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ON SYMMETRIC INTERSECTING FAMILIES

DAVID ELLIS, GIL KALAI, AND BHARGAV NARAYANAN

Abstract. We make some progress on a question of Babai from the 1970s,

namely: for n, k ∈ N with k ≤ n/2, what is the largest possible cardinality

s(n, k) of an intersecting family of k-element subsets of {1, 2, . . . , n} admitting

a transitive group of automorphisms? We give upper and lower bounds for

s(n, k), and show in particular that s(n, k) = o(
(

n−1

k−1

)

) as n → ∞ if and only if

k = n/2 − ω(n)(n/ logn) for some function ω(·) that increases without bound,

thereby determining the threshold at which ‘symmetric’ intersecting families are

negligibly small compared to the maximum-sized intersecting families. We also

exhibit connections to some basic questions in group theory and additive number

theory, and pose a number of problems.

1. Introduction

A family of sets is said to be intersecting if any two sets in the family have

nonempty intersection, and uniform if all the sets in the family have the same size.

In this paper, we study uniform intersecting families. The most well-known result

about such families is the Erdős–Ko–Rado theorem [10].

Theorem 1.1. Let n, k ∈ N with k ≤ n/2. If A is an intersecting family of

k-element subsets of {1, 2, . . . , n}, then |A| ≤
(

n−1
k−1

)

. Furthermore, if k < n/2,

then equality holds if and only if A is a star, meaning that A consists of all the

k-element subsets of {1, 2, . . . , n} that contain some fixed element i ∈ {1, 2, . . . , n}.

Over the last fifty years, many variants of this theorem have been obtained. A

common feature of many of these variants is that the extremal families are highly

asymmetric; this is the case, for example, in the Erdős–Ko–Rado theorem itself, in

the Hilton–Milner theorem [17], and in Frankl’s generalisation [12] of these results.

It is therefore natural to ask what happens to the maximum possible size of a
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uniform intersecting family when one imposes some kind of symmetry requirement

on the family.

In the 1970s, Babai posed the problem of determining the maximum possible

size of a uniform intersecting family with transitive automorphism group; this is

a very natural symmetry requirement to impose. In this paper, we make some

progress on Babai’s problem.

Let us first give our definitions in full, and fix some notation. For a positive

integer n ∈ N, we denote the set {1, 2, . . . , n} by [n]. We write Sn for the symmetric

group on [n] and Pn for the power-set of [n]. For a permutation σ ∈ Sn and a

set x ⊂ [n], we write σ(x) for the image of x under σ, and if A ⊂ Pn, we write

σ(A) = {σ(x) : x ∈ A}. We define the automorphism group of a family A ⊂ Pn

by

Aut(A) = {σ ∈ Sn : σ(A) = A}.

We say that A ⊂ Pn is symmetric if Aut(A) is a transitive subgroup of Sn, i.e., if

for all i, j ∈ [n], there exists a permutation σ ∈ Aut(A) such that σ(i) = j.

For a pair of integers n, k ∈ N with k ≤ n, let [n](k) denote the family of all

k-element subsets of [n], and let

s(n, k) = max{|A| : A ⊂ [n](k) such that A is symmetric and intersecting}.

Of course, if k > n/2, then [n](k) itself is a symmetric intersecting family, so

s(n, k) =
(

n
k

)

; in studying s(n, k), we may therefore restrict our attention to the

case where k ≤ n/2.

With these definitions in place, we may state the aforementioned question of

Babai more precisely.

Problem 1.2. For n, k ∈ N with k ≤ n/2, determine s(n, k).

We remark that, in the non-uniform setting (where one studies families of sets

not all of the same size, i.e., subsets of Pn), several authors have obtained re-

sults on the maximum size of symmetric families that are intersecting (or satisfy

some stronger intersection requirement); see for example the results of Frankl [11],

Cameron, Frankl and Kantor [5], and the more recent results of the first and third

authors [9]. Relatively little seems to be known in the uniform setting, however.
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As a first step towards Problem 1.2, we focus on determining when a symmetric

uniform intersecting family must be significantly smaller than the extremal fam-

ilies (of the same uniformity) in the Erdős–Ko–Rado theorem. A more precise

formulation of this question is as follows.

Question 1.3. For which k = k(n) ≤ n/2 is s(n, k) = o(
(

n−1
k−1

)

) as n → ∞?

Utilising a well-known sharp threshold result of Friedgut and the second au-

thor [14], we prove the following.

Theorem 1.4. There exists a universal constant c > 0 such that

s(n, k) ≤ 2 exp

(

−c(n− 2k) logn

n

)(

n

k

)

for any n, k ∈ N with k ≤ n/2.

We also give a construction showing that Theorem 1.4 is sharp up to the value

of c in the regime where k/n is bounded away from zero. This construction, in

conjunction with Theorem 1.4, provides a complete answer to Question 1.3.

Theorem 1.5. If k = k(n) ≤ n/2, then as n → ∞, s(n, k) = o(
(

n−1
k−1

)

) if and only

if

k =
n

2
− ω(n)

(

n

log n

)

for some function ω(·) that increases without bound.

While Question 1.3 is the most basic question in the regime where the uniformity

k is large compared to the size n of the ground set, the most basic question in

the regime where k is small compared to n concerns the existence of symmetric

intersecting families. Note that if s(n, k) > 0, then s(n, l) > 0 for all l > k; indeed,

if A ⊂ [n](k) is nonempty, symmetric and intersecting, then so is {y ∈ [n](l) : x ⊂
y for some x ∈ A}. With this in mind, for each n ∈ N, we define

g(n) = min{k ∈ N : s(n, k) > 0}.

It turns out that problem of determining the function g(·) is intimately connected

to some longstanding open problems in group theory and additive number theory.

It is not hard to show, as we shall see, that g(n) ≥ √
n for all n ∈ N. It is then

natural to ask whether this bound is asymptotically tight, and this prompts us to

raise the following question.
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Question 1.6. Is it true that g(n) = (1 + o(1))
√
n for all n ∈ N?

While we are able to show that the estimate in Question 1.6 holds along various

(arithmetically special) sequences of positive integers, we are unfortunately unable

to settle this question entirely.

The remainder of this paper is organised as follows. We give the proof of The-

orem 1.4 in Section 2. In Section 3, we describe a combinatorial approach to

constructing large symmetric intersecting families in the regime where k is compa-

rable to n, and deduce Theorem 1.5 as a consequence. In Section 4, we turn to the

regime where k is comparable to
√
n, and describe various algebraic constructions

of symmetric intersecting families in this regime. We finally conclude in Section 5

with a discussion of some open problems and related work.

2. Upper bounds

We first describe briefly the notions and tools we will need for the proof of

Theorem 1.4. In what follows, all logarithms are to the base e.

We begin with the following simple observation which may be found in [5], for

example; we include a proof for completeness.

Proposition 2.1. For all n, k ∈ N with 1 < k ≤ √
n, we have s(n, k) = 0.

Proof. The proposition follows from a simple averaging argument. Indeed, let

k ≤ √
n, suppose for a contradiction that A ⊂ [n](k) is a nonempty, symmetric

intersecting family, and let x ∈ A. If we choose σ ∈ Aut(A) uniformly at random,

then since Aut(A) is transitive, we have

E[|x ∩ σ(x)|] = k2

n
≤ 1,

where the first equality above depends on the fact that

|σ ∈ Aut(A) : σ(i) = j| = |σ ∈ Aut(A) : σ(i) = k|

for all i, j, k ∈ [n]. Since |x ∩ Id(x)| = k > 1, there must exist a permutation σ ∈
Aut(A) such that x ∩ σ(x) = ∅, contradicting the fact that A is intersecting. �

For 0 ≤ p ≤ 1, we write µp for the p-biased measure on Pn, defined by

µp({x}) = p|x|(1− p)n−|x|
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for each x ⊂ [n], and by

µp(F) =
∑

x∈F

µp({x})

for each F ⊂ Pn. We say that a family F ⊂ Pn is increasing if it is closed under

taking supersets, i.e., if x ∈ F and x ⊂ y, then y ∈ F . It is easy to see that

if F ⊂ Pn is increasing, then p 7→ µp(F) is a monotone non-decreasing function

on [0, 1]. For a family F ⊂ Pn, we write F↑ for the smallest increasing family

containing F ; in other words, F↑ = {y ⊂ [n] : x ⊂ y for some x ∈ F}.
For any family A ⊂ [n](k), we write

∂+A := {x ∈ [n](k+1) : x ⊃ y for some y ∈ A}

for the upper shadow of A, and

∂+(t)(A) := {x ∈ [n](k+t) : x ⊃ y for some y ∈ A} = ∂+(∂+(t−1)A)

for its tth iterate (for each t ∈ N with t ≤ n− k). The local LYM inequality (see

e.g. [3], §3) states that for any integers 1 ≤ k < n and any family A ⊂ [n](k), we

have
|∂+A|
(

n
k+1

) ≥ |A|
(

n
k

) .

Iterating the local LYM inequality yields

|∂+(t)A|
(

n
k+t

) ≥ |A|
(

n
k

) (1)

for all t ≤ n− k.

We need the following fact, which allows one to bound from above the size of a

family F ⊂ [n](k) in terms of µp(F↑), where p ≈ k/n; this was proved in a slightly

different form by Friedgut [13]. We provide a proof for completeness.

Lemma 2.2. Let n, k ∈ N and suppose that 0 < p, φ < 1 satisfy

p ≥ k

n
+

√

2n log(1/φ)

n
.

Then for any family F ⊂ [n](k), we have

µp(F↑) > (1− φ)
|F|
(

n
k

) .
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Proof. Let δ = |F|/
(

n
k

)

and let X be a binomial random variable with distribution

Bin(n, p). First, for each l ≥ k, (1) implies that

|F↑ ∩ [n](l)|
(

n
l

) ≥ |F|
(

n
k

) = δ.

Now, for any η > 0, it follows from a standard Chernoff bound that

P(X < (1− η)np) < exp(−η2np/2).

Hence,

µp

(

F↑
)

≥
n

∑

l=k

pl(1− p)n−l

(

n

l

)

δ

= P(X ≥ k)δ

> (1− φ)δ,

where the last inequality above follows from a standard calculation. �

We will also require the following sharp threshold result due to Friedgut and the

second author [14].

Theorem 2.3. There exists a universal constant c0 > 0 such that the following

holds for all n ∈ N. Let 0 ≤ p < 1, 0 < ǫ < 1 and let F ⊂ Pn be a symmetric

increasing family. If µp(F) > ε, then µq(F) > 1− ε, where

q = min

{

1, p+ c0
log 1

ǫ

log n

}

. �

The idea of the proof of Theorem 1.4 is as follows. Let A ⊂ [n](k) be a symmetric

intersecting family. We first use Lemma 2.2 to bound |A|/
(

n
k

)

from above in terms

of µp(A↑), where p ≈ k/n; we then use Theorem 2.3, together with the simple

fact that µ1/2(A↑) ≤ 1/2, to bound µp(A↑), and hence |A|, from above. Let us

also remark that this strategy of ‘approximating’ the uniform measure on [n](k)

with the p-biased measure µp, where p ≈ k/n, has proven useful on a number of

different occasions in the study of uniform intersecting families; see [13, 7, 8], for

example.

Proof of Theorem 1.4. Let n, k ∈ N with k ≤ n/2, let A ⊂ [n](k) be a symmetric

intersecting family, and set δ = |A|/
(

n
k

)

.
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First, applying Lemma 2.2 with p = k/n +
√

(2 log 2)n/n and φ = 1/2, we see

that

µp(A↑) >
δ

2
.

Next, since A is symmetric, so is A↑. We may therefore apply Theorem 2.3 with

ε = δ/2 to deduce that µq(A↑) > 1/2, where

q = min

{

1, p+ c0

(

log(2/δ)

log n

)}

.

Since A↑ is increasing, the function r 7→ µr(A↑) is monotone non-decreasing on

[0, 1]. Also, since A is intersecting, so is A↑, and therefore µ1/2(A↑) ≤ 1/2. Now,

as µ1/2(A↑) ≤ 1/2 and µq(A↑) > 1/2, the monotonicity of r 7→ µr(A↑) implies that

p+ c0

(

log(2/δ)

logn

)

>
1

2
.

Rearranging this inequality, we see that

δ < 2 exp

(

−(1− 2p) logn

2c0

)

≤ 2 exp

(

−c(n− 2k) logn

n

)

,

where c > 0 is a universal constant; this proves the theorem. �

3. Lower bounds for large k

In this section, we give a construction showing that Theorem 1.4 is sharp up to

the value of the constant c in the exponent for many choices of k = k(n).

Given n, k ∈ N with k ≤ n, we identify [n] with Zn, we identify a subset S ⊂ Zn

with its characteristic vector χS ∈ {0, 1}Zn, and we define F(n, k) to be the family

of all k-element subsets S ⊂ Zn such that the longest run of consecutive ones in χS

is longer than the longest run of consecutive zeros in χS. Slightly less formally, we

take F(n, k) to consist of all the cyclic strings of n zeros and ones which contain

exactly k ones and in which the longest run of consecutive ones is longer than the

longest run of consecutive zeros.

It is clear that F(n, k) is symmetric. It is also easy to check that F(n, k) is

intersecting. Indeed, given S, T ∈ F(n, k), suppose without loss of generality that

the longest run of consecutive ones in S is at least as long as that in T . Choose

a run of consecutive ones in S of the maximum length; these cannot be all zeros

in T because otherwise T would have a longer run of consecutive ones than S.

Therefore, S ∩ T 6= ∅.
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We note that the non-uniform case of this construction, i.e., the family of all

cyclic strings of n zeros and ones in which the longest run of consecutive ones is

longer than the longest run of consecutive zeros, shows that the Kahn–Kalai–Linial

theorem [18] cannot be improved by more than a constant factor for intersecting

families; see [19] for more details.

An analysis of F(n, k) yields the following.

Lemma 3.1. There exists a universal constant Ĉ > 0 such that if k = k(n) ∈ N

is such that
√
n log n ≤ k ≤ n/2 for all n ∈ N, then

|F(n, k)| ≥ n · exp
(

−(1 + Ĉ/ logn)

(

logn− log k

log n− log(n− k)

)

logn

)(

n

k

)

(2)

= exp

(

−(1 + Ĉ/ logn)

(

log n− log k

log n− log(n− k)

)

logn + logn

)(

n

k

)

A comparison of Theorem 1.4 and (2) shows that Theorem 1.4 is sharp up to

the constant factor in the exponent when k/n is bounded away from zero and

1/2− k/n = Ω(1/ log n).

Lemma 3.1 implies the following, in the case where k/n is close to 1/2.

Lemma 3.2. For each C > 0, there exists c > 0 such that for any n, k ∈ N with
1
2
(1− C

logn
) ≤ k

n
≤ 1

2
, we have

|F(n, k)| ≥ c

(

n− 1

k − 1

)

.

To prove Lemma 3.1, we need the following.

Lemma 3.3. Let k < n. The number of cyclic strings of n zeros and ones with

exactly k ones and a run of consecutive zeros of length at least l is at most 1
4

(

n
k

)

,

provided

l ≥ logn + 2 log 2

log n− log(n− k)
.

Proof. The number of such strings is at most n
(

n−l
k

)

, since (possibly overcounting)

there are n choices for the position of the run of l consecutive zeros, and then
(

n−l
k

)

choices for the positions of the ones. We have

n
(

n−l
k

)

(

n
k

) =
n(n− k)(n− k − 1) . . . (n− k − l + 1)

n(n− 1) . . . (n− l + 1)
≤ n

(

n− k

n

)l

≤ 1

4

provided l ≥ (log n+ 2 log 2)/(logn− log(n− k)), as required. �
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We now make the following straightforward claim.

Claim 3.4. If 1 ≤ l ≤ k ≤ n/2, then the number of cyclic strings of length n with

k ones and a run of consecutive ones of length at least l is at most the number of

cyclic strings of length n with k ones and a run of consecutive zeros of length at

least l.

Proof of Claim 3.4. Let k ≤ n/2 and let A ⊂ [n](k). Applying (1) with t = n− 2k,

and using the fact that
(

n
k

)

=
(

n
n−k

)

, yields

|∂+(n−2k)A|
(

n
k

) =
|∂+(n−2k)A|

(

n
n−k

) ≥ |A|
(

n
k

) . (3)

Now let 1 ≤ l ≤ k ≤ n/2, let A be the family of cyclic strings of length n with k

ones and a run of consecutive ones of length at least l, and let B be the family of

cyclic strings of length n with n−k ones and a run of consecutive ones of length at

least l. Clearly, we have B = ∂+(n−2k)A, and therefore by (3), we have |A| ≤ |B|.
But, by flipping zeros and ones, it is clear that |B| is precisely the number of cyclic

strings of length n with k ones and a run of consecutive zeros of length at least l,

proving the claim. �

The following is immediate from Lemma 3.3 and Claim 3.4.

Corollary 3.5. Let k ≤ n/2. The number of cyclic strings of length n with k ones

and no run of l consecutive zeros or ones is at least 1
2

(

n
k

)

, provided

l ≥ log n+ 2 log 2

logn− log(n− k)
. �

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Choose l0 ∈ N such that

l0 − 1 ≥ log(n− l0 − 2) + 2 log 2

log(n− l0 − 2)− log(n− k − 2)
. (4)

Observe that F(n, k) contains all cyclic strings of length n with k ones, precisely

one run of l0 consecutive ones, all other runs of consecutive ones having length at

most l0 − 2, and no run of l0 consecutive zeros. We claim that if l0 < n/2, then

the number of such strings is at least

n

2

(

n− l0 − 2

k − l0

)

. (5)
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Indeed, there are n choices for the position of the run of l0 consecutive ones, and

there must be a zero on each side of this run of ones. Now, there are at least
1
2

(

n−l0−2
k−l0

)

choices for the remainder of the cyclic string (by Corollary 3.5), since

if we take a cyclic string of length n − l0 − 2 which contains no run of l0 − 1

consecutive ones or zeros, and then insert (at some point) a run of l0 consecutive

ones with a zero on either side into this string, then the resulting string has the

desired property provided l0 < n/2.

It is easily checked that if
√
n log n ≤ k ≤ n/2, then we may choose l0 ∈ N

satisfying (4) such that

l0 = (1 +O(1/ logn))
log n

logn− log(n− k)
. (6)

Indeed, choose

l0 = (1 + ǫ)
log n

log n− log(n− k)
,

where ǫ = O(1/ logn) is to be chosen later. Then, using the fact that log n −
log(n− k) = Ω(k/n), we have l0 = O((n logn)/k) = O(

√
n), and therefore

log(n− l0 − 2)− log(n− k − 2)

log n− log(n− k)
= 1−

log(1 + l0+2
n−l0−2

)− log(1 + 2
n−k−2

)

log n− log(n− k)

= 1− O( l0
k
)

= 1− O((n logn)/k2)

= 1− O(1/ logn). (7)

Provided ǫ ≥ C/ log n for some absolute constant C, we have

l0 − 1 ≥ (1 + C
2 logn

)
logn

log n− log(n− k)
. (8)

Finally, we clearly have

log n

log(n− l0 − 2) + 2 log 2
= 1−O(1/ logn). (9)

Putting (7), (8) and (9) together, we obtain

l0 − 1 ≥ (1 + C
2 logn

)
log n

logn− log(n− k)

≥ (1 + C
2 logn

)(1− O(1/ logn))
log(n− l0 − 2) + 2 log 2

log(n− l0 − 2)− log(n− k − 2)
,

yielding (4) provided C is sufficiently large.
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Provided n is at least an absolute constant (which we may assume), we have

l0 < n/2, and therefore, using (5), we have

|F(n, k)| ≥ n

2

(

n− l0 − 2

k − l0

)

≥ n

2

(

n− l0 − 2

k − l0 − 2

)

≥ n

2

(

k − l0 − 2

n− l0 − 2

)l0+2(
n

k

)

≥ Ω(1) · n ·
(

k
n

)l0+2
(

n

k

)

≥ n · exp
(

−(1 +O(1/ logn))

(

logn− log k

log n− log(n− k)

)

logn

)(

n

k

)

,

proving the lemma. �

We now deduce Lemma 3.2 from Lemma 3.1.

Proof of Lemma 3.2. Defining η := 1/2− k/n, we have η ≤ C/ logn, and

log n− log k

logn− log(n− k)
=

log 2− log(1− 2η)

log 2− log(1 + 2η)
= 1 +O(η).

Hence, it follows from Lemma 3.1 that

|F(n, k)| ≥ n · exp
(

−(1 + Ĉ/ logn)(1 +O(C/ logn)) log n
)

(

n

k

)

≥ c

(

n− 1

k − 1

)

provided c is sufficiently small depending on Ĉ and C, as required. �

Theorem 1.5 is immediate from Theorem 1.4 and Lemma 3.2.

4. Lower bounds for small k

In the previous two sections, we focussed on estimating the largest possible

cardinality s(n, k) of a symmetric intersecting subfamily of [n](k). We now turn

our attention to estimating the smallest possible uniformity k = g(n) for which

there exists a nonempty, symmetric intersecting subfamily of [n](k). To this end,

we will investigate the set

S = {(n, k) ∈ N
2 : s(n, k) > 0}.

Along the way, we describe some constructions of symmetric intersecting families

that are larger than F(n, k) for certain values of n and k.
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We have already seen (in Proposition 2.1) that g(n) >
√
n for all n ≥ 2. Let us

now consider upper bounds on g(n).

It is easy to check that F(n, k) 6= ∅ provided n ≤ ⌊k2/4⌋ + k. (Consider the

cyclic string 1ℓ(0ℓ−11)t0ℓ−1, where ℓ = ⌊k/2⌋+1, t = ⌈k/2⌉−1, and n = ⌊k2/4⌋+k;

here, as usual, if S is a string, SN denotes S concatenated with itself N times.)

This observation implies that

g(n) ≤ 2
√
n (10)

for all n ∈ N. To improve (10), we note a strong connection between the problem

of determining g(n) and the problem of finding a so-called difference cover in an

Abelian group. If G is a finite Abelian group and S ⊂ G, we say that S is a

difference cover for G if S − S = G, i.e., if {i− j : i, j ∈ S} = G; we then define

h(G) = min{|S| : S is a difference cover for G}.

Note that if S ⊂ G, then S is a difference cover for G if and only if the family of

all the translates of S is an intersecting family of subsets of G. This observation

yields the following.

Lemma 4.1. For all n ∈ N, we have g(n) ≤ h(Zn), with equality holding in the

case where n is prime.

Proof. Let h = h(Zn) and write Z
(h)
n for the family of h-element subsets of Zn. By

definition, there exists S ∈ Z
(h)
n such that S−S = Zn. Let A = {S+ j : j ∈ Zn} ⊂

Z
(h)
n denote the family of all the translates of S. Then A is clearly symmetric and

intersecting. Hence, g(n) ≤ h, proving the first part of the claim.

Now suppose that n is prime, and let g(n) = k. Let A ⊂ [n](k) be a nonempty,

symmetric intersecting family. Since Aut(A) ≤ Sn is transitive, the orbit-stabilizer

theorem implies that n divides |Aut(A)|, and therefore by Cauchy’s theorem,

Aut(A) has a cyclic subgroup H of order n. Let σ ∈ Sn be a generator of H ;

then σ is an n-cycle, and by relabelling the ground set [n] if necessary, we may

assume that σ = (1 2 . . . n) (in the standard cycle notation). Fix x ∈ A and note

that B = {x, σ(x), . . . , σn−1(x)} is also a nonempty, symmetric intersecting family

as H ≤ Aut(B). Clearly, B consists of all the cyclic translates, modulo n, of x. If

we regard x as a subset of Zn, then since B is intersecting, we have x−x = Zn, i.e.,

x is a difference cover for Zn. Hence, h(Zn) ≤ k and it follows that h(Zn) = g(n)

when n is prime, as required. �
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We now describe how existing constructions of difference covers lead to an im-

provement of (10). We say that S ⊂ Z is a difference cover for n if [n] ⊂ S − S.

For each n ∈ N, let πn : Z → Zn denote the natural projection modulo n defined by

πn(i) = i (mod n) for all i ∈ Z. Note that if S ⊂ Z is a difference cover for ⌊n/2⌋,
then πn(S) is a difference cover for Zn. Building on work of Rédei and Rényi [22]

and of Leech [20], Golay [16] proved that for any n ∈ N, there exists a difference

cover for n of size at most
√
cn, where c < 2.6572 is an absolute constant. It

follows that for any n ∈ N, we have

g(n) ≤ h(Zn) ≤ 1.1527
√
n.

Unfortunately, one cannot hope to answer Question 1.6 in the affirmative purely by

projecting difference covers for ⌊n/2⌋ into Zn and using the fact that g(n) ≤ h(Zn);

this is a consequence of a result of Rédei and Rényi [22] which asserts that if S ⊂ Z

is a difference cover for n, then

|S| ≥
√

(

2 +
4

3π

)

n.

In view of Lemma 4.1, we are led to the following question, which being a natural

question in its own right, has also occurred independently to others; see [1], for

instance.

Question 4.2. Is it true that h(Zn) = (1 + o(1))
√
n for all n ∈ N?

By Lemma 4.1, an affirmative answer to this question would imply an affirmative

answer to Question 1.6. We remark that Question 4.2 is a ‘covering’ problem whose

‘packing’ counterpart has received a lot of attention. If G is an Abelian group and

S ⊂ G, we say that S is a Sidon set in G if for any non-identity element g ∈ G,

there exists at most one ordered pair (s1, s2) ∈ S2 such that g = s1 − s2. For

n ∈ N, let

λ(n) = max{|S| : S ⊂ Zn such that S is a Sidon set}.

The determination of λ(n) is a well-known open problem; see [6], for example. In

particular, the following remains open.

Question 4.3. Is it true that λ(n) = (1− o(1))
√
n for all n ∈ N?

The constructions of Singer [24] and Bose [4] yield affirmative answers to Ques-

tion 4.3 when n is of the form q2 + q + 1 or q2 − 1 respectively, where q is a prime
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power, and a construction due to Ruzsa [23] does so when n is of the form p2 − p,

where p is prime; as observed by Banakh and Gavrylkiv [1], these constructions

of Singer, Bose and Ruzsa yield efficient difference covers as well, so we also have

affirmative answers to Questions 4.2 and 1.6 for all n of the aforementioned form.

Returning to the question of determining g(n), we have shown that

⌊
√
n⌋ + 1 ≤ g(n) ≤ 1.1527

√
n (11)

for all n ≥ 2. It turns out that the precise value of g(n) has a nontrivial dependence

on the arithmetic properties of n; indeed, the lower bound in (11) is sharp for some

positive integers, but strict for others. We record these facts, as well as some other

properties of g(·), below. Since these observations don’t seem to be enough resolve

Question 1.6 completely, we chose not to include detailed proofs of the claims

below.

G1 Observe that if d ≥ 2 and there exists a transitive projective plane of order

d, then writing n = d2 + d+1, we have s(n, k) > 0 if and only if k ≥ d+1.

Indeed, if k ≤ d, then s(n, k) = 0 by Proposition 2.1, while if k ≥ d + 1,

then we start with a transitive projective plane P of order d and take the

family of all k-element subsets of the points of P containing a line of P to

see that s(n, k) > 0 in this case. In particular, for any odd prime power q,

we have s(q2 + q + 1, k) > 0 if and only if k ≥ q + 1; it follows that the

lower bound in (11) is sharp for any n = q2 + q + 1 with q an odd prime

power, and consequently, we also get an affirmative answer to Question 1.6

for all positive integers of this form.

G2 On the other hand, the lower bound in (11) is not tight for n = 43, for

example. It was shown by Lovász [21] and Füredi [15] that if d ≥ 2 is such

that n = d2+ d+1 is prime, then s(n, d+1) > 0 if and only if there exists

a transitive projective plane of order d. Consequently, s(43, 7) = 0 since 43

is prime and there exists no projective plane of order 6, so the lower bound

in (11) is not sharp in general. The Bateman–Horn conjecture [2] would

imply that d2 + d+1 is prime for infinitely many positive integers d which

are not themselves prime powers; taken together with the aforementioned

observation of Lovász and Füredi along with the non-existence conjecture

for projective planes whose order is not a prime power, this would imply

that s(d2+d+1, d+1) = 0 for infinitely many d ∈ N, and consequently that

the lower bound in (11) is not sharp for infinitely many positive integers.
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We can use other finite geometries in the place of projective planes to bound

g(·); this allows us to answer Question 1.6 in the affirmative for various sequences

of positive integers with suitable ‘arithmetic structure’.

G3 For any prime power q, by taking the dual affine plane DA
2(Fq) over the

finite field Fq and considering the family of lines of DA2(Fq), then writing

n = q2 + q, we have s(n, k) > 0 if k ≥ q + 1; this yields an affirmative

answer to Question 1.6 for any n ∈ N of this form.

These constructions based on projective planes and dual affine planes have

natural analogues based upon higher-dimensional projective spaces and higher-

dimensional dual affine spaces, enabling us to answer Question 1.6 affirmatively

for some other infinite sequences of integers.

G4 Fix r ∈ N, let q be an prime power and consider the (2r)-dimensional

projective space P2r(Fq) over Fq. Then the family of all r-dimensional

projective subspaces of P2r(Fq) gives us an affirmative answer to Question

1.6 for all n = (q2r+1 − 1)/(q − 1) with q a prime power.

G5 Next, fix r ∈ N, let q be a prime power, and consider the (2r)-dimensional

dual affine space DA2r(Fq) over Fq. Then the family of all r-flats ofDA2r(Fq)

gives us an affirmative answer to Question 1.6 for all n = q(q2r −1)/(q−1)

with q a prime power.

For completeness, let us also record the following fact.

G6 The observation of Banakh and Gavrylkiv [1] mentioned earlier shows that

g(n) = (1 + o(1))
√
n whenever n = q2 − 1 for some prime power q, or

n = p2 − p for some prime p. Consequently, we have an affirmative answer

to Question 1.6 for any n ∈ N of the aforementioned forms.

Finally, we demonstrate using a tensor product construction that S is closed

under taking pointwise products. For a set x ⊂ [n], we define its characteristic

vector χx ∈ {0, 1}n by (χx)i = 1 if i ∈ x and (χx)i = 0 otherwise. Given two sets

x ⊂ [n] and y ⊂ [m], we define their tensor product x⊗ y to be the subset of [nm]

whose characteristic vector χx⊗y is given by

(χx⊗y)(i−1)m+j = (χx)i(χy)j

15



for all i ∈ [n] and j ∈ [m]. For two families A ⊂ Pn and B ⊂ Pm, we define their

tensor product by

A⊗ B = {x⊗ y : x ∈ A, y ∈ B};
note that A⊗B ⊂ Pnm and that |A⊗B| = |A||B|. Now observe that if A ⊂ [n](k)

and B ⊂ [m](l), then A⊗B ⊂ [nm](kl), and furthermore, if A and B are symmetric

and intersecting, then so is A⊗ B. It follows that

s(nm, kl) ≥ s(n, k)s(m, l)

for all k, l,m, n ∈ N, and in particular, if (n, k), (m, l) ∈ S, then (nm, kl) ∈ S.
G7 The above observation implies that g(·) is submultiplicative, i.e., we have

g(nm) ≤ g(n)g(m)

for all n,m ∈ N. This fact may be used to answer Question 1.6 affirmatively

for some additional sequences of positive integers; for example, we conlcude

that the answer to Question 1.6 is in the affirmative for all n = (q21 + q1 +

1)(q22 + q2 + 1) with q1 and q2 both prime powers, and so on.

5. Conclusion

A number of interesting open problems remain. Theorem 1.4 and Lemma 3.1

together determine the order of magnitude of log(
(

n
k

)

/s(n, k)) when k/n is bounded

away from zero by a positive constant. The gap between our upper and lower

bounds for s(n, k) is somewhat worse for smaller k, and it would be of interest to

improve Theorem 1.4 in the regime where k = o(n).

Determining s(n, k) precisely for all k ≤ n/2 would appear to be a challenging

problem. We conjecture that for any δ > 0, if n is sufficiently large depending on

δ and (1 + δ)
√
n logn ≤ k ≤ n/2, then

s(n, k) = |F(n, k)|.

Note that if n is sufficiently large depending on δ and (1 + δ)
√
n logn ≤ k ≤ n/2,

then the family F(n, k) yields a larger symmetric intersecting family than any of

the algebraic constructions in Section 4.

Determining the asymptotic behaviour of g(n) is another problem that merits

further investigation. We have established various estimates in Section 4, but even

the fundamental question of deciding whether g(n)/
√
n converges in the limit as

n → ∞ still remains open.
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