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0 Graphs that contain multiply transitive matchings

Alex Schaefer and Eric Swartz

ABSTRACT. Let Γ be a finite, undirected, connected, simple graph. We say that a matching M is a

permutable m-matching if M contains m edges and the subgroup of Aut(Γ) that fixes the matching

M setwise allows the edges of M to be permuted in any fashion. A matching M is 2-transitive

if the setwise stabilizer of M in Aut(Γ) can map any ordered pair of distinct edges of M to any

other ordered pair of distinct edges of M. We provide constructions of graphs with a permutable

matching; we show that, if Γ is an arc-transitive graph that contains a permutable m-matching for

m > 4, then the degree of Γ is at least m; and, when m is sufficiently large, we characterize the

locally primitive, arc-transitive graphs of degree m that contain a permutable m-matching. Finally,

we classify the graphs that have a 2-transitive perfect matching and also classify graphs that have a

permutable perfect matching.

1. Introduction

All graphs considered in this paper are finite, undirected, and simple, and are connected unless

otherwise stated. A matching M is a set of edges of a graph Γ such that no two are incident with

a common vertex. A matching M is a perfect matching of Γ if each vertex of Γ is incident with

exactly one edge of M. In other words, a matching M is the edge set of a 1-regular subgraph of

Γ, and M is perfect exactly when the 1-regular subgraph is spanning. Let Γ be a graph, let M
be a matching in Γ with m edges, and let G be a subgroup of Aut(Γ). We will say that M is a

G-permutable m-matching if the restriction of the action of G to the edge set of M is that of the

symmetric group Sm , i.e., if G
E(M)
M

∼= Sm. If such a group G and matching M exist, we will say

that the graph Γ contains a permutable m-matching. The concept of a permutable matching is due

to Zaslavsky, motivated by a question involving signed graphs from [13].

A group G of permutations of a set Ω is 2-transitive on Ω if, given two ordered pairs of distinct

elements (α, β), (γ, δ) ∈ Ω × Ω, there exists g ∈ G such that (α, β)g := (αg, βg) = (γ, δ); in

other words, G can map any ordered pair of distinct elements to any other ordered pair of distinct

elements. We say that a matching M of a graph Γ is a 2-transitive matching if the setwise stabilizer

of M in Aut(Γ) is 2-transitive on the edges of M.

The purpose of this paper is to study graphs that contain a matching M such that the setwise

stabilizer of M is multiply transitive on the edges of M. This paper is structured as follows.

In Section 2, we provide background information necessary for the later sections. In Section 3,

we provide various constructions for graphs with a permutable m-matching, showing that there is

actually an abundance of such graphs for any m. Moreover, there are even numerous examples
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when the graph Γ is required to be G-arc-transitive for G 6 Aut(Γ), that is, when G is transitive

on the set A(Γ) of ordered pairs of adjacent vertices. In Section 4, we prove the following result,

which shows that the degree of a vertex cannot be too small in a graph with a permutable matching,

up to a single, known family of exceptions.

THEOREM 1.1. Let G 6 Aut(Γ). If Γ is a connected G-arc-transitive graph with a G-

permutable m-matching, then the degree of the graph Γ is at least m unless m = 3 and Γ is

the cycle C3k, where k > 2.

Many of the graphs with permutable matchings constructed in Section 3 contain a system of

imprimitivity, i.e., the full automorphism group of the graph preserves a nontrivial partition of the

vertex set (and, in some cases, the stabilizer of a vertex α even preserves a nontrivial partition of

the neighbors of α). If a group G of permutations of a set Ω is transitive on Ω but G does not

preserve any partition of Ω other than the trivial partitions of Ω into singleton sets and the single

set Ω, then G is primitive on Ω. Given a graph Γ and G 6 Aut(Γ), Γ is said to be G-locally

primitive if, given any α ∈ V (Γ), the stabilizer of α in G is primitive on the neighbors of α. Given

the constructions in Section 3 and Theorem 1.1, it makes sense to consider graphs with degree

m that are locally primitive and arc-transitive containing a permutable m-matching. In Section 5,

we provide a characterization of such graphs. The notation and terminology used in the following

theorem are explained in depth in Section 2.

THEOREM 1.2. Let Γ be a connected G-arc-transitive, G-locally primitive graph with degree

m > 6 that contains a G-permutable m-matching, and suppose G has a nontrivial normal sub-

group N that has more than two orbits on vertices. If the normal quotient graph ΓN does not

contain a permutable m-matching, then ΓN is a near-polygonal graph and (ΓN , G/N) is locally-

Sm.

A group G is said to be quasiprimitive on a set Ω if every nontrivial normal subgroup of G
is transitive on Ω, and a group G is said to be biquasiprimitive on a set Ω if Ω has a G-invariant

partition Ω = ∆1 ∪ ∆2 such that the setwise stabilizer G∆i
is quasiprimitive on ∆i for i = 1, 2.

Using this terminology, Theorem 1.2 says that, if there exists a graph Γ that is G-arc-transitive and

G-locally primitive with degree m > 6 that contains a G-permutable m-matching, then one can

keep taking normal quotients of this graph until reaching either (1) a vertex-quasiprimitive graph

with a permutablem-matching, (2) a vertex-biquasiprimitive graph with a permutablem-matching,

or (3) a near-polygonal graph such that the stabilizer of a vertex can permute the m neighbors in

any way; see Section 2. Moreover, graphs in each case exist and are constructed in Section 3. We

do not know if the theorem holds for m ≤ 5; the restriction on m is a result of the technique.

Section 6 is devoted to the proof of the following theorem, which classifies the graphs with a

2-transitive perfect matching. Joins and matching joins are defined following the statement of the

theorem.

THEOREM 1.3. Let Γ be a connected graph on 2m vertices with a 2-transitive perfect matching

M containing m edges. Then we have one of the following cases:

(1) Γ is join between two graphs that are either complete or edgeless:

(a) Km ∨Km
∼= K2m,

(b) Km ∨Km,

(c) Km ∨Km
∼= Km,m.

(2) Γ is a matching join between two graphs that are either complete or edgeless (but not both

edgeless):
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(a) Km ⊻Km,

(b) Km ⊻Km.

(3) Let m = pf , where p is a prime and pf ≡ 3 (mod 4). Then either:

(a) Γ is the incidence graph of the Paley symmetric 2-design over GF(pf ), i.e., V (Γ) =
GF(pf) × {0, 1}, and (x, i), (y, j) ∈ V (Γ) are adjacent if and only if i = 0, j = 1,

and y − x is a square in GF(pf); or

(b) Γ is the graph obtained by taking the incidence graph of the Paley symmetric 2-

design over GF(pf) and replacing the independent sets with copies of Kpf ; that is

V (Γ) = GF(pf)× {0, 1}, and (x, i), (y, j) ∈ V (Γ) are adjacent if and only if either

i = j and x 6= y or if i = 0, j = 1, and y − x is a square in GF(pf).
(4) Let m = 5. Then either

(a) Γ is the Petersen graph; or

(b) Γ = C5 ∨ C5.

Here, Γ1 ∨Γ2 denotes the join of the graphs Γ1 and Γ2, in which V (Γ1 ∨Γ2) = V (Γ1)∪ V (Γ2)
and

E(Γ1 ∨ Γ2) = E(Γ1) ∪ E(Γ2) ∪ {{α, β} : α ∈ V (Γ1), β ∈ V (Γ2)}.

The notation Γ1 ⊻φ Γ2 denotes a matching join of Γ1 and Γ2. In this case, both Γ1 and Γ2 must

be graphs with |V (Γ1)| = |V (Γ2)| and φ : V (Γ1) → V (Γ2) is a bijection between the vertex sets.

The graph Γ1 ⊻φ Γ2 is defined to have vertex set V (Γ1 ⊻φ Γ2) = V (Γ1)∪ V (Γ2) and the edge set is

E(Γ1 ⊻φ Γ2) = E(Γ1) ∪ E(Γ2) ∪ {{α, αφ} : α ∈ V (Γ1)}.

When Γ1 or Γ2 is a complete graph or an empty graph, then the resulting graph is unique up to

isomorphism regardless of the choice of φ, and in this case we simply use the notation Γ1 ⊻ Γ2.

As an example of a matching join, consider two copies of C5: Γ1 = {1, 2, 3, 4, 5} with x
adjacent to y if and only if x − y ≡ ±1 (mod 5) and Γ2 = {6, 7, 8, 9, 10} with, again, x adjacent

to y if and only if x − y ≡ ±1 (mod 5). If we define φ to be xφ = x + 5, then the matching

join Γ1 ⊻φ Γ2 is isomorphic to the 5-prism, whereas if we define φ : Γ1 → Γ2 by 1φ = 6, 2φ = 9,

3φ = 7, 4φ = 10, and 5φ = 8, then the matching join Γ1 ⊻φ Γ2 is isomorphic to the Petersen graph.

As a corollary of Theorem 1.3 we classify all connected graphs with a permutable perfect

matching.

COROLLARY 1.4. Let Γ be a connected graph on 2m vertices with a permutable perfect match-

ing M. Then Γ is one ofK2m, Km∨Km, Km,m, Km⊻Km, Km⊻Km, C6, orK6\{3 ·K2} ∼= K2,2,2.

In particular, Theorem 1.3 classifies the possible induced subgraphs on the vertex set of a 2-

transitive matching M of size m in an arbitrary graph: either the induced subgraph is disconnected

and is m · K2 (i.e., m vertex-disjoint edges) or it is connected and is one of the graphs listed in

Theorem 1.3. Moreover, the induced subgraph on the vertex set of a permutable m-matching M in

an arbitrary graph is either m ·K2 or one of the graphs listed in Corollary 1.4.

2. Background

In this section we review the terminology and theory that will be used in later sections.

Let Γ be a graph. Given a subset X of the vertices of Γ, the induced subgraph of Γ on X is

denoted by Γ[X ]. We denote the fact that the vertices α and β are adjacent by writing α ∼ β. We

denote by Γ the complement of Γ. A walkW is defined to be a sequence of vertices (α0, α1, . . . , αn)
such that αi ∼ αi+1 for 0 6 i 6 n− 1. For α ∈ V (Γ), we denote the set of neighbors of α in Γ by
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Γ(α). The degree of a vertex α is |Γ(α)|, and we say that the graph Γ is regular if every vertex has

the same degree.

A graph Γ is said to be (v, k, λ, µ)-strongly regular if Γ has v vertices; Γ is regular of degree

k; if α, β ∈ V (Γ) and α ∼ β, then |Γ(α) ∩ Γ(β)| = λ; and if α 6= β ∈ V (Γ) and α 6∼ β, then

|Γ(α) ∩ Γ(β)| = µ.

2.1. Permutation groups and graph symmetry. Let Ω be a set andG a group of permutations

of Ω, that is, let G 6 Sym(Ω). For an element ω ∈ Ω, the orbit of ω under G is denoted by ωG.

For a subset ∆ of Ω, we let G∆ denote the setwise stabilizer of ∆ in G. When ∆ = {ω}, a single

element of Ω, we write Gω := G{ω}. If ∆ = {ω1, ω2, . . . , ωk}, then

Gω1ω2...ωk
:=

k⋂

i=1

Gωi
,

that is, Gω1ω2...ωk
fixes every ωi. For instance, Gα∆ denotes G{α} ∩ G∆, i.e. the set of elements of

G which stabilize both the element α pointwise and the set ∆ setwise. If H 6 G∆, then we denote

by H∆ the induced action of H on ∆, i.e., H∆ is the image of the natural homomorphism from H
into Sym(∆). If G is a group of permutations of Ω1 and G′ is a group of permutations of Ω2, then

G and G′ are said to be permutation isomorphic if there are both a bijection ψ : Ω1 → Ω2 and a

group isomorphism φ : G→ G′ such that, for all g ∈ G and ω ∈ Ω1, (ωg)ψ = (ωψ)g
φ

.

The group of permutations G is said to be transitive on Ω if, for every α, β ∈ Ω, there exists

g ∈ G such that αg = β. A group G of permutations of a set Ω is said to be regular on Ω if G
is transitive on Ω and Gω = 1 for all ω ∈ Ω. Additionally, G is said to be primitive on Ω if G is

transitive on Ω and G preserves no nontrivial partition of Ω, that is, G preserves no partition of Ω
other than the partition into singleton sets and the partition into the single set Ω. If Π is a nontrivial

G-invariant partition of Ω, then Π is called a system of imprimitivity and the elements of Π are

called blocks. Finally, a group G is said to be biprimitive on Ω if Ω has a G-invariant partition

Ω = ∆1 ∪∆2 such that the setwise stabilizer G∆i
is primitive on ∆i for i = 1, 2.

The group of permutationsG is said to be quasiprimitive on the set Ω if every nontrivial normal

subgroup ofG is transitive on Ω. IfG is primitive on Ω, thenG is quasiprimitive on Ω; however, the

converse is not true. A group G is said to be biquasiprimitive on Ω if Ω has a G-invariant partition

Ω = ∆1 ∪∆2 such that the setwise stabilizer G∆i
is quasiprimitive on ∆i for i = 1, 2.

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). An automorphism of a graph Γ is a

permutation of the vertices that preserves adjacency. The set of automorphisms of Γ forms a group,

which is denoted by Aut(Γ). Note that Aut(Γ) 6 Sym(V (Γ)).
Let G 6 Aut(Γ). The graph Γ is G-vertex-transitive if G is transitive on the vertices of Γ, and

Γ is G-edge-transitive if G is transitive on edges. Similarly, the graph Γ is G-vertex-quasiprimitive

(respectively, G-vertex-biquasiprimitive) if G is quasiprimitive (respectively, biquasiprimitive) on

the vertices of Γ. An arc is an ordered pair of vertices (α, β) such that {α, β} ∈ E(Γ), and Γ is

G-arc-transitive if G is transitive on the set A(Γ) of arcs of Γ. More generally, an s-arc of Γ is an

ordered (s + 1)-tuple of vertices (α0, . . . , αs) such that {αi, αi+1} ∈ E(Γ) for 0 6 i 6 s − 1 and

αj−1 6= αj+1 for 1 6 j 6 s − 1. (Repeated vertices are allowed in the walk defined by the s-arc,

but there are no returns in the walk.) The graph Γ is said to be (G, s)-arc-transitive ifG is transitive

on the set of s-arcs of Γ.

Given vertices α, β of Γ, we define the distance between α and β to be the length of a shortest

path between α and β (measured in edges), and we denote the distance between α and β by d(α, β).
Since we are only considering connected graphs, there will always exist a path between any two
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vertices α and β, so distance is a well-defined, finite-valued function on pairs of vertices. Given a

fixed vertex α, for every natural number i we let

G[i]
α := {g ∈ Gα : βg = β for all β ∈ V (Γ) such that d(α, β) 6 i},

that is, G
[i]
α is the group that fixes pointwise the set of all vertices at distance at most i from α. In

particular,

G[1]
α = {g ∈ Gα : βg = β for all β ∈ Γ(α)},

and G
[1]
α is often referred to as the kernel of the local action of G since, for the induced action G

Γ(α)
α

of the vertex stabilizer Gα on the neighbors of α, we have G
Γ(α)
α

∼= Gα/G
[1]
α . Finally, for vertices

α1, α2, . . . , αk, we define

G[1]
α1...αk

:=

k⋂

i=1

G[1]
αi
,

that is, G
[1]
α1...αk is the pointwise stabilizer of the union of the Γ(αi).

Given a permutation group L, a graph Γ, α ∈ V (Γ), and G 6 Aut(Γ) such that Γ is G-vertex-

transitive, the pair (Γ, G) is said to be locally-L ifG
Γ(α)
α is permutation isomorphic to L. The graph

Γ is said to be G-locally primitive if G
Γ(α)
α is primitive on Γ(α).

2.2. Normal quotient graphs, voltage graphs, and regular covers. Let Γ be a graph with

transitive group of automorphisms G, and let N be an intransitive normal subgroup of G. The

N-orbits of vertices of Γ form a system of imprimitivity for G, and the normal quotient graph ΓN
with respect to the normal subgroup N is the graph whose vertex set is the N-orbits of vertices,

and two N-orbits αN and βN are adjacent if and only if there is α′ ∈ αN and β ′ ∈ βN such that

α′ ∼ β ′. The graph Γ is said to be a regular cover of ΓN if, given any two adjacent vertices αN and

βN in ΓN , we have |Γ(α) ∩ βN | = 1.

The following lemma is a well-known result, and it shows that local primitivity is a sufficient

condition for the original graph to be a regular cover of the normal quotient graph.

LEMMA 2.1. [12, Theorem 10.4] Let Γ be a G-vertex-transitive and G-locally primitive graph,

whereG 6 Aut(Γ), and letN be a normal subgroup ofG with more than two orbits on V (Γ). Then

Γ is a regular cover of the quotient graph ΓN , and the quotient graph ΓN is G/N-vertex-transitive

and G/N-locally primitive.

An equivalent definition of a regular cover is as follows. A covering projection p : Γ̃ → Γ maps

V (Γ̃) onto V (Γ), preserving adjacency, such that for any vertex α̃ ∈ V (Γ̃), the set of neighbors of

α̃ is mapped bijectively onto the set of neighbors of α̃p. For a vertex α of Γ, the set αp
−1

of vertices

that are mapped onto α by p is called the fiber over the vertex α. An automorphism g ∈ Aut(Γ)

lifts to g̃ ∈ Aut(Γ̃) if the following diagram commutes:

Γ̃ Γ̃

Γ Γ

g̃

p p

g



6 ALEX SCHAEFER AND ERIC SWARTZ

The lift of the trivial group (identity) is known as the group of covering transformations and is

denoted CT(p). The graph Γ̃ is a regular cover of Γ if CT(p) acts regularly on the set αp
−1

for all

vertices α ∈ V (Γ).
A voltage assignment on a graph Γ is a map ξ : A(Γ) → H , where H is a group, such that

(α, β)ξ =
(
(β, α)ξ

)−1
, and a voltage graph is a graph Γ together with a voltage assignment. For

ease of notation, the voltage of the arc (α, β) will be denoted ξαβ , and ξW will denote the total

voltage of a walk W , that is, ξW is the product (or sum, depending on the group operation) of

the voltages of the edges in W . The derived covering graph Γ̃ of a voltage graph has vertex set

V (Γ) × H , where two vertices (α, h1) and (β, h2) are adjacent iff α is adjacent to β in Γ and

h2 = ξαβh1. The following theorem exhibits the deep connection between regular covers and

derived covering graphs:

LEMMA 2.2 ([7, Theorem 2.4.5, Section 2.5]). Every regular cover Γ̃ of a graph Γ is a derived

cover of a voltage graph (and conversely).

In addition, suppose the voltage group is generated by the voltages assigned to the edges of

Γ. If the edges of a (fixed but arbitrary) spanning tree of Γ have the identity voltage, then Γ̃ is

connected.

Fix a spanning tree T of a graph Γ. Choose α ∈ V (Γ), and assume that the edges of T have

been assigned the identity voltage. This implies that the voltage assignment ξ induces a natural

homomorphism of the fundamental group of Γ based at α (generated by all closed walks in Γ based

at α) into the voltage group H . Let g ∈ Aut(Γ). For each closed walk W based at α, W g will be

a closed walk based at αg. Moreover, the walk formed by the path in T from α to αg, followed

by W g, followed by the path in T from αg back to α, is a closed walk based at α with the same

voltage as W g. This induces a multivalued function gφα : H → H given by (ξW )g
φα

:= ξW g . This

is not necessarily well-defined, as two walks W1 and W2 may have the same voltage while W g
1 and

W g
2 may not. Furthermore, gφα may not be defined on all of H . With this in mind, the following

lemma gives explicit criteria for an automorphism of a graph to lift.

LEMMA 2.3 ([9, Propositions 3.1, 5.1]). Fix a spanning tree T of a graph Γ and α ∈ V (Γ).
Assume the edges of T are assigned the identity voltage and that the voltage group H is generated

by the edge voltages of Γ. An automorphism g of Γ lifts to an automorphism g̃ of Γ̃ if and only if

gφα is a group automorphism. Moreover, if H is abelian, the automorphism gφα does not depend

on the choice of base vertex α.

The following lemma also shows that it is quite possible to get the entire automorphism group

of a graph to lift.

LEMMA 2.4 ([9, Proposition 6.4, Theorem 5.2]). Let Γ be a graph with edge set E, and let

T denote the set of edges of a spanning tree T of Γ. Let Zp denote the cyclic group of order

p, where p is a prime. Let H := Z
|E|−|T |
p ; H is a Zp-vector space. Let X be a basis for H ,

so |X| = |E| − |T |. Define Γp to be the derived regular cover of the voltage graph defined by

assigning a distinct element of X to each co-tree edge of Γ. Then Γp is well-defined, unique up to

graph isomorphism, and Aut(Γ) lifts. Moreover, the induced mapping φ : Aut(Γ) → Aut(H) is a

group homomorphism.

2.3. Near-polygonal graphs. Following [11], we say that Γ is a near-polygonal graph if there

exists a distinguished set of c-cycles C such that every 2-path of Γ is contained in a unique cycle

in C. If c is the girth of Γ, then Γ is called a polygonal graph. Furthermore, if our collection C of
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c-cycles is in fact the set of all cycles of length girth(Γ), then Γ is called strict polygonal. Manley

Perkel invented the notion of a polygonal graph in [10] and that of a near-polygonal graph in [11].

(Perkel’s original definition of near-polygonal graphs required that the length c of the special cycles

be greater than 3. In our definition, we allow c = 3.)

Polygonal graphs are a natural generalization of the edge- and vertex-set of polygons and some

Platonic solids (such as the cube and dodecahedron), and one immediately notes that these are

themselves strict polygonal graphs, with the special set of cycles being the polygon itself or the

faces of the solid, respectively. The complete graph on n points, Kn, is a strict polygonal graph of

girth 3, and the Petersen graph is a polygonal graph of girth 5 that is not a strict polygonal graph

[14]. Very few examples of polygonal graphs are known; see [15, 17, 18].

Near-polygonal graphs have appeared in the past when studying quotient graphs of symmetric

graphs [21, 22]. We mention here the following result, which gives a sufficient condition for a

graph Γ to be near-polygonal:

LEMMA 2.5 ([23, Theorem 1]). Suppose that Γ is a connected (G, 2)-arc-transitive graph,

where G 6 Aut(Γ). Let (α, β, γ) be a 2-arc of Γ and define H := Gαβγ . Then the following are

equivalent:

(i) there exist both an integer c > 3 and a G-orbit C on c-cycles of Γ such that Γ is a near-

polygonal graph with set of distinguished cycles C;

(ii) H fixes at least one vertex in Γ(γ)\{β};

(iii) there exists g ∈ NG(H) such that (α, β)g = (β, γ).

3. Constructions of graphs with a permutable matching

In this section, we provide some constructions of graphs with permutable matchings. We begin

with a construction that shows that, for any m > 2, there are graphs that are neither edge- nor even

vertex-transitive that contain a permutable m-matching.

CONSTRUCTION 3.1. Let Γ be a graph with a vertex α of degree m and a group of automor-

phisms G such that G
Γ(α)
α

∼= Sm. Define a new graph QΓ to be the graph obtained by subdividing

every edge of Γ into a path of length 2.

It is not difficult to see that QΓ contains a permutable m-matching. In particular, if Γ = K1,m,

then Aut(QΓ) ∼= Sm and Aut(QΓ) has three orbits on vertices and two orbits on edges; the orbit

of edges that do not all share a common endpoint is a permutable m-matching.

Obviously, it is possible to construct other such examples; we mention another couple here.

CONSTRUCTION 3.2. Let Γ be a graph with a permutable matching M. Let QMΓ be the graph

obtained by subdividing every edge not in M into a path of length 2.

CONSTRUCTION 3.3. Let Γ be a graph with a permutable matching M. Let QMΓ be the graph

obtained by subdividing every edge in M into a path of length 3.

The graphs produced from these constructions may have less symmetry than the original graphs;

for instance, these constructions may take vertex-, edge-, or arc-transitive graphs and produce

graphs that are not vertex-, edge-, or arc-transitive. For this reason, we will henceforth restrict

ourselves to graphs Γ containing a G-permutable matching that are also G-arc-transitive. Perhaps

the most obvious examples of graphs with permutable m-matchings are also examples of vertex-

biprimitive graphs with permutable m-matchings.
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PROPOSITION 3.4. For every m > 2, the complete bipartite graph Km,m has degree m and

there exists G 6 Aut(Km,m) such that Km,m is G-vertex-biprimitive and Km,m contains a G-

permutable m-matching.

PROOF. We take G = Aut(Km,m) ∼= SmwrS2. The group G preserves the partition of the

vertices into two sets of size m, and any perfect matching will be a permutable m-matching. �

Inspired by the example of complete bipartite graphs, the following construction demonstrates

that it is quite easy to construct arc-transitive graphs with permutable matchings for any m:

CONSTRUCTION 3.5. Let Γ be an arc-transitive graph with automorphism group H and let

m be any fixed natural number. Define Γ(m) as the lexicographical product of Γ with Km: that

is, V (Γ(m)) = {(η, i) : η ∈ V (Γ), 1 6 i 6 m}, with (η, i) adjacent to (θ, j) if and only if η is

adjacent to θ in Γ.

If Γ(m) is constructed from an H-arc-transitive graph Γ as in Construction 3.5 with H =
Aut(Γ), then SmwrH 6 Aut(Γ(m)). For G := Sm wrH , Γ(m) is G-arc-transitive, and, for any

edge {α, β} in Γ, the set M := {{(α, i), (β, i)} : 1 6 i 6 m} is a G-permutable m-matching of

Γ(m).
Another construction which yields infinitely many such graphs from a G-arc-transitive graph Γ

with a G-permutable m-matching is the following.

CONSTRUCTION 3.6. Let Γ be a G-arc-transitive graph with a G-permutable m-matching

M = {(αi, βi) : 1 6 i 6 m}. Let E denote the edge set of Γ and let T denote the set of edges

of a spanning tree of Γ that contains each of the edges of M. Let Zp denote the cyclic group of

order p, where p is a prime. Let H := Z
|E|−|T |
p ; H is a Zp-vector space. Let X be a basis for

H , so |X| = |E| − |T |. Define Γp to be the derived regular cover of the voltage graph defined by

assigning a distinct element of X to each co-tree edge of Γ.

By Lemma 2.4, if Γ is aG-arc-transitive graph withG-permutablem-matchingM = {{αi, βi} :

1 6 i 6 m}, then G lifts to a group G̃ of automorphisms of Γp, and it follows that

Mp := {{(αi, 1), (βi, 1)} : 1 6 i 6 m}

is itself a G̃-permutable m-matching of Γp.
What last these two constructions have in common is that the graphs that are produced are

not quasiprimitive on vertices: in each case, the full automorphism group of the graph produced

contains an intransitive normal subgroup. Moreover, the groups G chosen above for the graphs

arising from Construction 3.5 are always locally imprimitive. It makes sense, then, to study the

G-arc-transitive graphs that have G-permutable matchings that are G-vertex-quasiprimitive or G-

vertex-biquasiprimitive. Indeed, such graphs exist. The odd graph On has one vertex for each

of the (n − 1)-element subsets of a (2n − 1)-element set, and vertices are adjacent if and only if

the corresponding subsets are disjoint. As the following result shows, there is at least one vertex-

quasiprimitive (and, in fact, vertex-primitive) graph with a permutable m-matching for every m >
3.

THEOREM 3.7. For every m > 3, the odd graph Om has degree m and there exists G 6
Aut(Om) such that G ∼= S2m−1, Om is G-vertex-primitive, and Om contains a G-permutable m-

matching.
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PROOF. We identify the vertices of Om with subsets of size m − 1 of {1, 2, . . . , 2m − 1}.

Then S2m−1 is primitive on the sets of size m − 1: the stabilizer of each subset is isomorphic

to Sm−1 × Sm, a maximal subgroup of S2m−1 which is core-free (that is, the intersection of all

conjugates of the subgroup is trivial; see [1]). Hence there is G 6 Aut(Om) such that G ∼= S2m−1

and Om is G-vertex-primitive.

For each i such that 1 6 i 6 m, define the sets Si := {1, . . .m}\{i} and Ti := {i} ∪ {m +
1, . . . , 2m− 2}. Since vertices of Om are identified with subsets of {1, . . . , 2m− 1} of size m− 1,

each Si and each Ti is a vertex of Om, and, furthermore,

M := {{Si, Ti} : 1 6 i 6 m}

is a matching of size m. Let H := Sym({1, . . . , m}) 6 G. We note that H ∼= Sm and H stabilizes

M setwise but allows the edges of M to be permuted as we please. Therefore, M isH-permutable,

so M is G-permutable, as desired. �

One might expect that if Γ has a group of automorphisms G such that (i) Γ has a G-permutable

m-matching, (ii) G has a nontrivial normal subgroup N that is intransitive on vertices, and (iii) Γ
does not have an induced subgraph isomorphic to Km,m (i.e., if Γ does not arise from Construction

3.5), then the normal quotient graph ΓN should also have a permutable m-matching. However, as

the following construction shows, more exotic examples can arise.

CONSTRUCTION 3.8. Let Γ be a (G, 2)-arc-transitive, near-polygonal graph of degree m > 3
such that Γ does not contain a G-permutable m-matching and (Γ, G) is locally-Sm. Let E denote

the edge set of Γ and let T denote the set of edges of a spanning tree of Γ. Let Zp denote the cyclic

group of order p, where p is a prime. Let H := Z
|E|−|T |
p ; H is a Zp-vector space. Let X be a basis

for H , so |X| = |E| − |T |. Define Γp to be the derived regular cover of the voltage graph defined

by assigning a distinct element of X to each co-tree edge of Γ.

PROPOSITION 3.9. The graph Γp created from Construction 3.8 contains a permutable m-

matching.

PROOF. Let α be a vertex of Γ with Γ(α) = {β1, . . . , βm}. By Lemmas 2.3 and 2.4, G lifts

to a group of automorphisms G̃ of Γp and there is a group homomorphism φ : G → Aut(H),
where the action is induced on a generating set of all closed walks based at the vertex α. Since

Γ is near-polygonal and (G, 2)-arc-transitive, each 2-arc (βi, α, βj) is contained in a unique cycle

Ci,j , and Gα is transitive on these cycles. Define hi to be the voltage of the walk Wi, where Wi

is the concatenation of all cycles Ci,j such that j 6= i. Note that, since m > 3, the cycles Ci,j are

distinct, and X is a basis for H , the hi are all pairwise distinct. If g ∈ Gα and βgi = βj , then the

induced action of g on H sends hi to hj . If ξi is the voltage of the arc (α, βi), then the matching

{{(α, hi), (βi, ξi + hi)} : 1 6 i 6 m} is G̃-permutable. �

COROLLARY 3.10. For each m > 3, there exist infinitely many graphs Γ with a group of

automorphisms G such that

(i) Γ is (G, 2)-arc-transitive,

(ii) (Γ, G) is locally-Sm,

(iii) Γ contains a G-permutable m-matching, and

(iv) G has a nontrivial normal subgroup N that has more than two orbits on V (Γ),

yet ΓN does not contain a G-permutable m-matching.
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PROOF. For each m > 3, we can take Γ to be Km+1, the m-dimensional hypercube Qm, or

the folded m-dimensional hypercube, each of which satisfies the hypotheses of Construction 3.8.

To see that the hypercube Qm has no G-permutable m-matching, we first identify the vertices of

Qm with binary m-tuples and note that Aut(Qm) ∼= S2wrSm. Consequently, G 6 Aut(Qm)α for

some vertex α, which without a loss of generality is the all zeros m-tuple. Hence G must preserve

distances of vertices from α, and so, in order for G to act like Sm on m distinct m-tuples with the

same number of 0’s and 1’s, there is either exactly one 0 or exactly one 1. Hence, without a loss

of generality, the edges in the G-permutable m-matching are all from vertices at distance 1 from α
to vertices at distance 2 from α. However, since every 2-path is contained in a unique 4-cycle, the

action on the edges in the matching cannot be permutable: once an edge in the matching is fixed,

necessarily another neighbor of α is fixed, which fixes another edge in the matching, a contradiction

to permutability. The argument for the folded m-dimensional hypercube is analogous.

The result now follows from Proposition 3.9, taking Γ = Γp, where p ranges over all primes.

�

4. The local structure of graphs with a permutable matching

In this section, we prove results about the local structure of a G-arc-transitive graph with a

G-permutable m-matching, that is, we prove results about the stabilizer of a vertex and the size of

the neighborhood of a vertex in such a graph. This first result, which has a similar proof to that of

[16, Theorem 1.1], provides information about the edge stabilizer of an arc-transitive graph with a

permutable m-matching when m is large enough.

PROPOSITION 4.1. Let Γ be a G-arc-transitive graph with a G-permutablem-matching, where

m > 6. If {α, β} is an edge of Γ, then there is a subgroup U 6 Gαβ such that UΓ(α) has a

composition factor isomorphic to Am−1.

PROOF. Let M be a G-permutable m-matching containing {α, β}, where

M = {e = e1 = {α, β}, e2, . . . , em} .

Note that GM
M

∼= Sm and G
M\e
eM

∼= Sm−1. Let K := {g ∈ GeM : egi = ei, 1 6 i 6 m}, the kernel of

the action of GeM on M. We have K ⊳GeM, GeM/K ∼= Sm−1, and hence Am−1 is a composition

factor of GeM (since m > 6, Am−1 is simple).

Now, consider the subgroup Gαβ of Ge. We have Gαβ ⊳ Ge since it has index at most two,

and so
(
G

[1]
αβ

)
M

⊳ GαβM ⊳ GeM. Let P = (γ0 = α, γ1 = β, γ2, . . . , γn) be a path in Γ such that

G
[1]
αβγ2...γn

= 1. Hence

1 =
(
G

[1]
αβγ2...γn

)
M

E · · ·E
(
G

[1]
αβγ2

)
M

E
(
G

[1]
αβ

)
M

EGαβM.

Since Am−1 is a composition factor of GeM and Gαβ has index at most two in Ge, Am−1 must be

a composition factor of GαβM. If Am−1 is a composition factor of either G
Γ(α)
αβM or G

Γ(β)
αβM, then

we are done. Otherwise, Am−1 is a composition factor of
(
G

[1]
α

)
M

∩
(
G

[1]
β

)
M

=
(
G

[1]
αβ

)
M

. Let l

be the largest integer such that Am−1 is a composition factor of
(
G

[1]
αβγ2...γl

)
M

. This implies that

Am−1 is not a composition factor of
(
G

[1]
αβγ2...γlγl+1

)
M

, and so Am−1 must be a composition factor

of
(
G

[1]
αβγ2...γl

)
M
/
(
G

[1]
αβγ2...γlγl+1

)
M

. Since

(
G

[1]
αβγ2...γl

)
M
/
(
G

[1]
αβγ2...γlγl+1

)
M

∼=
((
G

[1]
αβγ2...γl

)
M

)Γ(γl+1)

⊳⊳ G
Γ(γl+1)
γlγl+1M

,
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Am−1 is a composition factor of G
Γ(γl+1)
γlγl+1M

. Since Γ is G-arc-transitive, Gγlγl+1M
∼= U 6 Gαβ, and

hence Am−1 is a composition factor of UΓ(α) for some U 6 Gαβ, as desired. �

A consequence of this result is that the degree of a vertex in an arc-transitive graph with an

permutable m-matching is at least m when m > 6; in fact, we can classify the graphs with degree

less than m and a permutable m-matching.

PROOF OF THEOREM 1.1. By Proposition 4.1, when m ≥ 6, for an edge {α, β} of Γ there

exists U 6 Gαβ such that UΓ(α) has a composition factor isomorphic to Am−1. For m > 5, the

smallest faithful permutation representation of Am has degree m. Since U fixes β ∈ Γ(α), this

implies that |Γ(α)| − 1 > m− 1. When m = 1 and m = 2, the result is clear since Γ is connected.

When m = 3, since the graph is connected and arc-transitive, the degree of the graph is at least

two. If the degree of Γ is exactly two, then Γ is a cycle, and the result follows by noting that Γ must

have at least six vertices and that Aut(Γ), which is a dihedral group, must have order divisible by

three.

We are left with the cases m = 4 and m = 5. In either case, if the degree of such a graph Γ is

2, then Γ is a cycle, and Aut(Γ) contains no section isomorphic to S4. If the degree of such a graph

Γ is 3, then, by a famous result of Tutte [19], the order of a vertex stabilizer divides 48, and hence

the order of an edge stabilizer divides (48 · 2)/3 = 32. If m > 4, G = Aut(Γ), and the permutable

matching is M, then 3 divides the order of the stabilizer of an edge in G, since the stabilizer of an

edge of M can permute three other edges of M in any way. Thus there is no graph of degree 3
with a permutable 4-matching.

Finally, assume Γ is regular of degree 4 and that M is a G-permutable 5-matching for G =
Aut(Γ). Let M = {e1, e2, e3, e4, e5}, where each ei = {αi, βi}. Consider a shortest path P2 from

a vertex of e1 to a vertex of e2. Without loss of generality, the path is between α1 and α2. Since

M is permutable, there are elements gi in GM that fix e1 and map e2 to ei, 3 6 i 6 5, and so there

exist shortest paths from e1 to ei, where 2 6 i 6 5, that are all of the same length.

We claim that there must exist a path from α1 to ei with the same length as P2 for each i. If

αgi1 = α1, then there is a shortest path from α1 to αi, so assume that αgi1 = β1. Consider a fourth

edge ej . Suppose first that α
gj
1 = α1 (so P

gj
2 is a shortest path from e1 to ej starting at α1). Since

M is G-permutable, there is g ∈ GM such that eg1 = e1, eg2 = e2, and egj = ei. If αg1 = α1, then the

path P
gjg

2 is a shortest path from e1 to ei starting at α1. On the other hand, if αg1 = β1, then, since

eg2 = e2, P g
2 is a shortest path from e1 to e2 starting at β1, and so there is a shortest path from e1

to e2 starting at each of α1 and β1. Since M is permutable, this implies that there exists a shortest

path from e1 to ei starting at α1. Suppose next that α
gj
1 = β1 (so that P

gj
2 is a shortest path from e1

to ej starting at β1). Since M is G-permutable, there exists x ∈ GM such that ex1 = e1, ex2 = ei,
and exj = ej . If αx1 = α1, then P x

2 is a shortest path from e1 to ei starting at α1, whereas if αx1 = β1,

then P
gjx

2 is a shortest path from e1 to ej starting at α1, so there shortest path from e1 to ej starting

at each of α1 and β1. Since M is permutable, this implies there is a shortest path from e1 to ei
starting at α1. Therefore, we can always find a shortest path from e1 to ei starting at α1 for each i,
2 6 i 6 5.

If necessary, we relabel the vertices in e3, e4, and e5 so that there is a shortest path from α1 to

αi for each i, 2 6 i 6 5, and we denote these paths by Pi. For each i, let

Pi = (α1 = γi,0, γi,1, . . . , γi,n = αi).

Since |Γ(α1)\{β1}| = 3, at least two Pi go through the same neighbor of α1, say γ = γ2,1 = γ3,1.
Consider h ∈ GM such that h acts on M as the permutation (3 4 5). Note that, since the induced
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action of h on M has order 3, if αh1 = β1, then we could choose h2 instead, so we may assume that

αh1 = α1 and αh2 = α2. Assume first that γh 6= γ. This implies that Γ(α1) = {β1, γ, γ
h, γh

2

} and

that there is a shortest path from α1 to α2 through each of γ, γh, and γh
2

. However, this implies, by

the permutability of M, that there is a shortest path from α1 to each αi through each of γ, γh, and

γh
2

. Thus we may choose each Pi so that γi,1 = γ. On the other hand, if γh = γ, then there is a

path from α1 to αi through γ for each i, namely, P ′
4 := P h

3 goes from α1 to α4 and P ′
5 := P h2

3 goes

from α1 to α5. Hence, in any case we may assume that γi,1 = γ for all i. However, γ has exactly

three neighbors that are not α1. We apply a similar argument for the γi,2, γi,3, etc., and reach a

contradiction: either Γ is disconnected or a vertex has degree greater than 4. Therefore, there is no

connected graph of degree 4 with a permutable 5-matching, and the result holds. �

5. Locally primitive, arc-transitive graphs with degree m and a permutable m-matching

Given that a graph with a permutablem-matching has degree at least m when m > 4 and given

the constructions from Section 3, it makes sense to study arc-transitive, locally primitive graphs

of degree m that contain a permutable m-matching. The following results show that such graphs

Γ with a group of automorphisms G do have a nice structure with respect to nontrivial normal

subgroups N of G such that N is intransitive on vertices.

LEMMA 5.1. Let Γ be aG-arc-transitive graph with degreem > 6 and let (Γ, G) be locally-Sm.

Either Γ contains a G-permutable m-matching or Γ is near-polygonal.

PROOF. Let Γ be such a graph, and let α be a vertex with Γ(α) = {β1, . . . , βm}. Since (Γ, G)

is locally-Sm, Γ is G-locally primitive; in fact, G
Γ(α)
α

∼= Sm and, for each 1 6 i 6 m, G
Γ(α)\{βi}
αβi

∼=

G
Γ(βi)\{α}
αβi

∼= Sm−1. BecauseGαβ1 has nontrivial layer (that is, the group generated by its subnormal

quasisimple groups is nontrivial; see [1]), then, by [20, Theorem 2.12], G
[1]
αβ1

= 1. Thus

[G[1]
α , G

[1]
βi
] 6 G[1]

α ∩G
[1]
βi

= G
[1]
αβi

= 1,

i.e., for each i, the elements of G
[1]
α and G

[1]
βi

commute. Since G
[1]
α ⊳Gαβi ,

G[1]
α

∼= G[1]
α /(G

[1]
α ∩G

[1]
βi
) ∼=

(
G[1]
α

)Γ(βi)\{α}
⊳G

Γ(βi)\{α}
αβi

.

Since the only normal subgroups of Sm−1 when m − 1 > 5 are 1, Am−1, and Sm−1, we conclude

that G
[1]
α is isomorphic to one of 1, Am−1, or Sm−1.

5.1.1: The case where G
[1]
α

∼= Sm−1.

Suppose first that G
[1]
α

∼= Sm−1. Define

Li := G[1]
α G

[1]
βi

∼= G[1]
α ×G

[1]
βi

∼= Sm−1 × Sm−1.

We note that Li 6 Gαβi . Since G
[1]
αβi

= 1, we have

Gαβi/G
[1]
α

∼= G
Γ(α)
αβi

∼= Sm−1,

and so |Li| = |Gαβi| and hence Gαβi = Li. Moreover, when m − 1 > 5, Z(Sm−1) = 1; hence(
G

[1]
βi

)Γ(βj)\{α}
βj

= 1. In other words, for any i 6= j we have

(
G

[1]
βi

)
βj

=
(
G

[1]
βj

)
βi
= G

[1]
βi

∩G
[1]
βj
.
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For each j > 2, we have

G
[1]
β2...βj−1βj+1...βm

∼= S2,

and so we let G
[1]
β2...βj−1βj+1...βm

= 〈g1,j〉. If Γ(α) ∩ Γ(β1) 6= ∅, since (Γ, G) is locally-Sm, then

Γ ∼= Km+1 and G
[1]
α = 1, a contradiction. Thus we may pick γ1 ∈ Γ(β1)\{α}, and we define

γi := γ
g1,i
1 . If H = 〈g1,i : 2 6 i 6 m〉, H stabilizes M = {{βi, γi} : 1 6 i 6 m} setwise, and

HM ∼= Sm, so M is an H-permutable m-matching, as desired.

5.1.2: The case where G
[1]
α

∼= Am−1.

Suppose next that G
[1]
α

∼= Am−1. We define

Li := G[1]
α G

[1]
βi

∼= G[1]
α ×G

[1]
βi

as above, only now Li ∼= Am−1 ×Am−1. Since

G
Γ(α)
αβi

∼= Gαβi/G
[1]
α

∼= Sm−1,

we have that |Gαβi : Li| = 2. As in the last case,
(
G

[1]
βi

)
βj

=
(
G

[1]
βj

)
βi
= G

[1]
βiβj

∼= Am−2.

However, in this case,

G
[1]
β3...βm

∼= A2 = 1,

and so

Gαβ3...βm = Gβ3...βm
∼= Gβ3...βm/G

[1]
β3...βm

and

G
{β1,β2}
αβ3...βm

∼= Gαβ3...βm/G
[1]
α

∼= S2.

Hence we choose g ∈ Gαβ3...βm such that βg1 = β2 and βg2 = β1. We may also assume that

γg3 = γ3 for some γ3 ∈ Γ(β3)\{α}; otherwise, we replace g by gx, where x ∈ G
[1]
α ; indeed, this in

fact shows that we may assume that g acts as a transposition on Γ(β3)\{α}. We also remark that

Gαβi = 〈Li, g〉 for i > 3.

Define

H := 〈G
[1]
βi

: 1 6 i 6 m〉.

It is clear that H ⊳Gα, and, since G
[1]
α ∩G

[1]
βi

= 1 and
(
G

[1]
βi

)
βj

=
(
G

[1]
βj

)
βi
= G

[1]
βi

∩G
[1]
βj

for each i

and j, we have

H ∼= H/(G[1]
α ∩H) ∼= HG[1]

α /G
[1]
α . GΓ(α)

α .

Moreover, H ⊳ Gα, so H is isomorphic to a normal subgroup of G
Γ(α)
α . Since H has a nontrivial

action on Γ(α), either H ∼= Am or H ∼= Sm.

As in the previous case, Γ(α) ∩ Γ(β1) = ∅. We claim now that H has m − 1 orbits of size m
on

D2(α) :=

m⋃

i=1

Γ(βi)\{α}.

Suppose first that xi, yi ∈ G
[1]
βi

and βxik = βyik . This means xiy
−1
i ∈

(
G

[1]
βi

)
βk

6 G
[1]
βk

. Hence, if

γ ∈ Γ(βk), then γxiy
−1

i = γ and γxi = γyi . Now suppose xi ∈ G
[1]
βi

, xj ∈ G
[1]
βj

, and βxik = β
xj
k = βl.

There exists some r ∈ {1, . . . , m}\{i, j, k, l} and there exist yi ∈ G
[1]
βi

and yj ∈ G
[1]
βj

such that

βyik = βxik = β
yj
k = β

xj
k = βl and βyir = βyjr = βr.
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Thus yi, yj ∈ G
[1]
βr

, and, if γ ∈ Γ(βk), then γyi = γyj from what we just proved above. Thus

γxi = γyi = γyj = γxj ,

and so H has exactly m− 1 orbits of size m on D2(α).
Now, define X := 〈H, g〉. Since X is a 2-transitive group on Γ(α) that contains a transposition,

XΓ(α) ∼= Sm. Now, X 6 Gα and H ⊳ Gα, so H is a normal subgroup of X . This implies that

the orbits of H on D2(α) are an X-invariant partition, which we use to find our matching: indeed,

suppose γH is such an orbit. Then

(γH)g = (γg)H .

Select the orbit γH3 , where γ3 ∈ Γ(β3) and γg3 = γ3 as above. Define γi := γH3 ∩ Γ(βi). This

implies that γX3 = γH3 , and hence X stabilizes M = {{βi, γi} : 1 6 i 6 m} setwise and M is an

X-permutable m-matching, as desired.

5.1.3: The case where G
[1]
α

∼= 1.

The final case is when G
[1]
α = 1. This implies that Gα

∼= Sm and Gαβ1
∼= Sm−1 with a faithful

action on each of Γ(α)\{β1} and Γ(β1)\{α}. HenceGαβ1β2 fixes a vertex in Γ(β1)\{α}. Moreover,

since Γ has degree m and (Γ, G) is locally-Sm, Γ is a (G, 2)-arc-transitive graph. By Lemma 2.5,

Γ is near-polygonal, as desired. �

We can now prove Theorem 1.2, which essentially characterizes arc-transitive, G-locally prim-

itive graphs of degree m with a permutable m-matching.

PROOF OF THEOREM 1.2. Suppose that Γ is aG-arc-transitive,G-locally primitive graph with

degree m > 6 that contains a G-permutable m-matching M such that G contains an intransitive

normal subgroupN that has more than two orbits of vertices. Let {α, β} be an edge of M, let A be

theN-orbit containing α, and letB1 be theN-orbit containing β. SinceG is edge-transitive and the

N-orbits of vertices are G-invariant, all edges of Γ are between N-orbits; that is, if {γ, δ} ∈ E(Γ),
then γ, δ are in different N-orbits. Thus A 6= B1. Up to relabeling, there are three possibilities for

{γ, δ}, where {γ, δ} is another edge of M:

(i) Neither γ nor δ is in either A or B1.

(ii) γ ∈ A, δ 6∈ B1.

(iii) γ ∈ A, δ ∈ B1.

5.2.1: Neither γ nor δ is in either A or B1.

Since {α, β}, {γ, δ} ∈ M, the four vertices α, β, γ, δ are in distinct N-orbits, and, since M
is a G-permutable m-matching, no two vertices of V (M) are in the same N-orbit. We may thus

view the action of GM on V (M) as an action on the N-orbits containing the vertices. This means

there will be a G/N-permutable m-matching in the quotient graph ΓN , and we are done.

5.2.2: γ ∈ A, δ 6∈ B1.

Here, M is of the form

{{α1, β1} = {α, β}, {α2, β2}, . . . , {αm, βm}} ,

where αi ∈ A and βi ∈ Bi for each i. Since M is permutable, this implies that B1, . . . , Bm are

distinct N-orbits. Moreover, if B = {β = β1, β2, . . . , βm}, since each edge contains a vertex in the

N-orbit A and M is permutable, the stabilizer ofA in G acts as the full symmetric group on B, that

is, GB
AB

∼= Sm. Moreover, since Γ is G-locally primitive of degreem, (ΓN , G/N) is locally-Sm, the

neighbors of the vertex A of ΓN are precisely B1, . . . , Bm, and the vertex α has a unique neighbor

in each of B1, . . . , Bm. By Lemma 5.1, the result follows.
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5.2.3: γ ∈ A, δ ∈ B1.

Now, M is entirely contained within the N-orbits A and B1, i.e. M is of the form

{{α1, β1} = {α, β}, {α2, β2}, . . . , {αm, βm}} ,

where αi ∈ A and βi ∈ B1 for all i. Moreover, since Γ isG-locally primitive, the induced subgraph

Γ[V (A) ∪ V (B1)] is a matching.

Since Γ is connected, we may select a path P2 from α1 to α2, say

P2 = (α1, γ1,1, γ1,2, . . . , γ1,k, α2).

For each i, let the vertex γ1,i lie in the N-orbit C1,i. For each i, consider the orbit CGM

1,i , and let

C1,0 := A. If, for any i, |CGM

1,i | > 1, then, if l is the least such i, |CGM

1,l | = m (since M is a

G-permutable m-matching) and |CGM

1,l−1| = 1. This implies further that (ΓN , G/N) is locally-Sm,

and the result follows by Lemma 5.1. Finally, if |CGM

1,i | = 1 for all i, then Γ cannot be connected

without some vertex having more than one neighbor in an N-orbit, a contradiction to the G-local

primitivity of Γ.

Therefore, in any case either ΓN contains a G/N-permutable m-matching or ΓN is a near-

polygonal graph with (G/N)A
∼= Sm. �

As discussed after the statement of Theorem 1.2, this provides a characterization of graphs

with degree m containing a permutable m-matching, in the sense that under these conditions, one

can keep taking normal quotients of this graph until reaching either a graph with a permutable m-

matching or a near-polygonal graph where the stabilizer of a vertex acts on its m neighbors like

Sm. Moreover, Theorem 1.2 is a best-possible characterization in the sense that graphs in each case

do exist. When combined with Construction 3.6, Theorem 3.7 shows that for any m > 6 there

exists a connected G-arc-transitive, G-locally-primitive graph with a G-permutable m-matching

such that G has an intransitive normal subgroup N with more than two orbits of vertices such that

ΓN is G/N-vertex-quasiprimitive and contains a G/N-permutable m-matching. When combined

with Construction 3.6, Proposition 3.4 shows that for any m > 6 there exists a connected G-arc-

transitive, G-locally-primitive graph with a G-permutable m-matching such that G has an intran-

sitive normal subgroup N that has more than two orbits on vertices such that ΓN is G/N-vertex-

biquasiprimitive and contains a G/N-permutable m-matching. Finally, Corollary 3.10 shows that

for any m > 6 there exists a connected G-arc-transitive, G-locally-primitive graph with a G-

permutable m-matching such that G contains an intransitive normal subgroup N that has more

than two orbits on vertices, where ΓN is near polygonal, (ΓN , G/N) is locally-Sm, but ΓN does not

contain a permutable m-matching.

6. A classification of graphs with a 2-transitive perfect matching

This section is devoted to the proof of Theorem 1.3, which classifies the connected graphs that

contain a 2-transitive perfect matching of sizem. Throughout this section, we will use the following

notation. We define Γ to be a graph with a perfect matching M of m edges such that Aut(Γ) is

2-transitive on M. This implies that |V (Γ)| = 2m and V (Γ) = V (M). We write M as follows:

M = {ei = {αi, βi}}
m

i=1 .

We also define M 6 Aut(Γ) to be the subgroup of Aut(Γ) preserving M setwise, i.e., M :=
Aut(Γ)M.

We begin with the following observation, which allows us to subdivide the problem into cases.
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LEMMA 6.1. For any i, j such that 1 6 i < j 6 m, Γ[αi, βi, αj, βj ] ∼= Γ[α1, β1, α2, β2].

PROOF. This follows immediately from the 2-transitivity of Aut(Γ) on M. �

LEMMA 6.2. Let {αi, βi} ∈ M. Each other edge of M has at least one endpoint adjacent to

either αi or βi.

PROOF. Assume that M contains more than one edge, and let ei = {αi, βi} ∈ M. Since Γ is

connected, either αi or βi has another neighbor, say γ. Since M is a perfect matching, γ is αj or βj
for some j. Since there is at least one edge from an endpoint of ei to an endpoint of ej , the result

follows by Lemma 6.1. �

We now subdivide the problem based on the induced subgraph Γ[α1, β1, α2, β2].

LEMMA 6.3. If Γ has a matching M such that Aut(Γ)M is 2-transitive on the edges of M,

then the induced subgraph Γ[α1, β1, α2, β2] will be isomorphic to one of K4, C4, K4\{e}, P4, or a

triangle with a pendant edge.

PROOF. This follows from Lemmas 6.1 and 6.2 and exhausting the graphs on four vertices. See

Figure 1 for these induced subgraphs. �

e1 e2 e1 e2 e1 e2

e1 e2 e1 e2

FIGURE 1. The possibilities for Γ[α1, β1, α2, β2]

We consider these cases one by one.

LEMMA 6.4. If Γ[α1, β1, α2, β2] ∼= K4, then Γ ∼= K2m.

PROOF. Consider any two vertices γ, δ ∈ V (Γ). In M, either γ and δ are matched or not. If

they are matched, they are the endpoints of some ei. If not, one is an endpoint of some ei and the

other is an endpoint of some ej . But by Lemma 6.1, γ and δ are adjacent in this case as well. Then

every pair of vertices is adjacent and Γ ∼= K2m. �

LEMMA 6.5. There is no graph Γ such that Γ[α1, β1, α2, β2] is a triangle with a pendant edge.

PROOF. Without loss of generality, we let α1 be the vertex with degree 3 and β1 be the vertex

with degree 1. By the 2-transitivity of Aut(Γ) on M, there is a g ∈ Aut(Γ) such that {α1, β1}
g =

{α2, β2} and {α2, β2}
g = {α1, β1}. Without loss of generality, βg2 = β1 and αg2 = α1. But because

α1 ∼ β2, α
g
1 ∼ βg2 , we have αg1 ∼ β1. But αg1 ∈ {α2, β2}, so we have a contradiction. �
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6.1. The case Γ[α1, β1, α2, β2] ∼= C4. In order to characterize the graphs when the induced

subgraph Γ[α1, β1, α2, β2] is isomorphic to C4, we first need some preliminary results. A vertex

γ ∈ V (Γ) is contained in a unique edge ei of M, so we define γc := V (ei)\{γ}, i.e., γc is the

unique vertex adjacent to γ in the matching M.

LEMMA 6.6. Assume Γ[α1, β1, α2, β2] ∼= C4. Let x ∈ Sym(V (Γ)) be the permutation of the

vertices of Γ defined by γx = γc for all γ ∈ V (M) = V (Γ), that is, αxi = βi and βxi = αi for all i.
Then x ∈ Z(M).

PROOF. We first need to show that x ∈ M ; that is, we need to show that x ∈ Aut(Γ) and x
preserves the matching M setwise. Suppose γ, δ ∈ V (Γ) and γ ∼ δ. If δ = γc, then γx = δ and

δx = γ, and so γx ∼ δx. If δ 6= γc, then, since Γ[α1, β1, α2, β2] ∼= C4 and γ ∼ δ, we have that

γc ∼ δc, and hence γx ∼ δx. Since x is a permutation of the vertices of a finite graph Γ mapping

edges to edges, x ∈ Aut(Γ). Since x fixes each edge ei, x ∈M .

We will now show that x ∈ Z(M). Let g ∈M . For any γ ∈ V (Γ), we have:

γgxg
−1

= ((γg)x)g
−1

= ((γg)c)g
−1

= (γc)gg
−1

= γc

= γx.

Therefore, gxg−1 = x for all g ∈M , and so x ∈ Z(M). �

LEMMA 6.7. Assume Γ[α1, β1, α2, β2] ∼= C4. For γ ∈ V (Γ), if e is the edge of M containing

γ, then Mγ is transitive on M\{e}.

PROOF. Let e ∈ M and e = {γ, δ}. Since M is 2-transitive on M, Me is transitive on M\{e}.

Let ei, ej ∈ M\{e}. Then there exists g ∈ Me such that egi = ej . If g 6∈ Mγ , then gx ∈ Mγ and

egxi = ej , where x is as in Lemma 6.6. The result follows. �

LEMMA 6.8. Assume Γ[α1, β1, α2, β2] ∼= C4. Define

Ai := {αi} ∪ {γ ∈ V (Γ) : i 6= j, γ ≁ αi} = {γ ∈ V (Γ) : γ ∼ βi}

and Bi := {γ ∈ V (Γ)|γ ∼ αi}. If g ∈ Aut(Γ) and egi = ei, then g preserves the partition of V (Γ)
into Ai ∪ Bi. Moreover, if αgi = αi, then Agi = Ai and Bg

i = Bi; if αgi = βi, then Agi = Bi and

Bg
i = Ai.

PROOF. Since

Ai = {γ ∈ V (Γ) : γ ≁ αi} = {γ ∈ V (Γ) : γ ∼ βi}

and

Bi = {γ ∈ V (Γ) : γ ≁ βi} = {γ ∈ V (Γ) : γ ∼ αi},

we have that Ai ∪ Bi is a partition of V (Γ). Since automorphisms preserve adjacency and nonad-

jacency, the result follows. �

LEMMA 6.9. Assume Γ[α1, β1, α2, β2] ∼= C4. The vertices of Γ can be partitioned into two sets,

A and B, such that |A| = |B| = m, each of A and B contains exactly one endpoint from each edge

of M, and either Γ[A] ∼= Γ[B] ∼= Km or Γ[A] ∼= Γ[B] ∼= Km.
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PROOF. By Lemmas 6.7 and 6.8, for any vertex γ ∈ V (Γ), Mγ has four orbits on vertices:

{γ}, {γc}, Γ(γ)\{γc}, and Γ(γc)\{γ}. Without loss of generality, we may let {γ, γc} = e1,
Γ(γc)\{γ} = {αi : i > 2}, and Γ(γ)\{γc} = {βi : i > 2}. Moreover, by Lemma 6.7, there exists

h ∈Mα2
such that αh2 = α2 and eh1 = e3.

Suppose first that γh = α3. Let γ = α1, and let A := {αi : 1 6 i 6 m} and B := {βi : 1 6
i 6 m}. By Lemma 6.7, for each i > 2 there exists gi ∈ Mα1

such that αgi1 = α1 and αgi2 = αi.
Note that

A2 = (A2 ∩ A1) ∪ (A2 ∩B1),

B2 = (B2 ∩A1) ∪ (B2 ∩ B1),

where Ai and Bi are defined as in the statement of Lemma 6.8. Since αh2 = α2, Ah2 = A2 and

Bh
2 = B2, and so either (i) Ah = A and Bh = B or (ii) h swaps (A1 ∩ A2) and (B1 ∩ A2) and h

swaps (A1 ∩ B2) and (B1 ∩ B2). However, α2 ∈ A1 ∩ A2, so we have Ah = A and Bh = B. Let

αi, αj ∈ A, i 6= j. Since A is invariant under Mα1
and h, there is αk ∈ A such that α

hg−1

3
gi

k = αj .

Since α1 = γ 6∼ αk, we have αj = α
hg−1

3
gi

k 6∼ α
hg−1

3
gi

1 = αi. Since i, j were arbitrary, A is a

coclique. Since Γ[α1, β1, α2, β2] ∼= C4, it immediately follows that B is a coclique as well.

Suppose now that γh = β3. Let γ = β1, and let A := {αi : 1 6 i 6 m} and B := {βi : 1 6
i 6 m}. The proof now proceeds as above. By Lemma 6.7, for each i > 2 there exists gi ∈ Mβ1

such that βgi1 = β1 and βgi2 = βi. Note that

B2 = (B2 ∩A1) ∪ (B2 ∩ B1),

A2 = (A2 ∩ A1) ∪ (A2 ∩B1),

where Ai and Bi are defined as in the statement of Lemma 6.8. Since βh2 = β2, Bh
2 = B2 and

Ah2 = A2, and so either (i) Bh = B and Ah = A or (ii) h swaps (B1 ∩ A2) and (A1 ∩ A2) and h
swaps (B1 ∩ B2) and (A1 ∩ B2). However, β2 ∈ B1 ∩ B2, so we have Bh = B and Ah = A. Let

βi, βj ∈ B, i 6= j. Since B is invariant under Mβ1 and h, there is βk ∈ B such that β
hg−1

3
gi

k = βj .

Since β1 = γ ∼ βk, we have βj = β
hg−1

3
gi

k ∼ β
hg−1

3
gi

1 = βi. Since i, j were arbitrary, B is a clique.

Since Γ[α1, β1, α2, β2] ∼= C4, it immediately follows that A is a clique as well. �

LEMMA 6.10. If Γ[α1, β1, α2, β2] ∼= C4, then either Γ = Km ⊻Km or Γ = Km,m.

PROOF. This follows immediately from Lemma 6.9 and a consideration of the degree of each

vertex in the induced subgraph Γ[α1, β1, α2, β2] ∼= C4. �

6.2. The cases Γ[α1, β1, α2, β2] ∼= P4 and Γ[α1, β1, α2, β2] ∼= K4\{e}. The two remaining

cases are actually very closely related. We begin with a helpful lemma.

LEMMA 6.11. Assume Γ[α1, β1, α2, β2] ∼= P4 or Γ[α1, β1, α2, β2] ∼= K4\{e}. Either

(1) Γ is regular, or

(2) Γ has two orbits of vertices: one orbit is a clique, the other a coclique.

PROOF. We know that G is transitive on M, so Aut(Γ) has at most 2 orbits of vertices. If

Aut(Γ) is also transitive on V (Γ), then (1) holds. If not, Γ has exactly 2 orbits of vertices, and

Aut(Γ) will be 2-transitive on each of these orbits. Thus each orbit is either a clique or a coclique.

Both cannot be cliques, because otherwise Γ would be regular. Both cannot be cocliques, because

otherwise Γ is not connected. So we are in case (2). �

This allows us immediately to classify these graphs in the event that they are not regular.
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LEMMA 6.12. If Γ[α1, β1, α2, β2] ∼= P4 and Γ is not regular, then Γ ∼= Km ⊻ Km. If we have

Γ[α1, β1, α2, β2] ∼= K4\{e} and Γ is not regular, then Γ ∼= Km ∨Km.

PROOF. This follows immediately from Lemma 6.11. �

The remaining cases are when Γ is regular. This implies that m is odd.

LEMMA 6.13. Assume Γ[α1, β1, α2, β2] ∼= P4 or Γ[α1, β1, α2, β2] ∼= K4\{e}. If Γ is regular,

thenm is odd. Moreover, ifm = 2k+1, then the degree of each vertex is k+1 if Γ[α1, β1, α2, β2] ∼=
P4 and the degree of each vertex is 3k + 1 if Γ[α1, β1, α2, β2] ∼= K4\{e}.

PROOF. Assume that Γ[α1, β1, α2, β2] ∼= P4. For each i > 2, the vertices of ei contribute 0 to

the degree of one endpoint of e1 and 1 to the other, i.e., each ei for i > 2 contributes 1 to the sum

of the degree of α1 and the degree of β1. Since Γ is regular,

2 · |Γ(α1)| = |Γ(α1)|+ |Γ(β1)| = 1 + 1 + (m− 1).

The result follows for Γ[α1, β1, α2, β2] ∼= P4. The proof is analogous in the case when we have

Γ[α1, β1, α2, β2] ∼= K4\{e}. �

In fact, in these remaining cases when Γ is regular, Γ must be vertex transitive.

LEMMA 6.14. Assume Γ[α1, β1, α2, β2] ∼= P4 or Γ[α1, β1, α2, β2] ∼= K4\{e}. If Γ is regular,

then M is transitive on V (Γ).

PROOF. We know that M is transitive on the edges of M, so it suffices to show that there is

gi ∈ Aut(Γ) such that αgii = βi for each i. Assuming Γ contains more than a single edge, it must

contain at least three edges since m is odd. In each case we may choose three edges as follows:

αj

βj

αi

βi

αk

βk

ej ei ek

αj

βj

αi

βi

αk

βk

ej ei ek

By the 2-transitivity of M on M, there is g ∈M such that egi = ei and egj = ek. The gi that we

seek is this g, and the result follows. �

We now show that there is a bijection between regular graphs in these two cases, i.e. that the

two cases correspond.

LEMMA 6.15. There exists a regular graph Γ0 on 2m vertices with Γ0[α1, β1, α2, β2] ∼= P4 if

and only if there exists a regular graph Γ1 on 2m vertices with Γ1[α1, β1, α2, β2] ∼= K4\{e}, and

there is a natural bijection between such graphs.

PROOF. Suppose we have such a graph Γ1. Note that M is the setwise stabilizer of M in

Aut(Γ1), which is transitive on V (Γ1) but preserves the matching M. However, M has (at least)

two orbits on the edges of Γ1: the edges of M and the edges not in M. The complement Γ1 also

has M as a group of automorphisms. We define Γ0 to be the graph with vertex set V (Γ1) and

edge set E(Γ1) ∪ M. The group M is still 2-transitive on a perfect matching in this case, but

Γ0[α1, β1, α2, β2] ∼= P4. The proof in the other direction is analogous. �
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After considering Lemma 6.15, there are really only three cases left. We may assume that

Γ[α1, β1, α2, β2] ∼= P4, and one of the following holds: (i) Aut(Γ) is primitive on V (Γ), (ii) Γ is

bipartite, or (iii) M itself is a system of imprimitivity. (Any other system of imprimitivity is ruled

out by the 2-transitivity of M on M.)

6.3. The case where Γ[α1, β1, α2, β2] ∼= P4 and G = Aut(Γ) is primitive on vertices.

LEMMA 6.16. Assume Γ[α1, β1, α2, β2] ∼= P4 and G = Aut(Γ) is primitive on vertices. Then

Γ is a (G, 2)-arc-transitive graph.

PROOF. Since G is primitive on V (Γ), Gα1
is a maximal subgroup of G. On the other hand,

since there is g ∈M such that αg1 = β1, β
g
1 = α1 (see Lemma 6.14), we have Mα1

< Me1 < M 6
G, and so Mα1

is not a maximal subgroup of M . Thus M < G.

By the 2-transitivity of M on M, M has two orbits on E(Γ): M and E(Γ)\M. Since M < G,

there is h ∈ G\M , i.e., there is an automorphism that does not preserve M. This implies that h
takes an edge in M to an edge in E(Γ)\M, and so G is transitive on E(Γ).

Finally, we note that (i) Γ is G-vertex-transitive, (ii) Γ is G-edge-transitive, (iii) there is an

element sending the arc (α1, β1) to the arc (β1, α1), and (iv) Gα1β1 is transitive on Γ(α1)\{β1},

which implies that Γ is a (G, 2)-arc-transitive graph. �

Consider the labeling of the vertices as in Figure 2. If we define Di(γ) := {δ ∈ V (Γ) :
d(γ, δ) = i}, i.e., if Di(γ) is the set of vertices at distance i from the vertex γ, we can guarantee

the distance of all vertices in the graph from α1 except for the set X; all we know is that X ⊆
D2(α1) ∪D3(α1).

· · ·

α1

β1

· · ·e1

D1(α1)

Y2 ⊆ D2(α1)Y1 ⊆ D2(α1)

X ⊆ D2(α1) ∪D3(α1)

FIGURE 2. Labeling of Γ when Γ[α1, β1, α2, β2] ∼= P4 and G is primitive on vertices.

LEMMA 6.17. Assume Γ[α1, β1, α2, β2] ∼= P4, G = Aut(Γ) is primitive on vertices, and the

subset X is as defined above. Then X ∩D2(α1) 6= ∅.

PROOF. Suppose that X ∩D2(α1) = ∅, that is, X = D3(α1). By Lemma 6.16 and the fact that

M is a 2-transitive perfect matching, Γ is distance-transitive with diameter 3. We will show that,

if γ, δ ∈ X , then γ 6∼ δ. Indeed, suppose γ ∈ D3(α1) = X . This means that d(β1, γ) = 2. Since

X ∩ D2(α1) = ∅, there are no edges from D1(α1) to X . Similarly, since Γ is vertex-transitive,

there are no edges from D1(β1) = Y1 ∪{α1} to D3(β1) = Y2 (see Figure 2). Hence, if δ ∈ D1(β1),
δ has no neighbors in Y2. Since Γ is distance-transitive, this means that no vertex in D2(α1) has

any neighbors in D2(α1), i.e., all edges in Γ are from A = {α1} ∪ Y1 ∪ Y2 to X ∪ D1(α1).
However, this means that Γ is bipartite, in contradiction to Γ being vertex-primitive. Therefore,

X ∩D2(α1) 6= ∅. �
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LEMMA 6.18. Assume Γ[α1, β1, α2, β2] ∼= P4 and G = Aut(Γ) is primitive on vertices. Then

Γ is isomorphic to the Petersen graph.

PROOF. We again assume that vertices are labeled as in Figure 2. By the 2-transitivity of M
on M, Mα1

is transitive on X , and so X ⊆ D2(α1). Hence Γ has diameter 2, and, by Lemma

6.16, Γ is a distance-transitive, diameter 2, triangle-free strongly regular graph. (These are known

as rank 3 graphs since, for any vertex α ∈ V (Γ), the stabilizer of α is a primitive group of rank 3
on vertices.) We note that Γ is a (4k + 2, k + 1, 0, µ)-strongly regular graph.

By the classic equation relating the parameters (see [2]),

(k + 1)k = [(4k + 2)− (k + 1)− 1]µ,

and so µ = (k + 1)/3.

The eigenvalues of the adjacency matrix for this graph and their multiplicities are known (again,

see [2]). There are three eigenvalues: k+1, with multiplicity one, and two others. The multiplicities

of these other two eigenvalues are

1

2


(4k + 1)±

(4k + 1)
(
k+1
3

)
− (2k + 2)√(

k+1
3

)2
+ 8k+1

3




=
1

2

(
(4k + 1)±

4k2 − k − 5√
(k + 1)(k + 25)

)
∈ Z.

This implies that

(4k2 − k − 5)2

(k + 1)(k + 25)
= 16k2 − 424k + 10585−

264000

k + 25

is a perfect square. The last term allows us, via factoring, to come up with a list of values of k to

check, which yields

k = 2 or k = 24.

But, together with µ = k+1
3

∈ Z, we rule out k = 24, so the only graph in this case is strongly

regular with parameters (10, 3, 0, 1) (corresponding to k = 2), which is the Petersen graph. It

can be verified that the Petersen graph has a 2-transitive perfect matching by direct inspection.

For instance, if the vertices of the Petersen graph P are represented as subsets of size two of

{1, 2, 3, 4, 5}, then Aut(P) = S5 is 2-transitive on the matching

M = {{{1, 2}, {3, 4}}, {{3, 5}, {2, 4}}, {{1, 4}, {2, 5}}, {{2, 3}, {1, 5}}, {{4, 5}, {1, 3}}} .

�

6.4. The case where Γ[α1, β1, α2, β2] ∼= P4 and G = Aut(Γ) is imprimitive on vertices.

LEMMA 6.19. Assume Γ[α1, β1, α2, β2] ∼= P4 and that Π = {{αi, βi} : 1 6 i 6 m} is a

system of imprimitivity on V (Γ). Then m = pf , where p is a prime and pf ≡ 3 (mod 4), and Γ is

isomorphic to the incidence graph of the Paley symmetric 2-design over GF(pf ).

PROOF. Suppose Π = {{αi, βi} : 1 6 i 6 m} is a system of imprimitivity on V (Γ). This

implies that G = M . We remove the edge orbit M from Γ to create a new graph Γ′; since

G = M , M is an orbit of the edges of Γ under G, and G still acts 2-transitively on the system

of imprimitivity Π. However, each block in Π is now an independent set. The quotient graph
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Γ′
Π will be the complete graph Km, and there is exactly one edge between any two blocks in Γ′.

By the 2-transitivity of M on Π, Γ′ is M-arc-transitive. Hence Γ′ is a symmetric spread of the

complete graph Km (see [5]). By inspection of [5, Tables 1, 2], the only possibility for Γ is the

incidence graph of the Paley symmetric 2-design over GF(pf). Moreover, if Γ is such a graph, then

V (Γ) = GF(pf )×{0, 1}, and Aut(Γ) acts 2-transitively on each copy of GF(pf ) (simultaneously).

Hence the matching {{(x, 0), (x, 1)} : x ∈ GF(pf)} is a 2-transitive perfect matching. �

Our final case is when Γ[α1, β1, α2, β2] ∼= P4 and Γ is bipartite.

· · ·

α1

β1

· · ·e1

D1(α1)

Y2 ⊆ D2(α1)Y1 ⊆ D2(α1)

X = D3(α1)

FIGURE 3. Labeling of Γ when Γ[α1, β1, α2, β2] ∼= P4, M < G, Γ bipartite

LEMMA 6.20. Assume Γ[α1, β1, α2, β2] ∼= P4 and that Γ is bipartite. Then m = pf , where p is

a prime and pf ≡ 3 (mod 4), and Γ is isomorphic to the incidence graph of the Paley symmetric

2-design over GF(pf).

PROOF. Assume Γ[α1, β1, α2, β2] ∼= P4 and that Γ is bipartite. If G := Aut(Γ) =M , then this

case has been resolved by Lemma 6.19. Hence we may assume that M < G. By the 2-transitivity

of M on M, M has two orbits on E(Γ): M and E(Γ)\M. Since M < G, there is h ∈ G\M , i.e.,

there is an automorphism that does not preserve M. This implies that h takes an edge in M to an

edge in E(Γ)\M, and so G is transitive on E(Γ).
Since (i)G is transitive on the edges of Γ, (ii)G is transitive on the vertices of Γ, (iii) there is an

element sending the arc (α1, β1) to the arc (β1, α1) by Lemma 6.14, and (iv) Gα1β1 is transitive on

Γ(α)\{β1}, we have that Γ is a (G, 2)-arc-transitive graph. Since Γ is bipartite, using the labeling

of Figure 3, we have D2(α1) = Y1 ∪ Y2 and D3(α1) = X . Since Γ is (G, 2)-arc-transitive and Mα1

is transitive on X , Γ is a distance-transitive graph of diameter 3. By [6, Theorem 5.10.3], Γ is the

incidence graph of a symmetric 2-design. The points of the design are represented by one of the

biparts of Γ. The stabilizer of a point (i.e., of α1, say) has at most three orbits on points: (i) {α1},

(ii) the set of all points incident with “block” β1, and (iii) set of all points not incident with “block”

β1. This means that Γ is the incidence graph of a rank 2 or 3 symmetric 2-design. Such symmetric

2-designs have been classified [3, 4, 8]. The only possibilities, other than the Paley symmetric 2-

designs, are: the Hadamard design with 11 points where each point is incident with 5 blocks, which

gives the same incidence graph as the Paley symmetric 2-design on 11 points; the design with 35
points where each point is incident with exactly 17 blocks, which is ruled out since the only 2-

transitive groups on 35 points are A35 and S35, which are not involved in the automorphism group

of this design (the unique minimal normal subgroup of the automorphism group of this design is

isomorphic to A8); and the design with 15 points where each point is contained in exactly 7 blocks.

In this last case, the unique minimal normal subgroup of the automorphism group of the design is
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isomorphic to A6. While A6 has a rank 3 action on 15 points, the stabilizer of a point in this action

has orbits of size 1, 6, and 8. However, if the incidence graph of this design had a 2-transitive

perfect matching, then the stabilizer of a point would have orbits of size 1, 7, and 7. Therefore, the

only such graphs Γ with Γ[α1, β1, α2, β2] ∼= P4 and Γ bipartite are isomorphic to incidence graphs

of Paley symmetric 2-designs. �

We are now ready to complete the proof of Theorem 1.3.

PROOF OF THEOREM 1.3. The result follows from Lemmas 6.3, 6.4, 6.5, 6.10, 6.12, 6.15,

6.18, 6.19, and 6.20. �

Finally, we prove Corollary 1.4.

PROOF OF COROLLARY 1.4. The result follows from Theorem 1.3 and noting which graphs

in cases (3) and (4) have an induced symmetric group on the matching. Since the group acting on

the matching in each of (3) and (4) has a minimal normal subgroup that is elementary abelian and

acts regularly on an odd number of edges, we conclude that the only option in cases (3) and (4) is

when m = 3. The result follows. �
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