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Abstract

We study the sum-product problem for the planar hypercomplex numbers: the dual
numbers and double numbers. These number systems are similar to the complex num-
bers, but it turns out that they have a very different combinatorial behavior. We identify
parameters that control the behavior of these problems, and derive sum-product bounds
that depend on these parameters. For the dual numbers we expose a range where the
minimum value of max{|A+A|, |AA|} is neither close to |A| nor to |A|2.

To obtain our main sum-product bound, we extend Elekes’ sum-product technique
that relies on point-line incidences. Our extension is significantly more involved than
the original proof, and in some sense runs the original technique a few times in a
bootstrapping manner. We also study point-line incidences in the dual plane and in
the double plane, developing analogs of the Szemerédi–Trotter theorem. As in the case
of the sum-product problem, it turns out that the dual and double variants behave
differently than the complex and real ones.

1 Introduction

It is not uncommon for a combinatorial problem to be defined over R, to then be generalized
to C, and then further generalized to the quaternions. For example, this is the case for the
sum-product problem [1, 15, 24], for geometric incidence problems [18, 21, 22], and for the
Sylvester–Gallai problem [5].

Both the complex numbers and the quaternions are types of hypercomplex numbers. A
system of hypercomplex numbers is a unital algebra with every element having the form

a0 + a1i1 + a2i2 + · · ·+ anin.

Here n ∈ N, a0, a1, . . . , an ∈ R, and i1, . . . , in are called imaginary units. To be an algebra
over the reals, the system also needs to include a multiplication table for the imaginary
units. The dimension of the system is n + 1, agreeing with the standard definition of the
dimension of a vector space. For example, the complex numbers are a two-dimensional
system with the multiplication rule i2 = −1. The quaternions form a system of dimension
four and involves a 3×3 multiplication table for the three imaginary units. For a nice basic
introduction to hypercomplex numbers, see for example [12].

We refer to two-dimensional systems of hypercomplex numbers as planar. Up to iso-
morphisms, there are exactly three such planar systems: The complex numbers, the dual
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numbers, and the double numbers (for a proof of this claim, see for example [12, Section
2]). The dual numbers are of the form a+ bε, where a, b ∈ R, and with the multiplication
rule ε2 = 0. The double numbers are of the form a+ bj with the multiplication rule j2 = 1.
Double number are often also called split-complex numbers, and more generally have at
least 18 different names in the literature (Clifford referred to them as algebraic motors, and
some other names are spacetime numbers and anormal-complex numbers).

The dual and double numbers seem to appear in many different fields. For example, they
are used in String Theory [8], Kinematics [7], and Signal Processing [11]. Dual numbers play
a role in the theory of schemes (for example, see [10]). They are used in geometry, and we
were originally introduced to them through Kisil’s lecture notes on the Erlangen program
[14]. Double numbers were even used to design algorithms for dating sites [16]. However,
to the best of our knowledge, dual and double numbers were not seriously studied from a
combinatorial perspective. The goal of the current work is initiate such a combinatorial
study.

We study a variant of the sum-product problem for dual and double numbers. To obtain
sum-product results, we also study other combinatorial properties of these number systems.
In particular, we derive variants of the Szemerédi–Trotter theorem for dual and double
numbers.

Beyond initiating a combinatorial study of dual and double numbers, we believe that
our results are also of intrinsic interest to the study of sum-product phenomena. The sum-
product problem seems to have a similar behavior over the reals, over the complex, and
over the quaternions. Results over the reals are usually extended to the complex and to the
quaternions. Surprisingly, the sum-product problem has a significantly different behavior
over the dual numbers. In addition, our main technique is based on a new idea: Using
Elekes’ sum-product technique several times, each time relying on the previous result in a
bootstrapping manner.

The sum product problem. Given a finite set A ⊂ R, the sum set and product set of
A are respectively defined as

A+A = {a+ a′ : a, a′ ∈ A} and AA = {a · a′ : a, a′ ∈ A}.

Erdős and Szemerédi [6] conjectured that for every ρ > 0, any sufficiently large A ⊂ N

satisfies max {|A+A|, |AA|} = Ω
(

|A|2−ρ
)

. (Since ε is already taken and δ is also used in our
analysis, throughout the paper we will use ρ as a small positive real number.) The problem
was later generalized to sets of real numbers, sets of complex numbers, quaternions, finite
fields, and more. The problem remains wide-open for all of these variants. For the case of
A ⊂ R, in 2009 Solymosi [19] proved the bound max {|A + A|, |AA|} = Ω∗

(

|A|4/3
)

. In the

Ω∗(·)-notation, we neglect subpolynomial factors such as log |A| and 2
√

log |A|. The same
holds for the O∗(·)-notation and for the Θ∗(·)-notation. After a series of improvements, the
current best bound over R, derived in [17], is Ω∗

(

|A|4/3+5/5277
)

. Similar bounds exist for
the complex numbers and for the quaternions (for example, see [1, 24]). The best know
upper bound for all of these variants is O∗

(

|A|2
)

.

Dual numbers. Let D be the set of dual numbers: The extension of R with the extra
element ε and the rule ε2 = 0. We write a number a ∈ D as a1+εa2. Imitating the complex
numbers, we refer to a1 as the real part of a, and to a2 as the imaginary part of a. Unlike
R and C, the dual numbers do not form a field, since some dual numbers are not invertible.
In particular, a dual number has an inverse if and only if it has a non-zero real part.
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Unlike the cases of R, C, and the quaternions, the sum–product conjecture is false over
the dual numbers. For example, consider the set

A = {1 + εm ∈ D : m ∈ Z, 1 ≤ m ≤ n},

and note that

A+A = {2 + εm : m ∈ Z, 2 ≤ m ≤ 2n} and AA = {1 + εm : m ∈ Z, 2 ≤ m ≤ 2n}.

That is, the sizes of both the sum set and product set are linear in |A|. Note that all of the
elements of A are invertible, and so are the elements of A+ A and of AA. When allowing
non-invertible elements, one can have a product set of size one and a linear-sized sum set.
However, we are not interested in constructions that are based on non-invertible elements.

It turns out that the maximum number of elements of A that have the same real part
plays an important role. We say that a set A ⊂ D has multiplicity k if every real number
is the real part of at most k elements of A. We usually denote the size of A as n and the
multiplicity of A as nα, for some 0 ≤ α ≤ 1.

To adapt the above construction to the case of multiplicity nα, we consider the set

A = {a1 + εa2 : a1, a2 ∈ Z, 1 ≤ a1 ≤ n1−α, 1 ≤ a2 ≤ nα},

and note that

A+A = {m1 + εm2 : m1,m2 ∈ Z, 2 ≤ m1 ≤ 2n1−α, 2 ≤ m2 ≤ 2nα},
AA ⊂ {m1 + εm2 : m1,m2 ∈ Z, 1 ≤ m1 ≤ n2−2α, 2 ≤ m2 ≤ 2n}.

Note that in this construction A indeed has multiplicity nα. The size of the sum set is
Θ(|A|) and the size of the product set is O(|A|3−2α). Thus, the sum-product conjecture is
false for any α > 1/2. On the other hand, we show that max{|A+A|, |AA|} is super-linear
in |A| when α is not too large. Set κ = (39 −

√
721)/20 ≈ 0.607.

Theorem 1.1. Let A be a set of n dual numbers with multiplicity nα, for some 0 ≤ α < κ.
Then for every ρ > 0,

max {|A+A|, |AA|} =



































Ω∗
(

n(4−2α)/3
)

, 0 ≤ α < 1/8,

Ω
(

n5/4−ρ
)

, 1/8 ≤ α < 1/3,

Ω∗
(

n3/2−5α/8
)

, 1/3 ≤ α < 1/2,

Ω
(

n9/4−39α/16+5α2/8−ρ
)

, 1/2 ≤ α < κ.

Combining Theorem 1.1 with the above construction leads to a surprising observation:
When 1/2 < α < κ the bound for the sum-product problem is neither Θ∗(n2) nor Θ(n). It
is hard to guess what the actual value should be. One possibility is that the sum-product
conjecture holds when α ≤ 1/2, and is replaced with Θ∗(n3−2α) when α > 1/2.

Different bounds in the statement of Theorem 1.1 are obtained using different ap-
proaches. The bound for the range 0 ≤ α < 1/8 is obtained from a relatively simple
adaptation of Solymosi’s technique from [19]. Surprisingly, we were able to obtain a stronger
bound when α ≥ 1/8 by relying on an earlier approach of Elekes [4]. While we use Elekes’
approach, our technique is significantly more involved, and is the main result of this work.
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In addition to having several new steps, we use Elekes’ approach several times, each time
relying on the result of the previous case.

Our extension of Elekes’ technique leads to the bounds of Theorem 1.1 for range 1/8 ≤
α < 1/3 and also for the range 1/3 ≤ α < 1/2. This technique breaks down when α ≥ 1/2.
The bound for the range of 1/2 ≤ α < κ is obtained by a naive approach — removing
elements from A to decrease the multiplicity to 1/2 − ρ, and then applying the bound of
Theorem 1.1 for the range 1/3 ≤ α < 1/2.

Double numbers. Let S be the set of double numbers: The extension of R with the
extra element j and the rule j2 = 1. We write a number a ∈ S as a1 + ja2. As before, we
refer to a1 as the real part of a, and to a2 as the imaginary part of a. The double numbers
do not form a field, since some double numbers are not invertible.

Unlike the case of a dual numbers, we could not find a counterexample to the sum-
product conjecture in the case of double numbers. To see some other surprising behavior
of the double numbers, consider the sets

A = {m+ jm : 1 ≤ m ≤ n} and B = {m′ − jm′ : 1 ≤ m′ ≤ n}.

Note that AB = {0}. That is, the product set of two large sets could be of size one. This
example will not be very relevant for us, since it heavily relies on non-invertible elements.

We say that a set A ⊂ S has multiplicity k if for every r ∈ R at most k elements
a1 + ja2 ∈ A satisfy a1 + a2 = r and at most k satisfy a1 − a2 = r. Recall that κ =
(39−

√
721)/20 ≈ 0.607. We derive the following sum-product bound for double numbers.

Theorem 1.2. Let A be a set of n double numbers with multiplicity nα, for some 0 ≤ α < κ.
Then for every ρ > 0,

max {|A+A|, |AA|} =



































Ω∗
(

n(4−2α)/3
)

, 0 ≤ α < 1/8,

Ω
(

n5/4−ρ
)

, 1/8 ≤ α < 1/3,

Ω∗
(

n3/2−5α/8
)

, 1/3 ≤ α < 1/2,

Ω
(

n9/4−39α/16+5α2/8−ρ
)

, 1/2 ≤ α < κ.

While Theorem 1.2 contains the same bounds as Theorem 1.1, the proof of Theorem 1.2
is more involved. In some sense it is easier to study dual numbers than double numbers.
That is why we first prove Theorem 1.1 in Section 2, and then prove Theorem 1.2 in Section
3.

Point-line incidences. Our sum-product technique requires studying point-line inci-
dences in the plane. Thus, we first study analogs of the Szemerédi–Trotter theorem in D

2

and in S
2.

Given a set P of points and a set L of lines in R
2, an incidence is a pair (p, ℓ) ∈ P × L

such that the point p is contained in the line ℓ. The number of incidences in P × L is
denoted as I(P,L).

Theorem 1.3 (The Szemerédi-Trotter theorem [25]). Let P be a set of m points and let L
be a set of n lines, both in R

2. Then

I(P,L) = O
(

m2/3n2/3 +m+ n
)

.
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As shown in [22, 27, 28], Theorem 1.3 still holds when replacing R
2 with C

2. A common
approach for incidences in the complex plane is to think of C2 as R4, obtaining an incidence
problem between points and two-dimensional planes. In particular, the following is a special
case of a result of Solymosi and Tao [22]. Consider a point set P and a set Π of two-
dimensional planes, both in R

4. We say that an incidence (p, h) ∈ P ×Π is generic if there
is no additional incidence (p, h′) ∈ P ×Π such that h∩h′ is a line. That is, two planes that
form generic incidences with the same point do not have any other intersection points.

Theorem 1.4. Let P be a set of m points and let Π be a set of n arbitrary two-dimensional
planes, both in R

4. Then for every ρ > 0, the number of generic incidences in P ×Π is

O
(

m2/3+ρn2/3 +m+ n
)

.

As we will see below, Theorem 1.3 cannot be extended to D
2 and to S

2. In either case,
one can construct a configuration of m points and n lines with mn incidences. As in the
sum-product problem, this maximum number of point-line incidences is controlled by the
notion of multiplicity.

We begin with the case of the dual plane. There are several different ways to define the
multiplicity in a point-line incidence problem in D

2, and we only present one example here.
One may use Lemma 2.1 to obtain other similar results. Let L be a set of n lines in D

2, each
defined by an equation of the form y = ax+ b with a, b ∈ D. We say that L has multiplicity
k if for every r ∈ R, at most k lines of L satisfy a1 = r. We also let L contain any number
of lines of the form x = b, without this affecting the multiplicity of the set. (Our incidence
bound also holds when allowing L to contain k lines of the form ax = b with a1 = 0.)

Theorem 1.5. Let P be a set of m points and let L be a set of n lines, both in D
2. Let L

have multiplicity nα for some 0 ≤ α ≤ 1. Then for every ρ > 0,

I(P,L) = O
(

m2/3+ρn(2+α)/3 +mnα + n
)

.

As we see in Section 2.1, the term mnα is tight and cannot be removed from the bound
of Theorem 1.5. We can also obtain a construction with m2/3n2/3 incidences. The ρ in
the bound is almost certainly redundant. It is much less clear what should be the correct
dependency in α in m2/3+ρn2/3+α/3.

We obtain similar incidence results in the double plane S2. As in the dual case, there are
several different ways to define the multiplicity of a point-line incidence problem in S

2, and
we only present one example. Let L be a set of n lines in S

2, each defined by an equation
of the form y = ax+ b with a, b ∈ S. We say that L has multiplicity k if for every r ∈ R, at
most k lines of L satisfy a1 + a2 = r and at most k such lines satisfy a1 − a2 = r. We also
let L contain any number of lines of the form x = b, without this affecting the multiplicity
of the set. (Our incidence bound still holds also when allowing L to contain k lines of the
form ax = b with non-invertible a.)

Theorem 1.6. Let P be a set of m points and let L be a set of n lines, both in S
2. Let L

have multiplicity nα for some 0 ≤ α ≤ 1. Then for every ρ > 0,

I(P,L) = O
(

m2/3+ρn(2+α)/3 +mnα + n
)

.

As in the dual plane, the term mnα is tight and cannot be removed from the bound of
Theorem 1.5. We can also obtain a construction with m2/3n2/3 incidences.
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The Szemerédi-Trotter theorem (Theorem 1.3) is considered to have a dual formulation,
in the sense that there is a simple combinatorial argument for moving between one formu-
lation and the other. Given a set of lines L, we say that a point of p is r-rich if p is incident
to at least r lines of L.

Theorem 1.7 (Dual Szemerédi-Trotter). Let L be a set of n lines in R
2, and let r be a

positive integer. Then the number of r-rich points of L is O
(

n2/r3 + n/r
)

.

More about the multiplicities. Both for the sum-product problem and for the inci-
dence problem, we established that the dual and double variants behave quite differently
than the real, complex, and quaternion cases. An obvious possible explanation for this
difference is that D and S are not fields. But these are not fields only because some degen-
erate numbers have no inverse. And all of our results hold also when all of the numbers in
the problem have inverses. Moreover, our definitions of multiplicity are not directly about
non-invertible elements.

Instead of non-invertible elements in A, both definitions of multiplicity ask A−A not to
contain many non-invertible elements. Indeed, in the dual case, a− a′ ∈ D is non-invertible
when a1 = a′1. In the double case, a − a′ ∈ D is non-invertible when a1 + a2 = a′1 + a′2 or
a1 − a2 = a′1 − a′2. This curious connection between the multiplicity definitions in the dual
and double cases might hide a deeper general principle. In addition, this seems related to a
result of Tao [26, Theorem 5.4], which holds in a much more general scenario. Vaguely and
inaccurately, this result states that a set satisfying max{|A+A|, |AA|} = Θ(|A|) implies the
existence of a linear subspace V of zero-divisors, such that A has a large intersection with a
translate of V (see also [13]). This is indeed the situation in our case. For example, in the
dual case V is the line a1 = 0. Continuing to expose this hidden principle could potentially
be an exciting research front.

Additional connections to previous sum-product works. Similarly to the complex
numbers and to the quaternions, one can represent dual and double numbers as matrices.
The standard matrix representations for these numbers are

a1 + εa2 =

[

a1 a2
0 a1

]

and a1 + ja2 =

[

a1 a2
a2 a1

]

.

With these representations, matrix addition and multiplication correspond to the addition
and multiplication of dual and double numbers.

With the above matrix representation, our construction of A ⊂ D with |A+A| = Θ(|A|)
and |AA| = Θ(|A|) corresponds to a construction of Chang [2] for matrices in SL(2,R).
Other papers, such as [23, 24], study sum-product phenomena for matrices of specific types.
To the best of our knowledge, none of the previous works is relevant to the cases of dual
numbers and double numbers. For example, Theorem 4 of Solymosi and Wong [24] depends
on the 1-norm of the matrices. This notion is completely unrelated to our notions of
multiplicity.

Recall that when 1/2 < α < κ, our sum-product bound for the dual numbers is neither
Θ∗(n2) nor Θ∗(n). A somewhat similar situation was observed before for the sum-product
problem in finite fields. For simplicity, we only consider finite fields Fp where p is a prime.
Garaev [9] constructed a set A ⊂ Fp such that |A| = Θ(p1/2) and max{|A + A|, |AA|} =
O(|A|3/2). On the other hand, as shown in [3], every set A ⊂ Fp with |A| = O(|A|64/117)
satisfies max{|A+A|, |AA|} = Ω(|A|39/32).
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Another elegant argument of Solymosi [20] shows that every finite A ⊂ C satisfies
max{|A + A|, |AA|} = Ω(|A|5/4). The last paragraph of that paper states that “A similar
argument works for quaternions and for other hypercomplex numbers.” We now briefly
discuss how the current work compares with the results of [20]. A reader who is not familiar
with [20] can safely skip this discussion.

The proof in [20] relies on the standard property that |a · b| = |a| · |b| holds for a, b ∈ C

(in particular, this property is used in Lemma 2.1 of [20]). When working with dual or
double numbers, this absolute value property fails when using the standard definition |a| =
√

a21 + a22. In the case of dual numbers, an alternative definition is |a| = a1, which does
maintain the property |a ·b| = |a| · |b|. When using this definition, a different part of Lemma
2.1 of [20] fails: The claim that no number is covered by more than seven disks. A similar
situation occurs for the double numbers.

Note that the proof of [20] should not hold for dual numbers, since then it would con-
tradict the above construction. We did manage to get a variant of the argument in [20] to
hold for dual and double numbers, while depending on the notion of multiplicity (thus also
eliminating the contradiction with the dual construction). Let A be a set of dual or double
numbers with multiplicity nα. In the proof of Lemma 2.1, instead of being covered by at
most 7 disks, no number is covered by more than 2nα “disks”. Then, in the definition of
good sets one changes the constant 28 with 8nα. Now the proof then holds again, implying
the bound max{|A+A|, |AA|} = Ω(|A|5/4−α/2). It is not difficult to verify that the bounds
of Theorem 1.1 and 1.2 are stronger for every relevant value of α.

Acknowledgements. We would like to thank Misha Rudnev for suggesting this problem,
and to Ben Lund, Cosmin Pohoata, and Frank de Zeeuw for helpful discussions. We would
also like to thank József Solymosi — while he was not even aware of this project, quite a
few of his works affected every part of it.

2 Dual numbers

In this section we study dual numbers, and in particular prove Theorem 1.1. In Section 2.1
we study properties of lines in the dual plane. We derive a point-line incidence bound in D

2,
and study additional properties of such incidences. In Section 2.2 we adapt Elekes’ sum-
product technique to the dual numbers. As mentioned above, we add several additional steps
to Elekes’ original argument. In Section 2.3, we adapt Solymosi’s sum-product argument
to the dual numbers.

2.1 Lines in the dual plane

Recall that we denote by D the set of dual numbers: The extension of R with the extra
element ε and the rule ε2 = 0. We write a number a ∈ D as a1+ εa2. Multiplication of dual
numbers is commutative, and 1 is the unit element. A dual number a ∈ D has an inverse
element if and only if a1 6= 0. The inverse element is then a−1 = a1−εa2

a2
1

. Indeed, we have

a · a−1 =
(a1 + εa2)(a1 − εa2)

a21
=

a21
a21

= 1.

We define a line in D
2 as the set of points on which a linear equation vanishes. Let ℓ be

7



the line defined by ax+ by = c, where a, b, c ∈ D. This corresponds to

(a1 + εa2)(x1 + εx2) + (b1 + εb2)(y1 + εy2) = (c1 + εc2),

or equivalently

a1x1 + b1y1 = c1,

a2x1 + a1x2 + b2y1 + b1y2 = c2.

When a1 = b1 = 0, the first equation becomes trivial while the second still exists. In
any other case, the two equations are linearly independent. We can think of D2 as R4, and
then ℓ is either a 2-flat or a hyperplane, depending on whether a1 = b1 = 0. We refer to
the lines of the latter type as degenerate lines. Note that a line defined by ax + by = c is
degenerate if and only if both a and b are non-invertible.

In the real and complex planes, any two lines intersect in at most one point. In D
2, two

lines can have an infinite intersection, even when excluding non-invertible coefficients in the
line equations. For example, consider the set of non-degenerate lines

L = {(1 +mε)x+ (1− (m− 1)ε)y = 2 + ε : m ∈ R}.

It is not difficult to verify that every line of L contains every point of the form (1+aε, 1−
aε) ∈ D

2 with a ∈ R. By taking n lines from L and m points of the form (1+aε, 1−aε) ∈ D
2

we get mn incidences. That is, the point–line incidence problem in D
2 is trivial. This

remains true when excluding degenerate lines, and also when using only invertible numbers
in the definitions of the points and the lines. We now study when collections of lines have
an infinite intersection.

For a ∈ D, denote by Re(a) the real part of a. That is, Re(a1 + a2ε) = a1.

Lemma 2.1.

(a) Let ℓ and ℓ′ be distinct lines in D
2, respectively defined by y = ax+ b and y = a′x+ b′.

Then ℓ ∩ ℓ′ contains more than one point if and only if a1 = a′1, b1 = b′1, and a2 6= a′2.
When these conditions are satisfied, ℓ1 ∩ ℓ2 is a line in R

4 and there exist r1, r2 ∈ R such
that every point (x, y) ∈ ℓ1 ∩ ℓ2 satisfies Re(x) = r1 and Re(y) = r2.
(b) Let L be a set of lines of the form y = ax+ b that have an infinite common intersection.
Then all of these lines have the same values for a1 and b1, and there exist r1, r2 ∈ R such
that every point (x, y) in the infinite intersection satisfies Re(x) = r1 and Re(y) = r2.
Moreover, either all the b2 values are identical or there exists m ∈ R such that every line
satisfies b2 = x1(m− a2).

Proof. (a) To study the intersection points of the two lines, we combine y = ax + b and
y = a′x + b′, obtaining ax+ b = a′x + b′, or equivalently x(a − a′) = b′ − b. Splitting this
equation into real and imaginary parts gives

x1(a1 − a′1) = b′1 − b1, (1)

x1(a2 − a′2) + x2(a1 − a′1) = b′2 − b2.

First assume that a1 6= a′1. In this case we can rewrite the above system as

x1 = (b′1 − b1)/(a1 − a′1),

x2 = (b′2 − b2 − x1(a2 − a′2))/(a1 − a′1).

8



Since this system has a unique solution, when a1 6= a′1 the two lines intersect in a single
point.

We next assume that a1 = a′1. In this case, equation (1) implies b′1 = b1. Then the line
equations y = ax+ b and y = a′x+ b′ become

y1 = a1x1 + b1,

y2 = a1x2 + a2x1 + b2,

y2 = a1x2 + a′2x1 + b′2.

Combining the second and third equations of this system gives a2x1 + b2 = a′2x1 + b′2.
If a2 = a′2 then the second and third equations of the system imply that either ℓ∩ ℓ′ = ∅ or
ℓ = ℓ′ (depending on whether or not b2 = b′2). We may thus assume that a2 6= a′2, to obtain

x1 =
b′2 − b2
a2 − a′2

, y1 = a1 ·
b′2 − b2
a2 − a′2

+ b1, and y2 = a1x2 + a2 ·
b′2 − b2
a2 − a′2

+ b2.

Thus, the intersection ℓ1 ∩ ℓ2 is infinite (it is a line in R
4). Moreover, all of the points

of ℓ1 ∩ ℓ2 have the same real parts x1, y1.
(b) By part (a), all the lines in L have the same values for a1 and b1, and there exist

r1, r2 ∈ R such that every point (x, y) in the infinite intersection satisfies Re(x) = r1 and
Re(y) = r2. That is, every line of L is defined by y = (a1 + a2ε)x + (b1 + b2ε), where
a1, b1 ∈ R are fixed and a2, b2 ∈ R change between different lines. By the proof of part (a),
two lines defined by y = (a1 + εa2)x+ (b1 + εb2) and y = (a1 + εa′2)x+ (b1 + εb′2) satisfy

r1 =
b′2 − b2
a2 − a′2

.

To have every pair of lines of L satisfy b′2 − b2 = r1(a2 − a′2), either r1 = 0 and then
all of the b2 values are identical, or there exists m ∈ R such that every line satisfies b2 =
r1(m− a2).

We are now ready to prove Theorem 1.5. We first recall the statement of this theorem.

Theorem 1.5. Let P be a set of m points and let L be a set of n lines, both in D
2. Let L

have multiplicity nα for some 0 ≤ α ≤ 1. Then for every ρ > 0,

I(P,L) = O(m2/3+ρn2/3+α/3 +mnα + n).

Proof. By the definition of multiplicity, the set L may contain at most nα degenerate lines.
Together these lines participate in at most mnα incidences. Every point of P is incident
to at most one line of the form x = b, so such lines contribute at most m incidences. It
remains to consider incidences with non-degenerate lines of L of the form y = ax+ b.

We discard from L the degenerate lines and lines of the form x = b. We can then
partition L into nα disjoint subsets L1, . . . ,Lnα , such that the multiplicity of each Lj is

one. For every 1 ≤ j ≤ nα, set nj = |Lj|. Note that
∑nα

j=1 nj = n. Since each subset has
no multiplicity, by Lemma 2.1 every two lines from the same Lj intersect in at most one
point. That is, when thinking of D2 as R

4, the set Lj becomes a set of two-dimensional
planes, each two intersecting in at most one point. We may thus apply Theorem 1.4 with
P and Lj. Note that in this case every incidence is generic by definition, so Theorem 1.4
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gives a bound for the total number of incidences. By doing that for every 1 ≤ j ≤ nα and
then applying Hölder’s inequality, we obtain

I(P,L) =
nα
∑

j=1

I(P,Lj) =
nα
∑

j=1

O
(

m2/3+ρn
2/3
j +m+ nj

)

= O



m2/3+ρ
nα
∑

j=1

n
2/3
j +mnα + n



 = O
(

m2/3+ρn2/3+α/3 +mnα + n
)

.

For our sum-product results in D, we need additional properties of point-line incidences
in D

2. We define the real part of D2 as the copy of R2, and say that a point (a1+a2ε, b1+b2ε)
corresponds to the point (a1, b1) in the real part of D2. When thinking of D2 as R

4, the
real part of D2 is the projection of R4 to the two real coordinates. Thus, each point in the
real part of D2 has an imaginary plane associated with it, which is also copy of R2. For
example, the point (1+2ε, 3+4ε) ∈ D

2 is the point (2, 4) in the imaginary plane associated
with the point (1, 3) in the real part of D2.

We refer to a set of lines in D
2 with an infinite common intersection as a line family.

Let L be such a line family. By Lemma 2.1(b), every line of L corresponds to the same line
in the real part of D2. We refer to this line as the real line of L. By the same lemma, the
infinite intersection of the lines of L is contained in a single point of the real part of D2.
That is, this intersection is a line in the imaginary plane associated with a single point p in
the real part of D2. We say that p is the special point of the line family L.

Let ℓ ⊂ R
2 be a line in the real part of D2. Then there could be several line families

whose real part is ℓ. In addition, a line in D
2 whose real part is ℓ can participate in

many line families that that have ℓ as their real line. For example, the line defined by
y = (1 + 2ε)x + (3 + 4ε) is contained in the real line y = x+ 3 and is part of every family
defined by a1 = 1, b1 = 3, and b2 = x1(m−a2) such that 4 = x1(m−2) (see Lemma 2.1(b)).
We now study the interaction between line families that have the same real line.

Lemma 2.2. Let L1 and L2 be two distinct line families in D
2 that correspond to the same

real line ℓ. Assume that ℓ is not parallel to the y-axis.
(a) If L1 and L2 have the same special point then they have no lines in common.
(b) If L1 and L2 have different special points then they have at most one line in common.

Proof. As before, we define a line in D
2 using the equation y = (a1 + a2ε)x + (b1 + b2ε).

Since the line families L1 and L2 have the same real part, every line in these families have
the same values of a1 and b1.

(a) Denote the common special point as (x1, y1) ∈ R
2. As shown in the proof of Lemma

2.1(b), every two lines y = ax+ b and y = a′x+ b′ from the same family satisfy a relation
of the form b′2 − b2 = x1(a2 − a′2).

First assume that x1 = 0. In this case, every line of L1 has the same b2, and so does
every line of L2. The two values of b2 are distinct, since otherwise L1 and L2 would have
been the same family. Since no line can have two different values of b2, the two line families
are disjoint.

We now assume that x1 6= 0. Then exist m1,m2 ∈ R such that every line of L1 satisfies
b2 = x1(m1 − a2) and every line of L2 satisfies b2 = x1(m2 − a2). If a line satisfies both
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requirements, we obtain that x1(m1 − a2) = x1(m2 − a2) and thus m1 = m2. This is
impossible, since it implies that the two line families are identical. We conclude that no
line can be in both families.

(b) Denote the special point of L1 as (x1, y1) ∈ R
2 and the special point of L2 as

(x′1, y
′
1) ∈ R

2. Since these are distinct points on the line ℓ that is not parallel to the y-
axis, we have x1 6= x′1. A line that is in both L1 and L2 satisfies b2 = x1(m1 − a2) and
b2 = x′1(m2 − a2). Since x1 6= x′1 this system has at most one solution for the values of a2
and b2, implying that at most one line is in both families.

2.2 Adapting Elekes’ argument to dual numbers

We are now ready to present our main proof for dual numbers. We first repeat the relevant
part of Theorem 1.1

Theorem 2.3. Let A be a set of n dual numbers and multiplicity nα, for some 0 ≤ α < 1/2.
Then for any ρ > 0,

max{|A+A|, |AA|} =

{

Ω∗
(

n3/2−5α/8n
)

, 1/3 ≤ α < 1/2,

Ω
(

n5/4−ρ
)

, 0 ≤ α < 1/3.

Proof. By the multiplicity assumption, A contains at most nα non-invertible elements. We
discard these elements. This does not change the asymptotic size of A and can only decrease
the sizes of A + A and AA. Thus, it suffices to prove the bound for the resulting smaller
set. Abusing notation, in the rest of the proof we refer to this revised set as A.

Consider the point set

P = {(c, d) ∈ D
2 : c ∈ A+A and d ∈ AA},

and the set of lines
L = {y = c(x− d) : c, d ∈ A}.

Note that |L| = n2 and |P| = |A + A| · |AA|. Since the revised A consists of invertible
elements, there are no degenerate lines in L.

The proof is based on double counting I(P,L). A line of L defined by y = c(x − d)
contains every point of P of the form (d + b, cb) for every b ∈ A. That is, we have that
I(P,L) ≥ |L||A| = n3. For the rest of the proof we will derive upper bounds on I(P,L).

We partition the incidences in P×L into two types, as follows. We say that an incidence
(p, ℓ) ∈ P×L is special if p is incident to a second line ℓ′ ∈ L such that ℓ and ℓ′ are members
of the same line family. Since lines from the same family intersect only in their special point,
the special point of this family is (Re(px),Re(py)) ∈ R

2. If an incidence (p, ℓ) ∈ P × L is
not special, we say that it is a standard incidence.

We first bound the number of standard incidences. By consideringD2 as R4, we obtain an
incidence problem with two-dimensional flats. If (p, ℓ1) and (p, ℓ2) are standard incidences,
then ℓ1 ∩ ℓ2 = {p}. These are regular incidences, as defined before Theorem 1.4. By that
theorem, the number of standard incidences is O

(

|P|2/3+ρ|L|2/3 + |P| + |L|
)

.
When the number of standard incidences is larger than the number of special incidences,

we have that

I(P,L) = O
(

|P|2/3+ρ|L|2/3 + |P|+ |L|
)

= O
(

|A+A|2/3+ρ|AA|2/3+ρn4/3 + |A+A||AA|
)

.
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Combining this with I(P,L) ≥ n3 leads to |A+A||AA| = Ω(n5/2−ρ). This immediately
implies the assertion of the theorem, for any 0 ≤ α < 1/2.

Handling special incidences. It remains to consider the case where the number of
special incidences is larger than the number of standard incidences. Denote by I(α′, β, γ, δ)
the number of special incidences (p, ℓ) ∈ P × L that satisfy:

• Let ℓR be the line in the real part of D2 that corresponds to ℓ. Then ℓR corresponds
to at least n2α′

lines of L and to fewer than 2n2α′
such lines.

• There is a line family that contains ℓ whose special point is (Re(px),Re(py)), and that
contains at least nβ and fewer than 2nβ lines of L.

• The real point (Re(px),Re(py)) corresponds to at least nγ points of P and fewer than
2nγ such points.

• The real point (Re(px),Re(py)) is the special point of at least nδ and to fewer than
2nδ line families that satisfy the property stated in the second item.

Note that we can take Θ(log4 n) elements I(α′, β, γ, δ) such that every special incidence
in P×L is counted in at least one of those elements. Thus, the number of special incidences
is upper bounded by the maximum size of I(α′, β, γ, δ) times Θ(log4 n).

We study some basic properties of the parameters α′, β, γ, δ that maximize I(α′, β, γ, δ).
For this purpose, we assume that α′, β, γ, δ are fixed. We denote by S the set of special
points that participate in incidences of I(α′, β, γ, δ). Let T be the set of lines in the real
part of D2 that correspond to lines of L that participate in incidences of I(α′, β, γ, δ). Let
F be the set of line families that contain at least nβ lines of L and fewer than 2nβ such
lines. Since |L| = n2 and every line of T corresponds to Θ(n2α′

) lines of L, we get that
|T | = O(n2−2α′

).
By the multiplicity of A and the definition of L, at most n2α lines of L can correspond

to the same line of T . That is, we have 0 ≤ α′ ≤ α. We also have that β ≤ 2α′, since
otherwise there are not enough lines corresponding to a real line to create a family in F .

We consider the maximum number of lines from L that a line family can contain. Recall
that a line in D

2 is defined by an equation of the form y = (a1+ εa2)x+(b1+ εb2), and that
a line in L is defined by an equation of the form y = c(x − d) with c, d ∈ A. By Lemma
2.1(b), all the lines in the same family have the same a1 and b1 values, so the real parts
of c and d are fixed. By the same lemma, either all the lines in a family have the same b2
value, or they all satisfy a relation of the form b2 = x1(m−a2). In either case, choosing the
imaginary part of c uniquely determines the imaginary part of d. Due to the multiplicity of
A, the family has at most nα lines from L. Since any line family contains at most nα lines
of L, we have that 0 ≤ β ≤ α.

Since the multiplicity of A is nα, at most n1+α sums in A + A can have the same
real part. Similarly, at most n1+α products in AA can have the same real part. Since
P = (A + A) × (AA), at most n2+2α points of P can correspond to the same point in the
real part of D2. That is, 0 ≤ γ ≤ 2+2α. We also have the straightforward bound nγ ≤ |P|,
or equivalently γ ≤ (log |P|)/ log n.

Next, we consider the maximum number of line families of F that can have the same
special point. Recall that the lines of L are defined as y = c(x − d) where c, d ∈ A. For
every choice of c and s ∈ S, there is a unique real part of d such that the real part of the
resulting line is incident to s. That is, for a fixed special point and c ∈ A, there are at most
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nα elements d ∈ A such that the resulting line is incident to the special point. By Lemma
2.2(a), if two families have the same real line and the same special point, then they have
no lines in common. This yields 0 ≤ δ ≤ 1 + α− β.

To recap:

0 ≤ α′,β ≤ α, β ≤ 2α′, 0 ≤ δ ≤ 1 + α− β,

0 ≤ γ ≤ min {2 + 2α, (log |P|)/ log n} .

We next bound the number of families in F . Recall that |T | = O(n2−2α′
), and that each

line of T corresponding to fewer than 2n2α′
lines of L. For a fixed line ℓ ∈ T , by Lemma 2.2

every two families corresponding to ℓ have at most one line in common. There are fewer

than
(2n2α′

2

)

= Θ(n4α′
) pairs of lines of L that correspond to ℓ. Each such pair can appear

in at most one line family, and each line family subsumes at least
(nβ

2

)

= Θ(n2β) such pairs.

Thus, the number of families that correspond to ℓ is O(n4α′−2β). By summing up over every
ℓ ∈ T , we obtain that |F | = O(n2+2α′−2β).

We derive several upper bounds for |S|:

• Since each special point corresponds to Θ(nγ) points of P, we have |S| = O(|P|/nγ).

• Since |F | = O(n2+2α′−2β), and each special point subsumes Θ(nδ) families of F , we
obtain |S| = O(n2+2α′−2β−δ).

• Given a point s ∈ S, by Lemma 2.2(a) each line of T corresponds to O(n2α′−β) families
that have s as their special point. Thus, every point of S is incident to Ω(nδ−2α′+β)
lines of T . Recalling that |T | = O(n2−2α′

), Theorem 1.7 implies that

|S| = O

(

(n2−2α′
)2

(nδ−2α′+β)3
+

n2−2α′

nδ−2α′+β

)

= O
(

n4+2α′−3δ−3β + n2−δ−β
)

.

Consider the imaginary plane associated with a special point s ∈ S. There are Θ(nδ)
families incident to s, each corresponding to a distinct line in the imaginary plane of s. There
are Θ(nγ) points of P in this imaginary plane. By the Szemerédi–Trotter theorem (Theorem
1.3), the number of incidences between these points and lines is O

(

n2(δ+γ)/3 + nδ + nγ
)

.
Since each line in the imaginary plane corresponds to Θ(nβ) lines of L, the number of
incidences in the special point s is

O
(

nβ
(

n2(δ+γ)/3 + nδ + nγ
))

. (2)

To obtain an upper bound for I(α′, β, γ, δ), we can multiply (2) with any of our three
upper bounds for |S|. Then, to obtain an upper bound on the total number of incidences,
we can multiply the resulting bound for I(α′, β, γ, δ) with Θ(log4 n). We divide the rest of
the analysis into cases, according to the term that dominates the inner parentheses in (2).

The case where n2(δ+γ)/3 dominates. We first assume that n2(δ+γ)/3 is larger than the
other two terms in the inner parentheses of (2). This case occurs when γ/2 ≤ δ ≤ γ. Using
the bound |S| = O(n2+2α′−2β−δ), we obtain that the number of special incidences is

O
(

nβ · n2(δ+γ)/3 · n2+2α′−2β−δ · log4 n
)

= O∗
(

n2+2α′−β−δ/3+2γ/3
)
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Since we assume that the number of special incidences is larger than the number of
standard incidences, the above is also a bound for the total number of incidences. Combining
this bound with I(P,L) ≥ n3 gives

2 + 2α′ − β − δ/3 + 2γ/3 ≥ 3, or equivalently 2α′ − β − δ/3 + 2γ/3 ≥ 1.

Multiplying both sides by 3 and rearranging gives

3− 6α′ + 3β + δ − 2γ ≤ 0. (3)

We repeat the above argument with the different bound |S| = O
(

n4+2α′−3δ−3β + n2−δ−β
)

.

In this case we get that the number of incidences is

O
(

nβ · n2(δ+γ)/3
(

n4+2α′−3δ−3β + n2−δ−β
)

· log4 n
)

= O∗
(

n4+2α′−7δ/3−2β+2γ/3 + n2−δ/3+2γ/3
)

. (4)

We split the current case into two additional cases, according to the dominating term
in the above bound.

(i) When (4) is dominated by the first term, combining it with I(P,L) ≥ n3 gives

4 + 2α′ − 7δ/3 − 2β + 2γ/3 ≥ 3, or equivalently 3 + 6α′ − 7δ − 6β + 2γ ≥ 0.

Combining this with (3) gives

0 ≥ (3− 6α′ + 3β + δ − 2γ)− (3 + 6α′ − 7δ − 6β + 2γ) = −12α′ + 9β + 8δ − 4γ.

Dividing by 12 gives 0 ≥ −α′ + 3β/4 + 2δ/3 − γ/3.
We next use the bound |S| = O(|P|/nγ) to obtain that the number of incidences is

O
(

nβ · n2(δ+γ)/3 · |P|n−γ · log4 n
)

= O∗
(

nβ+2δ/3−γ/3 · |P|
)

. (5)

Combining this with I(P,L) ≥ n3, and then applying 0 ≥ −α′ +3β/4+2δ/3− γ/3 and
α′, β ≤ α yields

|A+A| · |AA| = |P| = Ω∗
(

n3−(β+2δ/3−γ/3)
)

= Ω∗
(

n3−(β+2δ/3−γ/3)+(−α′+3β/4+2δ/3−γ/3)
)

= Ω∗
(

n3−β/4−α′
)

= Ω∗
(

n3−5α/4
)

.

This immediately implies max{|A+A|, |AA|} = Ω∗
(

n3/2−5α/8
)

.
(ii) We next consider the case where the incidence bound (4) is dominated by the term

n2−δ/3+2γ/3. Combining this with I(P,L) ≥ n3 gives

2− δ/3 + 2γ/3 ≥ 3, or equivalently 1/2 + δ/6 − γ/3 ≤ 0.
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In this case we still have the bound (5) for the number of incidences. Combining (5)
with I(P,L) ≥ n3, and then applying 1/2+ δ/6− γ/3 ≤ 0, δ ≤ 1+α−β, and β ≤ α yields

|A+A| · |AA| = |P| = Ω∗
(

n3−(β+2δ/3−γ/3)
)

= Ω∗
(

n3−(β+2δ/3−γ/3)+(1/2+δ/6−γ/3)
)

= Ω∗
(

n7/2−β−δ/2
)

= Ω∗
(

n7/2−β−(1+α−β)/2 log−4 n
)

= Ω∗
(

n3−α
)

.

Similarly to the previous case, this implies max{|A+A|, |AA|} = Ω∗
(

n3/2−α/2
)

.

The cases where nδ or nγ dominate. Assume that nδ is larger than the other two
terms in the inner parentheses of (2). This happens when δ > 2γ. Using the bound
|S| = O(n2+2α′−2β−δ), we get that the number of incidences is

O
(

n2+2α′−2β−δ ·
(

nβ · nδ
)

· log4 n
)

= O∗
(

n2+2α′−β
)

.

Combining this with I(P,L) ≥ n3 implies that 2 + 2α′ − β ≥ 3, or equivalently α′ ≥
(1 + β)/2. This in turn implies that α ≥ α′ ≥ (1 + β)/2 ≥ 1/2. Since this contradicts the
assumption concerning α, we conclude that nδ cannot dominate the inner parentheses of
(2).

Finally, assume that nγ is larger than the other two terms in the inner parentheses of
(2). This happens when δ > 2γ. By using the bound |S| = O(|P|/nγ) we get that the
number of incidences is

O
(

|P|n−γ ·
(

nβ · nγ
)

· log4 n
)

= O∗
(

|P|nβ
)

.

Combining this with I(P,L) ≥ n3 implies

|A+A| · |AA| = |P| = Ω∗(n3−β) = Ω∗(n3−α).

This immediately implies max{|A+A|, |AA|} = Ω∗
(

n3/2−α/2
)

.
By going over each case that occurs when the number special incidences is larger, we

note that the weakest bound that was obtained is max{|A+A|, |AA|} = Ω∗
(

n3/2−5α/8
)

. To
complete the proof, for each value of α we use the weaker bound out of the one obtained
when there are more standard incidences, and the one obtained when there are more special
incidences.

Remark. It may at first seem surprising that in our analysis of special incidences we
obtain bounds such as max{|A + A|, |AA|} = Ω∗

(

n3/2−5α/8
)

. In particular, when α = 0
there is no multiplicity and each family consists of a single line, so one might expect to get
the standard Elekes bound of Ω(n5/4). The reason for obtaining a stronger bound is our
assumption that each family has a single special point. Thus, when setting α = 0, we force
each line to form an incidence with at most one point. It is not surprising that we get a
stronger bound under such a strong assumption.

We next prove the bound of Theorem 1.1 for the case where 1/2 ≤ α < κ. Recall that
κ = (39−

√
721)/20 ≈ 0.607.
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Corollary 2.4. Let A be a set of n dual numbers with multiplicity nα, for some 1/2 ≤ α <
κ. Then for any ρ > 0,

max {|A+A|, |AA|} = Ω
(

n9/4−39α/16+5α2/8−ρ
)

.

Proof. Consider a sufficiently small ρ′ > 0. We remove elements from A until it has mul-

tiplicity n1/2−ρ′ . This yields a subset A′ ⊂ A of size Ω
(

n1−(α+ρ′−1/2)
)

= Ω
(

n3/2−α−ρ′
)

.

Applying Theorem 1.1 on A′ with multiplicity 1/2− ρ′, and assuming that ρ′ is sufficiently
small, leads to

max {|A+A|, |AA|} ≥ max
{

|A′ +A′|, |A′A′|
}

= Ω∗
(

|A′|3/2−5α/8
)

= Ω∗
(

n(3/2−5α/8)(3/2−α−ρ′)
)

= Ω
(

n9/4−39α/16+5α2/8−ρ
)

.

Finally, 9/4 − 39α/16 + 5α2/8 > 1 when α < κ.

2.3 Adapting Solymosi’s argument to dual numbers

For any a, a′ ∈ D we have Re(a · a′) = Re(a) · Re(a′). When a′ is invertible, we also have
Re(a/a′) = Re(a)/Re(a′). For λ ∈ R, we define

r×A(λ) =
∣

∣

{

(a, a′) ∈ A2 : Re(a · a′) = λ
}∣

∣ ,

r÷A(λ) =
∣

∣

{

(a, a′) ∈ A2 : Re(a/a′) = λ
}∣

∣ .

In other words, r×A(λ) is the number of ways to obtain λ as the real part of a product
of two elements of A, and similarly for r÷A(λ). For a finite set A ⊂ D, we define the
multiplicative energy of A as

E×(A) =
∣

∣

{

(a, b, c, d) ∈ A4 : a · b = c · d
}∣

∣ .

We are now ready to adapt Solymosi’s sum-product argument [19] to sets of dual num-
bers.

Theorem 2.5. Let A be a set of n dual numbers with multiplicity nα, for some 0 ≤ α < 1/2.
Then

max{|A+A|, |AA|} = Ω∗
(

n(4−2α)/3
)

.

Proof. By assumption, A may contain up to nα non-invertible elements. We discard these
elements without changing the asymptotic size of |A|.

If at least half of the elements of A have a positive real part, we discard from A elements
with a negative real part. Otherwise, we discard from A the elements that have a positive
real part and multiply the remaining elements by −1. In either case, all the elements of
the revised set have a positive real part. The asymptotic size of A is unchanged and the
sizes of A + A and AA can only decrease. Thus, it suffices to derive a lower bound for
max{|A+A|, |AA|} for the revised A. Abusing notation, we still refer to this set as A and
its size as n.

Since each pair (a, a′) ∈ A2 contributes to exactly one set r÷A(λ), we have

∑

λ∈Re(A/A)

r÷A(λ) = n2.
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If (a1, a2, a3, a4) ∈ A4 satisfies a1a2 = a3a4, then Re(a1/a3) = Re(a4/a2). This implies
that

E×(A) ≤
∑

λ∈Re(A/A)

r÷A(λ)
2.

Using dyadic decomposition, we partition this sum to

E×(A) ≤
logn−1
∑

m=0

∑

λ∈Re(A/A)

2m≤r÷
A
(λ)<2m+1

r÷A(λ)
2.

This implies that there exists 0 ≤ m < log n such that

∑

λ∈Re(A/A)

2m≤r÷
A
(λ)<2m+1

r÷A(λ)
2 ≥ E×(A)

log n
.

We set Λ =
{

λ ∈ Re(A/A) : 2m ≤ r÷A (λ) < 2m+1
}

, and denote the elements of Λ as
0 < λ1 < λ2 < · · · < λ|Λ|. Since r÷A(λ)

2 < 22m+2, we have

1 >
E×(A)

|Λ|22m+2 log n
. (6)

Consider the planar point set P = A×A ⊂ D
2. Since P + P = (A+ A)× (A+A), we

have that |P + P| = |A+A|2.
For each 1 ≤ i ≤ |Λ|, let ℓi denote the line in R

2 defined by y = λix. We think of these
lines as being in the real part of D2 (which is a copy of R2). Let P ∩ ℓi be the set of points
(a, b) ∈ P that satisfy Re(a) = λi ·Re(b). In other words, this is the set of points that satisfy
the real part of the line equation, but not necessarily the imaginary part. By definition, for
each of these |Λ| lines we have 2m ≤ |P ∩ ℓi| < 2m+1. Let P ∩R ℓi denote the set of points
in the real part of D2 that correspond to at least one point of P ∩ ℓi. Note that P ∩ ℓi is in
D
2 while P ∩R ℓi is in R

2, and that |P ∩ ℓi| ≥ |P ∩R ℓi|.
The lines ℓi ⊂ R

2 are all incident to the origin. In addition, the points of (P ∩R ℓi) +
(P ∩R ℓi+1) lie in the interior of the wedge formed by ℓi and ℓi+1 in the first quadrant of
R
2. Thus, for any i 6= i′, the sets (P ∩R ℓi) + (P ∩R ℓi+1) and (P ∩R ℓi′) + (P ∩R ℓi′+1) are

disjoint.
Fix 0 < i < |Γ|. For any a1, a2 ∈ ℓi and a3, a4 ∈ ℓi+1 (these are points in R

2), we have
that a1 + a3 6= a2 + a4 unless a1 = a2 and a3 = a4. Indeed, for variables c, d ∈ R, the
system (c, c · λi) + (d, d · λi+1) = (px, py) has a unique solution. Hence, for any p, q ∈ P ∩ ℓi
and r, s ∈ P ∩ ℓi+1 that satisfy Re(p) 6= Re(q) or Re(r) 6= Re(s), we have p + r 6= q + s.
Since P = A × A and since A has multiplicity nα, for each (s, t) ∈ R

2 at most n2α pairs
(a, b) ∈ P satisfy (Re(a),Re(b)) = (s, t). For each point in P ∩R ℓi+1 we arbitrarily consider
one point of P ∩ ℓi+1 that corresponds to it, and denote the resulting set as Si. Note that
|Si| ≥ |P ∩ ℓi+1|/n2α and that Si consists of points with distinct real parts. We claim that
|(P ∩ ℓi) + Si| = |P ∩ ℓi| · |Si|. In other words, we claim that every element of (P ∩ ℓi) + Si

can be written as a sum in a unique way. Indeed, for s ∈ Si and a, a′ ∈ P ∩ ℓi we clearly
have a + s 6= a′ + s when Re(a) 6= Re(a′). If Re(a) = Re(a′) then a and a′ have distinct
imaginary parts, again implying a+ s 6= a′ + s. This leads to

|(P ∩ ℓi) + (P ∩ ℓi+1)| ≥ |(P ∩ ℓi) + Si| ≥ |P ∩ ℓi| · |P ∩ ℓi+1|/n2α.
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Combining this with (6) yields

|A+A|2 = |P + P| >
|Λ|−1
∑

i=1

|(P ∩ ℓi) + (P ∩ ℓi+1)| ≥
|Λ|−1
∑

i=1

|P ∩ ℓi||P ∩ ℓi+1|
n2α

≥ (|Λ| − 1)22m

n2α
≥ (|Λ| − 1)22m

n2α
· E×(A)

|Λ|22m+2 log n
= Ω∗

(

E×(A)

n2α

)

. (7)

By the Cauchy-Schwarz inequality,

E×(A) =
∑

t∈AA

r×A(t)
2 ≥

(
∑

t∈AA r×A(t)
)2

|AA| =
n4

|AA| .

Combining this with (7) leads to

|A+A|2n2α = Ω∗

(

n4

|AA|

)

.

Rearranging this gives
|A+A|2|AA| = Ω∗

(

n4−2α
)

.

This immediately implies the assertion of the theorem.

3 Double numbers

In this section we study double numbers, and in particular prove Theorem 1.2. In Section
3.1 we study properties of lines in the double plane. We derive a point-line incidence bound
in S

2, and study additional properties of such incidences. This case is more involved than
the analog for dual lines in Section 2, since we cannot easily separate S

2 into a real part
and an imaginary part as we did for D

2. In Section 3.2 we adapt Elekes’ sum-product
argument to the double numbers. As in the dual case, we add several additional steps to
Elekes’ original approach. In Section 3.3, we adapt Solymosi’s sum-product argument to
the double numbers.

3.1 Lines in the double plane

Recall that we denote by S the set of the double numbers: The extension of R with the
extra element j and the rule j2 = 1. We write a number a ∈ S as a1 + ja2. Multiplication
of double numbers is commutative, and 1 is the unit element. A double number a ∈ S has
an inverse element if and only if a1 6= ±a2 (equivalently, a21 6= a22). The inverse element is
then a−1 = a1−ja2

a2
1
−a2

2

. Indeed,

a · a−1 =
(a1 + ja2)(a1 − ja2)

a21 − a22
=

a21 − a22
a21 − a22

= 1.

For a = a1 + ja2 ∈ S, we define ∆+(a) = a1 + a2 and ∆−(a) = a1 − a2. For any a, b ∈ S
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where b is invertible, we have

∆+(a+ b) = ∆+(a1 + b1 + (a2 + b2)j) = ∆+(a) + ∆+(b),

∆+(a · b) = ∆+(a1b1 + a2b2 + (a1b2 + a2b1)j) = a1b1 + a2b2 + a1b2 + a2b1 = ∆+(a) ·∆+(b),

∆+(a/b) = ∆+

(

(a1 + a2j)(b1 − b2j)

b21 − b22

)

= ∆+

(

a1b1 − a2b2 + (a2b1 − a1b2)j

b21 − b22

)

= ∆+(a) ·∆+(b−1). (8)

It is not difficult to verify that the above equations still hold when replacing ∆+(·) with
∆−(·).

We define a line in S
2 as the set of points on which a linear equation vanishes. Let ℓ be

the line defined by ax+ by = c, where a, b, c ∈ S. This corresponds to

(a1 + ja2)(x1 + jx2) + (b1 + jb2)(y1 + jy2) = (c1 + jc2),

or equivalently

a1x1 + a2x2 + b1y1 + b2y2 = c1,

a2x1 + a1x2 + b2y1 + b1y2 = c2.

The two above equations are linearly dependent if and only if a1 = ±a2, b1 = ±b2, and
c1 = ±c2, where all three ± represent the same operation. We can think of S2 as R

4, and
then ℓ is either a 2-flat or a hyperplane, depending on whether the two above equations are
linearly dependent. We refer to the lines of the latter type as “degenerate lines”. Note that
for a line defined by ax+ by = c to degenerate, all three a, b, and c must be non-invertible.

As in the dual case, lines in the double plane can have an infinite intersection, even
when excluding non-invertible coefficients in the line equations. For example, consider the
set of non-degenerate lines

L = {y = (k + (k − 1)j)x + ((15 − 3k) + (9− 3k)j) : k ∈ R}.

It is not difficult to verify that every line of L contains the line ℓ parameterized by
(c+ (3− c)j, 12 + c+ (9− c)j) ∈ S

2 with c ∈ R. By taking n lines from L and m points on
ℓ, we get mn incidences. That is, the point–line incidence problem in S

2 is trivial. We now
study when collections of lines have an infinite intersection.

Lemma 3.1. In each of the following parts, every ± represents the same operation, and
every ∓ represents the other operation.
(a) Let ℓ and ℓ′ be distinct lines in S

2, respectively defined by y = ax+ b and y = a′x+ b′.
The intersection ℓ∩ ℓ′ contains more than one point if and only if a1−a′1 = ±(a2−a′2) 6= 0,
and b1 − b′1 = ±(b2 − b′2). When these conditions are satisfied, ℓ1 ∩ ℓ2 is a line in R

4 and

every point x in ℓ1 ∩ ℓ2 satisfies x1 ± x2 =
b′
1
−b1

a1−a′
1

.

(b) Let L be a set of lines of the form y = ax+ b that have an infinite common intersection.
Then exist t1, t2 ∈ R such that every line of L satisfies ∆∓(a) = t1 and ∆∓(b) = t2. There
also exists s such that every point (x, y) in the infinite intersection satisfies ∆±(x) = s.

• If s = 0 then every line has the same b, and every point in the common intersection
satisfies ∆±(y) = ∆±(b).
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• If s 6= 0 then exist m,m′ ∈ R such that every line satisfies b1 = s(m − a1) and
b2 = s(m′−a2). Every point in the common intersection satisfies ∆±(y) = s(m±m′).

Proof. (a) To study the intersection points of the two lines, we combine y = ax + b and
y = a′x + b′, obtaining ax+ b = a′x + b′, or equivalently x(a − a′) = b′ − b. Splitting this
equation into real and imaginary parts gives

x1(a1 − a′1) + x2(a2 − a′2) = b′1 − b1,

x1(a2 − a′2) + x2(a1 − a′1) = b′2 − b2. (9)

We consider the above as a linear system in x1 and x2. This system has a unique solution
unless (a1 − a′1)

2 = (a2 − a′2)
2. That is, the intersection contains at most one point unless

a1 − a′1 = ±(a2 − a′2). If (a1 − a′1)
2 = (a2 − a′2)

2 = 0 then the two lines are either parallel
or identical. Thus, it remains to study the case where a1 − a′1 = ±(a2 − a′2) 6= 0.

We either have that a1 − a′1 = a2 − a′2 or that a1 − a′1 = a′2 − a2. We first consider
the former case. By the equations of (9), either b′1 − b1 6= b′2 − b2 and the two lines do not
intersect or b′1 − b1 = b′2 − b2 and the two lines have an infinite intersection. In the case of

an infinite intersection, the equations of (9) also imply x1 + x2 =
b′
1
−b1

a1−a′
1

.

It remains to consider the case where a1 − a′1 = a′2 − a2 6= 0. By (9), either b′1 − b1 6=
b2 − b′2 and the two lines do not intersect or b′1 − b1 = b2 − b′2 and the two lines have an
infinite intersection. In the case of an infinite intersection, the equations of (9) also imply

x1 − x2 =
b′1−b1
a1−a′

1

.

(b) If distinct 2-flats in R
4 have an infinite intersection, then this intersection is a line.

Let ℓ∗ be the line in R
4 that is the infinite intersection of the lines of L. By part (a), there

exists s ∈ R such that every (x, y) ∈ ℓ∗ satisfies ∆±(x) = s and every distinct ℓ, ℓ′ ∈ L
satisfy

b′
1
−b1

a1−a′
1

= s. This implies that the symbol ± represents the same operation for all

lines in L. By part (a) we also have that a1 − a′1 = ±(a2 − a′2), or equivalently that
∆∓(a) = ∆∓(a′). That is, every line of L has the same value for ∆∓(a). Similarly, the
condition b1 − b′1 = ±(b2 − b′2) leads to every line of L having the same value for ∆∓(b).

If s = 0, then every two lines ℓ, ℓ′ ∈ L satisfy
b′
1
−b1

a1−a′
1

= 0, or equivalently b1 = b′1. Since

every ∆∓(b) has the same value, we also obtain b2 = b′2. That is, every line of L has the
same b. Consider a line of L defined by y = ax + b. Splitting this equation to real and
imaginary parts, we obtain y1 = a1x1 + a2x2 + b1 and y2 = a1x2 + a2x1 + b2. Combining
these two equations gives

y1 ± y2 = a1x1 + a2x2 + b1 ± (a1x2 + a2x1 + b2) = (a1 ± a2)(x1 ± x2) + b1 ± b2 = b1 ± b2.

If s 6= 0 then every distinct ℓ, ℓ′ ∈ L satisfy b′1 − b1 = s(a1 − a′1). This implies that
there exists m ∈ R such that every line of L satisfies b1 = s(m− a1). By part (a), we have
b1−b′

1

a1−a′
1

=
b2−b′

2

a2−a′
2

, or equivalently
b′
1
−b1

a1−a′
1

=
b′
2
−b2

a2−a′
2

. Thus, b′2 − b2 = s(a2 − a′2) and there exists

m′ ∈ R such that every line of L satisfies b2 = s(m′ − a2).
Consider a line of L defined by y = ax+b. Splitting this equation into real and imaginary

parts, we obtain y1 = a1x1 + a2x2 + b1 and y2 = a1x2 + a2x1 + b2. Combining these two
equations gives

y1 ± y2 = a1x1 + a2x2 + b1 ± (a1x2 + a2x1 + b2) = (a1 ± a2)(x1 ± x2) + (b1 ± b2)

= s(a1 ± a2) + s(m− a1 ± (m′ − a2)) = s(m±m′).
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The example before Lemma 3.1 was obtained by setting x1 + x2 = 3,m = 5,m′ = 2,
and a1 − a2 = 1. The rest followed from Lemma 3.1.

Using Lemma 3.1, we can prove Theorem 1.6. This proof is identical to the proof of
Theorem 1.5, so we do not repeat it here.

To derive our sum-product bounds in S, we need additional properties of point-line
incidences in S

2. We refer to a set of lines that have an infinite common intersection as a
family of lines. Let L be such a family. By Lemma 3.1(b), there exist constants s, s′ ∈ R

such that every point (x, y) ∈ S
2 in the common intersection of the lines of L satisfies

∆±(x) = s and ∆±(y) = s′. We say that (s, s′) ∈ R
2 is the point parameter of the family L.

Also by Lemma 3.1(b), there exist t1, t2 ∈ R such that every line of L satisfies ∆∓(a) = t1
and ∆∓(b) = t2. We define the line parameter of L to be (t1, t2).

We can study the interaction between different line families by studying their point
parameters and line parameters. We say that a line family is positive or negative according
to the meaning of the ± sign in the definition of the point parameter of the family. In the
notation of Lemma 3.1(b), a family is positive if s = x1 + x2. We refer to this property as
the sign of a line family.

Lemma 3.2. Let L1 and L2 be distinct line families in S
2 with the same sign.

(a) If L1 and L2 do not have the same line parameter, then no line is contained in both
families.
(b) If L1 and L2 have the same line parameter and the same value for ∆±(x), then no line
is contained in both families.
(c) If L1 and L2 have the same line parameter but not the same ∆±(x), then at most one
line of S2 is in both families.

Proof. (a) By the definition of the line parameter, either the lines of L1 and the lines of L2

have different values of ∆∓(a) or these lines have different values of ∆∓(b) (or both). Since
no line can have two different values for ∆∓(a) or two different values for ∆∓(b), the two
families are disjoint.

(b) Let ± denote the sign of L1 and L2, let ∓ denote the opposite sign, and denote the
common value of ∆±(x) as s. Since the two families have the same line parameter and the
same sign, every line in L1 ∪L2 has the same value of ∆∓(a) and the same value of ∆∓(b).
We assume for contradiction that there exists a line in S

2 that is contained in both families.
We first consider the case of s = 0. By Lemma 3.1(b), all the lines in the same family

have the same b. Since the two families contain a line in common, every line of L1 ∪L2 has
the same value of b1 and the same value of b2. Since these families also have the same value
of ∆∓(a) they are identical, contradicting the assumption.

Next, consider the case of s 6= 0. By Lemma 3.1(b), in this case there exist m1,m2 ∈ R

such that every line of L1 satisfies b1 = s(m1 − a1) and every line of L2 satisfies b1 =
s(m2 − a1). Since there is a line in both families, we obtain s(m1 − a1) = s(m2 − a1)
or equivalently m1 = m2. By a symmetric argument, the m′ values of both families are
identical. Since the value of ∆∓(a) is also identical for both line families, we conclude that
the two families are identical, contradicting the assumption.

We got a contradiction in both cases, so the two line families cannot have any lines in
common.

(c) Let ± denote the sign of L1 and L2, let ∓ denote the opposite sign, and let ℓ ⊂ S
2

be a line that is in both families. As in the proof of part (b), every line in L1 ∪ L2 has the
same value of ∆∓(a) and the same value of ∆∓(b). Denote the ∆±(x) values of L1 and L2

as s1 and s2, respectively. Then there exist m1,m2 such that ℓ satisfies a1 = s1(m1 − b1)
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and a1 = s2(m2 − b1). These are two independent linear equations in the variables a1, b1,
and thus have a unique solution. We conclude that there is at most one line common to
both families.

We can also use the line parameter to study the behavior of line families in R
4.

Lemma 3.3. When considering every line in S
2 as a 2-flat in R

4, the 2-flats of a line
family are all contained in a common hyperplane. Two line families of the same sign are
contained in the same hyperplane if and only if they have the same line parameter.

Proof. Consider a line family L with line parameter (t, t′), and a line from L defined by y =
ax+b. Splitting this equation into real and imaginary parts, we obtain y1 = a1x1+a2x2+b1
and y2 = a1x2 + a2x1 + b2. Combining these two equations leads to

y1 ∓ y2 = (a1 ∓ a2)(x1 ∓ x2) + (b1 ∓ b2) = t(x1 ∓ x2) + t′.

That is, every line of L corresponds to a 2-flat that is contained in the hyperplane defined
by y1 ∓ y2 = t(x1 ∓ x2) + t′. It can now be easily verified that two families are contained in
the same hyperplane if and only if they have the same line parameter (t, t′).

Finally, we study the interaction between two line families with opposite signs.

Lemma 3.4. Let L1 and L2 be distinct line families in S
2 with opposite signs. Then at

most one line is contained in both families.

Proof. Without loss of generality, assume that the lines of L1 have the same value of ∆+(a)
and that the lines of L2 have the same value of ∆−(a). Then all the lines of L1 have the
same value of ∆+(b) and all the lines of L2 have the same value of ∆−(b). It can be easily
verified that there are unique values for a1, a2, b1, b2 that satisfy all four restrictions. We
conclude that at most one line can be in both families.

3.2 Adapting Elekes’ argument to double numbers

We are now ready to adapt the proof from Section 2.2 to the double numbers. The two
proofs are similar, but not identical. We thus provide most of the proof, skipping only the
last part, which is technical calculation identical to the one in Section 2.2. We first repeat
the relevant part of Theorem 1.2.

Theorem 3.5. Let A be a set of n double numbers and multiplicity nα, for some 0 ≤ α <
1/2. Then for any ρ > 0,

max{|A+A|, |AA|} =

{

Ω∗
(

n3/2−3α/4
)

, 1/3 ≤ α < 1/2,

Ω
(

n5/4−ρ
)

, 0 ≤ α < 1/3.

Proof. By the multiplicity assumption, A contains at most 2nα non-invertible elements.
We discard these elements. This does not change the asymptotic size of A and can only
decrease the sizes of A+ A and AA. Thus, it suffices to prove the bound for the resulting
smaller set. Abusing notation, in the rest of the proof we refer to this revised set as A.

Consider the point set

P = {(c, d) ∈ D
2 : c ∈ A+A and d ∈ AA},
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and the set of lines
L = {y = c(x− d) : c, d ∈ A}.

Note that |L| = n2 and |P| = |A+A| · |AA|. Since the revised A consists only of invertible
elements, there are no degenerate lines in L. We think of P both as a point set in S

2 and
as a point set in R

4. Similarly, we think of L both as a set of lines in S
2 and as a set of

2-flats in R
4.

The proof is based on double counting I(P,L). A line defined by y = c(x− d) contains
every point of P of the form (d + b, cb) for every b ∈ A. That is, we have that I(P,L) ≥
|L||A| = n3. For the rest of the proof we will derive upper bounds for I(P,L).

We partition the incidences in P×L into two types, as follows. We say that an incidence
(p, ℓ) ∈ P × L is special if there exists a second line ℓ′ ∈ L such that ℓ and ℓ′ are members
of the same line family, and p is in the infinite intersection of this family. If an incidence
(p, ℓ) ∈ P × L is not special, then we say that it is a standard incidence.

We first bound the number of standard incidences. By considering S2 as R4, we obtain an
incidence problem with two-dimensional flats. If (p, ℓ1) and (p, ℓ2) are standard incidences,
then ℓ1 ∩ ℓ2 = {p}. These are regular incidences, as defined in Theorem 1.4. By that
theorem, the number of standard incidences is O

(

|P|2/3+ρ|L|2/3 + |P| + |L|
)

.
When the number of standard incidences is larger than the number of special incidences,

we have that

I(P,L) = O
(

|P|2/3+ρ|L|2/3 + |P|+ |L|
)

= O
(

|A+A|2/3+ρ|AA|2/3+ρn4/3 + |A+A||AA|
)

.

Combining this with I(P,L) ≥ n3 leads to |A+A||AA| = Ω(n5/2−ρ). This immediately
implies the assertion of the theorem, for any 0 ≤ α < 1/2.

Handling special incidences. It remains to consider the case where the number of
special incidences is larger than the number of standard incidences. We say that a special
incidence (p, ℓ) corresponds to a line family L∗ if the line ℓ is contained in the line family
and the point p is in the infinite intersection of the family. By the definition, each special
incidence corresponds to at least one line family. By Lemmas 3.2 and 3.4, a special incidence
can correspond to at most one positive family and to at most one negative family. In the
rest of the analysis, we assume that at least half of the special incidences correspond to a
positive family. The other case, in which at least half of the special incidences correspond
to a negative family, is handled in a symmetric manner.

We remove the special incidences that are not associated with positive line family. By the
above assumption, this does not asymptotically change I(P,L). The removal process may
turn some special incidences to standard incidences. We bound the number of new standard
incidences in the same way we bound the number of the original standard incidences. As
before, if most of the original special incidences became standard incidences, then we are
done.

It remains to study the case where most of the original value of I(P,L) comes from
the remaining special incidences. Denote by I(α′, β, γ, δ) the number of special incidences
(p, ℓ) ∈ P×L that satisfy the following. Let L∗ be the positive line family that corresponds
to (p, ℓ), let (s, s′) be the point parameter of L∗, and let (t, t′) be the line parameter of L∗.

• The number of lines of L that satisfy t = ∆−(a) and t′ = ∆−(b) is at least n2α′
and

smaller than 2n2α′
.

• The number of lines of L that are in L∗ is at least nβ and smaller than 2nβ.
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• The number of points (x, y) ∈ P that satisfy s = ∆+(x) and s′ = ∆+(y) is at least
nγ and smaller than 2nγ .

• The pair (s, s′) is the point parameter of at least nδ and fewer than 2nδ positive line
families that satisfy the property stated in the second item.

Note that we can take Θ(log4 n) elements I(α′, β, γ, δ) such that every special incidence
is counted in at least one of those elements. Thus, the number of special incidences is at
most the maximum size of I(α′, β, γ, δ) times Θ(log4 n).

We study some basic properties of the parameters α′, β, γ, δ that maximize I(α′, β, γ, δ).
For that purpose, we assume that α′, β, γ, δ are fixed. We denote by S the set of point
parameters that participate in incidences of I(α′, β, γ, δ). Let F be the set of line families
that contain at least nβ lines of L and fewer than 2nβ such lines. Let T be the set of line
parameters of the families of F . Since |L| = n2 and every pair of T corresponds to Ω(n2α′

)
lines of L, we get that |T | = O(n2−2α′

).
We study how many lines of L can correspond to a given line parameter (t, t′) ∈ T .

Recalling that every line of L is of the form y = c(x−d), we note that c uniquely determines
t. Since A has multiplicity nα, there are O(nα) choices for c. Recalling from (8) that
∆−(a · b) = ∆−(a) ·∆−(b), we get that for a fixed c there are O(nα) choices for d. Thus, the
number of lines in L with a given line parameter is O(n2α). This implies that 0 ≤ α′ ≤ α.
We also have that β ≤ 2α′, since otherwise there are not enough lines with the same line
parameter to create a family in F .

We now consider how many lines from L can be part of the same line family. In general
we consider lines defined by an equation of the form y = (a1 + ja2)x + (b1 + jb2), and a
line in L is defined by an equation of the form y = c(x − d) with c, d ∈ A. By Lemma 3.1,
all the lines in the same positive family have the same ∆−(a) and ∆−(b). The multiplicity
of A implies that there are at most nα possible values c. Also by Lemma 3.1, either all the
lines in a family have the same b, or they all satisfy relations of the form b1 = s(m − a1)
and b2 = s(m − a2). In either case, the values of b are uniquely determined by the values
of a. That is, choosing c uniquely determines d. We conclude that every family contains at
most nα lines from L, so 0 ≤ β ≤ α.

Recall from (8) that ∆+(a+ b) = ∆+(a) + ∆+(b). Since the multiplicity of A is nα, at
most n1+α sums x in A+A can have the same value for ∆+(x). Similarly, since ∆+(a · b) =
∆+(a) ·∆+(b), at most n1+α products y in AA can have the same value for ∆+(y). Since
P = (A+A)×(AA), at most n2+2α points of P can correspond to the same point parameter
(x, y) in S

2. Thus, 0 ≤ γ ≤ 2 + 2α. We also have the straightforward bound nγ ≤ |P|, or
equivalently γ ≤ (log |P|)/ log n.

Next, we consider the maximum number of line families of F that can have the same
point parameter. Recall that every line of a positive family with point parameter (s, s′)
satisfies s′ = (a1 + a2)s + (b1 + b2) (for example, see the proof of Lemma 3.1(b)). Since
the lines of L are defined as y = c(x − d) with c, d ∈ A, for every choice of c and a point
parameter, the value of b1 + b2 is uniquely determined. This implies that a specific point
parameter has O(n1+α) lines of L corresponding to it. We conclude that 0 ≤ δ ≤ 1+α−β.

To recap:

0 ≤ α′, β ≤α, β ≤ 2α′, 0 ≤ δ ≤ 1 + α− β,

0 ≤γ ≤ min {2 + 2α, (log |P|)/ log n} .

We next bound the number of families in F . Recall that |T | = O(n2−2α′
), and that
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each pair of T corresponds to fewer than 2n2α′
lines of L. For a fixed (t, t′) ∈ T , by Lemma

3.2 every two families corresponding to (t, t′) have at most one line in common. There

are fewer than
(2n2α′

2

)

= O(n4α′
) pairs of lines of L that correspond to (t, t′). Every pair

of lines can appear together in at most one line family, and each line family subsumes at

least
(

nβ

2

)

= Θ(n2β) such pairs. Thus, the number of families that correspond to (t, t′) is

O(n4α′−2β). By summing up over every (t, t′) ∈ T , we obtain that |F | = O(n2+2α′−2β).
Since each pair (s, s′) ∈ S corresponds to Θ(nγ) points of P, we have |S| = O(|P|/nγ).

Since |F | = O(n2+2α′−2β) and each point parameter subsumes Θ(nδ) families of F , we
obtain |S| = O(n2+2α′−2β−δ).

We think of a point parameter (s, s′) as corresponding to the 2-flat in R
4 defined by

s = x1+x2 and s′ = y1+y2. By Lemma 3.3, a line family is fully contained in a hyperplane
in R

4, and two positive families are contained in the same hyperplane if and only if they
have the same line parameter. Let H be a generic 2-flat in R

4, such that H intersects
every 2-flat that corresponds to a point parameter (s, s′) ∈ S in a single distinct point,
and that H intersects every hyperplane containing a line family at a distinct line. Let PH

be the resulting set of |S| points in H and let LH be the resulting family of |T | lines in
H. By definition, every point of PH is incident to Ω(nδ−2α′+β) lines of LH . Recalling that
|T | = O(n2−2α′

), Theorem 1.7 implies that

|S| = O

(

(n2−2α′
)2

(nδ−2α′+β)3
+

n2−2α′

nδ−2α′+β

)

= O
(

n4+2α′−3δ−3β + n2−δ−β
)

.

Recall that a point parameter (s, s′) ∈ S is associated with the plane in R
4 defined by

x1 + x2 = s and x3 + x4 = s′. Denote this plane as h. There are Θ(nδ) families with
point parameter (s, s′), each intersecting in a common line in h. There are Θ(nγ) points
of P in h. The intersection lines of the different families are distinct by definition. By
the Szemerédi–Trotter theorem, the number of incidences between these points and lines is
O(n2(δ+γ)/3 + nδ + nγ). Since each line in the imaginary plane corresponds to Θ(nβ) lines
of L, the number of incidences in the h is

O
(

nβ
(

n2(δ+γ)/3 + nδ + nγ
))

. (10)

Note that (10) is identical to (2). In addition, we obtained the exact same bounds for
α′, β, γ, δ, |T |, |S|, and |F | as in the proof of Theorem 2.3. We may thus repeat the technical
calculation at the end of the proof of Theorem 2.3. We do not repeat the entire calculation
here. As in the proof of Theorem 2.3, this leads to max{|A+A|, |AA|} = Ω∗

(

n3/2−5α/8
)

.

Proving the bound of Theorem 1.2 for the case where 1/2 ≤ α < κ is identical to the
proof of Corollary 2.4. Thus, we do not repeat this proof here.

3.3 Adapting Solymosi’s argument to double numbers

We now adapt Solymosi’s sum-product argument [19] to sets of double numbers.

Theorem 3.6. Let A be a set of n dual numbers with multiplicity nα, for some 0 ≤ α < 1/2.
Then

max{|A+A|, |AA|} = Ω∗
(

n(4−2α)/3
)

.

25



Proof. The proof is similar to the proof of Theorem 2.5, with Re(a) replaced by ∆+(a).
Equations (8) illustrate that ∆+(a) has the same arithmetic properties we used with Re(a).
For a ∈ S, we refer to ∆+(a) as the parameter of a.

For λ ∈ R, we define

r×A(λ) =
∣

∣

{

(a, a′) ∈ A2 : ∆+(aa′) = λ
}∣

∣ ,

r÷A(λ) =
∣

∣

{

(a, a′) ∈ A2 : ∆+(a/a′) = λ
}∣

∣ .

In other words, r×A(λ) is the number of ways to obtain λ as the parameter of a product of
two elements of A, and similarly for r÷A(λ).

We repeat the pruning steps of A as in the proof of Theorem 2.5, to obtain that every
element of A has a positive parameter. We then repeat the multiplicative energy cal-
culation from the proof of Theorem 2.5. This implies that exists 0 ≤ m < log n with
Λ =

{

λ ∈ ∆+(A/A) : 2m ≤ r÷A (λ) < 2m+1
}

such that

1 >
E×(A)

|Λ|22m+2 log n
.

(The multiplicative energy E×(A) is defined as in Section 2.3.)
Consider the planar point set P = A× A ⊂ S

2. Since P + P = (A+ A) × (A + A), we
have that |P + P| = |A+A|2.

For each 1 ≤ i ≤ |Λ|, let ℓi denote the line in R
2 defined by y = λix. Let P ∩ ℓi be the

set of points (a, b) ∈ P that satisfy (∆+(a),∆+(b)) ∈ ℓi (equivalently, ∆
+(a) = λi ·∆+(b)).

By definition, for each of the |Λ| lines we have 2m ≤ |P ∩ ℓi| < 2m+1. Let P ∩R ℓi be the set
of points (∆+(a),∆+(b)) such that (a, b) ∈ P ∩ ℓi. Note that P ∩ ℓi is in S

2 while P ∩R ℓi
is in R

2, and that |P ∩ ℓi| ≥ |P ∩R ℓi|.
The lines ℓi ⊂ R

2 are all incident to the origin. In addition, for every p ∈ P ∩ ℓi and
q ∈ P ∩ ℓi+1, the point ∆+(p + q) ∈ R

2 lies in the interior of the wedge formed by ℓi and
ℓi+1 in the first quadrant of R2. Indeed, if positive a, b, c, d ∈ R satisfy a/b < c/d, then
a/b < (a+ c)/(b+ d) < c/d. Thus, for any 1 ≤ i < i′ < |Λ|, the sets (P ∩R ℓi) + (P ∩R ℓi+1)
and (P ∩R ℓi′) + (P ∩R ℓi′+1) are disjoint.

Fix 1 ≤ i < |Γ|. For any a1, a2 ∈ P∩ℓi and a3, a4 ∈ P∩ℓi+1, we have that ∆
+(a1+a3) 6=

∆+(a2+a4) unless ∆
+(a1) = ∆+(a2) and ∆+(a3) = ∆+(a4). Indeed, for variables c, d ∈ R,

the system (c, c · λi) + (d, d · λi+1) = (px, py) has a unique solution. In other words, for any
p, q ∈ P ∩ ℓi and r, t ∈ P ∩ ℓi+1 that satisfy ∆+(p) 6= ∆+(q) or ∆+(r) 6= ∆+(t), we have
p + r 6= q + t. Since P = A × A and since A has multiplicity nα, for each (r, t) ∈ R

2 at
most n2α pairs (a, b) ∈ P satisfy (∆+(a),∆+(b)) = (r, t). For each point in P ∩R ℓi+1 we
arbitrarily consider one point of P ∩ ℓi+1 that corresponds to it, and denote the resulting
set as Qi. Note that |Qi| ≥ |P ∩ ℓi+1|/n2α and that Qi consists of points with distinct
parameters. We claim that |(P ∩ ℓi) +Qi| = |P ∩ ℓi| · |Qi|. In other words, we claim that
every element of (P ∩ ℓi) +Qi can be written as a sum in a unique way. Indeed, for q ∈ Qi

and a, a′ ∈ P ∩ ℓi we clearly have a+ s 6= a′ + s when ∆+(a) 6= ∆+(a′). If ∆+(a) = ∆+(a′)
then a and a′ have distinct imaginary parts, again implying a+ s 6= a′ + s. This leads to

|(P ∩ ℓi) + (P ∩ ℓi+1)| ≥ |(P ∩ ℓi) +Qi| ≥ |P ∩ ℓi| · |P ∩ ℓi+1|/n2α.

The rest of the analysis is a technical calculation identical to the one at the end of proof
of Theorem 2.5. We do not repeat this analysis here.
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