κ. The co-degree of a vertex v ∈ G is |{w ∈ G : w 6= v ∧ w 6∼ v}|.
Corollary 25. If G is not complete or null, countably infinite, and MB-homo-
geneous, then it is either connected or isomorphic to Iω[Kω]. If G is not null,
then every vertex has infinite degree and co-degree.

Proof. Since G is not null, there is some connected component C with at least
one edge u ∼ v; if G is not connected, then there is w ∈ G \ C. If G has only
finitely many connected components, then the monomorphism u 7→ u, w 7→ v
cannot be extended to a surjective endomorphism. Therefore, G is connected
or has infinitely many connected components.

We know that G is HH-homogeneous by Remark 24, so if G is disconnected,
then each connected component is a clique. From these, only Iω[Kω] is MB-
homogeneous (Proposition 3.4 of [12]).

The claims about degree and codegree are obviously true in Iω[Kω].
If G is connected, then it follows from HH-homogeneity that every vertex

has infinite degree (Proposition 1.1 (c) of [1]).
Now suppose for a contradiction that G is MB-homogeneous and some vertex

w has finite codegree n > 0. We know by Theorem 23 that G is also MB-
homogeneous, so it is an HH-homogeneous graph with a vertex of finite degree,
so G cannot be connected. Disconnected HH-homogeneous graphs are unions of
equipotent cliques, so G ∼= Iω[Kn+1]. Since this graph is not MB-homogeneous,
this contradicts Theorem 23.
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We now have enough information to classify MB-homogeneous graphs up to
bimorphism equivalence. This answers a question from [12].

Theorem 26. Let G be a countably infinite MB-homogeneous graph. Then G
is bimorphism-equivalent to one of the following or its complement:

1. Kω,

2. Iω[Kω],

3. The Rado graph R.

Proof. If G is a connected, countably infinite MB-homogeneous graph, then one
of the following holds:

1. G ∼= Kω,

2. G ∼= Iω[Kω],

3. G is connected.

The first two cases can be handled by Corollary 25. We turn our attention to
the third one. Since G is connected, it contains a copy of Kω, and for the same
reason G contains a copy of Kω. It follows that α(G) = α(G) = ω, and by
Corollary 21, both G and G satisfy (4). We conclude that G is bimorphism-
equivalent to R (Theorem 22).

Remark 27. In the first two cases of Theorem 26, the bimorphism is always an
isomorphism. Only four of the uncountably many countable MB-homogeneous
graphs are not bimorphism-equivalent to the Rado graph.
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