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Abstract

ACayley graph of a groupH is a finite simple graph Γ such that its automorphism
group Aut(Γ) contains a subgroup isomorphic to H acting regularly on V (Γ), while
a Haar graph of H is a finite simple bipartite graph Σ such that Aut(Σ) contains a
subgroup isomorphic to H acting semiregularly on V (Σ) and the H-orbits are equal
to the partite sets of Σ. It is well-known that every Haar graph of finite abelian
groups is a Cayley graph. In this paper, we prove that every finite non-abelian
group admits a non-Cayley Haar graph except the dihedral groups D6, D8, D10,
the quaternion group Q8 and the group Q8 × Z2. This answers an open problem
proposed by Estélyi and Pisanski in 2016.
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1 Introduction

All groups in this paper are finite and all graphs are finite and undirected. Let H be
a group, and let R, L and S be three subsets of H such that R−1 = R, L−1 = L, and
R ∪ L does not contain the identity element 1 of H . The Cayley graph of H relative
to the subset R, denoted by Cay(H,R), is the graph having vertex set H, and edge set
{{h, xh} : x ∈ R, h ∈ H}, and the bi-Cayley graph of H relative to the triple (R,L, S),
denoted by BiCay(H,R, L, S), is the graph having vertex set the union of the right part
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H0 = {h0 : h ∈ H} and the left part H1 = {h1 : h ∈ H}, and edge set being the union of
the following three sets

•
{

{h0, (xh)0} : x ∈ R, h ∈ H
}

(right edges),

•
{

{h1, (xh)1} : x ∈ L, h ∈ H
}

(left edges),

•
{

{h0, (xh)1} : x ∈ S, h ∈ H
}

(spokes).

In the special case when R = L = ∅, the bi-Cayley graph BiCay(H, ∅, ∅, S) is called a Haar
graph of H relative to the set S, denoted by H(H,S). A Haar graph H(H,S) of a finite
group H was first defined as a voltage graph of a dipole with no loops and |S| parallel
edges (see [15]), and the name Haar graph comes from the fact that, when H is an abelian
group the Schur norm of the corresponding adjacency matrix can be easily evaluated via
the so called Haar integral on H (see [14]).

Symmetries of Cayley graphs have always been an active topic among algebraic com-
binatorics, and lately, the symmetries of bi-Cayley graphs received considerable attention.
For various results and constructions in connection with bi-Cayley graphs and their auto-
morphisms, we refer the reader to [1, 2, 6, 9, 20, 23, 28, 29] and all the references therein.
In particular, Estélyi and Pisanski [9] initiated the investigation for the relationship be-
tween Cayley graphs and Haar graphs. A Cayley graph is a Haar graph exactly when it is
bipartite, but no simple condition is known for a Haar graph to be a Cayley graph. An el-
ementary argument shows that every Haar graph of abelian groups is a Cayley graph (this
also follows from Proposition 2.1). On the other hand, Lu et al. [22] constructed cubic
semi-symmetric graphs, that is, edge- but not vertex-transitive graphs, as Haar graphs of
alternating groups. Clearly, as these graphs are not vertex-transitive, they are examples
of Haar graphs which are not Cayley graphs. It is natural to ask which non-abelian groups
admit a Haar graph that is not a Cayley graph, or putting it another way, we have the
following problem, which was first posed by Estélyi and Pisanski [9, Problem 1].

Problem 1.1. ([9]) Determine the finite non-abelian groups H for which all Haar graphs

H(H,S) are Cayley graphs.

We denote by Zn the cyclic group of order n, by D2n the dihedral group of order 2n,
and by Q8 the quaternion group. Estélyi and Pisanski [9, Theorem 8] solved Problem 1.1
for dihedral groups.

Proposition 1.2. ([9]) Each Haar graph of the dihedral group D2n is a Cayley graph if

and only if n = 2, 3, 4, 5.

A group H is called inner abelian if H is non-abelian, and all proper subgroups of H
are abelian. Recently, Feng et al. [10, Theorem 1.2] solved Problem 1.1 for the class of
inner abelian groups.

Proposition 1.3. ([10]) Each Haar graph of an inner abelian group H is a Cayley graph

if and only if H ∼= D6, D8, D10 or Q8.

In this paper we solve Problem 1.1 completely.
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Theorem 1.4. Let H be a non-abelian group with the property that every Haar graph of

H is a Cayley graph. Then H is isomorphic to D6, D8, D10, Q8 or Q8 × Z2.

The main idea of the proof of Theorem 1.4 is to construct non-Cayley Haar graphs. It
is worth mentioning that all non-Cayley Haar graphs of non-abelian groups, constructed
in [9, 10] and this paper, are not vertex-transitive. It seems difficulty to construct vertex-
transitive non-Cayley Haar graphs. Estélyi and Pisanski [9] raised a question whether there
exists a vertex-transitive non-Cayley Haar graph. Later, infinitely many vertex-transitive
non-Cayley Haar graphs were constructed by Conder et al. [6] and Feng et al. [12], and
this prompts us to consider the following problem.

Problem 1.5. Determine the finite non-abelian groups H for which all vertex-transitive

Haar graphs H(H,S) are Cayley graphs.

Note that Problem 1.5 is closely related to the so called non-Cayley numbers. A
positive integer n is called a Cayley number if every vertex-transitive graph of order n is a
Cayley graph, and otherwise it is a non-Cayley number. In 1983, Marušič [24] posed the
problem of determining Cayley numbers, and this question has generated a fair amount of
interests. For some works about Cayley numbers and vertex-transitive non-Cayley graphs,
one may refer to [7, 21, 30].

By a graphical regular representation (GRR for short) for a group H we mean a Cayley
graph Γ of H such that Aut(Γ) ∼= H . When studying a Cayley graph Γ of a finite group
H , a very important question is to determine whether H is in fact the full automorphism
group of Γ. For this reason, GRRs have been widely studied. The most natural question is
classifying finite groups admitting a GRR, and the solution was derived in several papers
(see, for instance, [4, 11, 17, 18, 19, 25, 26, 27]). A bi-Cayley graph Σ of a group H is called
a bi-graphical regular representation (bi-GRR for short) if Aut(Σ) ∼= H . The problem of
classifying finite groups admitting a bi-GRR was posed by Zhou [31] (also see [16]), and it
was solved by Du et al. [8] recently. Motivated by GRR and bi-GRR, a GHRR of a group
H is a Haar graph Γ of H with Aut(Γ) ∼= H . Since every Haar graph of abelian groups
is a Cayley graph, abelian groups have no GHRR. However, many non-abelian groups
have GHRRs, for example, see [9, 10] and Section 3 of this paper. Moreover, Theorem 1.4
implies that the non-abelian groups D6, D8, D10, Q8 and Q8 × Z2 have no GHRRs, and
to the best of our knowledge, they are the only known non-abelian groups that have no
GHRRs. In the end of this section, we would like to pose the following problem.

Problem 1.6. Determine the finite non-abelian groups that have no GHRRs.

The rest of the paper is organized as follows. In the next section we collect all concepts
and results that will be used later. In Section 3, we introduce some Haar graphs that are
not vertex-transitive, and prove Theorem 1.4 in Section 4.

2 Preliminaries

For a graph Γ, we denote by V (Γ), E(Γ) and Aut(Γ) the vertex set, the edge set and the
group of all automorphisms of Γ. Given a vertex v ∈ V (Γ), we denote by Γ(v) the set of
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vertices adjacent to v. For a subgroup G of Aut(Γ), denote by Gv the stabilizer of the
vertex v in G, that is, the subgroup of G fixing v. We say that G is semiregular on V (Γ)
if Gv = 1 for every v ∈ V (Γ), and regular if G is transitive and semiregular.

Let Γ = H(H,S) be a Haar graph of a group H with identity element 1. By [28,
Lemma 3.1(2)], up to graph isomorphism, we may always assume that 1 ∈ S. The graph
Γ is then connected exactly when H = 〈S〉. For g ∈ H , the right translation R(g) is the
permutation of H defined by R(g) : h 7→ hg for h ∈ H, and the left translation L(g) is the
permutation of H defined by L(g) : h 7→ g−1h for h ∈ H . Set R(H) = {R(h) : h ∈ H}.
Recall that V (Γ) = H0 ∪ H1. It is easy to see that R(H) can be regarded as a group of
automorphisms of H(H,S) acting on V (Γ) by the rule

R(g) : hi 7→ (hg)i, ∀i ∈ {0, 1}, ∀h, g ∈ H.

Furthermore, R(H) acts semiregularly on V (Γ) with two orbits H0 and H1.
For an automorphism α ∈ Aut(H) and x, y, g ∈ H , define two permutations on V (Γ) =

H0 ∪H1 as follows

δα,x,y : h0 7→ (xhα)1, h1 7→ (yhα)0, ∀h ∈ H ; (1)

σα,g : h0 7→ (hα)0, h1 7→ (ghα)1, ∀h ∈ H. (2)

Set

I = {δα,x,y : α ∈ Aut(H), Sα = y−1S−1x},

F = {σα,g : α ∈ Aut(H), Sα = g−1S}.

By [28, Lemma 3.3], F ≤ Aut(Γ)10 , and if Γ is connected, then F acts on the set Γ(10)
consisting of all neighbours of 10 faithfully. By [28, Theorem 1.1 and Lemma 3.2], we have
the following proposition.

Proposition 2.1. Let Γ = H(H,S) be a connected Haar graph, and let A = Aut(Γ).

(i) If I = ∅, then the normalizer NA(R(H)) = R(H)⋊ F.

(ii) If I 6= ∅, then NA(R(H)) = R(H)〈F, δα,x,y〉 for some δα,x,y ∈ I.

Moreover, 〈R(H), δα,x,y〉 acts transitively on V (Γ) for any δα,x,y ∈ I.

Throughout the paper we follow the notation defined in [10]:

BC =
{

H is a finite group : H(H,S) is a Cayley graph for any S ⊆ H
}

.

The following proposition was given by [10, Lemma 3.1].

Proposition 2.2. The class BC is closed under taking subgroups.

In view of [10, Theorem 1.3 and Corollary 4.6], we have the following proposition.

Proposition 2.3. Let H be a group belonging to the class BC. Then the following hold.
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(i) The group H is solvable.

(ii) Each Sylow p-subgroup of H with a prime p ≥ 3 is abelian.

(iii) If H is non-abelian, then H has a subgroup isomorphic to D6, D8, D10 or Q8.

The following proposition is well-known, and one may see [3, (1.12)].

Proposition 2.4. Let P be a finite abelian p-group. Then P = Zpe1 × Zpe2 × · · · × Zpen ,

where 1 ≤ e1 ≤ e2 ≤ · · · ≤ en. Moreover, the integers n and ei with 1 ≤ i ≤ n are uniquely

determined by P .

3 Haar graphs that are not vertex-transitive

In this section, we introduce some Haar graphs that are not vertex-transitive, which will
be used in the proof of Theorem 1.4. First we describe two infinite families of Haar graphs
that are not vertex-transitive.

Lemma 3.1. Let n be an integer with n ≥ 3, and let p be an odd prime. Let

H = D2n × Zp = 〈a, b, c | an = b2 = cp = [a, c] = [b, c] = 1, ab = a−1〉,

and S = {1, a, b, c, abc}. Then Aut(H(H,S)) = R(H) and H 6∈ BC.

Proof. Let Γ = H(H,S) and let A = Aut(Γ). Note that R(H) ≤ A has exactly two
orbits on V (Γ). Then A is vertex-transitive or has two orbits, that is, H0 and H1. For
the former, A10 and A11 are conjugate in A, and for the latter, the Frattini argument
implies that A = R(H)A10 = R(H)A11. In the both cases, |A10 | = |A11 |, and hence
|A10 | = |Ah0

| = |Ak1 | for any h, k ∈ H . To finish the proof, it suffices to show that A10 = 1
and Γ is not vertex-transitive.

We depicted the subgraph of Γ induced by the vertices at distance at most 2 from 10
in Figure 1.

10

11 a1 b1 c1 (abc)1

a−1
0 b0 c−1

0 (abc−1)0

a0 (a−1b)0 (ac−1)0 (bc
−1)0

c0 (a−1c)0 (bc)0 (ab)0 (abc)0

Figure 1: The subgraph of Γ induced by the vertices at distance at most 2 from 10.

Consider the 4-cycles of Γ passing through the vertex 10. For each h ∈ H , denote
by Γ(h0) and Γ(h1) the neighborhoods of h0 and h1 in Γ respectively, that is, Γ(h0) =
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{(sh)1 | s ∈ S} and Γ(h1) = {(s−1h)0 | s ∈ S}. By Figure 1, the numbers of 4-cycles
passing through the edges {10, 11} and {10, b1} are 1 and 4, respectively, while there are
exactly three 4-cycles passing through the edge {10, u1} for each u1 = a1, c1 or (abc)1. This
implies that A10 fixes 11 and b1, and {a1, c1, (abc)1} setwise. It follows that A10 ≤ A11

and A10 ≤ Ab1 , and since there is a unique 4-cycle passing through 10 and 11, we have
A10 ≤ Ab0 . Since |A10 | = |Ah0

| = |Ak1 | for any h, k ∈ H , we have A10 = A11 = Ab1 = Ab0 .
By Figure 1, there are 4-cycles passing through (a1, 10, b1) but no 4-cycles passing

through (c1, 10, b1) or ((abc)1, 10, b1), and since A10 fixes b1 and {a1, c1, (abc)1} setwise,
A10 fixes a1, and {c1, (abc)1} setwise. Thus, A10 fixes Γ(a1) setwise, and since there exist
4-cycles passing through 10, a1 and a vertex in Γ(a1) except a0, we have A10 ≤ Aa0 . It
follows that A10 = Aa0 = Aa1 .

Now we claim that A10 fixes c1 and (abc)1. Note that A10 fixes {c1, (abc)1} setwise.
Suppose that α ∈ A10 interchanges c1 and (abc)1. By Figure 1, there exist 4-cycles passing
through 10, c1 (resp. (abc)1) and a vertex in Γ(c1) (resp. Γ((abc)1)) except c0 (resp. (abc)0),
and hence α interchanges c0 and (abc)0. Since A10 fixes a0, we have (Γ(a0) ∩ Γ(c0))

α =
Γ(a0) ∩ Γ((abc)0). Clearly, (ac)1 ∈ Γ(a0) ∩ Γ(c0). Then |Γ(a0) ∩ Γ((abc)0)| 6= 0, and hence
there exist s, t ∈ S such that sa = tabc, that is, t−1s = a2bc ∈ S−1S. This is impossible
as S = {1, a, b, c, abc}. Thus A10 fixes c1 and (abc)1, and hence c0 and (abc)0. It follows
that A10 = Ac0 = Ac1.

Now we have that A10 = Ax0
for each x ∈ T := {a, b, c}. For any y ∈ T , we have

A
R(y)
10 = A

R(y)
x0

, that is, Ay0 = A(xy)0 . It follows that A10 = A(xy)0 , and an easy inductive
argument implies that A10 = A(x1x2···xn)0 for any x1, · · · , xn ∈ T . Since 〈T 〉 = H , A10 fixes
H0 pointwise. Since A10 = A11 , we have Ah0

= Ah1
for any h ∈ H , and hence A10 fixes

H1 pointwise. Thus, A10 = 1.

To finish the proof, we are left with showing that A is not vertex-transitive. Suppose to
the contrary that A is vertex-transitive. Since A10 = 1, we have |A| = |V (Γ)| = 2|R(H)|
and hence R(H) E A. By Proposition 2.1, there exists δβ,x,y ∈ A for some β ∈ Aut(H)
and x, y ∈ H such that Sβ = y−1S−1x. Since R(H) acts transitively on H1, we may

further assume that 1
δβ,x,y

0 = 11. By Eq. (1), 1
δβ,x,y

0 = (x1β)1 = 11, forcing x = 1. Thus
Sβ = y−1S−1, that is,

Sβ = {1β, aβ, bβ, cβ, (abc)β} = y−1{1, a−1, b, c−1, abc−1}. (3)

Since 1 ∈ S, we have 1 ∈ Sβ and so y−1 = 1, a, b−1, c or abc.
Note that H = D2n × Zp = 〈a, b, c | an = b2 = cp = [a, c] = [b, c] = 1, ab = a−1〉. If n is

odd then the center Z(H) = Zp, and if n = 2m is even then Z(H) = 〈am〉×Zp
∼= Z2×Zp,

where Zp is characteristic in 〈am〉×Zp. It follows that Zp = 〈c〉 is characteristic in H , and
since β ∈ Aut(H), we have cβ ∈ 〈c〉.

If y−1 = a, b−1, c or abc, we have from Eq. (3) that Sβ = {a, 1, ab, ac−1, a2bc−1}, {b, ba−1,
1, bc−1, a−1c−1}, {c, ca−1, cb, 1, ab} or {abc, a2bc, ac, ab, 1}, respectively. This is impossible
because cβ ∈ 〈c〉. Thus, y = 1 and Sβ = {1, a−1, b, c−1, abc−1}. This implies cβ = c−1

because cβ ∈ 〈c〉. Since all involutions of H generate the dihedral subgroup 〈a, b〉, 〈a, b〉 is
characteristic in H , and since 〈a, b〉 is dihedral, 〈a〉 is characteristic in H . Thus, aβ ∈ 〈a〉
and bβ ∈ 〈a, b〉, and since Sβ = {1, a−1, b, c−1, abc−1}, we have aβ = a−1, bβ = b and

6



(abc)β = abc−1. However, abc−1 = (abc)β = aβbβcβ = a−1bc−1, that is, a2 = a, contrary
the hypothesis n ≥ 3. This completes the proof.

Lemma 3.2. Let p be an odd prime, and let

H = Q8 × Zp = 〈a, b, c | a4 = b4 = cp = [a, c] = [b, c] = 1, a2 = b2, ab = a−1〉,

and S = {1, a, c, abc−1, bc}. Then Aut(H(H,S)) = R(H) and H 6∈ BC.

Proof. Let Γ = H(H,S) and let A = Aut(Γ). The lemma holds for p = 3 and 5 by
Magma [5], and we assume that p ≥ 7 in the rest of the proof. Since A is transitive or
has the two orbits H0 and H1 as same as R(H), we have |Ah0

| = |Ak1| for any h, k ∈ H .
For each h ∈ H , the neighborhood of the vertices h0 and h1 in Γ are {(sh)1 | s ∈ S}

and {(s−1h)0 | s ∈ S}, respectively. From this, it is easy to list the vertices in Γ having
distance at most 2 from 10 or c1 in Table 1.

v neighbors of v vertices having distance 2 from v

10

11 (a−1)0, (c
−1)0, (a

−1bc)0, (b
−1c−1)0

a1 a0, (ac
−1)0, (b

−1c)0, (abc
−1)0

c1 c0, (a
−1c)0, (a

−1bc2)0, (b
−1)0

(abc−1)1 (abc−1)0, (bc
−1)0, (abc

−2)0, (a
−1c−2)0

(bc)1 (bc)0, (a
−1bc)0, b0, (ac

2)0

c1

c0 (ac)1, (c
2)1, (ab)1, (bc

2)1
(a−1c)0 (a−1c)1, (a

−1c2)1, (b
−1)1, (abc

2)1
10 11, a1, (abc

−1)1, (bc)1
(a−1bc2)0 (a−1bc2)1, (bc

2)1, (a
−1bc3)1, (a

−1c3)1
(b−1)0 (b−1)1, (a

−1b)1, (b
−1c)1, (ac

−1)1

Table 1: The vertices in Γ having distance at most 2 from 10 or c1.

Furthermore, we have the following equations:

Γ((b−1)1) = {(b−1)0, (ab)0, (b
−1c−1)0, (a

−1c)0, (b
2c−1)0}, (4)

Γ((bc2)1) = {(bc2)0, (a
−1bc2)0, (bc)0, (ac

3)0, c0}. (5)

By Table 1, there are exactly two 4-cycles C1 and C2 passing through 10:

C1 = (10, 11, (a
−1bc)0, (bc)1), C2 = (10, a1, (abc

−1)0, (abc
−1)1),

and there are exactly two 4-cycles C3 and C4 passing through c1:

C3 = (c1, c0, (bc
2)1, (a

−1bc2)0), C4 = (c1, (b
−1)0, (b

−1)1, (a
−1c)0).

We depicted, using Table 1, Eqs. (4) and (5), an induced subgraph of Γ in Figure 2.
There exist 4-cycles passing through 10 and any given vertex in Γ(10) except c1. Then

A10 ≤ Ac1 and hence A10 fixes {C1, C2} and {C3, C4} setwise. Furthermore, A10 fixes
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10

(bc)1 11
a1 (abc−1)1 c1

(bc)0 (a
−1bc)0 (b−1c−1)0 (abc−1)0

(b−1)0

(a−1c)0c0 (a−1bc2)0

(b−1c−1)1 (b−1)1 (bc2)1

Figure 2: An induced subgraph of Γ.

{(b−1)1, (bc
2)1} setwise because these two vertices are antipodal to c1 in C3 and C4 respec-

tively, and since |Ah0
| = |Ak1 | for any h, k ∈ H , we have A10 = Ac1.

We first prove that A10 fixes the 4-cycle C1 setwise. Recall that A10 fixes {C1, C2}
setwise. Suppose to the contrary that α ∈ A10 interchanges C1 and C2. Then {11, (bc)1}

α =
{a1, (abc

−1)1}, and since A10 fixes {(b−1)1, (bc
2)1} setwise, we have {[Γ(11) ∪ Γ((bc)1)] ∩

[Γ((b−1)1)∪Γ((bc
2)1)]}

α = [Γ(a1)∪Γ((abc
−1)1)]∩[Γ((b

−1)1)∪Γ((bc
2)1)], which is impossible

because [Γ(a1) ∪ Γ((abc−1)1)] ∩ [Γ((b−1)1) ∪ Γ((bc2)1)] = ∅ and (bc)0 ∈ Γ((bc)1) ∩ Γ((bc2)1)
by Table 1, Eqs. (4) and (5). Thus, A10 fixes C1 setwise.

Now we prove that A10 fixe C1 pointwise. Since A10 fixes C1 setwise, it fixes C2 set-
wise, implying A10 fixes (abc−1)0. Suppose to the contrary that β ∈ A10 interchanges
11 and (bc)1. By Table 1, Γ((bc)1) ∩ [Γ((b−1)1) ∪ Γ((bc2)1)] = {(bc)0} and Γ(11) ∩
[Γ((b−1)1) ∪ Γ((bc2)1)] = {(b−1c−1)0}. Since A10 fixes {(b−1)1, (bc

2)1} setwise, β inter-
changes (bc)0 and (b−1c−1)0, implying Γ((bc)0)

β = Γ((b−1c−1)0). Since A10 fixes (abc−1)0,
we have [Γ((abc−1)0) ∩ Γ((bc)0)]

β = Γ((abc−1)0) ∩ Γ((b−1c−1)0). It is easy to see that
(b−1c−1)1 ∈ Γ((abc−1)0) ∩ Γ((b−1c−1)0). Then Γ((abc−1)0) ∩ Γ((bc)0) 6= ∅, and there is
s, t ∈ S such that sabc−1 = tbc, that is, s−1t = ac−2 ∈ S−1S, which is impossible because
S−1S = {1, a, c, abc−1, bc, a−1, a−1c, bc−1, a−1bc, c−1, ac−1, abc−2, b, b−1c, a−1bc2, ac2, b−1c−1,
b−1, a−1c−2}. Thus, A10 fixes C1 pointwise, and hence A10 = A11 = A(bc)1 = A(a−1bc)0 .

Since A10 = Ac1 , we have A
R(c−1)
10 = A

R(c−1)
c1 , and so Ac−1

0

= A11 = A10 . Similarly,
we have A10 = A(b−1c−1)0 because A10 = A(bc)1 . It follows that A10 = Ax0

for any x ∈
T := {c−1, b−1c−1, a−1bc}, and an easy inductive argument implies that A10 = Ax0

for any
x ∈ 〈T 〉 = H . Thus, A10 fixes H0 pointwise. Also, since A10 = A11 implies Ah0

= Ah1
for

any h ∈ H , it follows that A10 fixes H1 pointwise too. Thus, A10 = 1.

To finish the proof, we are left with showing that A is not vertex-transitive. Suppose to
the contrary that A is vertex-transitive. Since A10 = 1, we have |A| = |V (Γ)| = 2|R(H)|
and hence R(H) E A. By Proposition 2.1, there exists δβ,x,y ∈ A for some β ∈ Aut(H)
and x, y ∈ H such that Sβ = y−1S−1x. By the transitivity of R(H) on H1, we may

assume 1
δβ,x,y

0 = 11, anb by Eq. (1), 1
δβ,x,y

0 = (x1β)1 = 11, forcing x = 1. Recall that

8



S = {1, a, c, abc−1, bc}, and Sβ = y−1S−1, that is,

Sβ = {1β, aβ, cβ, (abc−1)β, (bc)β} = y−1{1, a−1, c−1, a−1bc, b−1c−1}. (6)

Since 1 ∈ S, we have 1 ∈ Sβ and so y−1 = 1, a, c, abc−1 or bc.
Note that H = Q8 × Zp = 〈a, b, c | a4 = b4 = cp = [a, c] = [b, c] = 1, a2 = b2, ab = a−1〉.

Then Q8 and Zp are characteristic in H , and hence cβ ∈ 〈c〉 and 〈a, b〉β = 〈a, b〉.
Let y−1 = a, abc−1 or bc. By Eq (6), Sβ = {a, 1, ac−1, bc, ab−1c−1}, {abc−1, b−1c−1,

abc−2, 1, ac−2} or {bc, ba−1c, b, a−1c2, 1}, which is impossible because cβ ∈ 〈c〉.
Let y = 1. Then Sβ = {1, a−1, c−1, a−1bc, b−1c−1} by Eq. (6). Since aβ ∈ 〈a, b〉 and

cβ ∈ 〈c〉, we have aβ = a−1, cβ = c−1 and {(abc−1)β, (bc)β} = {a−1bc, b−1c−1}, and since
(bc)β = bβc−1 ∈ 〈a, b〉c−1, we have (bc)β = b−1c−1. Hence bβ = b−1 and (abc−1)β = a−1bc.
However, a−1bc = (abc−1)β = aβbβ(c−1)β = a−1b−1c, forcing b2 = 1, a contradiction.

Let y−1 = c. Then Sβ = {c, a−1c, 1, a−1bc2, b−1}, yielding that aβ = b−1 and cβ = c.
Since (abc−1)β = (ab)βc−1 ∈ Sβ, we have (ab)βc−1 = a−1c or a−1bc2, forcing c2 = 1 or
c3 = 1, contradicting p ≥ 7. This completes the proof.

To end this section, we describe some Haar graphs of small orders that are not vertex-
transitive, and this can be checked easily by the computer software Magma [5].

Lemma 3.3. Let G = Hi and S be given in the following table for each 1 ≤ i ≤ 9:

i Hi S
1 〈a, b, c | a8, b2, c2, [a, c], [b, c], ab = a−1〉 ∼= D8 × Z2 {1, a, b, c, ab, abc}
2 〈a, b, c | a4, b2, c2, [a, b], [a, c], [b, c] = a2〉 {1, a, b, ab, ac, abc}
3 〈a, b | a8, b2 = a4, ab = a−1〉 {1, a, b, a5, ab, a5b}
4 〈a, b | a8, b2, ab = a3〉 {1, a, b, ab}
5 〈a, b, c, d | a4, b4, c2, d2, a2 = b2, ab = a−1, [a, c], [a, d], {1, a, b, b−1, ab, ac,

[b, c], [b, d], [c, d]〉 ∼= Q8 × Z2 × Z2 bd, abd}
6 〈a, b, c | a4, b4, c3, a2 = b2, ab = a−1, ac = b±1, bc = a±1b〉 {1, a, bc, abc}
7 〈a, b, c | a2, b2, c3, [a, b], ac = b, bc = ab〉 ∼= A4 {1, a, c, abc}
8 〈a, g | a5, g4, ag = a2〉 ∼= F20 {1, a, g}
9 〈a, c, b | ap, cp, b2, [a, c], ab = a−1, cb = c−1〉 ∼= Z2

p ⋊ Z2, p = 3, 5 {1, a, c, b, ab, cb}

Then Aut(H(G, S)) is not vertex-transitive and G 6∈ BC.

4 Proof of Theorem 1.4

In this section, we aim to prove Theorem 1.4. First, we need two lemmas.

Lemma 4.1. A non-abelian 2-group belongs to the class BC if and only if it is isomorphic

to D8, Q8 or Q8 × Z2.

Proof. By Proposition 1.3, D8 ∈ BC and Q8 ∈ BC. For Q8 ×Z2, let Γ = H(Q8 ×Z2, S) be
a Haar graph with 1 ∈ S. If Γ is not connected, then 〈S〉 < Q8×Z2 (see [9, Lemma 1 (i)]),
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and either 〈S〉 is abelian or 〈S〉 ∼= Q8. This implies that the Haar graph H(〈S〉, S) is a
Cayley graph, and since Γ is a union of components with each isomorphic to H(〈S〉, S),
Γ is a Cayley graph. If Γ is connected, a computation by Magma [5] shows that all
connected Haar graphs of Q8 × Z2 are Cayley graphs. Thus, Q8 × Z2 ∈ BC.

Let H be a non-abelian 2-group and H ∈ BC. To prove the necessity, it suffices to
show that H ∼= D8, Q8 or Q8 × Z2.

Case 1: |H| ≤ 8.
Since H is a non-abelian 2-group, we have H ∼= D8 or Q8.

Case 2: |H| = 16.
Note that all non-abelian groups of order 16 can be found in [13] (this can also be

obtained by the computer softwareMagma [5]). By Proposition 2.3 (iii),H has a subgroup
isomorphic to D8 or Q8, and hence H ∼= Hi for some 1 ≤ i ≤ 6:

H1 = 〈a, b, c | a8 = b2 = c2 = [a, c] = [b, c] = 1, ab = a−1〉 (∼= D8 × Z2);
H2 = 〈a, b, c | a4 = b2 = c2 = [a, b] = [a, c] = 1, [b, c] = a2〉;
H3 = 〈a, b | a8 = 1, b2 = a4, ab = a−1〉;
H4 = 〈a, b | a8 = b2 = 1, ab = a3〉; H5 = D16; H6 = Q8 × Z2.

By Proposition 1.2, H5 6∈ BC, and by Lemma 3.3, Hi 6∈ BC for each 1 ≤ i ≤ 4. It follows
that H ∼= H6 = Q8 × Z2.

Case 3: |H| ≥ 32.
Since H ∈ BC, Proposition 2.2 implies that each subgroup of H belongs to BC. If each

subgroup of H of order 32 is abelian, then H has an inner abelian subgroup of order at
least 64, which is impossible by Proposition 1.3. Thus, H has a non-abelian subgroup of
order 32, say L. Then L ∈ BC. Similarly, L has a non-abelian subgroup of order 16, and by
the proof of Case 2, each non-abelian subgroup of L of order 16 is isomorphic to Q8 ×Z2.
By checking the non-abelian groups of order 32 listed in [13], we have L ∼= Q8 × Z2 × Z2,
and by Lemma 3.3, L /∈ BC, a contradiction.

Lemma 4.2. Let p be an odd prime, and let H be a non-abelian {2, p}-group with p | |H|.
Then H ∈ BC if and only if H ∼= D6 or D10.

Proof. By Proposition 1.2, D6 ∈ BC and D10 ∈ BC. Let H be a non-abelian {2, p}-
group with p | |H|. To prove the necessity, suppose to the contrary that H is a minimal
counterexample, that is, H ∈ BC has the smallest order such that H 6∼= D6 or D10.

Denote by P and P2 a Sylow p-subgroup and a Sylow 2-subgroup of H , respectively.
Then H = PP2, and by Proposition 2.2, P ∈ BC and P2 ∈ BC. By Proposition 2.3 (ii), P
is abelian, and by Lemma 4.1, either P2 is abelian or P2

∼= D8, Q8, or Q8 × Z2. Now we
consider the two cases depending whether P2 is normal in H .

Case 1: P2 EH .
Suppose that P2 is abelian. It follows from Proposition 2.3 (iii) that H has a subgroup

D2p with p = 3 or 5. Since P2 is the unique Sylow 2-subgroup of H , all involutions of
D2p are contained in P2, and since D2p can be generated by its two involutions, we have
D2p ≤ P2, which is impossible. Hence P2 is non-abelain. By Proposition 2.2, P2 ∈ BC,
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and by Lemma 4.1, P2
∼= D8, Q8 or Q8×Z2. It follows H = P2⋊P , and by the minimality

of H , |P | = p. Thus, H = P2 ⋊ P ∼= D8 ⋊ Zp, Q8 ⋊ Zp or (Q8 × Z2)⋊ Zp.
Consider the centralizer CH(P2) of P2 inH . If P ≤ CH(P2), thenH = P2×P ∼= D8×Zp,

Q8×Zp, or Q8×Z2×Zp, and by Lemmas 3.1 and 3.2, D8×Zp 6∈ BC and Q8×Zp 6∈ BC. Also
we have Q8×Z2×Zp 6∈ BC because otherwise Q8×Z2×Zp ∈ BC implies Q8×Zp ∈ BC by
Proposition 2.2. Thus, H 6∈ BC, a contradiction. Hence P � CH(P2), and since |P | = p,
we have P ∩ CH(P2) = 1 and so CH(P2) ≤ P2. Note that Aut(D8) ∼= D8, Aut(Q8) ∼= S4,
and Aut(Q8 × Z2) ∼= Z3

2 ⋊ S4. Since NH(P2)/CH(P2) = H/CH(P2) . Aut(P2), we have
P2

∼= Q8 or Q8 × Z2, and P ∼= Z3, which implies that a generator of P induces (by
conjugacy) an automorphism of P2 of order 3. For P2

∼= Q8, let P2 = 〈a, b | a4 = b4 =
1, a2 = b2, ab = a−1〉, and let α be the automorphism of P2 of order 3 induced by the map
a 7→ b and b 7→ ab. Since all the automorphisms of P2 of order 3 are conjugate in Aut(P2),
we have H ∼= P2 ⋊ 〈α〉 = 〈a, b, α | a4 = b4 = α3 = 1, a2 = b2, ab = a−1, aα = b, bα = ab〉.
By Lemma 3.3, H ∼= H6 and H /∈ BC, a contradiction. Similarly, for P2

∼= Q8 × Z2,
let P2 = 〈a, b | a4 = b4 = 1, a2 = b2, ab = a−1〉 × 〈c〉 with 〈c〉 ∼= Z2, and let α be the
automorphism of P2 of order 3 induced by the map a 7→ b, b 7→ ab and c 7→ c. It follows
that H ∼= (〈a, b〉 × 〈c〉)⋊ 〈α〉 ∼= H6 ×Z2 and hence H /∈ BC as H6 6∈ BC, a contradiction.

Case 2: P2 5 H .
Since P is abelian, we have P ≤ CH(P ) ≤ NH(P ). If CH(P ) = NH(P ), then the

Burnside’s p-nilpotency criterion implies that P has a normal complement N , that is, N
is a normal Sylow 2-subgroup of H , which is impossible by Case 1. Thus, we may assume
that P ≤ CH(P ) < NH(P ), and hence there exists a 2-element g such that g ∈ NH(P )
and g 6∈ CH(P ). In particular, P ⋊ 〈g〉 is a non-abelian subgroup of H and p | |P ⋊ 〈g〉|.
By the minimality of H , either H = P ⋊ 〈g〉, or H > P ⋊ 〈g〉 ∼= D6 or D10.

Subcase 2.1: H = P ⋊ 〈g〉.
In this case, P2 = 〈g〉 and P EH . By Proposition 1.3, H contains a proper subgroup

K such that K ∼= D6 or D10. Then p = 3 or 5. Let K = 〈a, b | ap = b2 = 1, ab = a−1〉. We
may assume b ∈ P2, and since P2 = 〈g〉, b is the unique involution in P2. Furthermore,
PK ≤ H is non-abelian. Let |P | = ps for some s ≥ 1. Then |PK| = 2ps.

If s = 1 then P ∼= Zp and hence P ≤ K. Since K ∼= D6 or D10, we have K < H ,
and since K/P < H/P ∼= P2, H contains a subgroup of order 4p with K as a subgroup
of index 2. By the minimality of H , we have P2 = 〈g〉 ∼= Z4. It follows b = g2, and since
ab = a−1, we have p = 5 and ag = a2 or a3. This implies that H ∼= F20 and by Lemma 3.3,
H 6∈ BC, a contradiction. Thus, s ≥ 2.

Suppose s ≥ 3. Note that P E H and K = 〈a, b〉 ∼= D2p < H with o(a) = p. By the
minimality of H , we have H = PK. Then |H| = 2ps and P2 = 〈g〉 = 〈b〉 ∼= Z2. If P is
cyclic, it is easy to see that H is dihedral, which is impossible by Proposition 1.2. Thus,
P is not cyclic, and since P is abelian, Proposition 2.4 implies that P has an element c of
order p with 〈c〉∩ 〈a〉 = 1. If cb 6∈ 〈c〉 then 〈c, cb, b〉 is a non-abelian subgroup of order 2p2,
and by the minimality of H , we have H = 〈c, cb, b〉, which is impossible because |H| = 2ps

with s ≥ 3. Similarly, if cb ∈ 〈c〉 then 〈a, c, b〉 is a non-abelian subgroup of order 2p2,
which is also impossible.

Thus, s = 2 and |H| = 2p2. From the elementary group theory we know that up to
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isomorphism there are three non-abelian groups of order 2p2 defined as:

H1(p) = 〈a, b | ap
2

= b2 = 1, b−1ab = a−1〉;
H2(p) = 〈a, b, c | ap = bp = c2 = [a, b] = 1, c−1ac = a−1, c−1bc = b−1〉;
H3(p) = 〈a, b, c | ap = bp = c2 = 1, [a, b] = [a, c] = 1, c−1bc = b−1〉.

Thus, H ∼= H1(p), H2(p) or H3(p). Note that H1(p) ∼= D2p2 and H3(p) ∼= D2p×Zp. By
Proposition 1.2 and Lemma 3.1, H1(p) 6∈ BC and H3(p) 6∈ BC. Recall that p = 3 or 5. By
Lemma 3.3, H2(p) 6∈ BC. It follows that H 6∈ BC, a contradiction.

Subcase 2.2: H > P ⋊ 〈g〉 ∼= D6 or D10.
Clearly, 〈g〉 ∼= Z2, p = 3 or 5, and P ∼= Z3 or Z5. Let P = 〈a〉 ∼= Zp. Without any loss

of generality, we may assume that g ∈ P2. First we prove two claims.

Claim 1: P2
∼= D8, Q8, or Q8 × Z2.

Recall that either P2 is abelian, or P2
∼= D8, Q8 or Q8 × Z2.

Suppose that P2 is abelian. Then P2 ≤ CH(P2) ≤ NH(P2). Since|H : P2| = p and
P2 5 H , we have P2 = CH(P2) = NH(P2). By the Burnside’s p-nilpotency criterion,
P is the normal complement of P2 in H , that is, P E H and H = P ⋊ P2. Note that
Z2

∼= 〈g〉 ∼= (P ⋊ 〈g〉)/P < H/P ∼= P2. Then H/P contains a subgroup of order 4, and
hence H has a non-abelian subgroup L with P ⋊ 〈g〉 as a subgroup of index 2. By the
minimality of H , H = L and so |P2| = 4. In particular, P2

∼= Z4 or Z2
2.

Let P2 = 〈b〉 ∼= Z4. Then H = P ⋊P2 = 〈a, b, g | ap = b4 = 1, g = b2, ab = ai, ag = a−1〉
with i ∈ Z∗

p. Since a−1 = ag = ab
2

= ai
2

, we have i2 = −1 in Zp, and since p = 3 or 5, we
have i = ±2 and p = 5. Hence H is isomorphic to the Frobenius group F20 of order 20
and so H /∈ BC by Lemma 3.3, a contradiction.

Let P2 = 〈b, g〉 ∼= Z2
2. Considering the action of P2 on P , we have H = P ⋊ P2

∼=
〈a, b, g | ap = b2 = g2 = [b, g] = 1, ab = a, ag = a−1〉 ∼= D4p, and by Proposition 1.2,
H /∈ BC, a contradiction.

It follows that P2
∼= D8, Q8, or Q8 × Z2, as claimed.

Claim 2: P EH .
Let N be a minimal normal subgroup of H . Since P ∼= Zp, we have N = P or N = Zℓ

2

for some ℓ ≥ 1. If N = P then P EH , as claimed. If N = Zℓ
2, then (P ⋊ 〈g〉)N > P ⋊ 〈g〉

because P ⋊ 〈g〉 (∼= D6 or D10) has non-normal Sylow 2-subgroups. By the minimality
of H , we have H = N(P ⋊ 〈g〉). Since P2 5 H , we have N < P2 and hence NP < H .
Clearly, NP 6∼= D6 or D10, and the minimality of H implies that NP is abelian. It follows
NP = N × P and H = (N × P )⋊ 〈g〉. Thus, P EH , as claimed.

By Claim 2, PK ≤ H for any subgroup K ≤ H , and by Claim 1, P2
∼= D8, Q8, or

Q8 × Z2. If P2
∼= Q8 × Z2 then H has a proper subgroup isomorphic to P ⋊Q8, and the

minimality of H implies that either P ⋊ Q8 is abelian, or P ⋊ Q8
∼= D6 or D10, both of

which are impossible. If P2
∼= Q8, then P ⋊ 〈a〉 is a proper subgroup of H for any element

a of order 4 in P2, and by the minimality of H , P ⋊ 〈a〉 is abelian because P ⋊ 〈a〉 ≇ D6 or
D10. This implies that [P, P2] = 1 as P2

∼= Q8, and hence H = P ×P2, which is impossible
because P ⋊ 〈g〉 ∼= D6 or D10. If P2

∼= D8, let P2 = 〈a, g | a4 = g2 = 1, ag = a−1〉 and
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P = 〈b〉, and a similar argument as above implies [P, 〈a〉] = 1. Since P ⋊ 〈g〉 ∼= D6 or D10,
we have bg = b−1. It follows that

H ∼= Zp ⋊D8 = 〈a, b, g | bp = a4 = g2 = 1, ag = a−1, ba = b, bg = b−1〉 ∼= D8p.

By Proposition 1.2, H /∈ BC, a contradiction.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4: By Lemmas 4.1 and 4.2, D8, Q8, Q8 × Z2, D6 and D10 belong
to BC. To prove the necessity, let H be a non-abelian group with H ∈ BC.

By Proposition 2.3 (i), H is solvable, and by Proposition 2.3 (iii), 2 | |H|. Let L and
K be a Sylow 2-subgroup and a Hall 2′-subgroup of H , respectively. By Proposition 2.3,
K ∈ BC and L ∈ BC. Furthermore, H = KL, and by Proposition 2.3 (iii), K is abelian.
Let p1, . . . , pk be all distinct odd prime divisors of |H|, and let Pi be a Sylow pi-subgroup
of H contained in K for 1 ≤ i ≤ k. Then K = P1 ×P2 × · · · ×Pk. If k = 0 then H = L is
a 2-group, and by Lemma 4.1, H ∼= D8, Q8 or Q8×Z2. If k = 1 then H is a {2, p1}-group,
and by Lemma 4.2, then H ∼= D6 or D10. In what follows, we assume k ≥ 2.

If each Hall {2, pi}-subgroup of H is abelian for each 1 ≤ i ≤ k, then L is abelian and
H = K × L, forcing that H is abelian, a contradiction. Hence H has a non-abelian Hall
{2, pℓ}-subgroup for some prime pℓ, say M . It follows from Proposition 2.3 that M ∈ BC
and from Lemma 4.2 that M ∼= D6 or D10, yielding that L ∼= Z2. Hence K E H and
H = K ⋊ P2 = (P1 × · · · × Pk) ⋊ Z2. It follows that Pi E H for each 1 ≤ i ≤ k, and
hence PiL ≤ H . Furthermore, we may assume M = PℓL. Again by Lemma 4.2, for each
1 ≤ i ≤ k we have either PiL = Pi × L (abelian), or PiL ∼= D6 or D10.

Suppose PjL = Pj × L for some 1 ≤ j ≤ k. Recall that M = LPℓ is a Hall {2, pℓ}-
subgroup of H , and M ∼= D6 or D10. Clearly, pℓ 6= pj , and MPj = LPℓPj = M × Pj.
Then H contains a subgroup isomorphic to D6 ×Zpj or D10 ×Zpj , which is impossible by
Lemma 3.1. Note that if pi 6= 3, 5, then PiL = Pi × L because PiL ≇ D6 or D10. This
implies that k = 2 as k ≥ 2, and {p1, p2} = {3, 5}. Furthermore, {P1L, P2L} = {D6, D10}
and hence H = P1P2L ∼= D30 because a group of order 15 must be cyclic, which is
impossible by Proposition 1.2. This completes the proof.
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