LOVÁSZ-SAKS-SCHRIJVER IDEALS AND PARITY BINOMIAL EDGE IDEALS OF GRAPHS

ARVIND KUMAR
Dedicated to Professor Jürgen Herzog on the occasion of his 80th birthday

Abstract

Let G be a simple graph on n vertices. Let L_{G} and \mathcal{I}_{G} denote the Lovász-Saks-Schrijver(LSS) ideal and parity binomial edge ideal of G in the polynomial ring $S=$ $\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ respectively. We classify graphs whose LSS ideals and parity binomial edge ideals are complete intersections. We also classify graphs whose LSS ideals and parity binomial edge ideals are almost complete intersections, and we prove that their Rees algebra is Cohen-Macaulay. We compute the second graded Betti number and obtain a minimal presentation of LSS ideals of trees and odd unicyclic graphs. We also obtain an explicit description of the defining ideal of the symmetric algebra of LSS ideals of trees and odd unicyclic graphs.

1. Introduction

Let \mathbb{K} be any field. Let G be a simple graph with $V(G)=[n]:=\{1, \ldots, n\}$. We study the following four classes of ideals associated with the graph G :

- Binomial Edge Ideals: Herzog et al. in [10] and independently Ohtani in [24] defined the binomial edge ideal of G as

$$
J_{G}=\left(x_{i} y_{j}-x_{j} y_{i}: i<j,\{i, j\} \in E(G)\right) \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]
$$

- Lovász-Saks-Schrijver ideals: Let $d \geq 1$ be an integer. The ideal

$$
L_{G}^{\mathbb{K}}(d)=\left(\sum_{l=1}^{d} x_{i l} x_{j l}:\{i, j\} \in E(G)\right) \subset \mathbb{K}\left[x_{k l}: 1 \leq k \leq n, 1 \leq l \leq d\right]
$$

is known as Lovász-Saks-Schrijver ideal of the graph G with respect to \mathbb{K}. The set of all orthogonal representation of the complementary graph of G is the zero set of the ideal $L_{G}^{\mathbb{K}}(d)$ in $\mathbb{K}^{n \times d}$. We refer the reader to [18, 19] for more on the orthogonal representation of graphs. In this article, we set $L_{G}:=L_{G}^{\mathbb{K}}(2)$.

- Permanental Edge Ideals: In [11], Herzog et al. introduced the notation of permanental edge ideals of graphs. The permanental edge ideal of a graph G is denoted by Π_{G} and it is defined as

$$
\Pi_{G}=\left(x_{i} y_{j}+x_{j} y_{i}:\{i, j\} \in E(G)\right) \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]
$$

- Parity Binomial Edge Ideals: Kahle et al. in [15] introduced the notion of parity binomial edge ideals of graphs. The parity binomial edge ideal of a graph G is defined as

$$
\mathcal{I}_{G}=\left(x_{i} x_{j}-y_{i} y_{j}:\{i, j\} \in E(G)\right) \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]
$$

[^0]In the recent past, researchers have been trying to understand the connection between combinatorial invariants of G and algebraic invariants of J_{G}. The connection between the combinatorial properties of G and the algebraic properties J_{G} has been established by many authors, see [6, 10, 13, 14, 16, 21, 27] for a partial list. For $d=1$, the Lovász-SaksSchrijver ideal of a graph G is a monomial ideal known as the edge ideal of graph G. The algebraic properties of edge ideals of graphs are well understood, see [9, Chapter 9]. For $d=2$, the Lovász-Saks-Schrijver ideal of a graph G is a binomial ideal defined as $L_{G}=\left(x_{i} x_{j}+y_{i} y_{j}:\{i, j\} \in E(G)\right) \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$. In [11], Herzog et al. proved that if $\operatorname{char}(\mathbb{K}) \neq 2$, then L_{G} is a radical ideal. Also, they computed the primary decomposition of L_{G} when $\sqrt{-1} \notin \mathbb{K}$ and $\operatorname{char}(\mathbb{K}) \neq 2$. In [3], Conca and Welker studied the algebraic properties of $L_{G}^{\mathbb{K}}(d)$. They proved that $L_{G}^{\mathbb{K}}(2)$ is complete intersection if and only if G does not contain claw or even cycle ([3, Theorem 1.4]). Also, they proved that $L_{G}^{\mathbb{K}}(3)$ is prime if and only if G does not contain claw or C_{4}. More precisely, in 3], Conca and Welker analyzed the question "When is $L_{G}^{\mathbb{K}}(d)$ radical, complete intersection or prime"? In [11], Herzog et al. computed Gröbner basis of permanental edge ideals of graphs. Also, they proved that permanental edge ideal of a graph is a radical ideal, in [11]. In [15], Kahle et al. studied the algebraic properties such as primary decomposition, mesoprimary decomposition, Markov bases and radicality of parity binomial edge ideals. However, nothing is known about the algebraic properties such as complete intersection, almost complete intersection, Rees algebra, symmetric algebra and Betti numbers of parity binomial edge ideals. In this article, we focus on the algebraic properties such as almost complete intersection, projective dimension, Rees algebra, symmetric algebra and Betti numbers of L_{G}, Π_{G} and \mathcal{I}_{G}. It was proved by Bolognini et al [1, Corollary 6.2] that if G is a bipartite graph, then L_{G}, Π_{G} and \mathcal{I}_{G} are essentially same as J_{G}. In [28], Schenzel and Zafar studied the algebraic properties of complete bipartite graphs. In [1], Bolognini et al. studied the Cohen-Macaulayness of binomial edge ideal of bipartite graphs. The algebraic properties of Cohen-Macaulay bipartite graphs such as regularity, extremal Betti numbers are studied in [13, 20]. In this article, we characterize graphs whose parity binomial edge ideals are complete intersections (Theorems 3.2, 3.5). We also classify graphs whose LSS ideals, permanental edge ideals and parity binomial edge ideals are almost complete intersections. We prove that these are either a subclass of trees, a subclass of unicyclic graphs or a subclass of bicyclic graphs(Theorems 3.7, 3.8, 3.9, 3.10, (3.11).

A lot of asymptotic invariants of an ideal can be computed using the Rees algebra of that ideal. We study the Rees algebra of almost complete intersection LSS ideals, permanental edge ideals and parity binomial edge ideals. Cohen-Macaulayness of the Rees algebra and the associated graded ring of ideals have been a long-studied problem in commutative algebra. If an ideal is complete intersection in a Cohen-Macaulay local ring, then the corresponding associated graded ring and the Rees algebra are known to be Cohen-Macaulay. In general, computing the depth of these blowup algebras is a non-trivial problem. If an ideal is an almost complete intersection ideal, then the Cohen-Macaulayness of the Rees algebra and the associated graded ring are closely related by a result of Herrmann, Ribbe and Zarzuela (see Theorem4.1). To study the Cohen-Macaulayness of the associated graded ring of almost complete intersection LSS ideals, permanental edge ideals and parity binomial edge ideals, we compute the projective dimension of almost complete intersection LSS ideals, permanental edge ideals and parity binomial edge ideals (Theorems 4.4, 4.10, 4.11, 4.12). We prove that the associated graded ring and the Rees algebra of almost complete intersection LSS ideals,
permanental edge ideals and parity binomial edge ideals are Cohen-Macaulay (Theorems 4.5, 4.13).

An ideal I of a commutative ring A is said to be of linear type if its Rees algebra and symmetric algebra are isomorphic. In other words, the defining ideal of the Rees algebra is generated by linear forms. In general, it is quite a hard task to describe the defining ideals of Rees algebras and symmetric algebras. Huneke proved that if I is generated by d-sequence, then I is of linear type, [12]. We compute the defining ideal of symmetric algebra of LSS ideals of trees and odd unicyclic graphs (Theorems 5.2, 5.4). In this process, we obtain second graded Betti number of LSS ideals of trees and odd unicyclic graphs (Theorems 5.1, 5.3). We prove that if L_{G} is an almost complete intersection ideal, then L_{G} is generated by a d-sequence (Theorem 5.66). This gives us the defining ideals of the Rees algebras of almost complete intersection LSS ideals.

The article is organized as follows. We collect the notation and related definitions in the second section. In Section 3, we characterize complete intersection parity binomial edge ideals. Also, we classify almost complete intersection LSS ideals, permanental edge ideals and parity binomial edge ideals. We study the Cohen-Macaulayness of Rees algebra of almost complete intersection LSS ideals, permanental edge ideals and parity binomial edge ideals in Section 4. In Section 5, we describe the second graded Betti numbers and syzygies of the LSS ideals of trees and odd unicyclic graphs. In particular, we describe the defining ideal of symmetric algebra of LSS ideals of trees and odd unicyclic graphs.

2. Preliminaries

Let G be a simple graph with the vertex set $[n]$ and edge set $E(G)$. A graph on $[n]$ is said to be a complete graph, if $\{i, j\} \in E(G)$ for all $1 \leq i<j \leq n$. Complete graph on $[n]$ is denoted by K_{n}. For $A \subseteq V(G), G[A]$ denotes the induced subgraph of G on the vertex set A, that is, for $i, j \in A,\{i, j\} \in E(G[A])$ if and only if $\{i, j\} \in E(G)$. For a vertex $v, G \backslash v$ denotes the induced subgraph of G on the vertex set $V(G) \backslash\{v\}$. A vertex $v \in V(G)$ is said to be a cut vertex if $G \backslash v$ has more connected components than G. A subset U of $V(G)$ is said to be a clique if $G[U]$ is a complete graph. A vertex v of G is said to be a simplicial vertex if v is contained in only one maximal clique otherwise it is called an internal vertex. For a vertex $v, N_{G}(v)=\{u \in V(G):\{u, v\} \in E(G)\}$ denotes the neighborhood of v in G and G_{v} is the graph on the vertex set $V(G)$ and edge set $E\left(G_{v}\right)=E(G) \cup\left\{\{u, w\}: u, w \in N_{G}(v)\right\}$. The degree of a vertex v, denoted by $\operatorname{deg}_{G}(v)$, is $\left|N_{G}(v)\right|$. For an edge e of $G, G \backslash e$ is the graph on the vertex set $V(G)$ and edge set $E(G) \backslash\{e\}$. Let $u, v \in V(G)$ be such that $e=\{u, v\} \notin E(G)$, then we denote by G_{e}, the graph on the vertex set $V(G)$ and edge set $E\left(G_{e}\right)=E(G) \cup\left\{\{x, y\}: x, y \in N_{G}(u)\right.$ or $\left.x, y \in N_{G}(v)\right\}$. A cycle is a connected graph G with $\operatorname{deg}_{G}(v)=2$ for all $v \in V(G)$. A cycle on n vertices is denoted by C_{n}. A tree is a connected graph which does not contain a cycle. A graph is said to be a unicyclic graph, if it contains exactly one cycle. The girth of a graph G is the length of a shortest cycle in G. A unicyclic graph with even girth is called an even unicyclic and with odd girth is called an odd unicyclic graph. A graph G is said to be bipartite if there is a bipartition of $V(G)=V_{1} \sqcup V_{2}$ such that for each $i=1,2$, no two of the vertices of V_{i} are adjacent, otherwise it is called non-bipartite graph. A complete bipartite graph on $m+n$ vertices, denoted by $K_{m, n}$, is the graph having a vertex set $V\left(K_{m, n}\right)=\left\{u_{1}, \ldots, u_{m}\right\} \cup\left\{v_{1}, \ldots, v_{n}\right\}$ and $E\left(K_{m, n}\right)=\left\{\left\{u_{i}, v_{j}\right\}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. A claw is the complete bipartite graph $K_{1,3}$. A claw $\{u, v, w, z\}$ with center u is the graph with vertices $\{u, v, w, z\}$ and edges
$\{\{u, v\},\{u, w\},\{u, z\}\}$. For a graph G, let \mathfrak{C}_{G} denote the set of all induced claws in G. A maximal subgraph of G without a cut vertex is called a block of G. A graph G is said to be a block graph if each block of G is a clique. If each block of a graph is either a cycle or an edge, then it is called a cactus graph. A cactus graph such that exactly two blocks are cycles is called a bicyclic cactus graph. Let $u, v \in V(G)$. Then $d(u, v)$ is length of a shortest path between u and v in G. A (u, v)-walk is a sequence of edges $\left\{u, v_{1}\right\}, \ldots,\left\{v_{k}, v\right\}$ in G.

Now, we recall the necessary notation from commutative algebra. Let $A=\mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ be a polynomial ring over an arbitrary field \mathbb{K} and M be a finitely generated graded A module. Let

$$
0 \longrightarrow \bigoplus_{j \in \mathbb{Z}} A(-j)^{\beta_{p, j}^{A}(M)} \xrightarrow{\phi_{p}} \cdots \xrightarrow{\phi_{1}} \bigoplus_{j \in \mathbb{Z}} A(-j)^{\beta_{0, j}^{A}(M)} \xrightarrow{\phi_{0}} M \longrightarrow 0,
$$

be the minimal graded free resolution of M, where $A(-j)$ is the free A-module of rank 1 generated in degree j. The number $\beta_{i, j}^{A}(M)$ is called the (i, j)-th graded Betti number of M. The projective dimension of M, denoted by $\operatorname{pd}_{A}(M)$, is defined as

$$
\operatorname{pd}_{A}(M):=\max \left\{i: \beta_{i, j}^{A}(M) \neq 0\right\} .
$$

It follows from the Auslander-Buchsbaum formula that $\operatorname{depth}_{A}(M)=m-\operatorname{pd}_{A}(M)$. We say that M is a finitely presented A-module if there exists an exact sequence of the form $A^{p} \xrightarrow{\varphi}$ $A^{q} \xrightarrow{\psi} M \longrightarrow 0$. If $q=\sum_{j \in \mathbb{Z}} \beta_{0, j}^{A}(M)$ and $p=\sum_{j \in \mathbb{Z}} \beta_{1, j}^{A}(M)$, then this presentation is called a minimal presentation. A homogeneous ideal $I \subset A$ is said to be complete intersection if $\mu(I)=\operatorname{ht}(I)$, where $\mu(I)$ denotes the cardinality of a minimal homogeneous generating set of I. It is said to be almost complete intersection if $\mu(I)=h t(I)+1$ and $I_{\mathfrak{p}}$ is complete intersection for all minimal primes \mathfrak{p} of I. Also, we say that A / I is almost Cohen-Macaulay if $\operatorname{depth}_{A}(A / I)=\operatorname{dim}(A / I)-1$.

Let G be a graph on $[n]$ and $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$. For an edge $e=\{i, j\} \in E(G)$ with $i<j$, we define $f_{e}=f_{i, j}:=x_{i} y_{j}-x_{j} y_{i}, g_{e}=g_{i, j}:=x_{i} x_{j}+y_{i} y_{j}$ and $\bar{g}_{e}=\bar{g}_{i, j}:=x_{i} x_{j}-y_{i} y_{j}$. For $T \subset[n]$, let $\bar{T}=[n] \backslash T$ and $c_{G}(T)$ denotes the number of connected components of $G[\bar{T}]$. Also, let $G_{1}, \ldots, G_{c_{G}(T)}$ be the connected components of $G[\bar{T}]$ and for every i, \hat{G}_{i} denote the complete graph on $V\left(G_{i}\right)$. Let $P_{T}(G):=\left(\cup_{i \in T}\left\{x_{i}, y_{i}\right\}, J_{\hat{G}_{1}}, \ldots, J_{\hat{G}_{c_{G}(T)}}\right)$. Herzog et al. proved that J_{G} is a radical ideal, [10, Corollary 2.2]. Also, they proved that for $T \subset[n], P_{T}(G)$ is a prime ideal and $J_{G}=\underset{T \subseteq[n]}{\cap} P_{T}(G)$, [10, Theorem 3.2]. A set $T \subset[n]$ is said to have cut point property if for every $i \in T, i$ is a cut vertex of the graph $G[\bar{T} \cup\{i\}]$. They showed that $P_{T}(G)$ is a minimal prime of J_{G} if and only if either $T=\emptyset$ or $T \subset[n]$ has cut point property, [10, Corollary 3.9].

We now recall some facts about LSS ideals.
2.1. Primary decomposition of L_{G} when $\sqrt{-1} \notin \mathbb{K}$ and $\operatorname{char}(\mathbb{K}) \neq 2$. Herzog et al. studied several properties of L_{G}. We recall some of those results which we require from [11]:

- Set $I_{K_{1}}=(0), I_{K_{2}}=\left(x_{1} x_{2}+y_{1} y_{2}\right)$. For $n>2$, define the ideal $I_{K_{n}}$ generated by the following binomials

$$
\begin{aligned}
g_{i j} & =x_{i} x_{j}+y_{i} y_{j}, & & 1 \leq i<j \leq n, \\
f_{i j} & =x_{i} y_{j}-x_{j} y_{i}, & & 1 \leq i<j \leq n, \\
h_{i} & =x_{i}^{2}+y_{i}^{2}, & & 1 \leq i \leq n .
\end{aligned}
$$

- For $1 \leq m<n$ define the ideal $I_{K_{m, n-m}}$ generated by the following binomials

$$
\begin{aligned}
& g_{i j}=x_{i} x_{j}+y_{i} y_{j}, \quad 1 \leq i \leq m, \quad m+1 \leq j \leq n, \\
& f_{i j}=x_{i} y_{j}-x_{j} y_{i}, \quad 1 \leq i<j \leq m \quad \text { or } \quad m+1 \leq i<j \leq n .
\end{aligned}
$$

Then $I_{K_{m, n-m}}$ and $I_{K_{n}}$ are prime ideals, [11, Theorems 2.4, 2.5]. Let G be a connected graph on the vertex set $V(G)=[n]$. If G is non-bipartite, then we denote by \widetilde{G} the complete graph on the vertex set $V(G)$. If G is a bipartite graph, then there exists a bipartition of $V(G)=V_{1} \sqcup V_{2}$, in this case, we denote by \widetilde{G} the complete bipartite graph on the vertex set $V(G)$ with respect to the bipartition $V(G)=V_{1} \sqcup V_{2}$.

Let G be a graph on the vertex set $[n]$. For $T \subset[n]$, let $G_{1}, \ldots, G_{c_{G}(T)}$ are the connected components of $G[\bar{T}]$ and

$$
Q_{T}(G)=\left(x_{i}, y_{i}: i \in T\right)+I_{\widetilde{G}_{1}}+\ldots+I_{\widetilde{G}_{c_{G}(T)}}
$$

For $T \subset[n], Q_{T}(G)$ is a prime ideal, [11, Proposition 4.2]. Notice that if G is a connected bipartite graph with bipartition $V(G)=V_{1} \sqcup V_{2}$, then $Q_{\emptyset}(G)=I_{K_{V_{1}, V_{2}}}$, and if G is a connected non-bipartite graph, then $Q_{\emptyset}(G)=I_{K_{n}}$. For $T \subset[n], b_{G}(T)$ is the number of bipartite connected components of $G[\bar{T}]$. Here we consider an isolated vertex as a bipartite graph. For $T \subset[n]$, $\operatorname{ht}\left(Q_{T}(G)\right)=n+|T|-b_{G}(T)$, [11, Proposition 4.1]. By [11, Theorem 4.3], we have

$$
L_{G}=\bigcap_{T \subset[n]} Q_{T}(G) .
$$

The vertex $i \in[n]$ is said to be a cut vertex of G if $c_{G}(\{i\})>c_{G}(\emptyset)$ and it is said to be a bipartition vertex of G if $b_{G}(\{i\})>b_{G}(\emptyset)$. Let $\mathcal{C}(G)$ be the collection of sets $T \subset[n]$ such that each $i \in T$ is either a cut vertex or a bipartition vertex of the graph $G[\bar{T} \cup\{i\}]$. In particular, $\emptyset \in \mathcal{C}(G)$. By [11, Theorem 5.2], for $T \subset[n], Q_{T}(G)$ is a minimal prime of L_{G} if and only if $T \in \mathcal{C}(G)$. Hence, we have

$$
L_{G}=\bigcap_{T \in \mathcal{C}(G)} Q_{T}(G)
$$

2.2. Primary decomposition of \mathcal{I}_{G} for any field \mathbb{K}. In [15], Kahle et al. computed primary decomposition of parity binomial edge ideals of graphs. Here, we recall their results:

- For a graph G,

$$
\begin{aligned}
W_{G}= & \left(\bar{g}_{i, j}: \text { there is an odd }(i, j)-\text { walk in } G\right) \\
& +\left(f_{i, j}: \text { there is an even }(i, j)-\text { walk in } G\right) .
\end{aligned}
$$

- For a non-bipartite graph G, let

$$
\mathfrak{p}^{+}(G)=\left(x_{i}+y_{i}: i \in V(G)\right), \mathfrak{p}^{-}(G)=\left(x_{i}-y_{i}: i \in V(G)\right) .
$$

- For $T \subset[n]$, without loss of generality, we assume that $G_{1}, \ldots, G_{b_{G}(T)}$ are bipartite connected components of $G[\bar{T}]$ and $G_{b_{G}(T)+1}, \ldots, G_{c_{G}(T)}$ are non-bipartite connected components of $G[\bar{T}]$.
- For $T \subset[n]$ and $\sigma=\left(\sigma_{b_{G}(T)+1}, \ldots, \sigma_{c_{G}(T)}\right) \in\{+,-\}^{c_{G}(T)-b_{G}(T)}$, we associate an ideal

$$
\mathfrak{p}_{T}^{\sigma}(G)=\left(x_{i}, y_{i}: i \in T\right)+\sum_{i=1}^{b_{G}(T)} W_{G_{i}}+\sum_{j=b_{G}(T)+1}^{c_{G}(T)} \mathfrak{p}^{\sigma_{j}}\left(G_{j}\right)
$$

Then, $\mathfrak{p}_{T}^{\sigma}(G)$ is a prime ideal [15, Proposition 4.2] and

$$
\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+|T|-b_{G}(T)
$$

- If \mathfrak{P} is a minimal prime ideal of \mathcal{I}_{G}, then $\mathfrak{P}=\mathfrak{p}_{T}^{\sigma}(G)$, for some $T \in \mathcal{C}(G)$ and $\sigma \in\{+,-\}^{c_{G}(T)-b_{G}(T)}$, 15, Proposition 4.2, Lemma 4.4, Lemma 4.9].
- For $T \in \mathcal{C}(G)$, set $\mathcal{A}_{T}=\left\{t \in T: b_{G}(T)=b_{G}(T \backslash\{t\})\right\}$. Let $t \in \mathcal{A}_{T}$. We denote by $\mathcal{B}_{T}(t)$, the set of connected components of $G[\bar{T}]$ which are joined in $G[\bar{T} \cup\{t\}]$. Note that elements of $\mathcal{B}_{T}(t)$ are non-bipartite connected components of $G[\bar{T}]$.
- Let $T \in \mathcal{C}(G)$ and $\sigma \in\{+,-\}^{c_{G}(T)-b_{G}(T)}$. The prime ideal $\mathfrak{p}_{T}^{\sigma}(G)$ is sign-split prime ideal if for all $t \in \mathcal{A}_{T}$ the prime summands of $\mathfrak{p}_{T}^{\sigma}(G)$ corresponding to elements of $\mathcal{B}_{T}(t)$ has not the same sign.
- A prime ideal \mathfrak{P} is a minimal prime of \mathcal{I}_{G} if and only if $\mathfrak{P}=\mathfrak{p}_{T}^{\sigma}(G)$, for some sign-split prime ideal $\mathfrak{p}_{T}^{\sigma}(G)$, [15, Theorem 4.15].
If characteristic of \mathbb{K} is not two, then parity binomial edge ideal of a graph is a radical ideal, [15, Theorem 5.5]. Hence, in this case, we have

$$
\mathcal{I}_{G}=\bigcap_{T \in \mathcal{C}(G)} \bigcap_{\sigma \in\{+,-\}^{{ }^{C} G}(T)-b_{G}(T)} \mathfrak{p}_{T}^{\sigma}(G)
$$

3. (Almost) Complete Intersection Ideals

In this section, we classify complete intersection LSS ideals and parity binomial edge ideals. We also classify graphs whose LSS ideals and parity binomial edge ideals are almost complete intersections. We first recall a fact about bipartite graphs from [1].
Remark 3.1. [1, Corollary 6.2] Let G be a bipartite graph with bipartition $[n]=V_{1} \sqcup V_{2}$. We define $\Phi_{1}: S \rightarrow S$ as

$$
\Phi_{1}\left(x_{i}\right)=\left\{\begin{array}{ll}
x_{i} & \text { if } i \in V_{1} \\
y_{i} & \text { if } i \in V_{2}
\end{array} \quad \text { and } \quad \Phi_{1}\left(y_{i}\right)= \begin{cases}y_{i} & \text { if } i \in V_{1} \\
-x_{i} & \text { if } i \in V_{2}\end{cases}\right.
$$

and $\Phi_{2}: S \rightarrow S$ as

$$
\Phi_{2}\left(x_{i}\right)=\left\{\begin{array}{ll}
x_{i} & \text { if } i \in V_{1} \\
y_{i} & \text { if } i \in V_{2}
\end{array} \quad \text { and } \quad \Phi_{2}\left(y_{i}\right)= \begin{cases}y_{i} & \text { if } i \in V_{1} \\
x_{i} & \text { if } i \in V_{2}\end{cases}\right.
$$

It is clear that Φ_{1} and Φ_{2} are isomorphism and $\Phi_{1}\left(J_{G}\right)=L_{G}$ and $\Phi_{2}\left(J_{G}\right)=\mathcal{I}_{G}$.
We now begin with the classification of bipartite graphs whose LSS ideals, as well as parity binomial edge ideals, are complete intersections. In [3], Conca and Welker characterized graphs whose LSS ideals are complete intersections. They proved that L_{G} is complete intersection if and only if G does not contain claw or even cycle ([3, Theorem 1.4]). Here, we give alternate form of their theorem and prove that L_{G} is complete intersection if and only if \mathcal{I}_{G} is complete intersection.
Theorem 3.2. Let G be a bipartite graph on $[n]$. Then L_{G} is complete intersection if and only if \mathcal{I}_{G} is complete intersection if and only if G is a disjoint union of paths.

Proof. Since G is a bipartite graph, by Remark 3.1, $L_{G}=\Phi_{1}\left(J_{G}\right)$ and $\mathcal{I}_{G}=\Phi_{2}\left(J_{G}\right)$. Therefore, L_{G} is complete intersection if and only if J_{G} is complete intersection if and only if \mathcal{I}_{G} is complete intersection. Hence, the desired result follows from [26, Theorem 1].

Now, we move on to characterize non-bipartite graphs whose LSS ideals, permanental edge ideals and parity binomial edge ideals are complete intersections. For this, we need the following lemma.

Lemma 3.3. Let G be a non-bipartite graph on [n]. Assume that there exists $e=\{u, v\} \in$ $E(G)$ such that $G \backslash e$ is a bipartite graph. Then

$$
L_{G \backslash e}: g_{e}=L_{G \backslash e}+\left(f_{i, j}: i, j \in N_{G \backslash e}(u) \text { or } i, j \in N_{G \backslash e}(v)\right)=\Phi_{1}\left(J_{(G \backslash e)_{e}}\right)
$$

and

$$
\mathcal{I}_{G \backslash e}: \bar{g}_{e}=\mathcal{I}_{G \backslash e}+\left(f_{i, j}: i, j \in N_{G \backslash e}(u) \text { or } i, j \in N_{G \backslash e}(v)\right)=\Phi_{2}\left(J_{(G \backslash e)_{e}}\right) .
$$

Proof. Since G is a non-bipartite graph and $G \backslash e$ is a bipartite graph with bipartition $[n]=V_{1} \sqcup V_{2}$, we get that either $u, v \in V_{1}$ or $u, v \in V_{2}$. Therefore, $\Phi_{1}\left(g_{e}\right)=g_{e}$ and $\Phi_{2}\left(\overline{g_{e}}\right)=\bar{g}_{e}$. By Remark 3.1, we have

$$
\begin{gathered}
L_{G \backslash e}: g_{e}=\Phi_{1}\left(J_{G \backslash e}\right): \Phi_{1}\left(g_{e}\right)=\Phi_{1}\left(J_{G \backslash e}: g_{e}\right) \text { and } \\
\mathcal{I}_{G \backslash e}: \bar{g}_{e}=\Phi_{2}\left(J_{G \backslash e}\right): \Phi_{2}\left(\bar{g}_{e}\right)=\Phi_{2}\left(J_{G \backslash e}: \overline{g_{e}}\right) .
\end{gathered}
$$

Now, consider

$$
J_{G \backslash e}: g_{e}=\bigcap_{T \subset[n]}\left(P_{T}(G \backslash e): g_{e}\right) .
$$

Since generating set of $P_{T}(G \backslash e)$ is a Gröbner basis of $P_{T}(G \backslash e)$ with respect to lex order induced by $x_{1}>\cdots>x_{n}>y_{1}>\cdots>y_{n}$, we have $g_{e}=x_{u} x_{v}+y_{u} y_{v} \in P_{T}(G \backslash e)$ if and only if either $u \in T$ or $v \in T$ if and only if $\bar{g}_{e}=x_{u} x_{v}-y_{u} y_{v} \in P_{T}(G \backslash e)$. Therefore,

$$
J_{G \backslash e}: g_{e}=\bigcap_{T \subset[n]}\left(P_{T}(G \backslash e): g_{e}\right)=\bigcap_{T \subset([n] \backslash\{u, v\})} P_{T}(G \backslash e)=J_{(G \backslash e)_{e}},
$$

where the last equality follows from [25, Proposition 2.1]. Hence, $L_{G \backslash e}: g_{e}=\Phi_{1}\left(J_{(G \backslash e)_{e}}\right)=$ $L_{G \backslash e}+\left(f_{i, j}: i, j \in N_{G \backslash e}(u)\right.$ or $\left.i, j \in N_{G \backslash e}(v)\right)$. In a similar manner one can prove that $\mathcal{I}_{G \backslash e}: \bar{g}_{e}=\Phi_{2}\left(J_{(G \backslash e)_{e}}\right)=\mathcal{I}_{G \backslash e}+\left(f_{i, j}: i, j \in N_{G \backslash e}(u)\right.$ or $\left.i, j \in N_{G \backslash e}(v)\right)$.

Due to the following remark, if $\operatorname{char}(\mathbb{K})=2$, then Π_{G} and J_{G} are essentially the same and if $\operatorname{char}(\mathbb{K}) \neq 2$, then Π_{G} is essentially same as \mathcal{I}_{G}.
Remark 3.4. Let G be a graph with vertex set $[n]$. If $\operatorname{char}(\mathbb{K})=2$, it follows from their definitions that $\mathcal{I}_{G}=L_{G}$ and $\Pi_{G}=J_{G}$. Suppose char $(\mathbb{K}) \neq 2$. We define $\eta: S \rightarrow S$ as

$$
\eta\left(x_{i}\right)=x_{i}+y_{i} \text { and } \quad \eta\left(y_{i}\right)=x_{i}-y_{i} \text { for all } i \in V(G) .
$$

It is clear that η is an isomorphism and $\Pi_{G}=\eta\left(\mathcal{I}_{G}\right)$. If $\sqrt{-1} \in \mathbb{K}$ and $\operatorname{char}(\mathbb{K}) \neq 2$, then we define $\Psi: S \rightarrow S$ as

$$
\Psi\left(x_{i}\right)=x_{i}+\sqrt{-1} y_{i} \text { and } \quad \Psi\left(y_{i}\right)=x_{i}-\sqrt{-1} y_{i} \text { for all } i \in V(G) .
$$

It is clear that Ψ is an isomorphism and L_{G} is the image of permanental ideal Π_{G}, i.e $\Psi\left(\Pi_{G}\right)=L_{G}$. Thus, if $\sqrt{-1} \in \mathbb{K}$ and $\operatorname{char}(\mathbb{K}) \neq 2$, then $\Psi\left(\eta\left(\mathcal{I}_{G}\right)\right)=L_{G}$.
Theorem 3.5. Let G be a connected non-bipartite graph on $[n]$. Then L_{G} is complete intersection if and only if G is an odd cycle if and only if \mathcal{I}_{G} is complete intersection.

Proof. First, assume that \mathcal{I}_{G} is complete intersection. Since G is a non-bipartite graph, $\mathfrak{p}^{+}(G)$ is a minimal prime ideal of \mathcal{I}_{G} and $\operatorname{ht}\left(\mathfrak{p}^{+}(G)\right)=n$. Therefore, $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n=\mu\left(\mathcal{I}_{G}\right)$ which implies that G is an odd unicyclic graph. Let u be a vertex which is part of the unique odd cycle. Since u is a bipartition vertex of $G,\{u\} \in \mathcal{C}(G)$. If $\operatorname{deg}_{G}(u) \geq 3$, then $b_{G}(\{u\}) \geq 2$. Thus, $\operatorname{ht}\left(\mathfrak{p}_{\{u\}}^{\sigma}(G)\right)=n+1-b_{G}(\{u\}) \leq n-1$ and $\mathfrak{p}_{\{u\}}^{\sigma}(G)$ is a minimal prime ideal of \mathcal{I}_{G}, which conflicts the fact that $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n$. Consequently, $\operatorname{deg}_{G}(u)=2$ and hence, G is an odd cycle.

Now, we assume that L_{G} is complete intersection and $\operatorname{char}(\mathbb{K}) \neq 2$. If $\sqrt{-1} \in \mathbb{K}$, then by Remark 3.4, \mathcal{I}_{G} is complete intersection and hence, G is an odd cycle. Suppose $\sqrt{-1} \notin \mathbb{K}$, then $Q_{\emptyset}(G)=I_{K_{n}}$ is a minimal prime of L_{G} as G is a non-bipartite graph. It follows from [11, Proposition 2.3] that $\operatorname{ht}\left(I_{K_{n}}\right)=n$. Therefore, $\operatorname{ht}\left(L_{G}\right)=n=\mu\left(L_{G}\right)$ which implies that G is an odd unicyclic graph. If u is a vertex of the unique odd cycle, then u is a bipartition vertex of G. Thus, $\{u\} \in \mathcal{C}(G)$. Now, if $\operatorname{deg}_{G}(u) \geq 3$, then $b_{G}(\{u\}) \geq 2$ and hence, $\operatorname{ht}\left(Q_{\{u\}}(G)\right) \leq n-1$, which is a contradiction. This implies that $\operatorname{deg}_{G}(u)=2$. Hence, G is an odd cycle.

Conversely, we have to prove that $L_{C_{n}}$ and $\mathcal{I}_{C_{n}}$ are complete intersections, for n odd. Let $e=\{1, n\}$, then $C_{n} \backslash e=P_{n}$. By Theorem 3.2, $L_{P_{n}}$ and $\mathcal{I}_{P_{n}}$ are complete intersections. Note that $L_{C_{n}}=L_{P_{n}}+\left(g_{e}\right)$ and $\mathcal{I}_{C_{n}}=\mathcal{I}_{P_{n}}+\left(\overline{g_{e}}\right)$. Therefore, it is enough to prove that $L_{P_{n}}: g_{e}=L_{P_{n}}$ and $\mathcal{I}_{P_{n}}: \bar{g}_{e}=\mathcal{I}_{P_{n}}$ which immediately follows from Lemma 3.3. Hence, $L_{C_{n}}$ and $\mathcal{I}_{C_{n}}$ are complete intersections.

It follows from [11, Corollary 4.6] that if G is a graph on n vertices, then ht $\left(L_{G}\right) \leq n-b_{G}(\emptyset)$. As a consequence we have the following:

Corollary 3.6. Let G be a graph on $[n]$. Then L_{G} is complete intersection if and only if \mathcal{I}_{G} is complete intersection if and only if all the bipartite connected components of G are paths and non-bipartite connected components are odd cycles.

Now, we move on to find connected graphs whose LSS ideals and parity binomial edge ideals are almost complete intersections. In [14], Jayanthan et al. characterized connected graphs whose binomial edge ideals are almost complete intersections.
Theorem 3.7. Let G be a connected bipartite graph on $[n]$ which is not a path. Then L_{G} is an almost complete intersection ideal if and only if \mathcal{I}_{G} is almost complete intersection if and only if G is either obtained by adding an edge between two disjoints paths or by adding an edge between two vertices of a path such that the girth of G is even.

Proof. Since G is a bipartite graph, by Remark 3.1, $L_{G}=\Phi_{1}\left(J_{G}\right)$ and $\mathcal{I}_{G}=\Phi_{2}\left(J_{G}\right)$. Hence, the proof follows from [14, Theorems 4.3, 4.4].

For $A \subseteq[n]$ and $i \in A$, we define $p_{A}(i)=|\{j \in A \mid j \leq i\}|$. We now give complete classification of odd unicyclic graphs whose LSS ideals and parity binomial edge ideals are almost complete intersections.

Theorem 3.8. Let G be a connected odd unicyclic graph on $[n]$. Assume that $\operatorname{char}(\mathbb{K}) \neq$ 2. Then L_{G} is an almost complete intersection ideal if and only if \mathcal{I}_{G} is almost complete intersection if and only if G is one of the following types:
(1) G is obtained by adding an edge e between an odd cycle and a path,
(2) G is obtained by adding an edge e between two vertices of a path such that girth of G is odd and at least one of the vertex is an internal vertex of the path,
(3) G is obtained by attaching a path of length ≥ 1 to each vertex of a triangle.

Proof. First, assume that \mathcal{I}_{G} is an almost complete intersection ideal. Therefore, $\operatorname{ht}\left(\mathcal{I}_{G}\right)=$ $\mu\left(\mathcal{I}_{G}\right)-1=n-1$. We claim that $\operatorname{deg}_{G}(u) \leq 3$, for every $u \in V(G)$. Let if possible, there exist a vertex u such that $\operatorname{deg}_{G}(u) \geq 4$. Then $\{u\} \in \mathcal{C}(G)$ and $b_{G}(\{u\}) \geq 3$. Therefore, $\operatorname{ht}\left(\mathfrak{p}_{\{u\}}^{\sigma}(G)\right)=n+1-b_{G}(\{u\}) \leq n-2$, which is a contradiction. Hence, $\operatorname{deg}_{G}(u) \leq 3$ for all $u \in V(G)$. Now, let $u, v \in V(G)$ be distinct vertices such that $\operatorname{deg}_{G}(u)=3$ and $\operatorname{deg}_{G}(v)=3$. If $\{u, v\} \notin E(G)$, then for $T=\{u, v\}, T \in \mathcal{C}(G)$ and $b_{G}(T)=4$. Consequently, $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+|T|-b_{G}(T)=n-2$ which conflicts the fact that $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n-1$. Thus, if two vertices have degree three, then they are adjacent. If the number of vertices of degree three is at most 2 , then G is either of type (1) or type (2). If the number of vertices of degree three is more than two, then the odd cycle has length 3 , each vertex of the cycle has degree three and these are only vertices with degree three. Hence, G is of type (3).

Now, we assume that L_{G} is an almost complete intersection ideal. Therefore, $\operatorname{ht}\left(L_{G}\right)=$ $\mu\left(L_{G}\right)-1=n-1$. Suppose $\sqrt{-1} \in \mathbb{K}$, then by Remark 3.4, \mathcal{I}_{G} is almost complete intersection and hence, we are done. Suppose $\sqrt{-1} \notin \mathbb{K}$, then we claim that $\operatorname{deg}_{G}(u) \leq 3$, for every $u \in V(G)$. If not, then there is a vertex u such that $\operatorname{deg}_{G}(u) \geq 4$. Clearly, $\{u\} \in \mathcal{C}(G)$ and $b_{G}(\{u\}) \geq 3$. Therefore, $\operatorname{ht}\left(Q_{\{u\}}(G)\right)=n+1-b_{G}(\{u\}) \leq n-2$, which conflicts the fact that $\operatorname{ht}\left(L_{G}\right)=n-1$. Hence $\operatorname{deg}_{G}(u) \leq 3$. Now, let $u, v \in V(G)$ such that $\operatorname{deg}_{G}(u)=3, \operatorname{deg}_{G}(v)=3$ and $u \neq v$. If $\{u, v\} \notin E(G)$, then for $T=\{u, v\}, T \in \mathcal{C}(G)$ and $b_{G}(T)=4$. Therefore, $\operatorname{ht}\left(Q_{T}(G)\right)=n+|T|-b_{G}(T)=n-2$ which is a contradiction. Now, the proof is in the same lines as the proof for \mathcal{I}_{G}.

Conversely, if G is either of type (1) or of type (2), then $L_{G}=L_{G \backslash e}+\left(g_{e}\right)$ and $\mathcal{I}_{G}=$ $\mathcal{I}_{G \backslash e}+\left(\bar{g}_{e}\right)$. By Corollary 3.6, $L_{G \backslash e}$ and $\mathcal{I}_{G \backslash e}$ are complete intersections. Since $\operatorname{char}(\mathbb{K}) \neq 2$, $L_{G \backslash e}$ and $\mathcal{I}_{G \backslash e}$ are radical ideal. Therefore, $L_{G \backslash e}: g_{e}=L_{G \backslash e}: g_{e}^{2}$ and $\mathcal{I}_{G \backslash e}: \bar{g}_{e}=\mathcal{I}_{G \backslash e}: \bar{g}_{e}{ }^{2}$. Hence, by [7, Theorem 4.7(ii)] and Theorem [3.5, the assertion follows.

Now, we assume that G is of type (3). Let u, v, w be the vertices of the cycle and $T \in$ $\mathcal{C}(G)$. We claim that $\{u, v, w\} \cap T=\emptyset$ if and only if $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n$. First assume that $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n$. Since $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+|T|-b_{G}(T)=n$, we have $|T|=b_{G}(T)$. If possible, let $\{u, v, w\} \cap T \neq \emptyset$. Without loss of generality, we may assume that $u \in T$. One can note that $T \backslash\{u\} \in \mathcal{C}(G \backslash u)$ and $b_{G \backslash u}(T \backslash\{u\})=b_{G}(T)$. Since $G \backslash u$ is disjoint union of two paths, $\mathcal{I}_{G \backslash u}$ is complete intersection and therefore, $\operatorname{ht}\left(\mathcal{I}_{G \backslash u}\right)=n-3=\operatorname{ht}\left(\mathfrak{p}_{T \backslash\{u\}}^{\sigma}(G \backslash u)\right)=$ $n-1+|T \backslash\{u\}|-b_{G \backslash u}(T \backslash\{u\})$. Thus, we have $|T|=b_{G \backslash u}(T \backslash\{u\})-1=b_{G}(T)-1$, which is a contradiction. Conversely, if $\{u, v, w\} \cap T=\emptyset$ and $T \neq \emptyset$, then every element of T has degree two in G and for every pair $u^{\prime}, v^{\prime} \in T,\left\{u^{\prime}, v^{\prime}\right\} \notin E(G)$. Thus, by deleting each of the elements of T increases the number of bipartite connected components of the corresponding graph by one and hence, $b_{G}(T)=|T|$. From the proof of the claim, we observe that $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n-1=\mu\left(\mathcal{I}_{G}\right)-1$. Let $T \in \mathcal{C}(G)$ such that $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n-1$. Then $\{u, v, w\} \cap T \neq \emptyset$ and $\{u, v, w\} \not \subset T$. We may assume that $u \in T$. Let $N_{G}(u)=\{v, w, z\}$. Since $T \in \mathcal{C}(G), z \notin T$. Note that $A=\{u, v, w, z\}$ forms a claw in G with center u and $(-1)^{p_{A}(v)} f_{z, w} \bar{g}_{u, v}+(-1)^{p_{A}(z)} f_{v, w} \bar{g}_{u, z}+(-1)^{p_{A}(w)} f_{v, z} \bar{g}_{u, w}=0$. The minimal presentation of \mathcal{I}_{G} is

$$
S^{\beta_{2}\left(S / \mathcal{I}_{G}\right)} \xrightarrow{\phi} S^{n} \longrightarrow \mathcal{I}_{G} \longrightarrow 0 .
$$

Therefore, $f_{z, w}, f_{v, w}, f_{v, z} \in I_{1}(\phi)$, where $I_{1}(\phi)$ is an ideal generated by entries of the matrix ϕ. Since $z \notin T$ and $\{u, v, w\} \not \subset T$, we have $I_{1}(\phi) \not \subset \mathfrak{p}_{T}^{\sigma}(G)$. Consequently, by [2, Lemma 1.4.8], $\mu\left(\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}\right) \leq n-1$. As ht $\left(\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}\right)=n-1$, by [22, Theorem 13.5], $\mu\left(\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}\right) \geq n-1$.

Hence, $\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}$ is complete intersection. Now, if $T \in \mathcal{C}(G)$ such that $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n$, then it follows from [22, Theorem 13.5], $\mu\left(\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}\right) \geq n$. Since $\mu\left(\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}\right) \leq \mu\left(\mathcal{I}_{G}\right)=n$, we have $\mu\left(\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}\right)=n$. Hence, $\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}$ is complete intersection.

Suppose $\sqrt{-1} \in \mathbb{K}$, then \mathcal{I}_{G} is almost complete intersection and hence, L_{G} is almost complete intersection, by Remark 3.4. It remains to prove that if G is of type (3) and $\sqrt{-1} \notin \mathbb{K}$, then L_{G} is an almost complete intersection ideal. The proof is in the same lines as the proof for \mathcal{I}_{G} by replacing $\mathfrak{p}_{T}^{\sigma}(G)$ by $Q_{T}(G)$.

One can observe that if G is a connected non-bipartite graph, then $\mathfrak{p}^{+}(G)$ is a minimal prime of \mathcal{I}_{G}. Therefore, $\operatorname{ht}\left(\mathcal{I}_{G}\right) \leq \operatorname{ht}\left(\mathfrak{p}^{+}(G)\right)=n$. If $\sqrt{-1} \notin \mathbb{K}, \operatorname{char}(\mathbb{K}) \neq 2$ and G is a nonbipartite graph, then $I_{K_{n}}$ is one of the minimal primes of L_{G}. Therefore, $\operatorname{ht}\left(L_{G}\right) \leq \operatorname{ht}\left(I_{K_{n}}\right)=$ n. If G is a connected non-bipartite graph such that L_{G} or \mathcal{I}_{G} is almost complete intersection, then $n \leq|E(G)| \leq n+1$. We now assume that G is connected non-bipartite graph other than odd unicyclic graph, i.e. $|E(G)|=n+1$. So, G is obtained by adding an edge in a unicyclic graph. First, we give classification of a connected non-bipartite bicyclic cactus graph whose LSS ideals and parity binomial edge ideals are almost complete intersections.

Theorem 3.9. Let G be a connected non-bipartite bicyclic cactus graph on [n]. Assume that $\operatorname{char}(\mathbb{K}) \neq 2$. Then L_{G} is almost complete intersection if and only if \mathcal{I}_{G} is almost complete intersection if and only if G is obtained by adding an edge e between two disjoint odd cycles.

Proof. First, assume that \mathcal{I}_{G} is almost complete intersection. Therefore, $\operatorname{ht}\left(\mathcal{I}_{G}\right)=\mu\left(\mathcal{I}_{G}\right)-$ $1=n$. We claim that the distance between the two cycles is ≥ 1. If both cycles share a common vertex say v, then $\{v\} \in \mathcal{C}(G), b_{G}(\{v\}) \geq 2$ and $\operatorname{ht}\left(\mathfrak{p}_{\{v\}}^{\sigma}(G)\right) \leq n-1$, which is not possible as $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n$. Now, we claim that both cycles of G are odd cycles. Let u be the vertex of an odd cycle and v be the vertex of another cycle such that $d(u, v)$ is the distance between the two cycles. Clearly, $\{u\} \in \mathcal{C}(G)$. If v is the vertex of an even cycle, then $b_{G}(\{u\}) \geq 2$. So, $\operatorname{ht}\left(\mathfrak{p}_{\{u\}}^{\sigma}(G)\right) \leq n-1$ which is not possible. Thus, both cycles of G are odd cycles. If $d(u, v) \geq 2$, then $T=\{u, v\} \in \mathcal{C}(G)$ and $b_{G}(T) \geq 3$. Consequently, $\mathfrak{p}_{T}^{\sigma}(G)$ is a minimal prime of \mathcal{I}_{G} and $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right) \leq n-1$, which conflicts the fact that ht $\left(\mathcal{I}_{G}\right)=n$. Hence, $\{u, v\} \in E(G)$. Let $w \in V(G) \backslash\{u, v\}$. One can note that either $\{u, w\} \notin E(G)$ or $\{v, w\} \notin E(G)$. If $\operatorname{deg}_{G}(w) \geq 3$, then either $T=\{u, w\} \in \mathcal{C}(G)$ or $T=\{v, w\} \in \mathcal{C}(G)$. In either case $b_{G}(T) \geq 3$ which implies that $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right) \leq n-1$. Therefore, $\operatorname{deg}_{G}(w)=2$, for $w \in V(G) \backslash\{u, v\}$. Hence, G is obtained by adding an edge e between two disjoint odd cycles.

Now, assume that L_{G} is almost complete intersection. Suppose $\sqrt{-1} \in \mathbb{K}$, then by Remark 3.4. \mathcal{I}_{G} is almost complete intersection and hence, G satisfies the hypothesis. Suppose $\sqrt{-1} \notin \mathbb{K}$, then the proof is in the same lines as the proof for \mathcal{I}_{G}.

Conversely, if G is obtained by adding an edge e between two disjoint odd cycles, then $L_{G}=L_{G \backslash e}+\left(g_{e}\right)$ and $\mathcal{I}_{G}=\mathcal{I}_{G \backslash e}+\left(\bar{g}_{e}\right)$. By virtue of Corollary 3.6, both $L_{G \backslash e}$ and $\mathcal{I}_{G \backslash e}$ are complete intersections. As char $(\mathbb{K}) \neq 2, L_{G \backslash e}$ and $\mathcal{I}_{G \backslash e}$ are radical ideal. Therefore, $L_{G \backslash e}: g_{e}=L_{G \backslash e}: g_{e}^{2}$ and $\mathcal{I}_{G \backslash e}: \bar{g}_{e}=\mathcal{I}_{G \backslash e}: \bar{g}_{e}{ }^{2}$. Hence, by [7, Theorem 4.7(ii)] and Theorem 3.5, the assertion follows.

We now consider the case when G is a connected non-bipartite graph on $[n]$ with $|E(G)|=$ $n+1$ and it is not a bicyclic cactus graph. Therefore, G is obtained from a unicyclic graph H on m vertices by attaching a path P_{n-m+2} between two distinct vertices of the unique cycle of H. More preciesly, let H be a unicyclic graph on m vertices and u, v distinct vertices of
the unique cycle of H. Let G be the graph obtained from H by attaching one end vertex of P_{n-m+2} at u and another end vertex at v. Note that $T=\{u, v\} \in \mathcal{C}(G)$. If $n-m>0$, then $b_{G}(T) \geq 3$ and therefore, $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right) \leq n-1$ and $\operatorname{ht}\left(Q_{T}(G)\right) \leq n-1$. Also, if $\operatorname{deg}_{G}(u) \geq 4$, then u is a cut vertex of G with $b_{G}(\{u\}) \geq 2$. So, $\{u\} \in \mathcal{C}(G)$ and $\operatorname{ht}\left(\mathfrak{p}_{\{u\}}^{\sigma}(G)\right) \leq n-1$, $\operatorname{ht}\left(Q_{\{u\}}(G)\right) \leq n-1$. Similarily, if $\operatorname{deg}_{G}(v) \geq 4$, then $\{v\} \in \mathcal{C}(G)$ and $\operatorname{ht}\left(\mathfrak{p}_{\{v\}}^{\sigma}(G)\right) \leq n-1$, $\operatorname{ht}\left(Q_{\{v\}}(G)\right) \leq n-1$. Thus, if \mathcal{I}_{G} or L_{G} is almost complete intersection, then $n=m$ and $\operatorname{deg}_{G}(u)=\operatorname{deg}_{G}(v)=3$, i.e. G is obtained by adding a chord $e=\{u, v\}$ in a unicyclic graph H on $[n]$ such that $\operatorname{deg}_{H}(u)=\operatorname{deg}_{H}(v)=2$.

Theorem 3.10. Let G be a connected graph which is obtained by adding a chord $e=\{u, v\}$ in an odd unicyclic graph H such that $\operatorname{deg}_{H}(u)=\operatorname{deg}_{H}(v)=2$. Assume that char $(\mathbb{K}) \neq 2$. Then L_{G} is almost complete intersection if and only if \mathcal{I}_{G} is almost complete intersection if and only if H is an odd cycle.

Proof. First, we assume that \mathcal{I}_{G} is almost complete intersection. Consequently, $\operatorname{ht}\left(\mathcal{I}_{G}\right)=$ $\mu\left(\mathcal{I}_{G}\right)-1=n$. If $w \notin\{u, v\}$ is a vertex of an induced odd cycle of G such that $\operatorname{deg}_{G}(w) \geq 3$, then $\{w\} \in \mathcal{C}(G), b_{G}(\{w\}) \geq 2$ and hence, $\operatorname{ht}\left(\mathcal{I}_{G}\right) \leq \operatorname{ht}\left(\mathfrak{p}_{\{w\}}^{\sigma}(G)\right) \leq n-1$. Now, if $w \notin\{u, v\}$ is a vertex of an even induced cycle such that $\operatorname{deg}_{G}(w) \geq 3$, then either $\{u, w\} \notin E(G)$ or $\{v, w\} \notin E(G)$. Assume that $\{u, w\} \notin E(G)$. Therefore, $T=\{u, w\} \in \mathcal{C}(G), b_{G}(T) \geq 3$ and hence, $\mathfrak{p}_{T}^{\sigma}(G)$ is a minimal prime of \mathcal{I}_{G} with $\operatorname{ht}\left(\mathcal{I}_{G}\right) \leq \operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right) \leq n-1$. We have a contradiction in each case. Thus, $\operatorname{deg}_{G}(w)=2$, for $w \in V(G) \backslash\{u, v\}$. Hence, H is an odd cycle.

Now, assume that L_{G} is almost complete intersection. Suppose $\sqrt{-1} \in \mathbb{K}$, then by Remark 3.4. \mathcal{I}_{G} is almost complete intersection and hence, H is an odd cycle. Suppose $\sqrt{-1} \notin \mathbb{K}$, then the proof is in the same lines as the proof for \mathcal{I}_{G}.

Conversely, if G is obtained by adding a chord e in an odd cycle H, then $L_{G}=L_{H}+\left(g_{e}\right)$ and $\mathcal{I}_{G}=\mathcal{I}_{H}+\left(\bar{g}_{e}\right)$. By Theorem 3.5, L_{H} and \mathcal{I}_{H} are complete intersections. Since char $(\mathbb{K}) \neq 2$, L_{H} and \mathcal{I}_{H} are radical ideal. Therefore, $L_{H}: g_{e}=L_{H}: g_{e}^{2}$ and $\mathcal{I}_{H}: \bar{g}_{e}=\mathcal{I}_{H}: \bar{g}_{e}{ }^{2}$. Hence, the assertion follows from [7, Theorem 4.7(ii)] and Corollary 3.6,

Theorem 3.11. Let G be a connected non-bipartite graph which is obtained by adding a chord $e=\{u, v\}$ in an even unicyclic graph H such that $\operatorname{deg}_{H}(u)=\operatorname{deg}_{H}(v)=2$. Then L_{G} is almost complete intersection if and only if \mathcal{I}_{G} is almost complete intersection if and only if H is one of the following:
(1) H is an even cycle,
(2) H is obtained by attaching a path to a vertex i of an even cycle such that $\{u, i\},\{v, i\}$ are edges of the even cycle.

Proof. First, assume that \mathcal{I}_{G} is an almost complete intersection ideal. Therefore, $\operatorname{ht}\left(\mathcal{I}_{G}\right)=$ $\mu\left(\mathcal{I}_{G}\right)-1=n$. Note that G has two induced odd cycles. If w is not a vertex of an induced cycle and $\operatorname{deg}_{G}(w) \geq 3$, then $\{w\} \in \mathcal{C}(G), b_{G}(\{w\}) \geq 2$ and $\operatorname{ht}\left(\mathfrak{p}_{\{w\}}^{\sigma}(G)\right) \leq n-1$ which is a contradiction to the fact that $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n$. Therefore, $\operatorname{deg}_{G}(w) \leq 2$, if w is not a vertex of an induced cycle. Now, we assume that w is a vertex of an induced odd cycle. We claim that $\operatorname{deg}_{G}(w) \leq 3$. Suppose that $\operatorname{deg}_{G}(w) \geq 4$, then w is a bipartition vertex of G. Consequently, $\{w\} \in \mathcal{C}(G), b_{G}(\{w\}) \geq 2$ and $\operatorname{ht}\left(\mathfrak{p}_{\{w\}}^{\sigma}(G)\right) \leq n-1$, which is a contradiction. Hence, $\operatorname{deg}_{G}(w) \leq 3$, if w is a vertex of an induced cycle. If $\operatorname{deg}_{G}(w)=2$, for $w \in V(G) \backslash\{u, v\}$, then H is an even cycle. Now, let w be a vertex of the cycle other than u and v such that $\operatorname{deg}_{G}(w)=3$. If either $\{u, w\} \notin E(G)$ or $\{v, w\} \notin E(G)$ then, for
$T=\{u, w\}$ or $\{v, w\}$ respectively, $\mathfrak{p}_{T}^{\sigma}(G)$ is a minimal prime of \mathcal{I}_{G} with ht $\left(\mathfrak{p}_{T}^{\sigma}(G)\right) \leq n-1$ as $b_{G}(T) \geq 3$. Thus, if $w \in V(G) \backslash\{u, v\}$ such that $\operatorname{deg}_{G}(w)=3$, then $\{u, w\},\{v, w\} \in E(G)$. Now, if $w, w^{\prime} \in V(G) \backslash\{u, v\}$ such that $\operatorname{deg}_{G}(w)=\operatorname{deg}_{G}\left(w^{\prime}\right)=3$ and $w \neq w^{\prime}$, then $T=\left\{w, w^{\prime}\right\} \in \mathcal{C}(G)$ and $b_{G}(T) \geq 3$, which conflicts the fact that $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n$. Therefore, H is obtained by attaching a path to a vertex i of an even cycle such that $\{u, i\},\{v, i\}$ are edges of the even cycle.

Now, assume that L_{G} is almost complete intersection and $\operatorname{char}(\mathbb{K}) \neq 2$. Suppose $\sqrt{-1} \in \mathbb{K}$, then by Remark 3.4, \mathcal{I}_{G} is almost complete intersection and hence, H is of the required type. Suppose $\sqrt{-1} \notin \mathbb{K}$, then the proof is in the same lines as the proof for \mathcal{I}_{G}.

We now prove the converse. Assume that H is an even cycle. First, we prove that $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n$. Let $T \in \mathcal{C}(G)$ such that $T \neq \emptyset$. We claim that, if $u \in T$ or $v \in T$, then $|T|=b_{G}(T)$. We can assume that $u \in T$. Clearly, $T \backslash\{u\} \in \mathcal{C}(G \backslash u)$. One can note that $G \backslash u$ is path graph on $n-1$ vertices. Therefore, $L_{G \backslash u}$ and $\mathcal{I}_{G \backslash u}$ are complete intersections and hence $\operatorname{ht}\left(\mathcal{I}_{G \backslash u}\right)=\operatorname{ht}\left(L_{G \backslash u}\right)=n-2=n-1+|T \backslash\{u\}|-b_{G \backslash u}(T \backslash\{u\})$. Consequently, we have $|T|=b_{G}(T)$. Now, assume that $\{u, v\} \cap T=\emptyset$. Let $w \in T$. Then $T \backslash w \in \mathcal{C}(G \backslash w)$. Observe that $G \backslash w$ is an odd unicyclic graph such that $\mathcal{I}_{G \backslash w}$ is either complete intersection or almost complete intersection. If $\mathcal{I}_{G \backslash w}$ is complete intersection, then $\operatorname{ht}\left(\mathfrak{p}_{T \backslash\{w\}}^{\sigma}(G \backslash w)\right)=$ $n-1+|T \backslash\{w\}|-b_{G \backslash w}(T \backslash\{w\})=n-1$. Consequently, we have $|T|=b_{G}(T)+1$. If $\mathcal{I}_{G \backslash w}$ is almost complete intersection, then $G \backslash w$ is of type (2) graph in Theorem 3.8, Since each vertex of $T \backslash w$ has degree two in $G \backslash w$, deleting each of the elements of $T \backslash w$ increases the number of bipartite connected components of the corresponding graph by one. Therefore, $|T \backslash\{w\}|=b_{G \backslash w}(T \backslash\{w\})=b_{G}(T)$ which further implies that $|T|=b_{G}(T)+1$. Thus, $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+1$ if and only if $T \neq \emptyset$ and $T \cap\{u, v\}=\emptyset$. By [22, Theorem 13.5], $\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}$ is complete intersection ideal, if $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+1$. Now, let $T \in \mathcal{C}(G)$ such that $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n$. The minimal presentation of \mathcal{I}_{G} is

$$
S^{\beta_{2}\left(S / \mathcal{I}_{G}\right)} \xrightarrow{\varphi} S^{n+1} \longrightarrow \mathcal{I}_{G} \longrightarrow 0 .
$$

Let $Y=y_{1} \cdots y_{n}$. Define $b \in S^{n}$ as follows:

$$
(b)_{k}=\frac{Y}{y_{k} y_{k+1}} \text { for } 1 \leq k \leq n-1,(b)_{n}=\frac{Y}{y_{1} y_{n}}
$$

It follows from [14, Theorem 3.5] that $\sum_{k=1}^{n-1}(b)_{k} f_{k, k+1}-(b)_{n} f_{1, n}=0$. Consequently, we have $\sum_{k=1}^{n-1} \Phi_{2}\left((b)_{k}\right) \bar{g}_{k, k+1}-\Phi_{2}\left((b)_{n}\right) \bar{g}_{1, n}=0$. Therefore, $\Phi_{2}\left((b)_{k}\right) \in I_{1}(\varphi)$, for $1 \leq k \leq n$. If $T=\emptyset$, then $\Phi_{2}\left((b)_{k}\right) \notin \mathfrak{p}_{\emptyset}^{\sigma}(G)$ which implies that $I_{1}(\varphi) \not \subset \mathfrak{p}_{\emptyset}^{\sigma}(G)$. We now consider that $T \neq \emptyset$. Since $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n$, we have $\{u, v\} \cap T \neq \emptyset$. Without loss of generality assume that $u \in T$. As $\operatorname{deg}_{G}(u)=3$, let $N_{G}(u)=\{v, w, z\}$. Note that $T \backslash\{u\} \in \mathcal{C}(G \backslash u)$. Therefore, $w, z \notin T$. Notice that $A=\{u, v, w, z\}$ forms a claw in G with center u and $(-1)^{p_{A}(v)} f_{z, w} \bar{g}_{u, v}+(-1)^{p_{A}(z)} f_{v, w} \bar{g}_{u, z}+(-1)^{p_{A}(w)} f_{v, z} \bar{g}_{u, w}=0$. Consequently, $f_{z, w}, f_{v, w}, f_{v, z} \in$ $I_{1}(\varphi)$. If z and w belong to different components of $G[\bar{T}]$, then $f_{z, w} \notin \mathfrak{p}_{T}^{\sigma}(G)$. In the case of z and w belongs to same component of $G[\bar{T}]$, then v and z belong to different partition of bipartite graph $G \backslash u$. Therefore, $f_{v, z} \notin \mathfrak{p}_{T}^{\sigma}(G)$. Thus, $I_{1}(\varphi) \not \subset \mathfrak{p}_{T}^{\sigma}(G)$, if $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n$. By virtue of [2, Lemma 1.4.8], $\mu\left(\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}\right) \leq n$, if $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n$. Hence, it follows from [22, Theorem 13.5] that \mathcal{I}_{G} is almost complete intersection.

We now assume that H satisfies hypothesis (2). Let $T \in \mathcal{C}(G)$ such that $T \neq \emptyset$. If $u \in T$ or $v \in T$, then following the proof of type (1), $|T|=b_{G}(T)$. So, assume that $\{u, v\} \cap T=\emptyset$. Let $w \in V(G) \backslash\{u, v\}$ be such that $\operatorname{deg}_{G}(w)=3$. If $w \in T$, then $T \backslash\{w\} \in \mathcal{C}(G \backslash w)$ and
$b_{G}(T)=b_{G \backslash w}(T \backslash\{w\})$. Since $G \backslash w$ is disjoint union of a path and an odd cycle, $\mathcal{I}_{G \backslash w}$ is complete intersection. Therefore, $\operatorname{ht}\left(\mathfrak{p}_{T \backslash\{w\}}^{\sigma}(G \backslash w)\right)=n-2+|T \backslash\{w\}|-b_{G}(T)=n-3$ which further implies that $b_{G}(T)=|T|$. Now, we consider that $\{u, v, w\} \cap T=\emptyset$. In the case that T contains a vertex of cycle say z, then $T \backslash\{z\} \in \mathcal{C}(G \backslash z)$ and $\mathcal{I}_{G \backslash z}$ is almost complete intersection of type (3) in Theorem 3.8. As we have proved in Theorem 3.8, $\operatorname{ht}\left(\mathfrak{p}_{T \backslash\{z\}}^{\sigma}(G \backslash z)\right)=n-1+|T \backslash\{z\}|-b_{G \backslash z}(T \backslash\{z\})=n-1$ which implies that $|T|=b_{G}(T)+1$. If none of the vertices of the cycle belongs to T, then removing each of the elements of T increases the number of bipartite connected components of the corresponding graph by one. Consequently, we have $|T|=b_{G}(T)$. Thus, $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n$. Also, $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+1$ if and only if $T \neq \emptyset, T \cap\{u, v, w\}=\emptyset$ and T contains at least one vertex of cycle. Following the proof for type (1), one can prove that $\left(\mathcal{I}_{G}\right)_{\mathfrak{p}_{T}^{\sigma}(G)}$ is complete intersection for all $T \in \mathcal{C}(G)$. Hence, \mathcal{I}_{G} is an almost complete intersection ideal.

Suppose $\sqrt{-1} \in \mathbb{K}$ and $\operatorname{char}(\mathbb{K}) \neq 2$, then L_{G} is almost complete intersection, by Remark 3.4 and the above paragraph. Now, it remains to prove that if H is either even cycle or H satisfies hypothesis $(2), \sqrt{-1} \notin \mathbb{K}$ and $\operatorname{char}(\mathbb{K}) \neq 2$, then L_{G} is an almost complete intersection ideal. The proof of which is in the same lines as the proof for \mathcal{I}_{G} by replacing $\mathfrak{p}_{T}^{\sigma}(G)$ by $Q_{T}(G)$.

We conclude this section by characterizing disconnected graphs whose LSS ideals and parity binomial edge ideals are almost complete intersections.
Corollary 3.12. Let $G=G_{1} \sqcup \cdots \sqcup G_{k}$ be a disconnected graph on $[n]$. Then \mathcal{I}_{G} is almost complete intersection if and only if L_{G} is almost complete intersection if and only if for some $i, \mathcal{I}_{G_{i}}$ is almost complete intersection and for $j \neq i, \mathcal{I}_{G_{j}}$ are complete intersections.

4. Cohen-Macaulayness of the Rees Algebra

Let G be a simple graph on $[n]$ and $R=S\left[T_{\{i, j\}}:\{i, j\} \in E(G)\right.$ with $\left.i<j\right]$. Let $\delta, \gamma: R \rightarrow S[t]$ be given by $\delta\left(T_{\{i, j\}}\right)=g_{i, j} t, \gamma\left(T_{\{i, j\}}\right)=\bar{g}_{i, j} t$. Then $\operatorname{Im}(\delta)=\mathcal{R}\left(L_{G}\right), \operatorname{Im}(\gamma)=$ $\mathcal{R}\left(\mathcal{I}_{G}\right)$ and $\operatorname{ker}(\delta), \operatorname{ker}(\gamma)$ are called the defining ideals of $\mathcal{R}\left(L_{G}\right), \mathcal{R}\left(\mathcal{I}_{G}\right)$ respectively. We now study the Cohen-Macaulayness of the Rees algebra of almost complete intersection LSS ideals and parity binomial edge ideals. We first recall a result that characterizes the CohenMacaulayness of the Rees algebra and the associated graded ring of an almost complete intersection ideal.

Theorem 4.1. [8, Corollary 1.8] Let A be a Cohen-Macaulay local (graded) ring and $I \subset A$ be an almost complete intersection (homogeneous) ideal in A. Then
(1) $\operatorname{gr}_{A}(I)$ is Cohen-Macaulay if and only if $\operatorname{depth}(A / I) \geq \operatorname{dim}(A / I)-1$.
(2) $\mathcal{R}(I)$ is Cohen-Macaulay if and only if $\operatorname{ht}(I)>0$ and $\operatorname{gr}_{A}(I)$ is Cohen-Macaulay.

Thus, to prove that $\mathcal{R}\left(\mathcal{I}_{G}\right)$ is Cohen-Macaulay, it is enough to prove that $\operatorname{depth}\left(S / \mathcal{I}_{G}\right) \geq$ $\operatorname{dim}\left(S / \mathcal{I}_{G}\right)-1$, which is equivalent to prove that S / \mathcal{I}_{G} is either Cohen-Macaulay or almost Cohen-Macaulay. Similarly, to prove that $\mathcal{R}\left(L_{G}\right)$ is Cohen-Macaulay, it is enough to prove that S / L_{G} is either Cohen-Macaulay or almost Cohen-Macaulay.

Lemma 4.2. Let G be a graph on $[n]$. Then $\beta_{i, j}\left(S / L_{G}\right)=\beta_{i, j}\left(S / \mathcal{I}_{G}\right)$ for all i, j. In particular, $\operatorname{pd}\left(S / L_{G}\right)=\operatorname{pd}\left(S / \mathcal{I}_{G}\right), \operatorname{dim}\left(S / L_{G}\right)=\operatorname{dim}\left(S / \mathcal{I}_{G}\right)$ and depth $\left(S / L_{G}\right)=\operatorname{depth}\left(S / \mathcal{I}_{G}\right)$.

Proof. If $\operatorname{char}(\mathbb{K})=2$, then $L_{G}=\mathcal{I}_{G}$ and hence, we are done. Assume now that $\operatorname{char}(\mathbb{K}) \neq 2$. If $\sqrt{-1} \in \mathbb{K}$, then the assertion follows from Remark 3.4. Suppose that $\sqrt{-1} \notin \mathbb{K}$ and set
$\mathbb{L}=\mathbb{K}(\sqrt{-1}), S^{\prime}=\mathbb{L} \otimes_{\mathbb{K}} S$. Let $\left(\mathcal{F}_{.}, d_{.}^{\mathcal{F}}\right)$ and $\left(\mathcal{G}_{.}, d_{.}^{\mathcal{G}}\right)$ be minimal free resolution of S / L_{G} and S / \mathcal{I}_{G}, respectively. Since $\mathbb{K} \subset \mathbb{L}$ is faithfully flat extension, $\left(\mathbb{L} \otimes_{\mathbb{K}} \mathcal{F}\right.$., $\left.\mathbf{1}_{\mathbb{L}} \otimes_{\mathbb{K}} d^{\mathcal{F}}\right)$ and $\left(\mathbb{L} \otimes_{\mathbb{K}} \mathcal{G} ., \mathbf{1}_{\mathbb{L}} \otimes_{\mathbb{K}} d_{.}^{\mathcal{G}}\right)$ are free resolutions of S^{\prime} / L_{G} and $S^{\prime} / \mathcal{I}_{G}$ respectively. Since for each i, $\mathbf{1}_{\mathbb{L}} \otimes_{\mathbb{K}} d_{i}^{\mathcal{F}}=d_{i}^{\mathcal{F}}$ and $\mathbf{1}_{\mathbb{L}} \otimes_{\mathbb{K}} d_{i}^{\mathcal{G}}=d_{i}^{\mathcal{G}},\left(\mathbb{L} \otimes_{\mathbb{K}} \mathcal{F} ., \mathbf{1}_{\mathbb{L}} \otimes_{\mathbb{K}} d_{.}^{\mathcal{F}}\right)$ and $\left(\mathbb{L} \otimes_{\mathbb{K}} \mathcal{G}, \mathbf{1}_{\mathbb{L}} \otimes_{\mathbb{K}} d_{.}^{\mathcal{G}}\right)$ are minimal free resolution of S^{\prime} / L_{G} and $S^{\prime} / \mathcal{I}_{G}$ respectively. Consequently, $\beta_{i, j}^{S}\left(S / L_{G}\right)=\beta_{i, j}^{S^{\prime}}\left(S^{\prime} / L_{G}\right)=$ $\beta_{i, j}^{S^{\prime}}\left(S^{\prime} / \mathcal{I}_{G}\right)=\beta_{i, j}^{S}\left(S / \mathcal{I}_{G}\right)$.

Due to Lemma 4.2, it is enough to study the Cohen-Macaulayness of almost complete intersection parity binomial edge ideals.

The following fundamental property of projective dimension is used repeatedly in this section.

Lemma 4.3. Let S be a standard graded polynomial ring. Let M, N and P be finitely generated graded S-modules. If $0 \rightarrow M \xrightarrow{f} N \xrightarrow{g} P \rightarrow 0$ is a short exact sequence with f, g graded homomorphisms of degree zero, then
(i) $\operatorname{pd}_{S}(M) \leq \max \left\{\operatorname{pd}_{S}(N), \operatorname{pd}_{S}(P)-1\right\}$,
(ii) $\operatorname{pd}_{S}(P) \leq \max \left\{\operatorname{pd}_{S}(N), \operatorname{pd}_{S}(M)+1\right\}$,
(iii) $\operatorname{pd}_{S}(P)=\operatorname{pd}_{S}(N)$ if $\operatorname{pd}_{S}(N)>\operatorname{pd}_{S}(M)$.

It follows from [14, Theorems 4.3, 4.7] that if G is a tree, then \mathcal{I}_{G} is almost complete intersection ideal if and only if S / \mathcal{I}_{G} is almost Cohen-Macaulay. Consequently, $\mathcal{R}\left(\mathcal{I}_{G}\right)$ and $\operatorname{gr}_{S}\left(\mathcal{I}_{G}\right)$ are Cohen-Macaulay. Now, we prove the same for odd unicyclic graphs. First, we compute the projective dimension of parity binomial edge ideal of an odd unicyclic graph.

Theorem 4.4. Let G be a connected odd unicyclic graph on $[n]$. Then $\operatorname{pd}\left(S / \mathcal{I}_{G}\right)=n$.
Proof. Since $\mathfrak{p}^{+}(G)$ is a minimal prime of \mathcal{I}_{G}, we get that $\operatorname{pd}\left(S / \mathcal{I}_{G}\right) \geq \operatorname{ht}\left(\mathfrak{p}^{+}(G)\right)=n$. Let $e=\{u, v\}$ be an edge of the cycle. Now, consider the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \frac{S}{\mathcal{I}_{G \backslash e}: \bar{g}_{e}}(-2) \xrightarrow{\cdot \bar{g}_{e}} \frac{S}{\mathcal{I}_{G \backslash e}} \longrightarrow \frac{S}{\mathcal{I}_{G}} \longrightarrow 0 . \tag{1}
\end{equation*}
$$

Observe that $G \backslash e$ is a tree and $(G \backslash e)_{e}$ is a block graph on $[n$]. It follows from [6, Theorem 1.1] that $\operatorname{pd}\left(S / J_{G \backslash e}\right)=n-1$ and $\operatorname{pd}\left(S / J_{(G \backslash e)_{e}}\right)=n-1$. Therefore, by virtue of Lemma 3.3, $\operatorname{pd}\left(S / \mathcal{I}_{G \backslash e}: \bar{g}_{e}\right)=\operatorname{pd}\left(S / J_{(G \backslash e)_{e}}\right)=n-1$ and by Remark 3.1, $\operatorname{pd}\left(S / \mathcal{I}_{G \backslash e}\right)=\operatorname{pd}\left(S / J_{G \backslash e}\right)=$ $n-1$. Hence, by applying Lemma 4.3 on the short exact sequence (1), $\operatorname{pd}\left(S / \mathcal{I}_{G}\right) \leq n$.

Theorem 4.5. Let G be a connected odd unicyclic graph on $[n]$. Assume that char $(\mathbb{K}) \neq 2$. Then the following are equivalent:
(1) S / \mathcal{I}_{G} is almost Cohen-Macaulay,
(2) \mathcal{I}_{G} is almost complete intersection.

In particular, $\mathcal{R}\left(\mathcal{I}_{G}\right)$ and $\operatorname{gr}_{S}\left(\mathcal{I}_{G}\right)$ are Cohen-Macaulay, if \mathcal{I}_{G} is almost complete intersection.
Proof. By Auslander-Buchsbaum formula and Theorem 4.4, $\operatorname{depth}\left(S / \mathcal{I}_{G}\right)=n$. Therefore, S / \mathcal{I}_{G} is almost Cohen-Macaulay if and only if $\operatorname{dim}\left(S / \mathcal{I}_{G}\right)=n+1$ if and only if $\operatorname{ht}\left(\mathcal{I}_{G}\right)=n-1$ if and only if \mathcal{I}_{G} is almost complete intersection, by Theorem 3.8.

Remark 4.6. Let G be a connected even unicyclic graph such that \mathcal{I}_{G} is an almost complete intersection ideal. Then, it follows from [14, Lemma 4.6] and Remark 3.1]that $\operatorname{pd}\left(S / \mathcal{I}_{G}\right) \leq n$. By virtue of [1, Theorem 6.1], S / \mathcal{I}_{G} is Cohen-Macaulay if and only if G is obtained by attaching a path of length ≥ 1 to two adjacent vertices of C_{4}. Since $\operatorname{dim}\left(S / \mathcal{I}_{G}\right)=n+1$,
if S / \mathcal{I}_{G} is not Cohen-Macaulay, then $\operatorname{depth}\left(S / \mathcal{I}_{G}\right)=n$ and hence, S / \mathcal{I}_{G} is almost CohenMacaulay. Moreover, $\operatorname{gr}_{S}\left(\mathcal{I}_{G}\right)$ and $\mathcal{R}\left(\mathcal{I}_{G}\right)$ are Cohen-Macaulay.

Now, we move on to study the Cohen-Macaulayness of $\mathcal{R}\left(\mathcal{I}_{G}\right)$, where G is obtained by adding a chord in a unicyclic graph such that \mathcal{I}_{G} is almost complete intersection. To do that, we need to compute the depth of S / \mathcal{I}_{G}.

A graph G is said to be closed, if generating set of J_{G} is a Gröbner basis with respect to lexicographic order induced by $x_{1}>\cdots>x_{n}>y_{1}>\cdots>y_{n}$. Let H be a connected closed graph on $[n]$ such that S / J_{H} is Cohen-Macaulay. By [6, Theorem 3.1], there exist integers $1=a_{1}<a_{2}<\cdots<a_{s}<a_{s+1}=n$ such that for $1 \leq i \leq s, F_{i}=\left[a_{i}, a_{i+1}\right]$ is a maximal clique and if F is a maximal clique, then $F=F_{i}$ for some $1 \leq i \leq s$. Set $e=\{1, n\}$. The graph $G=H \cup\{e\}$ is called the quasi-cycle graph associated to H. In [23], Mohammadi and Sharifan have studied the Hilbert series of binomial edge ideal of quasi-cycles.

Remark 4.7. [17, Remark 3.3] Let G be the quasi-cycle graph associated with a CohenMacaulay closed graph H. Let F_{1}, \ldots, F_{s} be a leaf order on $\Delta(H)$. Let $\operatorname{iv}(G)$ denote the number of internal vertices in G. If $H \neq P_{3}$, then $\operatorname{iv}(G) \geq s$ and $\operatorname{iv}(H)=s-1$.

Theorem 4.8. Let H be a connected closed graph on $[n]$ such that S / J_{H} is Cohen-Macaulay and $G=H \cup\{e\}$ be a quasi-cycle graph associated to H. Then $\operatorname{pd}\left(S / J_{G}\right) \leq n$. Moreover, if $H \neq P_{3}$, then $\operatorname{pd}\left(S / J_{G}\right)=n$.

Proof. If $H=P_{3}$, then $G=K_{3}$ and the result follows from [6, Theorem 1.1]. We now assume that $H \neq P_{3}$. We proceed by induction on $\operatorname{iv}(G)$. By virtue of $\operatorname{Remark} 4.7$, iv $(G) \geq 2$. If $\operatorname{iv}(G)=2$, then $H=G \backslash e$ is a block graph with exactly one internal vertex. Let $v \in V(H)$ be the internal vertex of H. Therefore, v is also an internal vertex of G. By [24, Lemma 4.8], $J_{G}=J_{G_{v}} \cap\left(\left(x_{v}, y_{v}\right)+J_{G \backslash v}\right)$. Note that G_{v} is a complete graph on [n] and $G \backslash v$ is a block graph on $n-1$ vertices. Therefore, by [6, Theorem 3.1], $\operatorname{pd}\left(S / J_{G_{v}}\right)=n-1$, $\operatorname{pd}\left(S /\left(\left(x_{v}, y_{v}\right)+J_{G \backslash v}\right)\right)=n$. Note that $J_{G_{v}}+\left(\left(x_{v}, y_{v}\right)+J_{G \backslash v}\right)=\left(x_{v}, y_{v}\right)+J_{G_{v} \backslash v}$. Therefore, we have the following short exact sequence:

$$
\begin{equation*}
0 \longrightarrow \frac{S}{J_{G}} \longrightarrow \frac{S}{J_{G_{v}}} \oplus \frac{S}{\left(x_{v}, y_{v}\right)+J_{G \backslash v}} \longrightarrow \frac{S}{\left(x_{v}, y_{v}\right)+J_{G_{v} \backslash v}} \longrightarrow 0 \tag{2}
\end{equation*}
$$

Observe that $G_{v} \backslash v$ is a complete graph on $n-1$ vertices. Consequently, by [6, Theorem 3.1], $\operatorname{pd}\left(S /\left(\left(x_{v}, y_{v}\right)+J_{G_{v} \backslash v}\right)\right)=n$. Thus, by Lemma 4.3 and the short exact sequence (2), $\operatorname{pd}\left(S / J_{G}\right) \leq n$.

Now assume that $\operatorname{iv}(G)>2$. Let $v \in V(H)$ be an internal vertex of H. Therefore, v is an internal vertex of G. Notice that $G \backslash v$ is a connected Cohen-Macaulay closed graph on $n-1$ vertices, therefore by [6, Theorem 3.1], $\operatorname{pd}\left(S /\left(\left(x_{v}, y_{v}\right)+J_{G \backslash v}\right)\right)=n$. Also, observe that G_{v} is a quasi-cycle graph with $\operatorname{iv}\left(G_{v}\right)=\operatorname{iv}(G)-1$, hence, by induction $\operatorname{pd}\left(S / J_{G_{v}}\right) \leq n$. Since $G_{v} \backslash v$ is a quasi-cycle on $n-1$ vertices with $\operatorname{iv}\left(G_{v} \backslash v\right)=\operatorname{iv}(G)-1$, by induction, $\operatorname{pd}\left(S /\left(\left(x_{v}, y_{v}\right)+J_{G_{v} \backslash v}\right)\right) \leq n+1$. Hence, using Lemma 4.3 in the short exact sequence (2), we conclude that $\operatorname{pd}\left(S / J_{G}\right) \leq n$. Now, if $H \neq P_{3}$, then either $s \geq 3$ or for some $1 \leq i \leq s,\left|F_{i}\right|>2$. In first case $T=\left\{a_{1}, a_{3}\right\}$ has the cut point property and in second case $T=\left\{a_{i}, a_{i+1}\right\}$ has the cut point property. In both the cases $c_{G}(T)=2$, consequently, $\operatorname{ht}\left(P_{T}(G)\right)=n+|T|-c_{G}(T)=n$. Hence, $\operatorname{pd}\left(S / J_{G}\right) \geq \operatorname{ht}\left(P_{T}(G)\right)=n$.

It follows from [23, Corollary 4.2] and Theorem 4.8 that if $H \neq P_{3}$, then S / J_{G} is almost Cohen-Macaulay.

Lemma 4.9. Let H be a connected closed graph on $[n-m+1]$ such that S / J_{H} is CohenMacaulay and $G^{\prime}=H \cup\left\{e^{\prime}\right\}$ be a quasi-cycle graph associated to H. Let v be an internal vertex of H and G be a graph on $[n]$ obtained by attaching a path P_{m} to the vertex v of G^{\prime}. Then $\operatorname{pd}\left(S / J_{G}\right) \leq n$. Moreover, if $\operatorname{iv}\left(G^{\prime}\right)=2$, then $\operatorname{pd}\left(S / J_{G}\right)=n-1$.

Proof. If $H=P_{3}$, then G is a closed graph such that S / J_{G} is Cohen-Macaulay. Thus, $\operatorname{pd}\left(S / J_{G}\right)=n-1$. Assume that $H \neq P_{3}$. Let $e=\{u, v\} \in E(G)$ such that $G \backslash e$ is the disjoint union of a path P_{m-1} and a quasi-cycle graph G^{\prime}. Assume that $u \in V\left(P_{m-1}\right)$. It follows from [23, Theorem 3.4] that $J_{G \backslash e}: f_{e}=J_{(G \backslash e)_{e}}$. Observe that $(G \backslash e)_{e}$ is the disjoint union of a path P_{m-1} and G_{v}^{\prime}. Note that G_{v}^{\prime} is either a quasi-cycle or a complete graph. Therefore, $\operatorname{pd}\left(S / J_{(G \backslash e)_{e}}\right)=m-2+\operatorname{pd}\left(S / J_{G_{v}^{\prime}}\right) \leq n-1$, by Theorem 4.8. Also, $\operatorname{pd}\left(S / J_{G \backslash e}\right)=m-2+\operatorname{pd}\left(S / J_{G^{\prime}}\right)=n-1$. From the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \frac{S}{J_{G \backslash e}: f_{e}}(-2) \xrightarrow{\cdot f_{e}} \frac{S}{J_{G \backslash e}} \longrightarrow \frac{S}{J_{G}} \longrightarrow 0 \tag{3}
\end{equation*}
$$

we get, $\operatorname{pd}\left(S / J_{G}\right) \leq n$. Now, if $\operatorname{iv}\left(G^{\prime}\right)=2$, then $(G \backslash e)_{e}$ is the disjoint union of a path P_{m-1} and a complete graph on $n-m+1$ vertices. Consequently, $\operatorname{pd}\left(S / J_{(G \backslash e)_{e}}\right)=n-2$. Hence, by Lemma 4.3 and the short exact sequence (3), $\operatorname{pd}\left(S / J_{G}\right)=n-1$.

We now consider the case that G is obtained by adding a chord in a unicyclic graph and \mathcal{I}_{G} is almost complete intersection. Let G be a graph and H a subgraph of G. Then G is said to be H-free graph if H is not an induced subgraph of G.

Theorem 4.10. Let G be a graph obtained by adding a chord $e^{\prime}=\{u, v\}$ in an odd cycle C_{n}. Then $\operatorname{pd}\left(S / \mathcal{I}_{G}\right)=n+1$, if G is C_{4}-free and $\operatorname{pd}\left(S / \mathcal{I}_{G}\right)=n$, if C_{4} is an induced subgraph of G.
Proof. Let $e=\{v, w\} \in E(G)$ be an edge of the induced odd cycle. Observe that $G \backslash e$ is an even unicyclic graph such that $\mathcal{I}_{G \backslash e}$ is almost complete intersection, by Theorem 3.7 and $S / \mathcal{I}_{G \backslash e}$ is not Cohen-Macaulay, by [1, Theorem 6.1]. By Remark 4.6, $\operatorname{pd}\left(S / \mathcal{I}_{G \backslash e}\right)=n$. It follows from Lemma 3.3 that $\mathcal{I}_{G \backslash e}: \bar{g}_{e}=\Phi_{2}\left(J_{(G \backslash e)_{e}}\right)$. Notice that $(G \backslash e)_{e}=(G \backslash e)_{v}$ is a graph obtained by attaching a path to an internal vertex of a quasi-cycle graph G^{\prime}. If C_{4} is an induced subgraph of G, then $\operatorname{iv}\left(G^{\prime}\right)=2$ and hence, $\operatorname{pd}\left(S / J_{(G \backslash e)_{e}}\right)=n-1$, by Lemma4.9. Now, by the short exact sequence (11) and Lemma 4.3, $\operatorname{pd}\left(S / \mathcal{I}_{G}\right)=n$. In the case that G is a C_{4}-free graph, the induced even cycle has length ≥ 6. Let $i, j \notin\{u, v\}$ be vertices of the induced even cycle such that i is not adjacent to j. Clearly, $T=\{i, j\} \in \mathcal{C}(G)$ and $b_{G}(T)=1$. Consequently, $\operatorname{pd}\left(S / \mathcal{I}_{G}\right) \geq \operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+1$. By Lemma 4.9, $\operatorname{pd}\left(S / J_{(G \backslash e)_{e}}\right) \leq n$. Thus, by applying Lemma 4.3 on the short exact sequence (1), we get, $\operatorname{pd}\left(S / \mathcal{I}_{G}\right) \leq n+1$, which proves the assertion.
Theorem 4.11. Let G be a non-bipartite graph obtained by adding a chord $e=\{u, v\}$ in an even cycle C_{n}. Then $\operatorname{pd}\left(S / \mathcal{I}_{G}\right)=n+1$.
Proof. By virtue of Lemma 3.3, $\mathcal{I}_{G \backslash e}: \bar{g}_{e}=\Phi_{2}\left(J_{(G \backslash e)_{e}}\right)$. Observe that $(G \backslash e)_{e}$ is a quasi-cycle graph on n vertices which is not a triangle. Therefore, $\operatorname{pd}\left(S / \mathcal{I}_{G \backslash e}: \bar{g}_{e}\right)=\operatorname{pd}\left(S / J_{(G \backslash e)_{e}}\right)=$ n, by Theorem 4.8. Also, $G \backslash e$ is a quasi-cycle graph on $[n]$ so that by Theorem 4.8, $\operatorname{pd}\left(S / \mathcal{I}_{G \backslash e}\right)=n$. Thus, using Lemma4.3 on the short exact sequence (11), we have $\operatorname{pd}\left(S / \mathcal{I}_{G}\right) \leq$ $n+1$. Observe that G has two induced odd cycles. Let $i, j \notin V(G) \backslash\{u, v\}$ such that i and j are vertices of distinct induced odd cycles in G. Then $T=\{i, j\} \in \mathcal{C}(G)$ and $b_{G}(T)=1$. Hence, $\operatorname{pd}\left(S / \mathcal{I}_{G}\right) \geq \operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+1$ which completes the proof.

A graph G on [5] with edge set $E(G)=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\},\{2,4\},\{3,5\}\}$ is called Kite graph.

Theorem 4.12. Let G be a non-bipartite graph on $[n]$. Assume that G satifies hypothesis of Theorem 3.11(2). Then $\operatorname{pd}\left(S / \mathcal{I}_{G}\right)=n+1$, if G is a Kite-free graph and $\operatorname{pd}\left(S / \mathcal{I}_{G}\right)=n$, if Kite is an induced subgraph of G.

Proof. Note that $G \backslash e$ is an even unicyclic graph. By Theorem 3.7, $\mathcal{I}_{G \backslash e}$ is almost complete intersection and by [1, Theorem 6.1], $S / \mathcal{I}_{G \backslash e}$ is not Cohen-Macaulay. Therefore, it follows from Remark 4.6 that $\operatorname{pd}\left(S / \mathcal{I}_{G \backslash e}\right)=n$. By virtue of Lemma 3.3, $\mathcal{I}_{G \backslash e}: \bar{g}_{e}=\Phi_{2}\left(J_{(G \backslash e)_{e}}\right)$. Notice that $(G \backslash e)_{e}$ is a graph obtained by attaching a path to an internal vertex of a quasicycle graph G^{\prime}. Now, if both the induced odd cycles of G have girth three, then $\operatorname{iv}\left(G^{\prime}\right)=2$. Thus, by Lemma 4.9, $\operatorname{pd}\left(S / \mathcal{I}_{G \backslash e}: \bar{g}_{e}\right)=\operatorname{pd}\left(S / J_{(G \backslash e)_{e}}\right)=n-1$. Hence, by the short exact sequence (1), $\operatorname{pd}\left(S / \mathcal{I}_{G}\right)=n$. If G has an induced odd cycle of girth ≥ 5, then by the proof of Theorem $3.11(2)$, there exists $T \in \mathcal{C}(G)$ such that $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+1$. Therefore, $\operatorname{pd}\left(S / \mathcal{I}_{G}\right) \geq$ $\operatorname{ht}\left(\mathfrak{p}_{T}^{\sigma}(G)\right)=n+1$. By virtue of Lemmas 3.3, 4.9, $\operatorname{pd}\left(S / \mathcal{I}_{G \backslash e}: \bar{g}_{e}\right)=\operatorname{pd}\left(S / J_{(G \backslash e)_{e}}\right) \leq n$. Hence, by Lemma 4.3 and the short exact sequence (1), the desired result follows.

The following theorem is an immediate consequence of Theorems 3.10, 3.11, 4.10, 4.11 and Theorem 4.12.

Theorem 4.13. Let G be a graph on [n] obtained by adding a chord in a unicyclic graph. Assume that $\operatorname{char}(\mathbb{K}) \neq 2$ and \mathcal{I}_{G} is almost complete intersection. Then
(1) S / \mathcal{I}_{G} is Cohen-Macaulay if and only if either C_{4} is an induced subgraph of G or Kite graph is an induced subgraph of G.
(2) S / \mathcal{I}_{G} is almost Cohen-Macaulay if and only if G is C_{4}-free and Kite-free.

Moreover, $\mathcal{R}\left(\mathcal{I}_{G}\right)$ and $\operatorname{gr}_{S}\left(\mathcal{I}_{G}\right)$ are Cohen-Macaulay.

5. First Syzygy of LSS ideals

In this section, we compute the defining ideal of symmetric algebra of LSS ideals of trees and odd unicyclic graphs. Let A be a Noetherian ring and $I \subset A$ be an ideal. Let $A^{m} \xrightarrow{\phi}$ $A^{n} \longrightarrow I \longrightarrow 0$ be a presentation of I and $T=\left[T_{1} \cdots T_{n}\right]$ be a $1 \times n$ matrix of variables over ring A. Then the defining ideal of symmetric algebra of I, denoted by $\operatorname{Sym}(I)$, is generated by entries of the matrix $T \phi$. Thus, to compute the defining ideal of symmetric algebra of LSS ideals of trees and odd unicyclic graphs, we compute the first syzygy of LSS ideals of trees and odd unicyclic graphs. The second graded Betti numbers of binomial edge ideals of trees are computed in [14, Theorem 3.1]. The results from [14] and Remark 3.1 gives us the second graded Betti number LSS ideals of trees.

Theorem 5.1. Let G be a tree on $[n]$. Then

$$
\beta_{2}\left(S / L_{G}\right)=\beta_{2,4}\left(S / L_{G}\right)=\binom{n-1}{2}+\sum_{v \in V(G)}\binom{\operatorname{deg}_{G}(v)}{3} .
$$

We now describe the first syzygy of $L S S$ ideals of trees.
Theorem 5.2. Let G be a tree on $[n]$. Let $\left\{e_{\{i, j\}}:\{i, j\} \in E(G)\right\}$ be the standard basis of S^{n-1}. Then the first syzygy of L_{G} is minimally generated by elements of the form
(a) $g_{i, j} e_{\{k, l\}}-g_{k, l} e_{\{i, j\}}$, where $\{i, j\} \neq\{k, l\} \in E(G)$ and
(b) $(-1)^{p_{A}(j)} f_{k, l} e_{\{i, j\}}+(-1)^{p_{A}(k)} f_{j, l} e_{\{i, k\}}+(-1)^{p_{A}(l)} f_{j, k} e_{\{i, l\}}$,
where $A=\{i, j, k, l\} \in \mathfrak{C}_{G}$ with center at i.
Proof. The proof follows from [14, Theorem 3.2] and Remark 3.1,
We now compute the second graded Betti number of LSS ideals of odd unicyclic graphs.
Theorem 5.3. Let G be an odd unicyclic graph on $[n]$. Then

$$
\beta_{2}\left(S / L_{G}\right)=\beta_{2,4}\left(S / L_{G}\right)=\binom{n}{2}+\sum_{i \in[n]}\binom{\operatorname{deg}_{G}(i)}{3}
$$

Proof. Let $e=\{u, v\} \in E(G)$ such that e is an edge of the cycle. One can note that $G \backslash e$ is a tree. We consider the following short exact sequence:

$$
\begin{equation*}
0 \longrightarrow \frac{S}{L_{G \backslash e}: g_{e}}(-2) \xrightarrow{. g_{e}} \frac{S}{L_{G \backslash e}} \longrightarrow \frac{S}{L_{G}} \longrightarrow 0 \tag{4}
\end{equation*}
$$

The long exact sequence of Tor corresponding to the short exact sequence (4) is

$$
\begin{equation*}
\cdots \rightarrow \operatorname{Tor}_{2, j}^{S}\left(\frac{S}{L_{G \backslash e}}, \mathbb{K}\right) \rightarrow \operatorname{Tor}_{2, j}^{S}\left(\frac{S}{L_{G}}, \mathbb{K}\right) \rightarrow \operatorname{Tor}_{1, j}^{S}\left(\frac{S}{L_{G \backslash e}: g_{e}}(-2), \mathbb{K}\right) \rightarrow \cdots \tag{5}
\end{equation*}
$$

Note that

$$
\operatorname{Tor}_{1, j}^{S}\left(\frac{S}{L_{G \backslash e}: g_{e}}(-2), \mathbb{K}\right) \simeq \operatorname{Tor}_{1, j-2}^{S}\left(\frac{S}{L_{G \backslash e}: g_{e}}, \mathbb{K}\right)
$$

It follows from Lemma 3.3 that $\beta_{1, j-2}\left(S / L_{G \backslash e}: g_{e}\right)=0$, if $j \neq 4$ and

$$
\beta_{1,2}\left(S / L_{G \backslash e}: g_{e}\right)=n-1+\binom{\operatorname{deg}_{G}(u)-1}{2}+\binom{\operatorname{deg}_{G}(v)-1}{2}
$$

Now, by virtue of Theorem 5.1,

$$
\beta_{2}\left(S / L_{G \backslash e}\right)=\beta_{2,4}\left(S / L_{G \backslash e}\right)=\binom{n-1}{2}+\sum_{i \in[n]}\binom{\operatorname{deg}_{G \backslash e}(i)}{3} .
$$

Therefore, $\beta_{2, j}\left(S / L_{G}\right)=0$, for $j \neq 4$. Since $\beta_{2,2}\left(S / L_{G \backslash e}: g_{e}\right)=0$ and $\beta_{1,4}\left(S / L_{G \backslash e}\right)=0$, by (5), $\beta_{2,4}\left(S / L_{G}\right)=\beta_{2,4}\left(S / L_{G \backslash e}\right)+\beta_{1,2}\left(S / L_{G \backslash e}: g_{e}\right)$. Hence, the desired result follows.

We now compute the minimal generators of the first syzygy of LSS ideals of odd unicyclic graphs.
Mapping Cone Construction: Let ($\mathbf{F} ., d^{\mathbf{F}}$.) and (G., $d^{\mathbf{G}}$.) be minimal S-free resolutions of $S / L_{G \backslash e}$ and $\left[S / L_{G \backslash e}: g_{e}\right](-2)$ respectively. Let $\varphi .:\left(\mathbf{G} ., d^{\mathbf{G}}.\right) \longrightarrow\left(\mathbf{F} ., d^{\mathbf{F}}\right.$.) be the complex morphism induced by the multiplication by g_{e}. The mapping cone $(\mathbf{M}(\varphi)$., δ.) is the S-free resolution of S / L_{G} such that $(\mathbf{M}(\varphi))_{i}=\mathbf{F}_{i} \oplus \mathbf{G}_{i-1}$ and the differential maps are $\delta_{i}(x, y)=$ $\left(d_{i}^{\mathbf{F}}(x)+\varphi_{i-1}(y),-d_{i-1}^{\mathbf{G}}(y)\right)$ for $x \in \mathbf{F}_{i}$ and $y \in \mathbf{G}_{i-1}$. The mapping cone need not necessarily be a minimal free resolution. We refer the reader to [5] for more details on the mapping cone.

Theorem 5.4. Let G be an odd unicyclic graph on $[n]$. Let $\left\{e_{\{i, j\}}:\{i, j\} \in E(G)\right\}$ denote the standard basis of S^{n}. Then the first syzygy of L_{G} is minimally generated by elements of the form
(a) $g_{i, j} e_{\{k, l\}}-g_{k, l} e_{\{i, j\}}$, where $\{i, j\} \neq\{k, l\} \in E(G)$
(b) $(-1)^{p_{A}(v)} f_{z, w} e_{\{u, v\}}+(-1)^{p_{A}(z)} f_{v, w} e_{\{u, z\}}+(-1)^{p_{A}(w)} f_{v, z} e_{\{u, w\}}$, where $A=\{u, v, w, z\}$ forms a claw in G with center u.

Proof. From Theorem 5.3, we know that the minimal presentation of L_{G} is of the form

$$
S^{\beta_{2,4}\left(S / L_{G}\right)} \longrightarrow S^{n} \longrightarrow L_{G} \longrightarrow 0
$$

where

$$
\beta_{2,4}\left(S / L_{G}\right)=\binom{n}{2}+\sum_{v \in V(G)}\binom{\operatorname{deg}_{G}(v)}{3}=\binom{n}{2}+\left|\mathfrak{C}_{G}\right|
$$

Let $e=\{u, v\} \in E(G)$ such that e is an edge of the unique odd cyclic. Since $G \backslash e$ is a tree, by Theorem 5.2, we get a minimal generating set of the first syzygy of $L_{G \backslash e}$ as
(a) $g_{i, j} e_{\{k, l\}}-g_{k, l} e_{\{i, j\}}$, where $\{i, j\} \neq\{k, l\} \in E(G \backslash e)$,
(b) $(-1)^{p_{A}(j)} f_{k, l} e_{\{i, j\}}+(-1)^{p_{A}(k)} f_{j, l} e_{\{i, k\}}+(-1)^{p_{A}(l)} f_{j, k} e_{\{i, l\}}$, where $A=\{i, j, k, l\}$ forms a claw in $G \backslash e$ with center at i,
By virtue of Lemma 3.3, we have

$$
L_{G \backslash e}: g_{e}=L_{G \backslash e}+\left(f_{i, j}: i, j \in N_{G \backslash e}(u) \text { or } i, j \in N_{G \backslash e}(v)\right) .
$$

Now we apply the mapping cone construction to the short exact sequence (4). Let (G., $d^{\mathbf{G}}$.) and ($\mathbf{F} ., d^{\mathbf{F}}$.) be minimal free resolutions of $\left[S / L_{G \backslash e}: g_{e}\right](-2)$ and $S / L_{G \backslash e}$ respectively. Then $G_{1} \simeq S^{\beta_{1,2}\left(S / L_{G \backslash e}: g_{e}\right)}, F_{1} \simeq S^{n-1}$ and $F_{2} \simeq S^{\beta_{2}\left(S / L_{G \backslash e}\right)}$. Denote the standard basis of G_{1} by $\mathcal{S}=\mathcal{S}_{1} \sqcup \mathcal{S}_{2} \sqcup \mathcal{S}_{3}$, where $\mathcal{S}_{1}=\left\{E_{\{i, j\}}:\{i, j\} \in E(G \backslash e)\right\}, \mathcal{S}_{2}=\left\{E_{\{k, l\}}: k, l \in N_{G}(v) \backslash\{u\}\right\}$ and $\mathcal{S}_{3}=\left\{E_{\{k, l\}}: k, l \in N_{G}(u) \backslash\{v\}\right\}$. Note that $\left|\mathcal{S}_{1}\right|=n-1,\left|\mathcal{S}_{2}\right|=\left(\begin{array}{c}\operatorname{deg}_{G}(v)-1\end{array}\right)$ and $\left|\mathcal{S}_{3}\right|=\left({ }_{2}^{\operatorname{deg}_{G}(u)-1}\right)$. One can note that

$$
\begin{array}{ll}
d_{1}^{\mathbf{G}}\left(E_{\{i, j\}}\right)=g_{i, j}, & \text { if } E_{\{i, j\}} \in \mathcal{S}_{1}, \\
d_{1}^{\mathbf{G}}\left(E_{\{i, j\}}\right)=f_{i, j}, & \text { if } E_{\{i, j\}} \in \mathcal{S}_{2} \sqcup \mathcal{S}_{3} .
\end{array}
$$

Also, let $\left\{e_{\{i, j\}}:\{i, j\} \in E(G \backslash e)\right\}$ be the standard basis of F_{1}. By the mapping cone construction, the map from G_{0} to F_{0} is given by the multiplication by g_{e}. Now we define φ_{1} from G_{1} to F_{1} by

$$
\begin{array}{ll}
\varphi_{1}\left(E_{\{k, l\}}\right)=g_{e} \cdot e_{\{k, l\}}, & \text { if } E_{\{k, l\}} \in \mathcal{S}_{1}, \\
\varphi_{1}\left(E_{\{k, l\}}\right)=(-1)^{p_{A}(k)+p_{A}(u)+1} f_{u, l} e_{\{v, k\}}+(-1)^{p_{A}(l)+p_{A}(u)+1} f_{u, k} e_{\{v, l\}}, & \text { if } E_{\{k, l\}} \in \mathcal{S}_{2}, \\
\varphi_{1}\left(E_{\{k, l\}}\right)=(-1)^{p_{A}(k)+p_{A}(v)+1} f_{v, l} e_{\{u, k\}}+(-1)^{p_{A}(l)+p_{A}(v)+1} f_{v, k} e_{\{u, l\}}, & \text { if } E_{\{k, l\}} \in \mathcal{S}_{3} .
\end{array}
$$

We need to prove that $d_{1}^{\mathbf{F}}\left(\varphi_{1}(\mathbf{v})\right)=g_{e} \cdot d_{1}^{\mathbf{G}}(\mathbf{v})$ for any $\mathbf{v} \in G_{1}$. For a claw $A=\{v, u, k, l\}$ with center at v, we have the relation

$$
(-1)^{p_{A}(k)+p_{A}(u)+1} f_{u, l} g_{v, k}+(-1)^{p_{A}(l)+p_{A}(u)+1} f_{u, k} g_{v, l}=f_{k, l} g_{e} .
$$

Similarily, for a claw $A=\{u, v, k, l\}$ with center at u, we have the relation

$$
(-1)^{p_{A}(k)+p_{A}(v)+1} f_{v, l} g_{u, k}+(-1)^{p_{A}(l)+p_{A}(v)+1} f_{v, k} g_{u, l}=f_{k, l} g_{e} .
$$

This yields that $d_{1}^{\mathbf{F}}\left(\varphi_{1}\left(E_{\{i, j\}}\right)\right)=g_{e} \cdot d_{1}^{\mathbf{G}}\left(E_{\{i, j\}}\right)$ for $E_{\{i, j\}} \in \mathcal{S}$. So the mapping cone construction gives us a S-free presentation of L_{G} as

$$
F_{2} \oplus G_{1} \longrightarrow F_{1} \oplus G_{0} \longrightarrow F_{0} \longrightarrow L_{G} \longrightarrow 0
$$

Since $F_{2} \oplus G_{1} \simeq S^{\beta_{2}\left(S / L_{G}\right)}$ and $F_{1} \oplus G_{0} \simeq S^{n}$, this is a minimal free presentation. Hence the first syzygy of L_{G} is minimally generated by the images of basis elements under the map $\Phi: F_{2} \oplus G_{1} \longrightarrow F_{1} \oplus G_{0}$, where $\Phi=\left[\begin{array}{cc}d_{2}^{\mathbf{F}} & \varphi_{1} \\ 0 & -d_{1}^{\mathbf{G}}\end{array}\right]$. Hence the assertion follows.

As a consequence of Theorem 5.2 and Theorem 5.4, one can compute the defining ideal of symmetric algebra of LSS ideal of G, when G is either a tree or an odd unicyclic graph. Similarly, one can compute the first syzygy of parity binomial edge ideals of trees and odd unicyclic graphs and hence, the defining ideal of symmetric algebra of parity binomial edge ideals of trees and odd unicyclic graphs.

We now study linear type LSS ideals. An ideal $I \subset A$ is said to be of linear type if $\operatorname{Sym}(I) \cong \mathcal{R}(I)$. Now, we recall the definition of d-sequence.
Definition 5.5. Let A be a commutative ring. Set $d_{0}=0$. A sequence of elements d_{1}, \ldots, d_{n} is said to be a d-sequence if $\left(d_{0}, d_{1}, \ldots, d_{i}\right): d_{i+1} d_{j}=\left(d_{0}, d_{1}, \ldots, d_{i}\right): d_{j}$ for all $0 \leq i \leq n-1$ and for all $j \geq i+1$.

We refer the reader to [12] for more properties of d-sequences.
Theorem 5.6. Let G be a graph on $[n]$. Assume that \mathbb{K} is an infinite field and $\operatorname{char}(\mathbb{K}) \neq 2$. If L_{G} is an almost complete intersection ideal, then L_{G} is generated by a homogeneous d sequence. In particular, L_{G} is of linear type.

Proof. Assume that L_{G} is an almost complete intersection ideal. It follows from [4, Proposition 5.1] that there exists a homogeneous set of generators $\left\{F_{1}, \ldots, F_{\mu\left(L_{G}\right)}\right\}$ of L_{G} such that $F_{1}, \ldots, F_{\mu\left(L_{G}\right)-1}$ is a regular sequence in S. Since $J=\left(F_{1}, \ldots, F_{\mu\left(L_{G}\right)-1}\right)$ is unmixed ideal, by [7, Theorem 4.7], $J: F_{\mu\left(L_{G}\right)}=J: F_{\mu\left(L_{G}\right)}^{2}$. Hence, L_{G} is generated by a homogeneous d-sequence $F_{1}, \ldots, F_{\mu\left(L_{G}\right)}$. The second assertion follows from [12, Theorem 3.1].

In Theorem 5.6, we assume that \mathbb{K} is an infinite field, which is not a necessary condition. For, if \mathbb{K} is a finite field with $\operatorname{char}(\mathbb{K}) \neq 2$ and G is an odd unicyclic graph such that L_{G} is almost complete intersection of type (1) or type (2) in Theorem 3.8, then it follows from the proof of Theorem 3.8 that the generators of L_{G} form a homogeneous d-sequence. Also, if G is a bicyclic cactus graph such that L_{G} is almost complete intersection, then L_{G} is generated by a homogeneous d-sequence (see proof of Theorem 3.9).

Now, we prove that if G is a bipartite graph such that J_{G} is of linear type, then G is $K_{2,3}$-free graph.
Proposition 5.7. (1) Let G be a bipartite graph such that J_{G} is of linear type, then G is $K_{2,3}$ free graph.
(2) If K_{4} is an induced subgraph of G, then J_{G} is not of linear type.

Proof. Let $\delta: S\left[T_{\{i, j\}}:\{i, j\} \in E(G)\right] \longrightarrow \mathcal{R}\left(J_{G}\right)$ is the map given by $\delta\left(T_{\{i, j\}}\right)=f_{i, j} t$. Then $J=\operatorname{ker}(\delta)$ is the defining ideal of $\mathcal{R}\left(J_{G}\right)$.
(1) If possible, let $K_{2,3}$ be an induced subgraph of G. Without loss of generality, we may assume that $V\left(K_{2,3}\right)=\{1,2,3,4,5\}$ and $E\left(K_{2,3}\right)=\{\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\}$. Then it is easy to verify that

$$
x_{3} f_{1,4} f_{2,5}-x_{4} f_{1,3} f_{2,5}+x_{3} f_{1,5} f_{2,4}-x_{5} f_{1,3} f_{2,4}-x_{4} f_{1,5} f_{2,3}+x_{5} f_{1,4} f_{2,3}=0
$$

Thus, $F=x_{3} T_{\{1,4\}} T_{\{2,5\}}-x_{4} T_{\{1,3\}} T_{\{2,5\}}+x_{3} T_{\{1,5\}} T_{\{2,4\}}-x_{5} T_{\{1,3\}} T_{\{2,4\}}-x_{4} T_{\{1,5\}} T_{\{2,3\}}+$ $x_{5} T_{\{1,4\}} T_{\{2,3\}} \in J$. By [27, Corollary 2.3], $\beta_{2,3}\left(S / J_{G}\right)=0$, i.e. there is no linear relation in
the first syzygy of J_{G}. Therefore, F does not belong to the module defined by first syzygy of J_{G}, which is a contradiction.
(2) Assume that $V\left(K_{4}\right)=\{1,2,3,4\}$. Then $f_{1,2} f_{3,4}-f_{1,3} f_{2,4}+f_{1,4} f_{2,3}=0$ and hence $F=T_{\{1,2\}} T_{\{3,4\}}-T_{\{1,3\}} T_{\{2,4\}}+T_{\{1,4\}} T_{\{2,3\}} \in J$. The assertion follows, since F is a quadratic homogeneous element.

We have enough experimental evidence to pose the following conjecture:
Conjecture 5.8. If G is an odd unicyclic graph, then L_{G} is of linear type.
Let A be a Noetherian local ring with unique maximal ideal \mathfrak{m}. The fiber cone of an ideal I is the ring $\mathcal{F}_{I}(A)=\mathcal{R}(I) / \mathfrak{m} \mathcal{R}(I) \cong \oplus_{k \geq 0} I^{k} / \mathfrak{m} I^{k}$. The analytic spread of I is the Krull dimension of the fibre cone of I and it is denoted by $l(I)$. Now, we prove that the fiber cone of LSS ideals of trees and odd unicyclic graphs is a polynomial ring, i.e. $\mu\left(L_{G}\right)=l\left(L_{G}\right)$, if G is either a tree or an odd unicyclic graph.

Theorem 5.9. Let G be either a tree or an odd unicyclic graph on $[n]$. Then $\mu\left(L_{G}\right)=l\left(L_{G}\right)$.
Proof. First, assume that G is a tree. Then $Q_{\emptyset}(G)$ is a minimal prime of L_{G} and $\operatorname{ht}\left(Q_{\emptyset}(G)\right)=$ $n-1=\mu\left(L_{G}\right)$. Now, the assertion follows from [7, Remark 2]. Assume that G is an odd unicyclic graph. If $\operatorname{char}(\mathbb{K})=2$, then $L_{G}=\mathcal{I}_{G}$. Since G is a non-bipartite graph, $\mathfrak{p}^{+}(G)$ is a minimal prime of L_{G}. Thus, $\operatorname{ht}\left(\mathfrak{p}^{+}(G)\right)=n=\mu\left(L_{G}\right)$. If $\sqrt{-1} \in \mathbb{K}$ and $\operatorname{char}(\mathbb{K}) \neq 2$, then by Remark 3.4, $\Psi\left(\eta\left(\mathfrak{p}^{+}(G)\right)\right)$ is a minimal prime of L_{G} such that $\mathrm{ht}\left(\Psi\left(\eta\left(\mathfrak{p}^{+}(G)\right)\right)\right)=n=\mu\left(L_{G}\right)$. Suppose that $\sqrt{-1} \notin \mathbb{K}$, then $I_{K_{n}}$ is a minimal prime of L_{G} with $\operatorname{ht}\left(I_{K_{n}}\right)=n=\mu\left(L_{G}\right)$. Hence, by [7, Remark 2], the assertion follows.

Acknowledgements: The author is grateful to his advisor A. V. Jayanthan for his constant support, valuable ideas and suggestions. The author sincerely thanks Santiago Zarzuela and Sarang Sane for useful discussions. The author thanks the National Board for Higher Mathematics, India, for the financial support. The author also wishes to express his sincere gratitude to the anonymous referees.

References

[1] Davide Bolognini, Antonio Macchia, and Francesco Strazzanti. Binomial edge ideals of bipartite graphs. European J. Combin., 70:1-25, 2018.
[2] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
[3] Aldo Conca and Volkmar Welker. Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties. Algebra Number Theory, 13(2):455-484, 2019.
[4] Gabriel de Dominicis and Martin Kreuzer. Kähler differentials for points in \mathbf{P}^{n}. J. Pure Appl. Algebra, 141(2):153-173, 1999.
[5] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
[6] Viviana Ene, Jürgen Herzog, and Takayuki Hibi. Cohen-Macaulay binomial edge ideals. Nagoya Math. J., 204:57-68, 2011.
[7] M. Herrmann, B. Moonen, and O. Villamayor. Ideals of linear type and some variants. In The Curves Seminar at Queen's, Vol. VI (Kingston, ON, 1989), volume 83 of Queen's Papers in Pure and Appl. Math., pages Exp. No. H, 37. Queen's Univ., Kingston, ON, 1989.
[8] M. Herrmann, J. Ribbe, and S. Zarzuela. On Rees and form rings of almost complete intersections. Comm. Algebra, 21(2):647-664, 1993.
[9] Jürgen Herzog and Takayuki Hibi. Monomial ideals, volume 260 of Graduate Texts in Mathematics. Springer-Verlag London, Ltd., London, 2011.
[10] Jürgen Herzog, Takayuki Hibi, Freyja Hreinsdóttir, Thomas Kahle, and Johannes Rauh. Binomial edge ideals and conditional independence statements. Adv. in Appl. Math., 45(3):317-333, 2010.
[11] Jürgen Herzog, Antonio Macchia, Sara Saeedi Madani, and Volkmar Welker. On the ideal of orthogonal representations of a graph in \mathbb{R}^{2}. Adv. in Appl. Math., 71:146-173, 2015.
[12] Craig Huneke. On the symmetric and Rees algebra of an ideal generated by a d-sequence. J. Algebra, 62(2):268-275, 1980.
[13] A. V. Jayanthan and Arvind Kumar. Regularity of binomial edge ideals of Cohen-Macaulay bipartite graphs. Comm. Algebra, 47(11):4797-4805, 2019.
[14] A. V. Jayanthan, Arvind Kumar, and Rajib Sarkar. Almost complete intersection binomial edge ideals and their Rees algebras. J. Pure Appl. Algebra, To appear, 2020.
[15] Thomas Kahle, Camilo Sarmiento, and Tobias Windisch. Parity binomial edge ideals. J. Algebraic Combin., 44(1):99-117, 2016.
[16] Dariush Kiani and Sara Saeedi Madani. The Castelnuovo-Mumford regularity of binomial edge ideals. J. Combin. Theory Ser. A, 139:80-86, 2016.
[17] Arvind Kumar. Binomial edge ideals and bounds for their regularity. J. Algebraic Combin., To appear, 2020.
[18] L. Lovász, M. Saks, and A. Schrijver. Orthogonal representations and connectivity of graphs. Linear Algebra Appl., 114/115:439-454, 1989.
[19] László Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1-7, 1979.
[20] Carla Mascia and Giancarlo Rinaldo. Extremal Betti numbers of some Cohen-Macaulay binomial edge ideals. arXiv e-prints, page arXiv:1809.03423, Sep 2018.
[21] Kazunori Matsuda and Satoshi Murai. Regularity bounds for binomial edge ideals. J. Commut. Algebra, 5(1):141-149, 2013.
[22] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid.
[23] Fatemeh Mohammadi and Leila Sharifan. Hilbert function of binomial edge ideals. Comm. Algebra, 42(2):688-703, 2014.
[24] Masahiro Ohtani. Graphs and ideals generated by some 2-minors. Comm. Algebra, 39(3):905-917, 2011.
[25] Asia Rauf and Giancarlo Rinaldo. Construction of Cohen-Macaulay binomial edge ideals. Comm. Algebra, 42(1):238-252, 2014.
[26] Giancarlo Rinaldo. Cohen-Macauley binomial edge ideals of small deviation. Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 56(104)(4):497-503, 2013.
[27] Sara Saeedi Madani and Dariush Kiani. Binomial edge ideals of graphs. Electron. J. Combin., 19(2):Paper 44, 6, 2012.
[28] Peter Schenzel and Sohail Zafar. Algebraic properties of the binomial edge ideal of a complete bipartite graph. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 22(2):217-237, 2014.
Email address: arvkumar11@gmail.com
Department of Mathematics, Indian Institute of Technology Madras, Chennai, InDIA 600036

[^0]: Key words and phrases. Lovász-Saks-Schrijver(LSS) ideal, parity binomial edge ideal, binomial edge ideal, syzygy, Rees Algebra, Betti number, complete intersection, almost complete intersection.

 AMS Subject Classification (2010): 13A30, 13D02,13C13, 05E40.

