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Abstract

The generalized coloring numbers colr(G) (also denoted by scolr(G)) and wcolr(G) of a

graph G were introduced by Kierstead and Yang as a generalization of the usual coloring

number, and have found important theoretical and algorithmic applications. For each

distance r, these numbers are determined by an “optimal” ordering of the vertices of G.

We study the question of whether it is possible to find a single “uniform” ordering that

is “good” for all distances r.

We show that the answer to this question is essentially “yes”. Our results give new

characterizations of graph classes with bounded expansion and nowhere dense graph

classes.

Keywords: generalized coloring numbers, vertex orderings, bounded expansion graph classes,

nowhere dense graph classes

1 Introduction and Main Results

1.1 Coloring Numbers

All graphs G = (V,E) in this paper are finite, simple and undirected. We use |G| for |V |. By
an ordering σ of a graph we mean a total ordering of its vertex set, i.e. for every x, y ∈ V ,

x 6= y, we have exactly one of x <σ y or y <σ x. The set of all orderings of G is denoted

Π(G) (or just Π, if the graph is clear from the context).

For a graph G, σ ∈ Π and x ∈ V , let col(G,σ, x) be one more than the number of neighbors

y ∈ NG(x) with y <σ x. The coloring number of G, denoted col(G), is defined by

col(G) = min
σ∈Π

max
x∈V

col(G,σ, x).
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In recent terminology, the coloring number of a graph is one more than its degeneracy; under

an older definition of degeneracy they were the same. Greedily coloring the vertices of G in

an ordering that witnesses its coloring number, shows that

χ(G) ≤ ch(G) ≤ col(G),

where χ(G) and ch(G) denote the chromatic and list chromatic number of G, respectively.

An alternative way to define col(G,σ, x) is as the number of vertices y ≤σ x that have

distance at most 1 from x. (Since x has distance 0 from itself, we count x in this definition

as well, avoiding having to add “one more than” as in our first definition.) In this paper we

are interested in generalized coloring numbers, where we consider vertices y ≤σ x that are at

some further distance r from x. These numbers were first introduced in [15], after similar

notions were explored by various authors [1, 11, 13, 14, 27] in the cases r = 2, 4.

Since there are several choices we can impose on the position of the internal vertices of a

path from x to y with respect to an ordering σ, we define two variants. Let r ∈ N∪{∞}. For
a graph G, ordering σ ∈ Π and x ∈ V , we say that a vertex y is weakly r-reachable from x

with respect to σ if y ≤σ x and there is an x, y-path P with length |E(P )| ≤ r such that

all vertices p ∈ V (P ) satisfy p ≥σ y; y is strongly r-reachable from x with respect to σ if we

have the stronger condition that all p ∈ V (P )r{y} satisfy p ≥σ x. Let Wr[G,σ, x] be the set

of vertices that are weakly r-reachable from x with respect to σ and Sr[G,σ, x] be the set of

vertices that are strongly r-reachable from x with respect to σ. Note that x itself is included

in both Wr[G,σ, x] and Sr[G,σ, x].

The weak r-coloring number of G, denoted wcolr(G), and the strong r-coloring number

of G, denoted scolr(G), are defined by1:

wcolr(G,σ) = max
x∈V

∣

∣Wr[G,σ, x]
∣

∣; wcolr(G) = min
σ∈Π

wcolr(G,σ);

scolr(G,σ) = max
x∈V

∣

∣Sr[G,σ, x]
∣

∣; scolr(G) = min
σ∈Π

scolr(G,σ).

We obviously have col(G) = wcol1(G) = scol1(G).

The following easy observations hint at the usefulness of different versions of coloring

numbers. If the vertices of G are colored greedily so that no vertex v receives the same color

as any other vertex in S2[G,σ, v], then the resulting coloring is an acyclic coloring, so

cha(G) ≤ scol2(G),

where cha(G) denotes the list acyclic chromatic number of G. If the vertices of G are colored

greedily so that no vertex v receives the same color as any vertex in W2[G,σ, v], then the

resulting coloring is a star coloring, so

chs(G) ≤ wcol2(G),

where chs(G) denotes the star chromatic number of G.

1 In [15] strong coloring numbers were just called coloring numbers, and weak coloring numbers were intro-

duced for the purpose of studying (strong) coloring numbers. As weak coloring numbers have their own merit,

it now seems better to distinguish between them by using the terms strong and weak.
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As noticed already in [15], the two types of generalized coloring numbers are related by

the inequalities

scolr(G) ≤ wcolr(G) ≤ (scolr(G))r. (1)

Thus if one of the generalized coloring numbers is bounded for a class of graphs (for some r),

then so is the other one.

An interesting aspect of generalized coloring numbers is that they can also be seen as

gradations between the coloring number col(G) and two important graph invariants, namely

the tree-width tw(G) and the tree-depth td(G). (The latter is the minimum height of a

depth-first search tree for a supergraph of G [19].) More explicitly, we have the following

proposition.

Proposition 1.1.

Every graph G satisfies:

(a) col(G) = scol1(G) ≤ scol2(G) ≤ . . . ≤ scol∞(G) = tw(G) + 1;

(b) col(G) = wcol1(G) ≤ wcol2(G) ≤ . . . ≤ wcol∞(G) = td(G).

The equality scol∞(G) = tw(G)+1 was first proved in [5, Section 6]. The equality wcol∞(G) =

td(G) is proved in [22, Lemma 6.5].

Generalized coloring numbers have been instrumental in the study of sparse graph classes.

Nešetřil and Ossona de Mendez introduced the notion of graph classes with bounded expan-

sion [20] and the more general notion of nowhere dense graph classes [21]. These concepts

generalize those of graph classes with bounded tree-width, minor-closed classes, bounded

degree classes, etc. See the book of Nešetřil and Ossona de Mendez [22] for a wealth of

information about the properties of these graph classes.

One of the key properties of this classification is that it is remarkably robust. Not only

can results for particular classes that have bounded expansion (or are nowhere dense) often

be generalized to all classes with that property, but these generalizations often yield new

characterizations. For example, classes with bounded generalized coloring numbers were

studied in [15] because they had bounded generalized game coloring numbers (see Section 3

for definitions). Later, Zhu [28] proved bounds on the generalized coloring numbers that gives

the following characterizations of bounded expansion and nowhere dense classes in terms of

those numbers. We will use these characterizations as definitions.

Definition 1.2.

(a) A graph class G has bounded expansion if and only if there exists a function c : N→ N

such that scolr(G) ≤ c(r) for all r and all G ∈ G.

(b) A graph class G is nowhere dense if and only if there exists a function n0 : R× N→ N

such that for every ǫ > 0, r ∈ N and G ∈ G we have that scolr(H) ≤ |H|ǫ for all

subgraphs H of G with |H| ≥ n0(ǫ, r).

Note that by the inequalities in (1) we equally well could have defined bounded expansion

and nowhere dense in terms of the weak coloring numbers.

Here is a different example demonstrating the surprising power of this classification of

sparse graph classes. Streib and Trotter [24] proved that every poset whose cover graph
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is planar, has dimension bounded by a function of its height. Then Joret et al. [9] used

generalized coloring numbers to prove that every monotone graph class G is nowhere dense if

and only if for every integer h ≥ 1 and real number ǫ > 0, every n-element poset of height at

most h whose cover graph is in G has dimension O(nǫ).

Generalized coloring numbers are an important tool in the context of algorithmic sparse

graphs theory; see again [22]. More recently they have played a key role in algorithmic results

on model-checking for first-order logic on bounded expansion and nowhere dense graph classes

[4, 7, 10].

1.2 The Guiding Question

An obvious question concerning generalized coloring numbers is whether an ordering that is

“good” for one distance r is also “good” for a different distance r′. In fact, this need not be

the case: in Example 2.1 we will show that for all r, r′ ∈ N with r 6= r′, there exists a graph G

such that for all σ ∈ Π(G) either scolr(G) < scolr(G,σ) or scolr′(G) < scolr′(G,σ).

The existence of examples as above also has consequences for the many algorithms that

for a graph class G with bounded expansion and some r, use explicitly an ordering σ which

shows that scolr(G) ≤ c(r). It looks as if for every r a different ordering is needed.

Given a function c : N → N, let Gc be the graph class defined by: G ∈ Gc if and only if

scolr(G) ≤ c(r) for all r ∈ N. Then the class Gc has bounded expansion, and every class with

bounded expansion is contained in Gc′ for some c′.

In this paper we investigate the following problem that was raised by Dvořák [23]. Kreutzer

et al. [18, Section 6] state that it is “tempting to conjecture” that the answer to this problem

is yes.

Problem 1.3.

Is it true that for all functions c : N → N, there exists a function c∗ : N → N, such that for

every graph G ∈ Gc, there exists an ordering σ∗ ∈ Π(G) such that scolr(G,σ∗) ≤ c∗(r) for all

r ∈ N?

The main reason this issue was raised by several people was that for all known bounds on the

generalized coloring numbers on graph classes such as (topological) minor closed classes, a

single ordering of all graphs in the class gave those bounds for all distances r; see e.g. [8, 18].

1.3 Results

Our main result provides a positive answer for Problem 1.3.

Theorem 1.4.

For any graph G, there exists an ordering σ∗ of G such that for all r ∈ N we have

scolr(G,σ∗) ≤ (2r + 1) ·
(

scol2r(G)
)4r

.

In the terminology of Problem 1.3, this means we can set c∗(r) = (2r +1) ·
(

c(2r)
)4r

for all r.

We immediately obtain the following new characterizations of graph classes with bounded

expansion and nowhere dense graph classes.
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Corollary 1.5.

A graph class G has bounded expansion if and only if there exists a function c∗ : N→ N, such

that for every graph G ∈ G there exists an ordering σ∗(G) of G such that scolr(G,σ∗(G)) ≤
c∗(r) for all r.

Corollary 1.6.

A graph class G is nowhere dense if and only if there exists a function n∗
0 : R × N → N such

that for every subgraph H of a graph G ∈ G, there exists an ordering σ∗(H) of H such that

for all ǫ > 0 and r ∈ N, if |H| ≥ n∗
0(ǫ, r), then scolr(H,σ∗(H)) ≤ |H|ǫ.

By the definition of the strong coloring number it follows that if G is a graph with some

ordering σ∗(G), then for every subgraph H of G, if we take σ∗(H) the ordering of H induced

by σ∗(G), we have scolr(H,σ∗(H)) ≤ scolr(G,σ∗(G)) for all r. This means that in Corol-

lary 1.5 once we have an ordering σ∗(G) for some graph G ∈ G, for every H ∈ G that is a

subgraph of G we can take the ordering σ∗(H) of H induced by σ∗(G). In view of this it

is natural to ask whether a similar statement is possible for the condition in Corollary 1.6

for nowhere dense classes of graphs. In Subsection 2.2 we will show that this is in fact not

possible.

Theorem 1.4 above follows from a technical, more general, result that deals with different

graphs on the same vertex set; see Section 4. Another consequence of this more general result

is the following theorem, which may be of independent interest.

Theorem 1.7.

Let G1, . . . , Gk be a collection of graphs, all on the same vertex set V , and let r1, . . . , rk ∈ N.

Then there exists a ordering σ∗ of the common vertex set V such that for all i = 1, . . . , k,

scolri(Gi, σ
∗) ≤ (k + 1)

(

wcol2ri(Gi)
)2 ≤ (k + 1)

(

scol2ri(Gi)
)4ri .

The proof of the general result, which also can be found in Section 4, has at its basis arguments

developed in [15, 16].

The remainder of this paper is organized as follows. In the next subsection we give

essential terminology and notation. The two classes of examples referred to earlier can be

found in Section 2. In Section 3 we describe the essential concepts and the result from [15]

that provided the inspiration for our proof of the main theorem. In Section 4 we state and

prove our main technical result, and give the proofs of its corollaries. In the next section we

discuss some algorithmic aspects of our results. We discuss some open questions in the final

section.

1.4 Terminology and Notation

Most of our graph theory terminology and notation is standard and can be found in text

books such as [2].

If P = v1v2 . . . vn is a path, then we call v1 and vn the ends of P . The subpath of P that

has ends a and b is denoted by aPb. Finally, P̊ is P minus its ends. The length of a path is

the number of edges in it. (So one fewer than the number of vertices.)
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For two vertices x and y in the same component of a graph G = (V,E), the distance

distG(x, y) between x and y is the length of a shortest x, y-path in G. For v ∈ V , NG(v)

denotes the set of vertices in G adjacent to v; NG[v] = NG(v) ∪ {v}. For a subset X ⊆ V ,

G[X] denotes the subgraph of G induced on the vertex set X.

For a positive integer k, we write [k] = {1, 2, . . . , k}.
If σ is an ordering of some set X and S, T are non-empty subsets of X, then by S <σ T we

mean that s <σ t for all s ∈ S, t ∈ T . We abbreviate {s} <σ T to s <σ T . The element in S

that is minimum with respect to σ is denoted by σ-min(S). The ordering σS on S induced

by σ is the ordering given by: s1 <σS
s2 if and only if s1 <σ s2, for all s1, s2 ∈ S.

2 Examples

2.1 Graphs with No “Good” Ordering

The following examples show that in answering Problem 1.3 we cannot take c∗ = c.

Example 2.1.

Let ϕ be the largest solution to x2 = x+ 1 (the golden ratio ϕ = 1
2(1 +

√
5) ≈ 1.62). For all

r, r′ ∈ N with r < r′, there exists a graph G such that for all σ ∈ Π(G), either

scolr(G,σ) > .08
(

scolr(G)
)ϕ

or scolr′(G,σ) > .08
(

scolr′(G)
)ϕ

.

Proof. Fix t, n ∈ N with 4 ≤ t ≤ n. Let Z = {zhi | i ∈ [n], h ∈ [t]} be a set of vertices,

and partition Z into n sets Zi = {zhi | h ∈ [t]} of size t. We construct G by connecting each

ordered pair (Zi, Zj), i 6= j, with isomorphic graphs Hi,j so that G =
⋃{Hi,j | i, j ∈ [n], i 6= j}

and the Hi,j are pairwise disjoint except for their ends in Z. In particular, the sets Zi and Zj

are connected by both Hi,j and Hj,i.

For all h ∈ [t] and i, j ∈ [n], i 6= j, add a vertex xi,j and choose independent paths

P h
i,j = zhi . . . xi,j of length r and Qh

i,j = xi,j . . . z
h
j of length r′ − r. Let

Hi,j =
⋃

h∈[t]
P h
i,j ∪

⋃

h∈[t]
Qh

i,j.

See Figure 1 for a sketch. Set Yi,j = V (Hi,j)r
(

Zi ∪ Zj ∪ {xi,j}
)

, so Hi,j[Yi,j] =
⋃

h∈[t] P̊
h
i,j ∪

⋃

h∈[t] Q̊
h
i,j. Finally, set X = {xi,j | i, j ∈ [n], i 6= j}, Xi = {xi,j , xj,i | j ∈ [n] − i} and

Y =
⋃

i,j∈[n]
i 6=j

Yi,j. Note that V (G) = X ∪ Y ∪ Z.

Observe the following facts:

(E1) distG(z
h
i , z

h′

j ) = r′, for all h, h′ ∈ [t] and i, j ∈ [n], i 6= j;

(E2) every Z-path meets X, and every Zi, Zj-path with length r′ meets one of xi,j, xj,i;

(E3) distG(xi,j, x) > r′, for all x ∈ Xr(Xi ∪Xj).

The result follows from the next three claims by an easy calculation.

Claim 1. Let σ ∈ Π(G) satisfy Z <σ X <σ Y . Then scolr(G) ≤ scolr(G,σ) ≤ 2t+ 1.

6



xi,j

Zi Zj

P 1
i,j

z1i

z2i

z3i

z4i

z1j

z2j

z3j

z4j

Q4
i,j

Figure 1: A connecting graph Hi,j for t = 4, r = 3 and r′ = 7.

Proof. Consider any vertex v ∈ X ∪ Y ∪ Z, and suppose w ∈ Sr[G,σ, v] is witnessed by the

path R.

If v ∈ Zi ⊆ Z, then w ≤σ v <σ X ∪ Y , so w ∈ Z. By (E1) we have w ∈ Zi, so
∣

∣Sr[G,σ, v]
∣

∣ ≤ |Zi| = t.

If v = xi,j ∈ X, then Z <σ v <σ Y . Thus V (R̊) ⊆ V (Hi,j)r (Zi ∪ Zj), and w ∈
Zi ∪ Zj ∪ {xi,j}, so

∣

∣Sr[G,σ, v]
∣

∣ ≤ 2t+ 1.

If v ∈ Y , then R ⊆ R′ for some R′ ∈ {P h
i,j , Q

h
i,j | h ∈ [t]}. Thus

Sr[G,σ, v] ⊆ Sr′ [G,σ, v] ⊆ {v, v1, v2}, (2)

where v1, v2 ≤σ v and v1, v2 ∈ V (R′). The vertices v1, v2 exist since the ends of R′ come

before v with respect to σ. Thus
∣

∣Sr[G,σ, v]
∣

∣ ≤ 3.

So in all cases we have
∣

∣Sr[G,σ, v]
∣

∣ ≤ 2t+ 1, hence scolr(G,σ) ≤ 2t+ 1.

Claim 2. Let σ ∈ Π(G) so that X <σ Z <σ Y . Then scolr′(G) ≤ scolr′(G,σ) ≤ 4n− 6.

Proof. Consider any vertex v ∈ X ∪ Y ∪ Z, and suppose w ∈ Sr′ [G,σ, v] is witnessed by the

path R.

If v = xi,j ∈ X, then w ≤σ v <σ Y ∪ Z, so w ∈ X. By (E3) we have w ∈ Xi ∪Xj , so

∣

∣Sr′ [G,σ, v]
∣

∣ ≤ |Xi ∪Xj | = |Xi|+ |Xj | − |Xi ∩Xj | = 2(2n − 2)− 2 = 4n− 6.

If v ∈ Zi ⊆ Z, then X <σ v <σ Y , so w ∈ X if R meets X. By (E2), R meets Xi if R meets

Zr{v}. Thus w ∈ Xi ∪ {v}. This gives
∣

∣Sr′ [G,σ, v]
∣

∣ ≤ |Xi|+ 1 = 2n− 1 ≤ 4n− 6.

If v ∈ Y , then |Sr′ [G,σ, v]| ≤ 3, by (2).

Thus in all cases we have |Sr′ [G,σ, v]| ≤ 4n− 6, hence scolr′(G,σ) ≤ 4n− 6.

Claim 3. For any σ ∈ Π(G), either scolr(G,σ) ≥ .246n or scolr′(G,σ) ≥ .754nt.

Proof. Let zhi be the σ-largest vertex of Z, J = {j ∈ [n]− i | zhi ≤σ V (P h
i,j)} and J = [n]rJ .

For all j ∈ J r{i} there exists a vertex uj ∈ V (P h
i,j) with uj <σ zhi ; choose uj as close

(along the path P h
i,j) to zhi as possible. Then {uj | j ∈ J} ∪ {zhi } ⊆ Sr[G,σ, zhi ]. Thus

scolr(G,σ) ≥ |J |+ 1, and so we are done if |J | ≥ .246n − 1.

7



Otherwise |J | ≥ (n − 1) − (.246n − 1) = .754n. For all j ∈ J and h′ ∈ [t], let vh
′

i,j be the

vertex of Qh′

i,j with vh
′

i,j <σ zhi that is closest to xi,j (along the path Qh′

i,j); it exists because

zh
′

j <σ zhi < xi,j by the choice of zhi and the definition of J . Then we have {vh′

j | j ∈ J,

h′ ∈ [t]} ⊆ Sr′ [G,σ, zhi ]. Thus scolr′(G,σ) ≥ t|J | ≥ .754nt.

Now choose t, n such that t > 1000 and tϕ ≤ n < tϕ + 1. Let C = .08. Then we have (using

ϕ < 1.6181):

.246 > C2.001ϕ and .754 > C4ϕ. (3)

Consider any σ ∈ Π(G). By Claim 3, scolr(G,σ) ≥ .246n or scolr′(G,σ) ≥ .754nt. In the

first case, Claim 1 yields (using n ≥ tϕ, (3) and t > 1000):

scolr(G,σ) ≥ .246n ≥ .246tϕ > C2.001ϕtϕ = C
(

2.001t
)ϕ

> C(2t+ 1)ϕ ≥ C
(

scolr(G)
)ϕ

.

In the second case, Claim 2 yields (using (3), n ≥ tϕ > n− 1 and ϕ2 = ϕ+ 1):

scolr′(G,σ) ≥ .754nt > C4ϕnt ≥ C4ϕtϕ+1 = C(4tϕ)ϕ > C
(

4(n− 1)
)ϕ

> C
(

scolr′(G)
)ϕ

.

2.2 Nowhere Dense Classes and Orderings

In the discussion after Corollary 1.6 we raised the possibility of strengthening the corollary

to the following. “A graph class G is nowhere dense if and only if there exists a function

n∗
0 : R × N → N such that for every graph G ∈ G there exists an ordering σ∗(G) of G such

that for every subgraph H of G, the ordering σ∗(H) of H induced by σ∗(G) has the property

that for all ǫ > 0 and r ∈ N such that |H| ≥ n∗
0(ǫ, r) we have scolr(H,σ∗(H)) ≤ |H|ǫ.” In

this subsection we show that such a strengthening is not possible, even for monotone nowhere

dense classes. (A class is monotone if it closed under taking subgraphs.)

Example 2.2.

There exists a monotone graph class G that is nowhere dense and with the following property.

There does not exist a function n∗
0 : R×N→ N such that for every graph G ∈ G there exists an

ordering σ∗(G) of G such that for every subgraph H of G, the ordering σ∗(H) of H induced

by σ∗(G) has the property that for all ǫ > 0 and r ∈ N such that |H| ≥ n∗
0(ǫ, r) we have

scolr(H,σ∗(H)) ≤ |H|ǫ.

Proof. Let G be the class of graphs whose maximum degree is at most their girth. (The

girth of a graph is the length of the smallest cycle in it.) Note that this class is obviously

monotone. It is shown in [22, pages 105–106] that this class is nowhere dense (but not with

bounded expansion!). One other well-known fact we use is that this class contains graphs

with arbitrarily large minimum degree.

Now suppose for a contradiction that there exists a function n∗
0 : R×N→ N satisfying the

properties in the statement above. Take 0 < ǫ < 1 and r ∈ N, and choose an integer d such

that d ≥ n∗
0(ǫ, r). Let G be a graph in G with minimum degree at least d. By supposition

there is an ordering σ∗(G) of G satisfying the properties in the statement.
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Now let v be the vertex that is last in the ordering σ∗(G), and set H = G
[

NG[v]
]

. Then H

has at least d+1 > n∗
0(ǫ, r) vertices. In the ordering σ∗(H) of H induced by σ∗G), the vertex v

is still the last one, which gives scolr(H,σ∗(H)) = |NG[v]| ≥ d + 1. Since |H|ǫ < d + 1 for

ǫ < 1, we cannot have scolr(H,σ∗(H)) ≤ |H|ǫ.

3 Inspiration for the Proof of the Main Theorem

The inspiration for the proof of Theorem 1.4 comes from the theory of generalized game

coloring numbers, which were introduced in [15]. In this section we define these numbers, and

use a basic result about them to give a very easy proof of a simplified version of Theorem 1.4.

The full proof follows in Section 4.

The r-ordering game is played on a graph G by two players, Alice and Bob. The game

lasts for n = |G| turns. The players take turns choosing unchosen vertices with Alice playing

first until there are no unchosen vertices left. This creates an ordering σ ∈ Π(G) of G, where vi
is the vertex chosen at the i-th turn and v1 <σ v2 <σ · · · <σ vn. The score of the game is

scolr(G,σ). Alice’s goal is to minimize the score while Bob’s goal is to maximize the score.

The game r-coloring number of G, denoted gcolr(G), is the least s such that Alice can always

achieve a score of at most s, regardless of how Bob plays.

The next result bounds the generalized game coloring numbers for any graph class with

bounded expansion.

Theorem 3.1 (Kierstead & Yang [15]).

All graphs G satisfy gcolr(G) ≤ 3
(

wcol2r(G)
)2 ≤ 3

(

scol2r(G)
)4r

for all r.

Now we are ready to prove the result that inspired our general approach.

Theorem 3.2.

For any graph G and r, r′ ∈ N, there exists an ordering σ∗ ∈ Π(G) such that

scolr(G,σ∗) ≤ 3
(

scol2r(G)
)4r

and scolr′(G,σ∗) ≤ 3
(

scol2r′(G)
)4r′

+ 1.

Proof. We will create the ordering by having two players A and B play the ordering game.

Player A plays by following Alice’s optimal strategy in the r-ordering game onG and interprets

Player B’s moves as Bob’s moves in this game. Player B ignores Alice’s first move, and

from then on plays by following Alice’s optimal strategy in the the r′-ordering game on the

remaining graph and interprets player A’s moves as Bob’s moves in this game.

By Theorem 3.1, the resulting ordering σ∗ has the desired properties, where we need to

be aware that Player B had to ignore the first chosen vertex, which may lead to one more

reachable vertex.

4 The Main Theorem

In this section we prove our main results, which are all corollaries of the following technical

theorem.

9



Theorem 4.1.

Let G1, . . . , Gk be a collection of graphs, all on the same vertex set V , and a1, . . . , ak and

r1, . . . , rk be positive integers. Set A = a1 + · · ·+ ak. Then there exists an ordering σ∗ of the

common vertex set V such that for all i = 1, . . . , k we have

scolri(Gi, σ
∗) ≤ A

ai

(

wcol2ri(Gi)
)2

+wcol2ri(Gi).

Proof. In what follows, for a graph G, ordering σ ∈ Π(G), r ∈ N and x ∈ V (G) we use

Sr(G,σ, x) and Wr(G,σ, x) to denote Sr[G,σ, x]r{x} and Wr[G,σ, x]r{x}, respectively. We

also set

V l
σ(x) = {y ∈ V | y <σ x}, V l

σ[x] = V l
σ(x) ∪ {x}; and

V r
σ (x) = {y ∈ V | y >σ x}, V r

σ [x] = V r
σ (x) ∪ {x}.

For all i, choose an ordering σi of V such that wcol2ri(Gi, σi) = wcol2ri(Gi). Define the

graph Hi with vertex set V by setting E(Hi) = {uv | u ∈Wri(Gi, σi, v)}.
Claim 4. For all i we have scol2(Hi, σi) ≤ wcol2ri(Gi).

Proof. If w ∈ S2(Hi, σi, v), then w <σi
v, and either wv ∈ E(Hi) or there is a u >σi

v

with vu, uw ∈ E(Hi). In the first case we have w ∈ Wri(Gi, σi, v) ⊆ W2ri(Gi, σi, v). In the

second case there are paths P = v . . . u and Q = u . . . w in Gi of length at most ri with

v ≤σi
V (P ∪Q)r{w}. This again gives w ∈W2ri(Gi, σi, v).

We construct σ∗ one vertex at the time, by collecting one by one vertices from V . Each time

a vertex is collected it is deleted from the set U of uncollected vertices and put at the end of

the initial segment of σ∗ already constructed. We maintain a vector mv : [k]→ {0, 1, . . .} for
each vertex v. When mv = 0, we collect v.

We start without any collected vertex, so U = V , and for all v ∈ V and i ∈ [k] we set

mv(i) = ai. We now run the following algorithm.

1: pick any v ∈ U ;

2: while U 6= ∅ do
3: pick any i ∈ [k] with mv(i) 6= 0; {such i exists, since at this point always v ∈ U}
4: mv(i) ← mv(i)− 1;

5: if mv = 0 then

6: collect v

7: end if ;

8: if NHi
[v] ∩ U 6= ∅ then

9: v ← σi-min(NHi
[v] ∩ U)

10: else if U 6= ∅ then

11: pick any v ∈ U

12: end if ;

10



13: end while;

Claim 5. At any time in the algorithm and for all i ∈ [k], every uncollected vertex w satisfies:

the number of collected vertices in NHi
(w)∩V r

σi
(w) is at most

A

ai
wcol2ri(Gi). In other words,

∣

∣NHi
(w) ∩ V r

σi
(w) ∩ V l

σ∗(w)
∣

∣ ≤ A

ai
wcol2ri(Gi). (4)

Proof. We say that a vertex is processed when it plays the role of v at Line 3 of the algorithm.

Observe that each vertex is processed on exactly A rounds—on mv(i) = ai rounds with each

index i ∈ [k]—before it is collected at Line 6, and then it is never processed again.

Suppose w is uncollected at Line 2 of some round of the algorithm. Let s be the number

of collected vertices v in NHi
(w)∩V r

σi
(w). On each round that such a vertex v was processed

with index i, the if-clause at Line 8 was witnessed by w. As w is uncollected at Line 2, there

were at most A rounds on which w was chosen at Line 1 or Line 9 to be processed next.

(If equality holds, then w is the last vertex chosen at Line 9 of the previous round.) On all

other such rounds, a vertex w′ ∈ NHi
[v] ∩ U with w′ <σi

w was picked to be processed next.

Clearly, w′ ∈ S2(Hi, σi, w). Moreover, as w′ ∈ U , it is chosen on at most A rounds.

So all in all we get that s · ai ≤ A+A ·
∣

∣S2(Hi, σi, w)
∣

∣ = A ·
∣

∣S2[Hi, σi, w]
∣

∣. Using Claim 4

this gives

s ≤ A

ai
scol2[Hi, σi, w] ≤

A

ai
wcol2ri(Gi)

as claimed.

Let σ∗ be the ordering obtained by the algorithm. Take i ∈ [k]. We will bound
∣

∣Sri [Gi, σ
∗, w]

∣

∣

for each w ∈ V . First notice that Sri [Gi, σ
∗, w] is determined at the moment w is collected

(since then the sets V l
σ∗ [w] and V r

σ∗ [w] are known).

For all u ∈ Sri(Gi, σ
∗, w), pick a path Pu = u . . . w in Gi of length at most ri with

V (P̊u) ⊆ V r
σ∗(w). Let pu = σi-min(V (Pu)). Then

(a) u <σ∗ w and (b) pu ≤σi
u. (5)

Partition Sri(Gi, σ
∗, w) by:

X1 = {u ∈ Sri(Gi, σ
∗, w)

∣

∣ pu = u},
X2 = {u ∈ Sri(Gi, σ

∗, w)
∣

∣ pu = w} and

X3 = {u ∈ Sri(Gi, σ
∗, w)

∣

∣ pu <σi
{u,w}}.

If u ∈ X1, then Pu witnesses that u ∈ Wri(Gi, σi, w). By the choice of σi this gives

|X1| ≤ wcolri(Gi)− 1 ≤ wcol2ri(Gi)− 1.

Next consider a vertex u ∈ X2. Then w = pu ≤σi
V (Pu), and hence w ∈ Wri [Gi, σi, u].

By definition, uw ∈ E(Hi). On the other hand, u <σ∗ w by (4a). Thus we have X2 ⊆
NHi

(w) ∩ V r
σi
(w) ∩ V l

σ∗(w). By (4) this means |X2| ≤
A

ai
wcol2ri(Gi).

11



Finally, consider a vertex u ∈ X3. Then pu ∈ Wri(Gi, σi, u) and pu ∈ Wri(Gi, σi, w). By

definition, puu ∈ E(Hi). By (4a), u <σ∗ w, and by (4b), pu <σi
u. Combining this all gives

u ∈ NHi
(pu) ∩ V r

σi
(pu) ∩ V l

σ∗(pu). It follows that

X3 ⊆
⋃

p∈Wri
(Gi,σi,w)

NHi
(p) ∩ V r

σi
(p) ∩ V l

σ∗(p).

And so (4) leads to

|X3| ≤
(

wcol2ri(Gi)− 1
)

· A
ai

wcol2ri(Gi).

Adding it all together we get

∣

∣Sri [Gi, σ
∗, w]

∣

∣ = 1 + |X1|+ |X2|+ |X3|

≤ 1 +
(

wcol2ri(Gi)− 1
)

+
A

ai
wcol2ri(Gi) +

(

wcol2ri(Gi)− 1
)

· A
ai

wcol2ri(Gi)

=
A

ai

(

wcol2ri(Gi)
)2

+wcol2ri(Gi).

Since scolri(Gi, σ
∗) = max

w∈V

∣

∣Sri [Gi, σ
∗, w]

∣

∣, the theorem follows.

We are now ready to prove the results stated in Subsection 1.3. We start with the easiest

proof.

Proof of Theorem 1.7. Let G1, . . . , Gk and r1, . . . , rk ∈ N as in the statement of the theorem.

Using Theorem 4.1 with all ai = 1, and hence A = k, we get that there exists an ordering σ∗

of V such that for all i we have

scolri(Gi, σ
∗) ≤ k ·

(

wcol2ri(Gi))
)2

+wcol2ri(Gi) ≤ (k + 1)
(

wcol2ri(Gi)
)2
.

Proof of Theorem 1.4. Set n = |G|. It is easy to check that the result holds if n ≤ 3, so

assume n ≥ 4 and let k =
⌊

log2(n− 2)
⌋

.

If i ≥ k + 1, then we have i > log2(n − 2), hence 2i + 1 > n − 1. This means that

scoli(G,σ∗) ≤ (2i + 1) ·
(

wcol2i(G)
)2

trivially holds for any ordering σ∗.

For i = 1, . . . , k, set Gi = G, ri = i and ai = 2k−i. Then A = a1+ · · ·+ak = 2k−1. Using

Theorem 4.1, we find that there exists an ordering σ∗ of G such that for all i = 1, . . . , k we

have

scoli(G,σ∗) ≤ (2k − 1) ·
(

wcol2i(G)
)2

2k−i
+wcol2i(G)

≤ 2i ·
(

wcol2i(G)
)2

+wcol2i(G) ≤ (2i + 1) ·
(

wcol2i(G)
)2
.

By (1) this proves the bound on scoli(G,σ∗) for i ≤ k, and completes the proof.

We finish with a more general version of Theorem 1.4.
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Corollary 4.2.

For any graph G and ǫ > 0, there exits an ordering σ∗ of G such that for all r ∈ N we have

scolr(G,σ∗) ≤
((1 + ǫ)r+1

ǫ2
+ 1

)

·
(

scol2r(G)
)4r

.

Proof. We follow the proof of Corollary 1.4 above. First choose the positive integer k such

that
((1 + ǫ)(k+1)+1

ǫ2
+ 1

)

≥ |G|.

This means that the bound on scoli(G,σ∗) trivially holds for r ≥ k + 1, for any ordering σ∗.

Now for i = 1, . . . , k, set Gi = G, ri = i and ai =
⌈

(1+ǫ)k+1−i−1
⌉

. Then we can estimate

A = a1 + · · ·+ ak ≤
k

∑

i=1

(1 + ǫ)k+1−i =
(1 + ǫ)k+1 − (1 + ǫ)

ǫ
<

(1 + ǫ)k+1

ǫ
.

For all i = 1, . . . , k we get

ai =
⌈

(1 + ǫ)k+1−i − 1
⌉

≥ (1 + ǫ)k+1−i − 1 > ǫ · (1 + ǫ)k−i.

Using Theorem 4.1 again, there exists an ordering σ∗ of G such that for all i = 1, . . . , k we

have

scoli(G,σ∗) ≤ (1 + ǫ)k+1 ·
(

wcol2i(G)
)2

ǫ2 · (1 + ǫ)k−i
+wcol2i(G)

≤ (1 + ǫ)i+1

ǫ2
·
(

wcol2i(G)
)2

+wcol2i(G) ≤
((1 + ǫ)i+1

ǫ2
+ 1

)

·
(

wcol2i(G)
)2
.

By (1) this proves the bound on scoli(G,σ∗) for i ≤ k, and completes the proof.

5 Algorithmic Aspects

Our main results, Theorems 1.4 and 4.1, guarantee the existence of a specific ordering of

the vertices of a graph. But the results do not indicate if such an ordering can be found

efficiently. The proof of Theorem 4.1 is in fact algorithmic. If for every i = 1, . . . , k we have

an ordering σi of the vertex set such that wcol2ri(Gi, σi) = wcol2ri(Gi), then the proof gives

an algorithm that finds an ordering σ∗ in O(A · |V |) steps. (We start with a vector m with

mv(i) = ai for each vertex v, and in each iteration of the while loop one coordinate mv gets

reduced by one.)

So the question about the existence of an efficient algorithm to find a uniform ordering

depends on the existence of an efficient algorithm to find optimal orderings for the generalized

coloring numbers. It is very unlikely that this is possible, though. Grohe et al. [5, 6] proved

that computing wcolr(G) is NP-complete for all fixed r ≥ 3. Note that calculating the coloring

number col(G) can be done in polynomial time; it is an interesting open problem to determine

the computational complexity status of finding wcol2(G).
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Nevertheless, it is possible to find orderings that approximate the generalized coloring

numbers, using ideas developed in Dvořák [3]. We need a new concept. Let r ∈ N. For a

graph G, ordering σ ∈ Π and x ∈ V , let br[G,σ, x] be the maximum number of paths of

length at most r that have x as one end, whose other end y satisfies y ≤σ x, and that are

vertex-disjoint apart from x. Clearly, we can assume that the internal vertices of the paths

appear after x in the ordering. The r-admissibility of G, denoted admr(G), is defined as 2

admr(G,σ) = max
x∈V

br[G,σ, x]; admr(G) = min
σ∈Π

admr(G,σ).

It is obvious that once again adm1(G) is just the coloring number col(G); while we also have

admr(G) ≤ scolr(G) ≤ wcolr(G). On the other hand, Dvořák [3, Lemma 6] gives the existence

of a function F : N×N→ N such that wcolr(G) ≤ F
(

r, admr(G)
)

for all r ∈ N and graphs G.

Dvořák [3] also gives a simple algorithm that, given r ∈ N and a graph G, in O(r3 · |G|)
steps finds an ordering σ of G such that admr(G,σ) ≤ r · admr(G).

Combining all this with the proof of Theorem 4.1 gives the following algorithmic version

of that theorem.

Theorem 5.1.

There exists a function φ : N × N → N and an algorithm A such that the following holds.

Let G1, . . . , Gk be a collection of graphs, all on the same vertex set V , and a1, . . . , ak and

r1, . . . , rk be positive integers. Set A = a1 + · · ·+ ak. Then algorithm A gives an ordering σ∗

of the common vertex set V such that for all i = 1, . . . , k we have

scolri(Gi, σ
∗) ≤ A

ai
· φ

(

ri,wcol2ri(Gi)
)

.

The number of steps algorithm A requires is polynomial in A and |G|.

The proof of Theorem 1.4 shows that we can use the theorem above with A ≤ n to get an

algorithmic version of that theorem.

Theorem 5.2.

There exists a function φ′ : N×N→ N and an algorithm A′ such that the following holds. For

any graph G, algorithm A′ gives an ordering σ∗ of G such that scolr(G,σ∗) ≤ φ′
(

r, scol2r(G)
)

for all r ∈ N. The number of steps algorithm A′ requires is polynomial in |G|.

Finally, we formulate an algorithmic version of Corollary 1.5.

Corollary 5.3.

There exists an algorithm A∗ such that the following holds. A graph class G has bounded

expansion if and only if there exists a function c∗ : N→ N, such that for every graph G ∈ G,

algorithm A∗ gives an ordering σ∗ of G such that scolr(G,σ∗) ≤ c∗(r) for all r ∈ N. The

number of steps algorithm A∗ requires is polynomial in |G|.
2 The definition of admr(G) in [3] does not include the vertex x in the set br[G, σ, x]; we include it here for

consistency with the now standard convention for generalized coloring numbers.
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6 Discussion

The original motivation in [15] for defining generalized coloring numbers was to study various

game theoretic questions, including generalized game coloring numbers and their applications

to other games. It was a major surprise that generalized coloring numbers could provide

characterizations of sparse classes; indeed even generalized game coloring numbers provide

these characterizations. Just as ordinary coloring numbers have proved useful in sparsity

theory, one might expect that game coloring numbers should find applications. Prior to

this paper, and aside from the characterization just mentioned, we know only one other

application to a non-game problem. In [12], the game strong 2-coloring number is used to

provide improved bounds for Bollobás-Eldridge-type questions on packing. In this paper,

while we used game coloring techniques, we did not apply any theorems from that area. We

limited the competitive aspects of the theory by enforcing a prioritization for the goals of

multiple players (graphs) using the vector m. This draws on ideas from the Harmonious

Strategy in [16]. We expect that those ideas can be used in other (non-game) settings as

well. Other applications of the Harmonious Strategy include [17, 25, 26]; [17] and [26] address

non-game problems.

After solving Problem 1.3, it is natural to ask how good our answer is. In other words:

For c : N → N, what is the smallest function c∗ : N → N such that for all G ∈ Gc there

is an ordering σ∗ ∈ Π(G) such that all r ∈ N satisfy scolr(G,σ∗) ≤ c∗(r)? Recall that

ϕ = 1
2(1 +

√
5) ≈ 1.62. Example 2.1 and Theorem 1.4 show that

.08c(r)ϕ ≤ c∗(r) ≤ (2r + 1) · c(2r)4r.

The lower bound is polynomial in c(r), while the upper bound is exponential in c(2r). We

don’t have enough evidence to make a justified guess on the right order of c∗ in terms of c.

The main result in [15], Theorem 3.1 in this paper, gives an upper bound of gcolr(G)

in terms of scol2r(G). It is shown in [15] that gcolr(G) cannot be bounded in terms of

scol2r−1(G). Hence it is tempting to conjecture that c∗(r) cannot be upper bounded in terms

of c(2r − 1), but we have been unable to find examples of graphs that confirm this.
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