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LOVÁSZ-SAKS-SCHRIJVER IDEALS AND PARITY BINOMIAL EDGE
IDEALS OF GRAPHS

ARVIND KUMAR

Dedicated to Professor Jürgen Herzog on the occasion of his 80th birthday

Abstract. Let G be a simple graph on n vertices. Let LG and IG denote the Lovász-
Saks-Schrijver(LSS) ideal and parity binomial edge ideal of G in the polynomial ring S =
K[x1, . . . , xn, y1, . . . , yn] respectively. We classify graphs whose LSS ideals and parity bino-
mial edge ideals are complete intersections. We also classify graphs whose LSS ideals and
parity binomial edge ideals are almost complete intersections, and we prove that their Rees
algebra is Cohen-Macaulay. We compute the second graded Betti number and obtain a
minimal presentation of LSS ideals of trees and odd unicyclic graphs. We also obtain an
explicit description of the defining ideal of the symmetric algebra of LSS ideals of trees and
odd unicyclic graphs.

1. Introduction

Let K be any field. Let G be a simple graph with V (G) = [n] := {1, . . . , n}. We study
the following four classes of ideals associated with the graph G:

• Binomial Edge Ideals: Herzog et al. in [10] and independently Ohtani in [24]
defined the binomial edge ideal of G as

JG = (xiyj − xjyi : i < j, {i, j} ∈ E(G)) ⊂ K[x1, . . . , xn, y1, . . . , yn].

• Lovász-Saks-Schrijver ideals: Let d ≥ 1 be an integer. The ideal

LK

G(d) =

(
d∑

l=1

xilxjl : {i, j} ∈ E(G)

)
⊂ K[xkl : 1 ≤ k ≤ n, 1 ≤ l ≤ d]

is known as Lovász-Saks-Schrijver ideal of the graph G with respect to K. The set
of all orthogonal representation of the complementary graph of G is the zero set of
the ideal LK

G(d) in K
n×d. We refer the reader to [18, 19] for more on the orthogonal

representation of graphs. In this article, we set LG := LK

G(2).
• Permanental Edge Ideals: In [11], Herzog et al. introduced the notation of per-
manental edge ideals of graphs. The permanental edge ideal of a graph G is denoted
by ΠG and it is defined as

ΠG = (xiyj + xjyi : {i, j} ∈ E(G)) ⊂ K[x1, . . . , xn, y1, . . . , yn].

• Parity Binomial Edge Ideals: Kahle et al. in [15] introduced the notion of parity
binomial edge ideals of graphs. The parity binomial edge ideal of a graph G is defined
as

IG = (xixj − yiyj : {i, j} ∈ E(G)) ⊂ K[x1, . . . , xn, y1, . . . , yn].

Key words and phrases. Lovász-Saks-Schrijver(LSS) ideal, parity binomial edge ideal, binomial edge ideal,
syzygy, Rees Algebra, Betti number, complete intersection, almost complete intersection.
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In the recent past, researchers have been trying to understand the connection between com-
binatorial invariants of G and algebraic invariants of JG. The connection between the com-
binatorial properties of G and the algebraic properties JG has been established by many
authors, see [6, 10, 13, 14, 16, 21, 27] for a partial list. For d = 1, the Lovász-Saks-
Schrijver ideal of a graph G is a monomial ideal known as the edge ideal of graph G.
The algebraic properties of edge ideals of graphs are well understood, see [9, Chapter 9].
For d = 2, the Lovász-Saks-Schrijver ideal of a graph G is a binomial ideal defined as
LG = (xixj + yiyj : {i, j} ∈ E(G)) ⊂ K[x1, . . . , xn, y1, . . . , yn]. In [11], Herzog et al. proved
that if char(K) 6= 2, then LG is a radical ideal. Also, they computed the primary decomposi-
tion of LG when

√
−1 /∈ K and char(K) 6= 2. In [3], Conca and Welker studied the algebraic

properties of LK

G(d). They proved that LK

G(2) is complete intersection if and only if G does
not contain claw or even cycle ([3, Theorem 1.4]). Also, they proved that LK

G(3) is prime if
and only if G does not contain claw or C4. More precisely, in [3], Conca and Welker analyzed
the question “When is LK

G(d) radical, complete intersection or prime”? In [11], Herzog et
al. computed Gröbner basis of permanental edge ideals of graphs. Also, they proved that
permanental edge ideal of a graph is a radical ideal, in [11]. In [15], Kahle et al. studied the
algebraic properties such as primary decomposition, mesoprimary decomposition, Markov
bases and radicality of parity binomial edge ideals. However, nothing is known about the
algebraic properties such as complete intersection, almost complete intersection, Rees alge-
bra, symmetric algebra and Betti numbers of parity binomial edge ideals. In this article, we
focus on the algebraic properties such as almost complete intersection, projective dimension,
Rees algebra, symmetric algebra and Betti numbers of LG,ΠG and IG. It was proved by
Bolognini et al [1, Corollary 6.2] that if G is a bipartite graph, then LG, ΠG and IG are es-
sentially same as JG. In [28], Schenzel and Zafar studied the algebraic properties of complete
bipartite graphs. In [1], Bolognini et al. studied the Cohen-Macaulayness of binomial edge
ideal of bipartite graphs. The algebraic properties of Cohen-Macaulay bipartite graphs such
as regularity, extremal Betti numbers are studied in [13, 20]. In this article, we characterize
graphs whose parity binomial edge ideals are complete intersections (Theorems 3.2, 3.5).
We also classify graphs whose LSS ideals, permanental edge ideals and parity binomial edge
ideals are almost complete intersections. We prove that these are either a subclass of trees,
a subclass of unicyclic graphs or a subclass of bicyclic graphs(Theorems 3.7, 3.8, 3.9, 3.10,
3.11).

A lot of asymptotic invariants of an ideal can be computed using the Rees algebra of that
ideal. We study the Rees algebra of almost complete intersection LSS ideals, permanental
edge ideals and parity binomial edge ideals. Cohen-Macaulayness of the Rees algebra and the
associated graded ring of ideals have been a long-studied problem in commutative algebra.
If an ideal is complete intersection in a Cohen-Macaulay local ring, then the corresponding
associated graded ring and the Rees algebra are known to be Cohen-Macaulay. In general,
computing the depth of these blowup algebras is a non-trivial problem. If an ideal is an
almost complete intersection ideal, then the Cohen-Macaulayness of the Rees algebra and
the associated graded ring are closely related by a result of Herrmann, Ribbe and Zarzuela
(see Theorem 4.1). To study the Cohen-Macaulayness of the associated graded ring of almost
complete intersection LSS ideals, permanental edge ideals and parity binomial edge ideals, we
compute the projective dimension of almost complete intersection LSS ideals, permanental
edge ideals and parity binomial edge ideals (Theorems 4.4, 4.10, 4.11, 4.12). We prove that
the associated graded ring and the Rees algebra of almost complete intersection LSS ideals,
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permanental edge ideals and parity binomial edge ideals are Cohen-Macaulay (Theorems 4.5,
4.13).

An ideal I of a commutative ring A is said to be of linear type if its Rees algebra and
symmetric algebra are isomorphic. In other words, the defining ideal of the Rees algebra is
generated by linear forms. In general, it is quite a hard task to describe the defining ideals of
Rees algebras and symmetric algebras. Huneke proved that if I is generated by d-sequence,
then I is of linear type, [12]. We compute the defining ideal of symmetric algebra of LSS
ideals of trees and odd unicyclic graphs (Theorems 5.2, 5.4). In this process, we obtain
second graded Betti number of LSS ideals of trees and odd unicyclic graphs (Theorems 5.1,
5.3). We prove that if LG is an almost complete intersection ideal, then LG is generated by
a d-sequence (Theorem 5.6). This gives us the defining ideals of the Rees algebras of almost
complete intersection LSS ideals.

The article is organized as follows. We collect the notation and related definitions in the
second section. In Section 3, we characterize complete intersection parity binomial edge
ideals. Also, we classify almost complete intersection LSS ideals, permanental edge ideals
and parity binomial edge ideals. We study the Cohen-Macaulayness of Rees algebra of almost
complete intersection LSS ideals, permanental edge ideals and parity binomial edge ideals
in Section 4. In Section 5, we describe the second graded Betti numbers and syzygies of the
LSS ideals of trees and odd unicyclic graphs. In particular, we describe the defining ideal of
symmetric algebra of LSS ideals of trees and odd unicyclic graphs.

2. Preliminaries

Let G be a simple graph with the vertex set [n] and edge set E(G). A graph on [n] is said
to be a complete graph, if {i, j} ∈ E(G) for all 1 ≤ i < j ≤ n. Complete graph on [n] is
denoted by Kn. For A ⊆ V (G), G[A] denotes the induced subgraph of G on the vertex set
A, that is, for i, j ∈ A, {i, j} ∈ E(G[A]) if and only if {i, j} ∈ E(G). For a vertex v, G \ v
denotes the induced subgraph of G on the vertex set V (G)\{v}. A vertex v ∈ V (G) is said to
be a cut vertex if G \ v has more connected components than G. A subset U of V (G) is said
to be a clique if G[U ] is a complete graph. A vertex v of G is said to be a simplicial vertex
if v is contained in only one maximal clique otherwise it is called an internal vertex. For a
vertex v, NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)} denotes the neighborhood of v in G and Gv

is the graph on the vertex set V (G) and edge set E(Gv) = E(G) ∪ {{u, w} : u, w ∈ NG(v)}.
The degree of a vertex v, denoted by degG(v), is |NG(v)|. For an edge e of G, G \ e is
the graph on the vertex set V (G) and edge set E(G) \ {e}. Let u, v ∈ V (G) be such that
e = {u, v} /∈ E(G), then we denote by Ge, the graph on the vertex set V (G) and edge set
E(Ge) = E(G) ∪ {{x, y} : x, y ∈ NG(u) or x, y ∈ NG(v)}. A cycle is a connected graph
G with degG(v) = 2 for all v ∈ V (G). A cycle on n vertices is denoted by Cn. A tree is a
connected graph which does not contain a cycle. A graph is said to be a unicyclic graph,
if it contains exactly one cycle. The girth of a graph G is the length of a shortest cycle
in G. A unicyclic graph with even girth is called an even unicyclic and with odd girth is
called an odd unicyclic graph. A graph G is said to be bipartite if there is a bipartition
of V (G) = V1 ⊔ V2 such that for each i = 1, 2, no two of the vertices of Vi are adjacent,
otherwise it is called non-bipartite graph. A complete bipartite graph on m + n vertices,
denoted by Km,n, is the graph having a vertex set V (Km,n) = {u1, . . . , um} ∪ {v1, . . . , vn}
and E(Km,n) = {{ui, vj} : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. A claw is the complete bipartite
graph K1,3. A claw {u, v, w, z} with center u is the graph with vertices {u, v, w, z} and edges
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{{u, v}, {u, w}, {u, z}}. For a graph G, let CG denote the set of all induced claws in G. A
maximal subgraph of G without a cut vertex is called a block of G. A graph G is said to
be a block graph if each block of G is a clique. If each block of a graph is either a cycle or
an edge, then it is called a cactus graph. A cactus graph such that exactly two blocks are
cycles is called a bicyclic cactus graph. Let u, v ∈ V (G). Then d(u, v) is length of a shortest
path between u and v in G. A (u, v)-walk is a sequence of edges {u, v1}, . . . , {vk, v} in G.

Now, we recall the necessary notation from commutative algebra. Let A = K[x1, . . . , xm]
be a polynomial ring over an arbitrary field K and M be a finitely generated graded A-
module. Let

0 −→
⊕

j∈Z

A(−j)β
A
p,j(M) φp−→ · · · φ1−→

⊕

j∈Z

A(−j)β
A
0,j(M) φ0−→ M −→ 0,

be the minimal graded free resolution of M , where A(−j) is the free A-module of rank 1
generated in degree j. The number βAi,j(M) is called the (i, j)-th graded Betti number of M .
The projective dimension of M , denoted by pdA(M), is defined as

pdA(M) := max{i : βAi,j(M) 6= 0}.
It follows from the Auslander-Buchsbaum formula that depthA(M) = m− pdA(M). We say

that M is a finitely presented A-module if there exists an exact sequence of the form Ap ϕ−→
Aq ψ−→ M −→ 0. If q =

∑
j∈Z β

A
0,j(M) and p =

∑
j∈Z β

A
1,j(M), then this presentation is called

a minimal presentation. A homogeneous ideal I ⊂ A is said to be complete intersection if
µ(I) = ht(I), where µ(I) denotes the cardinality of a minimal homogeneous generating set
of I. It is said to be almost complete intersection if µ(I) = ht(I) + 1 and Ip is complete
intersection for all minimal primes p of I. Also, we say that A/I is almost Cohen-Macaulay
if depthA(A/I) = dim(A/I)− 1.

Let G be a graph on [n] and S = K[x1, . . . , xn, y1, . . . , yn]. For an edge e = {i, j} ∈ E(G)
with i < j, we define fe = fi,j := xiyj−xjyi, ge = gi,j := xixj+yiyj and ḡe = ḡi,j := xixj−yiyj.
For T ⊂ [n], let T̄ = [n]\T and cG(T ) denotes the number of connected components of G[T̄ ].

Also, let G1, . . . , GcG(T ) be the connected components of G[T̄ ] and for every i, Ĝi denote the
complete graph on V (Gi). Let PT (G) := ( ∪

i∈T
{xi, yi}, JĜ1

, . . . , JĜcG(T )
). Herzog et al. proved

that JG is a radical ideal, [10, Corollary 2.2]. Also, they proved that for T ⊂ [n], PT (G) is
a prime ideal and JG = ∩

T⊆[n]
PT (G), [10, Theorem 3.2]. A set T ⊂ [n] is said to have cut

point property if for every i ∈ T , i is a cut vertex of the graph G[T̄ ∪ {i}]. They showed
that PT (G) is a minimal prime of JG if and only if either T = ∅ or T ⊂ [n] has cut point
property, [10, Corollary 3.9].

We now recall some facts about LSS ideals.

2.1. Primary decomposition of LG when
√
−1 /∈ K and char(K) 6= 2. Herzog et al.

studied several properties of LG. We recall some of those results which we require from [11]:

• Set IK1 = (0), IK2 = (x1x2 + y1y2). For n > 2, define the ideal IKn
generated by the

following binomials

gij = xixj + yiyj, 1 ≤ i < j ≤ n,

fij = xiyj − xjyi, 1 ≤ i < j ≤ n,

hi = x2
i + y2i , 1 ≤ i ≤ n.
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• For 1 ≤ m < n define the ideal IKm,n−m
generated by the following binomials

gij = xixj + yiyj, 1 ≤ i ≤ m, m+ 1 ≤ j ≤ n,

fij = xiyj − xjyi, 1 ≤ i < j ≤ m or m+ 1 ≤ i < j ≤ n.

Then IKm,n−m
and IKn

are prime ideals, [11, Theorems 2.4, 2.5]. Let G be a connected graph

on the vertex set V (G) = [n]. If G is non-bipartite, then we denote by G̃ the complete
graph on the vertex set V (G). If G is a bipartite graph, then there exists a bipartition of

V (G) = V1 ⊔ V2, in this case, we denote by G̃ the complete bipartite graph on the vertex set
V (G) with respect to the bipartition V (G) = V1 ⊔ V2.

Let G be a graph on the vertex set [n]. For T ⊂ [n], let G1, . . . , GcG(T ) are the connected
components of G[T̄ ] and

QT (G) = (xi, yi : i ∈ T ) + IG̃1
+ . . .+ IG̃cG(T )

.

For T ⊂ [n], QT (G) is a prime ideal, [11, Proposition 4.2]. Notice that if G is a connected
bipartite graph with bipartition V (G) = V1 ⊔ V2, then Q∅(G) = IKV1,V2

, and if G is a
connected non-bipartite graph, then Q∅(G) = IKn

. For T ⊂ [n], bG(T ) is the number of
bipartite connected components of G[T̄ ]. Here we consider an isolated vertex as a bipartite
graph. For T ⊂ [n], ht(QT (G)) = n + |T | − bG(T ), [11, Proposition 4.1]. By [11, Theorem
4.3], we have

LG =
⋂

T⊂[n]

QT (G).

The vertex i ∈ [n] is said to be a cut vertex of G if cG({i}) > cG(∅) and it is said to be a
bipartition vertex of G if bG({i}) > bG(∅). Let C(G) be the collection of sets T ⊂ [n] such
that each i ∈ T is either a cut vertex or a bipartition vertex of the graph G[T̄ ∪ {i}]. In
particular, ∅ ∈ C(G). By [11, Theorem 5.2], for T ⊂ [n], QT (G) is a minimal prime of LG if
and only if T ∈ C(G). Hence, we have

LG =
⋂

T∈C(G)

QT (G).

2.2. Primary decomposition of IG for any field K. In [15], Kahle et al. computed
primary decomposition of parity binomial edge ideals of graphs. Here, we recall their results:

• For a graph G,

WG =(ḡi,j : there is an odd (i, j)− walk in G)

+ (fi,j : there is an even (i, j)− walk in G).

• For a non-bipartite graph G, let

p+(G) = (xi + yi : i ∈ V (G)), p−(G) = (xi − yi : i ∈ V (G)).

• For T ⊂ [n], without loss of generality, we assume that G1, . . . , GbG(T ) are bipartite
connected components of G[T̄ ] and GbG(T )+1, . . . , GcG(T ) are non-bipartite connected
components of G[T̄ ].
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• For T ⊂ [n] and σ = (σbG(T )+1, . . . , σcG(T )) ∈ {+,−}cG(T )−bG(T ), we associate an ideal

pσT (G) = (xi, yi : i ∈ T ) +

bG(T )∑

i=1

WGi
+

cG(T )∑

j=bG(T )+1

pσj (Gj).

Then, pσT (G) is a prime ideal [15, Proposition 4.2] and

ht(pσT (G)) = n+ |T | − bG(T ).

• If P is a minimal prime ideal of IG, then P = pσT (G), for some T ∈ C(G) and
σ ∈ {+,−}cG(T )−bG(T ), [15, Proposition 4.2, Lemma 4.4, Lemma 4.9].

• For T ∈ C(G), set AT = {t ∈ T : bG(T ) = bG(T \ {t})}. Let t ∈ AT . We denote by
BT (t), the set of connected components of G[T̄ ] which are joined in G[T̄ ∪{t}]. Note
that elements of BT (t) are non-bipartite connected components of G[T̄ ].

• Let T ∈ C(G) and σ ∈ {+,−}cG(T )−bG(T ). The prime ideal pσT (G) is sign-split prime
ideal if for all t ∈ AT the prime summands of pσT (G) corresponding to elements of
BT (t) has not the same sign.

• A prime ideal P is a minimal prime of IG if and only ifP = pσT (G), for some sign-split
prime ideal pσT (G), [15, Theorem 4.15].

If characteristic of K is not two, then parity binomial edge ideal of a graph is a radical ideal,
[15, Theorem 5.5]. Hence, in this case, we have

IG =
⋂

T∈C(G)

⋂

σ∈{+,−}cG(T )−bG(T )

pσT (G).

3. (Almost)Complete Intersection Ideals

In this section, we classify complete intersection LSS ideals and parity binomial edge
ideals. We also classify graphs whose LSS ideals and parity binomial edge ideals are almost
complete intersections. We first recall a fact about bipartite graphs from [1].

Remark 3.1. [1, Corollary 6.2] Let G be a bipartite graph with bipartition [n] = V1 ⊔ V2.
We define Φ1 : S → S as

Φ1(xi) =

{
xi if i ∈ V1

yi if i ∈ V2
and Φ1(yi) =

{
yi if i ∈ V1

−xi if i ∈ V2

and Φ2 : S → S as

Φ2(xi) =

{
xi if i ∈ V1

yi if i ∈ V2
and Φ2(yi) =

{
yi if i ∈ V1

xi if i ∈ V2.

It is clear that Φ1 and Φ2 are isomorphism and Φ1(JG) = LG and Φ2(JG) = IG.
We now begin with the classification of bipartite graphs whose LSS ideals, as well as par-

ity binomial edge ideals, are complete intersections. In [3], Conca and Welker characterized
graphs whose LSS ideals are complete intersections. They proved that LG is complete in-
tersection if and only if G does not contain claw or even cycle ([3, Theorem 1.4]). Here, we
give alternate form of their theorem and prove that LG is complete intersection if and only
if IG is complete intersection.

Theorem 3.2. Let G be a bipartite graph on [n]. Then LG is complete intersection if and
only if IG is complete intersection if and only if G is a disjoint union of paths.
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Proof. Since G is a bipartite graph, by Remark 3.1, LG = Φ1(JG) and IG = Φ2(JG). There-
fore, LG is complete intersection if and only if JG is complete intersection if and only if IG
is complete intersection. Hence, the desired result follows from [26, Theorem 1]. �

Now, we move on to characterize non-bipartite graphs whose LSS ideals, permanental
edge ideals and parity binomial edge ideals are complete intersections. For this, we need the
following lemma.

Lemma 3.3. Let G be a non-bipartite graph on [n]. Assume that there exists e = {u, v} ∈
E(G) such that G \ e is a bipartite graph. Then

LG\e : ge = LG\e + (fi,j : i, j ∈ NG\e(u) or i, j ∈ NG\e(v)) = Φ1(J(G\e)e)

and
IG\e : ḡe = IG\e + (fi,j : i, j ∈ NG\e(u) or i, j ∈ NG\e(v)) = Φ2(J(G\e)e).

Proof. Since G is a non-bipartite graph and G \ e is a bipartite graph with bipartition
[n] = V1 ⊔ V2, we get that either u, v ∈ V1 or u, v ∈ V2. Therefore, Φ1(ge) = ge and
Φ2(ḡe) = ḡe. By Remark 3.1, we have

LG\e : ge = Φ1(JG\e) : Φ1(ge) = Φ1(JG\e : ge) and

IG\e : ḡe = Φ2(JG\e) : Φ2(ḡe) = Φ2(JG\e : ḡe).

Now, consider

JG\e : ge =
⋂

T⊂[n]

(PT (G \ e) : ge).

Since generating set of PT (G \ e) is a Gröbner basis of PT (G \ e) with respect to lex order
induced by x1 > · · · > xn > y1 > · · · > yn, we have ge = xuxv + yuyv ∈ PT (G \ e) if and only
if either u ∈ T or v ∈ T if and only if ḡe = xuxv − yuyv ∈ PT (G \ e). Therefore,

JG\e : ge =
⋂

T⊂[n]

(PT (G \ e) : ge) =
⋂

T⊂([n]\{u,v})

PT (G \ e) = J(G\e)e ,

where the last equality follows from [25, Proposition 2.1]. Hence, LG\e : ge = Φ1(J(G\e)e) =
LG\e + (fi,j : i, j ∈ NG\e(u) or i, j ∈ NG\e(v)). In a similar manner one can prove that
IG\e : ḡe = Φ2(J(G\e)e) = IG\e + (fi,j : i, j ∈ NG\e(u) or i, j ∈ NG\e(v)). �

Due to the following remark, if char(K) = 2, then ΠG and JG are essentially the same and
if char(K) 6= 2, then ΠG is essentially same as IG.
Remark 3.4. Let G be a graph with vertex set [n]. If char(K) = 2, it follows from their
definitions that IG = LG and ΠG = JG. Suppose char(K) 6= 2. We define η : S → S as

η(xi) = xi + yi and η(yi) = xi − yi for all i ∈ V (G).

It is clear that η is an isomorphism and ΠG = η(IG). If
√
−1 ∈ K and char(K) 6= 2, then we

define Ψ : S → S as

Ψ(xi) = xi +
√
−1yi and Ψ(yi) = xi −

√
−1yi for all i ∈ V (G).

It is clear that Ψ is an isomorphism and LG is the image of permanental ideal ΠG, i.e
Ψ(ΠG) = LG. Thus, if

√
−1 ∈ K and char(K) 6= 2, then Ψ(η(IG)) = LG.

Theorem 3.5. Let G be a connected non-bipartite graph on [n]. Then LG is complete
intersection if and only if G is an odd cycle if and only if IG is complete intersection.
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Proof. First, assume that IG is complete intersection. Since G is a non-bipartite graph,
p+(G) is a minimal prime ideal of IG and ht(p+(G)) = n. Therefore, ht(IG) = n = µ(IG)
which implies that G is an odd unicyclic graph. Let u be a vertex which is part of the
unique odd cycle. Since u is a bipartition vertex of G, {u} ∈ C(G). If degG(u) ≥ 3, then
bG({u}) ≥ 2. Thus, ht(pσ{u}(G)) = n + 1− bG({u}) ≤ n− 1 and pσ{u}(G) is a minimal prime

ideal of IG, which conflicts the fact that ht(IG) = n. Consequently, degG(u) = 2 and hence,
G is an odd cycle.

Now, we assume that LG is complete intersection and char(K) 6= 2. If
√
−1 ∈ K, then by

Remark 3.4, IG is complete intersection and hence, G is an odd cycle. Suppose
√
−1 /∈ K,

then Q∅(G) = IKn
is a minimal prime of LG as G is a non-bipartite graph. It follows from

[11, Proposition 2.3] that ht(IKn
) = n. Therefore, ht(LG) = n = µ(LG) which implies that

G is an odd unicyclic graph. If u is a vertex of the unique odd cycle, then u is a bipartition
vertex of G. Thus, {u} ∈ C(G). Now, if degG(u) ≥ 3, then bG({u}) ≥ 2 and hence,
ht(Q{u}(G)) ≤ n − 1, which is a contradiction. This implies that degG(u) = 2. Hence, G is
an odd cycle.

Conversely, we have to prove that LCn
and ICn

are complete intersections, for n odd. Let
e = {1, n}, then Cn \ e = Pn. By Theorem 3.2, LPn

and IPn
are complete intersections.

Note that LCn
= LPn

+ (ge) and ICn
= IPn

+ (ḡe). Therefore, it is enough to prove that
LPn

: ge = LPn
and IPn

: ḡe = IPn
which immediately follows from Lemma 3.3. Hence, LCn

and ICn
are complete intersections. �

It follows from [11, Corollary 4.6] that ifG is a graph on n vertices, then ht(LG) ≤ n−bG(∅).
As a consequence we have the following:

Corollary 3.6. Let G be a graph on [n]. Then LG is complete intersection if and only if IG
is complete intersection if and only if all the bipartite connected components of G are paths
and non-bipartite connected components are odd cycles.

Now, we move on to find connected graphs whose LSS ideals and parity binomial edge
ideals are almost complete intersections. In [14], Jayanthan et al. characterized connected
graphs whose binomial edge ideals are almost complete intersections.

Theorem 3.7. Let G be a connected bipartite graph on [n] which is not a path. Then LG
is an almost complete intersection ideal if and only if IG is almost complete intersection if
and only if G is either obtained by adding an edge between two disjoints paths or by adding
an edge between two vertices of a path such that the girth of G is even.

Proof. Since G is a bipartite graph, by Remark 3.1, LG = Φ1(JG) and IG = Φ2(JG). Hence,
the proof follows from [14, Theorems 4.3, 4.4]. �

For A ⊆ [n] and i ∈ A, we define pA(i) = |{j ∈ A | j ≤ i}|. We now give complete
classification of odd unicyclic graphs whose LSS ideals and parity binomial edge ideals are
almost complete intersections.

Theorem 3.8. Let G be a connected odd unicyclic graph on [n]. Assume that char(K) 6=
2. Then LG is an almost complete intersection ideal if and only if IG is almost complete
intersection if and only if G is one of the following types:

(1) G is obtained by adding an edge e between an odd cycle and a path,
(2) G is obtained by adding an edge e between two vertices of a path such that girth of G

is odd and at least one of the vertex is an internal vertex of the path,
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(3) G is obtained by attaching a path of length ≥ 1 to each vertex of a triangle.

Proof. First, assume that IG is an almost complete intersection ideal. Therefore, ht(IG) =
µ(IG) − 1 = n − 1. We claim that degG(u) ≤ 3, for every u ∈ V (G). Let if possible, there
exist a vertex u such that degG(u) ≥ 4. Then {u} ∈ C(G) and bG({u}) ≥ 3. Therefore,
ht(pσ{u}(G)) = n + 1 − bG({u}) ≤ n − 2, which is a contradiction. Hence, degG(u) ≤ 3

for all u ∈ V (G). Now, let u, v ∈ V (G) be distinct vertices such that degG(u) = 3 and
degG(v) = 3. If {u, v} /∈ E(G), then for T = {u, v}, T ∈ C(G) and bG(T ) = 4. Consequently,
ht(pσT (G)) = n + |T | − bG(T ) = n− 2 which conflicts the fact that ht(IG) = n− 1. Thus, if
two vertices have degree three, then they are adjacent. If the number of vertices of degree
three is at most 2, then G is either of type (1) or type (2). If the number of vertices of degree
three is more than two, then the odd cycle has length 3, each vertex of the cycle has degree
three and these are only vertices with degree three. Hence, G is of type (3).

Now, we assume that LG is an almost complete intersection ideal. Therefore, ht(LG) =
µ(LG) − 1 = n − 1. Suppose

√
−1 ∈ K, then by Remark 3.4, IG is almost complete

intersection and hence, we are done. Suppose
√
−1 /∈ K, then we claim that degG(u) ≤ 3,

for every u ∈ V (G). If not, then there is a vertex u such that degG(u) ≥ 4. Clearly,
{u} ∈ C(G) and bG({u}) ≥ 3. Therefore, ht(Q{u}(G)) = n + 1 − bG({u}) ≤ n − 2, which
conflicts the fact that ht(LG) = n− 1. Hence degG(u) ≤ 3. Now, let u, v ∈ V (G) such that
degG(u) = 3, degG(v) = 3 and u 6= v. If {u, v} /∈ E(G), then for T = {u, v}, T ∈ C(G) and
bG(T ) = 4. Therefore, ht(QT (G)) = n+ |T | − bG(T ) = n− 2 which is a contradiction. Now,
the proof is in the same lines as the proof for IG.

Conversely, if G is either of type (1) or of type (2), then LG = LG\e + (ge) and IG =
IG\e + (ḡe). By Corollary 3.6, LG\e and IG\e are complete intersections. Since char(K) 6= 2,
LG\e and IG\e are radical ideal. Therefore, LG\e : ge = LG\e : g

2
e and IG\e : ḡe = IG\e : ḡe

2.
Hence, by [7, Theorem 4.7(ii)] and Theorem 3.5, the assertion follows.

Now, we assume that G is of type (3). Let u, v, w be the vertices of the cycle and T ∈
C(G). We claim that {u, v, w} ∩ T = ∅ if and only if ht(pσT (G)) = n. First assume that
ht(pσT (G)) = n. Since ht(pσT (G)) = n + |T | − bG(T ) = n, we have |T | = bG(T ). If possible,
let {u, v, w} ∩ T 6= ∅. Without loss of generality, we may assume that u ∈ T . One can note
that T \ {u} ∈ C(G \ u) and bG\u(T \ {u}) = bG(T ). Since G \ u is disjoint union of two
paths, IG\u is complete intersection and therefore, ht(IG\u) = n − 3 = ht(pσT\{u}(G \ u)) =
n − 1 + |T \ {u}| − bG\u(T \ {u}). Thus, we have |T | = bG\u(T \ {u}) − 1 = bG(T ) − 1,
which is a contradiction. Conversely, if {u, v, w} ∩ T = ∅ and T 6= ∅, then every element
of T has degree two in G and for every pair u′, v′ ∈ T , {u′, v′} /∈ E(G). Thus, by deleting
each of the elements of T increases the number of bipartite connected components of the
corresponding graph by one and hence, bG(T ) = |T |. From the proof of the claim, we
observe that ht(IG) = n− 1 = µ(IG)− 1. Let T ∈ C(G) such that ht(pσT (G)) = n− 1. Then
{u, v, w} ∩ T 6= ∅ and {u, v, w} 6⊂ T . We may assume that u ∈ T . Let NG(u) = {v, w, z}.
Since T ∈ C(G), z /∈ T . Note that A = {u, v, w, z} forms a claw in G with center u and
(−1)pA(v)fz,wḡu,v+ (−1)pA(z)fv,wḡu,z + (−1)pA(w)fv,z ḡu,w = 0. The minimal presentation of IG
is

Sβ2(S/IG) φ−→ Sn −→ IG −→ 0.

Therefore, fz,w, fv,w, fv,z ∈ I1(φ), where I1(φ) is an ideal generated by entries of the matrix φ.
Since z /∈ T and {u, v, w} 6⊂ T , we have I1(φ) 6⊂ pσT (G). Consequently, by [2, Lemma 1.4.8],
µ((IG)pσ

T
(G)) ≤ n−1. As ht((IG)pσ

T
(G)) = n−1, by [22, Theorem 13.5], µ((IG)pσ

T
(G)) ≥ n−1.
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Hence, (IG)pσ
T
(G) is complete intersection. Now, if T ∈ C(G) such that ht(pσT (G)) = n, then

it follows from [22, Theorem 13.5], µ((IG)pσ
T
(G)) ≥ n. Since µ((IG)pσ

T
(G)) ≤ µ(IG) = n, we

have µ((IG)pσ
T
(G)) = n. Hence, (IG)pσ

T
(G) is complete intersection.

Suppose
√
−1 ∈ K, then IG is almost complete intersection and hence, LG is almost

complete intersection, by Remark 3.4. It remains to prove that if G is of type (3) and√
−1 /∈ K, then LG is an almost complete intersection ideal. The proof is in the same lines

as the proof for IG by replacing pσT (G) by QT (G). �

One can observe that if G is a connected non-bipartite graph, then p+(G) is a minimal
prime of IG. Therefore, ht(IG) ≤ ht(p+(G)) = n. If

√
−1 /∈ K, char(K) 6= 2 and G is a non-

bipartite graph, then IKn
is one of the minimal primes of LG. Therefore, ht(LG) ≤ ht(IKn

) =
n. If G is a connected non-bipartite graph such that LG or IG is almost complete intersection,
then n ≤ |E(G)| ≤ n + 1. We now assume that G is connected non-bipartite graph other
than odd unicyclic graph, i.e. |E(G)| = n + 1. So, G is obtained by adding an edge in
a unicyclic graph. First, we give classification of a connected non-bipartite bicyclic cactus
graph whose LSS ideals and parity binomial edge ideals are almost complete intersections.

Theorem 3.9. Let G be a connected non-bipartite bicyclic cactus graph on [n]. Assume that
char(K) 6= 2. Then LG is almost complete intersection if and only if IG is almost complete
intersection if and only if G is obtained by adding an edge e between two disjoint odd cycles.

Proof. First, assume that IG is almost complete intersection. Therefore, ht(IG) = µ(IG) −
1 = n. We claim that the distance between the two cycles is ≥ 1. If both cycles share a
common vertex say v, then {v} ∈ C(G), bG({v}) ≥ 2 and ht(pσ{v}(G)) ≤ n − 1, which is

not possible as ht(IG) = n. Now, we claim that both cycles of G are odd cycles. Let u
be the vertex of an odd cycle and v be the vertex of another cycle such that d(u, v) is the
distance between the two cycles. Clearly, {u} ∈ C(G). If v is the vertex of an even cycle,
then bG({u}) ≥ 2. So, ht(pσ{u}(G)) ≤ n − 1 which is not possible. Thus, both cycles of G

are odd cycles. If d(u, v) ≥ 2, then T = {u, v} ∈ C(G) and bG(T ) ≥ 3. Consequently, pσT (G)
is a minimal prime of IG and ht(pσT (G)) ≤ n − 1, which conflicts the fact that ht(IG) = n.
Hence, {u, v} ∈ E(G). Let w ∈ V (G) \ {u, v}. One can note that either {u, w} /∈ E(G)
or {v, w} /∈ E(G). If degG(w) ≥ 3, then either T = {u, w} ∈ C(G) or T = {v, w} ∈ C(G).
In either case bG(T ) ≥ 3 which implies that ht(pσT (G)) ≤ n − 1. Therefore, degG(w) = 2,
for w ∈ V (G) \ {u, v}. Hence, G is obtained by adding an edge e between two disjoint odd
cycles.

Now, assume that LG is almost complete intersection. Suppose
√
−1 ∈ K, then by Remark

3.4, IG is almost complete intersection and hence, G satisfies the hypothesis. Suppose√
−1 /∈ K, then the proof is in the same lines as the proof for IG.
Conversely, if G is obtained by adding an edge e between two disjoint odd cycles, then

LG = LG\e + (ge) and IG = IG\e + (ḡe). By virtue of Corollary 3.6, both LG\e and IG\e

are complete intersections. As char(K) 6= 2, LG\e and IG\e are radical ideal. Therefore,
LG\e : ge = LG\e : g

2
e and IG\e : ḡe = IG\e : ḡe

2. Hence, by [7, Theorem 4.7(ii)] and Theorem
3.5, the assertion follows. �

We now consider the case when G is a connected non-bipartite graph on [n] with |E(G)| =
n+1 and it is not a bicyclic cactus graph. Therefore, G is obtained from a unicyclic graph H
on m vertices by attaching a path Pn−m+2 between two distinct vertices of the unique cycle
of H . More preciesly, let H be a unicyclic graph on m vertices and u, v distinct vertices of
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the unique cycle of H . Let G be the graph obtained from H by attaching one end vertex of
Pn−m+2 at u and another end vertex at v. Note that T = {u, v} ∈ C(G). If n−m > 0, then
bG(T ) ≥ 3 and therefore, ht(pσT (G)) ≤ n − 1 and ht(QT (G)) ≤ n − 1. Also, if degG(u) ≥ 4,
then u is a cut vertex of G with bG({u}) ≥ 2. So, {u} ∈ C(G) and ht(pσ{u}(G)) ≤ n − 1,

ht(Q{u}(G)) ≤ n− 1. Similarily, if degG(v) ≥ 4, then {v} ∈ C(G) and ht(pσ{v}(G)) ≤ n − 1,

ht(Q{v}(G)) ≤ n − 1. Thus, if IG or LG is almost complete intersection, then n = m and
degG(u) = degG(v) = 3, i.e. G is obtained by adding a chord e = {u, v} in a unicyclic graph
H on [n] such that degH(u) = degH(v) = 2.

Theorem 3.10. Let G be a connected graph which is obtained by adding a chord e = {u, v}
in an odd unicyclic graph H such that degH(u) = degH(v) = 2. Assume that char(K) 6= 2.
Then LG is almost complete intersection if and only if IG is almost complete intersection if
and only if H is an odd cycle.

Proof. First, we assume that IG is almost complete intersection. Consequently, ht(IG) =
µ(IG)−1 = n. If w /∈ {u, v} is a vertex of an induced odd cycle of G such that degG(w) ≥ 3,
then {w} ∈ C(G), bG({w}) ≥ 2 and hence, ht(IG) ≤ ht(pσ{w}(G)) ≤ n−1. Now, if w /∈ {u, v}
is a vertex of an even induced cycle such that degG(w) ≥ 3, then either {u, w} /∈ E(G) or
{v, w} /∈ E(G). Assume that {u, w} /∈ E(G). Therefore, T = {u, w} ∈ C(G), bG(T ) ≥ 3
and hence, pσT (G) is a minimal prime of IG with ht(IG) ≤ ht(pσT (G)) ≤ n − 1. We have a
contradiction in each case. Thus, degG(w) = 2, for w ∈ V (G) \ {u, v}. Hence, H is an odd
cycle.

Now, assume that LG is almost complete intersection. Suppose
√
−1 ∈ K, then by Remark

3.4, IG is almost complete intersection and hence, H is an odd cycle. Suppose
√
−1 /∈ K,

then the proof is in the same lines as the proof for IG.
Conversely, if G is obtained by adding a chord e in an odd cycleH , then LG = LH+(ge) and

IG = IH +(ḡe). By Theorem 3.5, LH and IH are complete intersections. Since char(K) 6= 2,
LH and IH are radical ideal. Therefore, LH : ge = LH : g2e and IH : ḡe = IH : ḡe

2. Hence,
the assertion follows from [7, Theorem 4.7(ii)] and Corollary 3.6. �

Theorem 3.11. Let G be a connected non-bipartite graph which is obtained by adding a
chord e = {u, v} in an even unicyclic graph H such that degH(u) = degH(v) = 2. Then LG
is almost complete intersection if and only if IG is almost complete intersection if and only
if H is one of the following:

(1) H is an even cycle,
(2) H is obtained by attaching a path to a vertex i of an even cycle such that {u, i}, {v, i}

are edges of the even cycle.

Proof. First, assume that IG is an almost complete intersection ideal. Therefore, ht(IG) =
µ(IG) − 1 = n. Note that G has two induced odd cycles. If w is not a vertex of an
induced cycle and degG(w) ≥ 3, then {w} ∈ C(G), bG({w}) ≥ 2 and ht(pσ{w}(G)) ≤ n − 1

which is a contradiction to the fact that ht(IG) = n. Therefore, degG(w) ≤ 2, if w is
not a vertex of an induced cycle. Now, we assume that w is a vertex of an induced odd
cycle. We claim that degG(w) ≤ 3. Suppose that degG(w) ≥ 4, then w is a bipartition
vertex of G. Consequently, {w} ∈ C(G), bG({w}) ≥ 2 and ht(pσ{w}(G)) ≤ n − 1, which is a

contradiction. Hence, degG(w) ≤ 3, if w is a vertex of an induced cycle. If degG(w) = 2,
for w ∈ V (G) \ {u, v}, then H is an even cycle. Now, let w be a vertex of the cycle other
than u and v such that degG(w) = 3. If either {u, w} /∈ E(G) or {v, w} /∈ E(G) then, for
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T = {u, w} or {v, w} respectively, pσT (G) is a minimal prime of IG with ht(pσT (G)) ≤ n−1 as
bG(T ) ≥ 3. Thus, if w ∈ V (G) \ {u, v} such that degG(w) = 3, then {u, w}, {v, w} ∈ E(G).
Now, if w,w′ ∈ V (G) \ {u, v} such that degG(w) = degG(w

′) = 3 and w 6= w′, then
T = {w,w′} ∈ C(G) and bG(T ) ≥ 3, which conflicts the fact that ht(IG) = n. Therefore,
H is obtained by attaching a path to a vertex i of an even cycle such that {u, i}, {v, i} are
edges of the even cycle.

Now, assume that LG is almost complete intersection and char(K) 6= 2. Suppose
√
−1 ∈ K,

then by Remark 3.4, IG is almost complete intersection and hence, H is of the required type.
Suppose

√
−1 /∈ K, then the proof is in the same lines as the proof for IG.

We now prove the converse. Assume that H is an even cycle. First, we prove that
ht(IG) = n. Let T ∈ C(G) such that T 6= ∅. We claim that, if u ∈ T or v ∈ T , then
|T | = bG(T ). We can assume that u ∈ T . Clearly, T \ {u} ∈ C(G \ u). One can note that
G \ u is path graph on n − 1 vertices. Therefore, LG\u and IG\u are complete intersections
and hence ht(IG\u) = ht(LG\u) = n− 2 = n− 1 + |T \ {u}| − bG\u(T \ {u}). Consequently,
we have |T | = bG(T ). Now, assume that {u, v}∩T = ∅. Let w ∈ T . Then T \w ∈ C(G \w).
Observe that G \w is an odd unicyclic graph such that IG\w is either complete intersection
or almost complete intersection. If IG\w is complete intersection, then ht(pσT\{w}(G \ w)) =
n − 1 + |T \ {w}| − bG\w(T \ {w}) = n − 1. Consequently, we have |T | = bG(T ) + 1.
If IG\w is almost complete intersection, then G \ w is of type (2) graph in Theorem 3.8.
Since each vertex of T \ w has degree two in G \ w, deleting each of the elements of T \ w
increases the number of bipartite connected components of the corresponding graph by one.
Therefore, |T \ {w}| = bG\w(T \ {w}) = bG(T ) which further implies that |T | = bG(T ) + 1.
Thus, ht(pσT (G)) = n + 1 if and only if T 6= ∅ and T ∩ {u, v} = ∅. By [22, Theorem 13.5],
(IG)pσ

T
(G) is complete intersection ideal, if ht(pσT (G)) = n + 1. Now, let T ∈ C(G) such that

ht(pσT (G)) = n. The minimal presentation of IG is

Sβ2(S/IG) ϕ−→ Sn+1 −→ IG −→ 0.

Let Y = y1 · · · yn. Define b ∈ Sn as follows:

(b)k =
Y

ykyk+1

for 1 ≤ k ≤ n− 1, (b)n =
Y

y1yn
.

It follows from [14, Theorem 3.5] that
∑n−1

k=1(b)kfk,k+1− (b)nf1,n = 0. Consequently, we have∑n−1
k=1 Φ2((b)k)ḡk,k+1 − Φ2((b)n)ḡ1,n = 0. Therefore, Φ2((b)k) ∈ I1(ϕ), for 1 ≤ k ≤ n. If

T = ∅, then Φ2((b)k) /∈ pσ∅(G) which implies that I1(ϕ) 6⊂ pσ∅ (G). We now consider that
T 6= ∅. Since ht(pσT (G)) = n, we have {u, v} ∩ T 6= ∅. Without loss of generality assume
that u ∈ T . As degG(u) = 3, let NG(u) = {v, w, z}. Note that T \ {u} ∈ C(G \ u).
Therefore, w, z /∈ T . Notice that A = {u, v, w, z} forms a claw in G with center u and
(−1)pA(v)fz,wḡu,v + (−1)pA(z)fv,wḡu,z + (−1)pA(w)fv,z ḡu,w = 0. Consequently, fz,w, fv,w, fv,z ∈
I1(ϕ). If z and w belong to different components of G[T̄ ], then fz,w /∈ pσT (G). In the case of
z and w belongs to same component of G[T̄ ], then v and z belong to different partition of
bipartite graph G \ u. Therefore, fv,z /∈ pσT (G). Thus, I1(ϕ) 6⊂ pσT (G), if ht(pσT (G)) = n. By
virtue of [2, Lemma 1.4.8], µ((IG)pσ

T
(G)) ≤ n, if ht(pσT (G)) = n. Hence, it follows from [22,

Theorem 13.5] that IG is almost complete intersection.
We now assume that H satisfies hypothesis (2). Let T ∈ C(G) such that T 6= ∅. If u ∈ T

or v ∈ T , then following the proof of type (1), |T | = bG(T ) . So, assume that {u, v}∩T = ∅.
Let w ∈ V (G) \ {u, v} be such that degG(w) = 3. If w ∈ T , then T \ {w} ∈ C(G \ w) and
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bG(T ) = bG\w(T \ {w}). Since G \ w is disjoint union of a path and an odd cycle, IG\w is
complete intersection. Therefore, ht(pσT\{w}(G \ w)) = n − 2 + |T \ {w}| − bG(T ) = n − 3

which further implies that bG(T ) = |T |. Now, we consider that {u, v, w} ∩ T = ∅. In
the case that T contains a vertex of cycle say z, then T \ {z} ∈ C(G \ z) and IG\z is
almost complete intersection of type (3) in Theorem 3.8. As we have proved in Theorem 3.8,
ht(pσT\{z}(G\z)) = n−1+|T \{z}|−bG\z(T \{z}) = n−1 which implies that |T | = bG(T )+1.
If none of the vertices of the cycle belongs to T , then removing each of the elements of T
increases the number of bipartite connected components of the corresponding graph by one.
Consequently, we have |T | = bG(T ). Thus, ht(IG) = n. Also, ht(pσT (G)) = n+ 1 if and only
if T 6= ∅, T ∩ {u, v, w} = ∅ and T contains at least one vertex of cycle. Following the proof
for type (1), one can prove that (IG)pσ

T
(G) is complete intersection for all T ∈ C(G). Hence,

IG is an almost complete intersection ideal.
Suppose

√
−1 ∈ K and char(K) 6= 2, then LG is almost complete intersection, by Remark

3.4 and the above paragraph. Now, it remains to prove that if H is either even cycle or
H satisfies hypothesis (2),

√
−1 /∈ K and char(K) 6= 2, then LG is an almost complete

intersection ideal. The proof of which is in the same lines as the proof for IG by replacing
pσT (G) by QT (G). �

We conclude this section by characterizing disconnected graphs whose LSS ideals and
parity binomial edge ideals are almost complete intersections.

Corollary 3.12. Let G = G1 ⊔ · · · ⊔Gk be a disconnected graph on [n]. Then IG is almost
complete intersection if and only if LG is almost complete intersection if and only if for some
i, IGi

is almost complete intersection and for j 6= i, IGj
are complete intersections.

4. Cohen-Macaulayness of the Rees Algebra

Let G be a simple graph on [n] and R = S[T{i,j} : {i, j} ∈ E(G) with i < j]. Let
δ, γ : R → S[t] be given by δ(T{i,j}) = gi,jt, γ(T{i,j}) = ḡi,jt. Then Im(δ) = R(LG), Im(γ) =
R(IG) and ker(δ), ker(γ) are called the defining ideals of R(LG), R(IG) respectively. We
now study the Cohen-Macaulayness of the Rees algebra of almost complete intersection LSS
ideals and parity binomial edge ideals. We first recall a result that characterizes the Cohen-
Macaulayness of the Rees algebra and the associated graded ring of an almost complete
intersection ideal.

Theorem 4.1. [8, Corollary 1.8] Let A be a Cohen-Macaulay local (graded) ring and I ⊂ A
be an almost complete intersection (homogeneous) ideal in A. Then

(1) grA(I) is Cohen-Macaulay if and only if depth(A/I) ≥ dim(A/I)− 1.
(2) R(I) is Cohen-Macaulay if and only if ht(I) > 0 and grA(I) is Cohen-Macaulay.

Thus, to prove that R(IG) is Cohen-Macaulay, it is enough to prove that depth(S/IG) ≥
dim(S/IG)− 1, which is equivalent to prove that S/IG is either Cohen-Macaulay or almost
Cohen-Macaulay. Similarly, to prove that R(LG) is Cohen-Macaulay, it is enough to prove
that S/LG is either Cohen-Macaulay or almost Cohen-Macaulay.

Lemma 4.2. Let G be a graph on [n]. Then βi,j(S/LG) = βi,j(S/IG) for all i, j. In partic-
ular, pd(S/LG) = pd(S/IG), dim(S/LG) = dim(S/IG) and depth(S/LG) = depth(S/IG).
Proof. If char(K) = 2, then LG = IG and hence, we are done. Assume now that char(K) 6= 2.
If

√
−1 ∈ K, then the assertion follows from Remark 3.4. Suppose that

√
−1 /∈ K and set
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L = K(
√
−1), S ′ = L ⊗K S. Let (F·, d

F
· ) and (G·, d

G
· ) be minimal free resolution of S/LG

and S/IG, respectively. Since K ⊂ L is faithfully flat extension, (L ⊗K F·, 1L ⊗K dF· ) and
(L ⊗K G·, 1L ⊗K dG· ) are free resolutions of S ′/LG and S ′/IG respectively. Since for each i,
1L ⊗K dFi = dFi and 1L ⊗K dGi = dGi , (L⊗K F·, 1L ⊗K dF· ) and (L⊗K G·, 1L ⊗K dG· ) are minimal
free resolution of S ′/LG and S ′/IG respectively. Consequently, βSi,j(S/LG) = βS

′

i,j(S
′/LG) =

βS
′

i,j(S
′/IG) = βSi,j(S/IG). �

Due to Lemma 4.2, it is enough to study the Cohen-Macaulayness of almost complete
intersection parity binomial edge ideals.

The following fundamental property of projective dimension is used repeatedly in this
section.

Lemma 4.3. Let S be a standard graded polynomial ring. Let M,N and P be finitely

generated graded S-modules. If 0 → M
f−→ N

g−→ P → 0 is a short exact sequence with f, g
graded homomorphisms of degree zero, then

(i) pdS(M) ≤ max{pdS(N), pdS(P )− 1},
(ii) pdS(P ) ≤ max{pdS(N), pdS(M) + 1},
(iii) pdS(P ) = pdS(N) if pdS(N) > pdS(M).

It follows from [14, Theorems 4.3, 4.7] that if G is a tree, then IG is almost complete
intersection ideal if and only if S/IG is almost Cohen-Macaulay. Consequently, R(IG) and
grS(IG) are Cohen-Macaulay. Now, we prove the same for odd unicyclic graphs. First, we
compute the projective dimension of parity binomial edge ideal of an odd unicyclic graph.

Theorem 4.4. Let G be a connected odd unicyclic graph on [n]. Then pd(S/IG) = n.

Proof. Since p+(G) is a minimal prime of IG, we get that pd(S/IG) ≥ ht(p+(G)) = n. Let
e = {u, v} be an edge of the cycle. Now, consider the short exact sequence

0 −→ S

IG\e : ḡe
(−2)

·ḡe−→ S

IG\e
−→ S

IG
−→ 0. (1)

Observe that G \ e is a tree and (G \ e)e is a block graph on [n]. It follows from [6, Theorem
1.1] that pd(S/JG\e) = n− 1 and pd(S/J(G\e)e) = n− 1. Therefore, by virtue of Lemma 3.3,
pd(S/IG\e : ḡe) = pd(S/J(G\e)e) = n − 1 and by Remark 3.1, pd(S/IG\e) = pd(S/JG\e) =
n− 1. Hence, by applying Lemma 4.3 on the short exact sequence (1), pd(S/IG) ≤ n. �

Theorem 4.5. Let G be a connected odd unicyclic graph on [n]. Assume that char(K) 6= 2.
Then the following are equivalent:

(1) S/IG is almost Cohen-Macaulay,
(2) IG is almost complete intersection.

In particular, R(IG) and grS(IG) are Cohen-Macaulay, if IG is almost complete intersection.

Proof. By Auslander-Buchsbaum formula and Theorem 4.4, depth(S/IG) = n. Therefore,
S/IG is almost Cohen-Macaulay if and only if dim(S/IG) = n+1 if and only if ht(IG) = n−1
if and only if IG is almost complete intersection, by Theorem 3.8. �

Remark 4.6. Let G be a connected even unicyclic graph such that IG is an almost complete
intersection ideal. Then, it follows from [14, Lemma 4.6] and Remark 3.1 that pd(S/IG) ≤ n.
By virtue of [1, Theorem 6.1], S/IG is Cohen-Macaulay if and only if G is obtained by
attaching a path of length ≥ 1 to two adjacent vertices of C4. Since dim(S/IG) = n + 1,
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if S/IG is not Cohen-Macaulay, then depth(S/IG) = n and hence, S/IG is almost Cohen-
Macaulay. Moreover, grS(IG) and R(IG) are Cohen-Macaulay.

Now, we move on to study the Cohen-Macaulayness of R(IG), where G is obtained by
adding a chord in a unicyclic graph such that IG is almost complete intersection. To do
that, we need to compute the depth of S/IG.

A graph G is said to be closed, if generating set of JG is a Gröbner basis with respect to
lexicographic order induced by x1 > · · · > xn > y1 > · · · > yn. Let H be a connected closed
graph on [n] such that S/JH is Cohen-Macaulay. By [6, Theorem 3.1], there exist integers
1 = a1 < a2 < · · · < as < as+1 = n such that for 1 ≤ i ≤ s, Fi = [ai, ai+1] is a maximal
clique and if F is a maximal clique, then F = Fi for some 1 ≤ i ≤ s. Set e = {1, n}. The
graph G = H ∪ {e} is called the quasi-cycle graph associated to H . In [23], Mohammadi
and Sharifan have studied the Hilbert series of binomial edge ideal of quasi-cycles.

Remark 4.7. [17, Remark 3.3] Let G be the quasi-cycle graph associated with a Cohen-
Macaulay closed graph H. Let F1, . . . , Fs be a leaf order on ∆(H). Let iv(G) denote the
number of internal vertices in G. If H 6= P3, then iv(G) ≥ s and iv(H) = s− 1.

Theorem 4.8. Let H be a connected closed graph on [n] such that S/JH is Cohen-Macaulay
and G = H ∪ {e} be a quasi-cycle graph associated to H. Then pd(S/JG) ≤ n. Moreover, if
H 6= P3, then pd(S/JG) = n.

Proof. If H = P3, then G = K3 and the result follows from [6, Theorem 1.1]. We now assume
that H 6= P3. We proceed by induction on iv(G). By virtue of Remark 4.7, iv(G) ≥ 2. If
iv(G) = 2, then H = G \ e is a block graph with exactly one internal vertex. Let v ∈ V (H)
be the internal vertex of H . Therefore, v is also an internal vertex of G. By [24, Lemma
4.8], JG = JGv

∩ ((xv, yv) + JG\v). Note that Gv is a complete graph on [n] and G \ v
is a block graph on n − 1 vertices. Therefore, by [6, Theorem 3.1], pd(S/JGv

) = n − 1,
pd(S/((xv, yv) + JG\v)) = n. Note that JGv

+ ((xv, yv) + JG\v) = (xv, yv) + JGv\v. Therefore,
we have the following short exact sequence:

0 −→ S

JG
−→ S

JGv

⊕ S

(xv, yv) + JG\v
−→ S

(xv, yv) + JGv\v
−→ 0. (2)

Observe that Gv \ v is a complete graph on n − 1 vertices. Consequently, by [6, Theorem
3.1], pd(S/((xv, yv) + JGv\v)) = n. Thus, by Lemma 4.3 and the short exact sequence (2),
pd(S/JG) ≤ n.

Now assume that iv(G) > 2. Let v ∈ V (H) be an internal vertex of H . Therefore, v is
an internal vertex of G. Notice that G \ v is a connected Cohen-Macaulay closed graph on
n − 1 vertices, therefore by [6, Theorem 3.1], pd(S/((xv, yv) + JG\v)) = n. Also, observe
that Gv is a quasi-cycle graph with iv(Gv) = iv(G)− 1, hence, by induction pd(S/JGv

) ≤ n.
Since Gv \ v is a quasi-cycle on n − 1 vertices with iv(Gv \ v) = iv(G) − 1, by induction,
pd(S/((xv, yv) + JGv\v)) ≤ n + 1. Hence, using Lemma 4.3 in the short exact sequence
(2), we conclude that pd(S/JG) ≤ n. Now, if H 6= P3, then either s ≥ 3 or for some
1 ≤ i ≤ s, |Fi| > 2. In first case T = {a1, a3} has the cut point property and in second
case T = {ai, ai+1} has the cut point property. In both the cases cG(T ) = 2, consequently,
ht(PT (G)) = n + |T | − cG(T ) = n. Hence, pd(S/JG) ≥ ht(PT (G)) = n. �

It follows from [23, Corollary 4.2] and Theorem 4.8 that if H 6= P3, then S/JG is almost
Cohen-Macaulay.
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Lemma 4.9. Let H be a connected closed graph on [n −m + 1] such that S/JH is Cohen-
Macaulay and G′ = H ∪ {e′} be a quasi-cycle graph associated to H. Let v be an internal
vertex of H and G be a graph on [n] obtained by attaching a path Pm to the vertex v of G′.
Then pd(S/JG) ≤ n. Moreover, if iv(G′) = 2, then pd(S/JG) = n− 1.

Proof. If H = P3, then G is a closed graph such that S/JG is Cohen-Macaulay. Thus,
pd(S/JG) = n − 1. Assume that H 6= P3. Let e = {u, v} ∈ E(G) such that G \ e is
the disjoint union of a path Pm−1 and a quasi-cycle graph G′. Assume that u ∈ V (Pm−1).
It follows from [23, Theorem 3.4] that JG\e : fe = J(G\e)e . Observe that (G \ e)e is the
disjoint union of a path Pm−1 and G′

v. Note that G′
v is either a quasi-cycle or a complete

graph. Therefore, pd(S/J(G\e)e) = m − 2 + pd(S/JG′
v
) ≤ n − 1, by Theorem 4.8. Also,

pd(S/JG\e) = m− 2 + pd(S/JG′) = n− 1. From the following exact sequence:

0 −→ S

JG\e : fe
(−2)

·fe−→ S

JG\e
−→ S

JG
−→ 0, (3)

we get, pd(S/JG) ≤ n. Now, if iv(G′) = 2, then (G \ e)e is the disjoint union of a path Pm−1

and a complete graph on n −m + 1 vertices. Consequently, pd(S/J(G\e)e) = n − 2. Hence,
by Lemma 4.3 and the short exact sequence (3), pd(S/JG) = n− 1. �

We now consider the case that G is obtained by adding a chord in a unicyclic graph and
IG is almost complete intersection. Let G be a graph and H a subgraph of G. Then G is
said to be H-free graph if H is not an induced subgraph of G.

Theorem 4.10. Let G be a graph obtained by adding a chord e′ = {u, v} in an odd cycle
Cn. Then pd(S/IG) = n+1, if G is C4-free and pd(S/IG) = n, if C4 is an induced subgraph
of G.

Proof. Let e = {v, w} ∈ E(G) be an edge of the induced odd cycle. Observe that G \ e is
an even unicyclic graph such that IG\e is almost complete intersection, by Theorem 3.7 and
S/IG\e is not Cohen-Macaulay, by [1, Theorem 6.1]. By Remark 4.6, pd(S/IG\e) = n. It
follows from Lemma 3.3 that IG\e : ḡe = Φ2(J(G\e)e). Notice that (G \ e)e = (G \ e)v is a
graph obtained by attaching a path to an internal vertex of a quasi-cycle graph G′. If C4 is
an induced subgraph of G, then iv(G′) = 2 and hence, pd(S/J(G\e)e) = n−1, by Lemma 4.9.
Now, by the short exact sequence (1) and Lemma 4.3, pd(S/IG) = n. In the case that G is
a C4-free graph, the induced even cycle has length ≥ 6. Let i, j /∈ {u, v} be vertices of the
induced even cycle such that i is not adjacent to j. Clearly, T = {i, j} ∈ C(G) and bG(T ) = 1.
Consequently, pd(S/IG) ≥ ht(pσT (G)) = n + 1. By Lemma 4.9, pd(S/J(G\e)e) ≤ n. Thus,
by applying Lemma 4.3 on the short exact sequence (1), we get, pd(S/IG) ≤ n + 1, which
proves the assertion. �

Theorem 4.11. Let G be a non-bipartite graph obtained by adding a chord e = {u, v} in an
even cycle Cn. Then pd(S/IG) = n+ 1.

Proof. By virtue of Lemma 3.3, IG\e : ḡe = Φ2(J(G\e)e). Observe that (G\e)e is a quasi-cycle
graph on n vertices which is not a triangle. Therefore, pd(S/IG\e : ḡe) = pd(S/J(G\e)e) =
n, by Theorem 4.8. Also, G \ e is a quasi-cycle graph on [n] so that by Theorem 4.8,
pd(S/IG\e) = n. Thus, using Lemma 4.3 on the short exact sequence (1), we have pd(S/IG) ≤
n+ 1. Observe that G has two induced odd cycles. Let i, j /∈ V (G) \ {u, v} such that i and
j are vertices of distinct induced odd cycles in G. Then T = {i, j} ∈ C(G) and bG(T ) = 1.
Hence, pd(S/IG) ≥ ht(pσT (G)) = n+ 1 which completes the proof. �
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A graph G on [5] with edge set E(G) = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {2, 4}, {3, 5}} is called
Kite graph.

Theorem 4.12. Let G be a non-bipartite graph on [n]. Assume that G satifies hypothesis
of Theorem 3.11(2). Then pd(S/IG) = n + 1, if G is a Kite-free graph and pd(S/IG) = n,
if Kite is an induced subgraph of G.

Proof. Note that G \ e is an even unicyclic graph. By Theorem 3.7, IG\e is almost complete
intersection and by [1, Theorem 6.1], S/IG\e is not Cohen-Macaulay. Therefore, it follows
from Remark 4.6 that pd(S/IG\e) = n. By virtue of Lemma 3.3, IG\e : ḡe = Φ2(J(G\e)e).
Notice that (G \ e)e is a graph obtained by attaching a path to an internal vertex of a quasi-
cycle graph G′. Now, if both the induced odd cycles of G have girth three, then iv(G′) = 2.
Thus, by Lemma 4.9, pd(S/IG\e : ḡe) = pd(S/J(G\e)e) = n − 1. Hence, by the short exact
sequence (1), pd(S/IG) = n. If G has an induced odd cycle of girth ≥ 5, then by the proof of
Theorem 3.11(2), there exists T ∈ C(G) such that ht(pσT (G)) = n+1. Therefore, pd(S/IG) ≥
ht(pσT (G)) = n + 1. By virtue of Lemmas 3.3, 4.9, pd(S/IG\e : ḡe) = pd(S/J(G\e)e) ≤ n.
Hence, by Lemma 4.3 and the short exact sequence (1), the desired result follows. �

The following theorem is an immediate consequence of Theorems 3.10, 3.11, 4.10, 4.11
and Theorem 4.12.

Theorem 4.13. Let G be a graph on [n] obtained by adding a chord in a unicyclic graph.
Assume that char(K) 6= 2 and IG is almost complete intersection. Then

(1) S/IG is Cohen-Macaulay if and only if either C4 is an induced subgraph of G or Kite
graph is an induced subgraph of G.

(2) S/IG is almost Cohen-Macaulay if and only if G is C4-free and Kite-free.

Moreover, R(IG) and grS(IG) are Cohen-Macaulay.

5. First Syzygy of LSS ideals

In this section, we compute the defining ideal of symmetric algebra of LSS ideals of trees

and odd unicyclic graphs. Let A be a Noetherian ring and I ⊂ A be an ideal. Let Am φ−→
An −→ I −→ 0 be a presentation of I and T = [T1 · · ·Tn] be a 1×n matrix of variables over
ring A. Then the defining ideal of symmetric algebra of I, denoted by Sym(I), is generated
by entries of the matrix Tφ. Thus, to compute the defining ideal of symmetric algebra of
LSS ideals of trees and odd unicyclic graphs, we compute the first syzygy of LSS ideals of
trees and odd unicyclic graphs. The second graded Betti numbers of binomial edge ideals of
trees are computed in [14, Theorem 3.1]. The results from [14] and Remark 3.1 gives us the
second graded Betti number LSS ideals of trees.

Theorem 5.1. Let G be a tree on [n]. Then

β2(S/LG) = β2,4(S/LG) =

(
n− 1

2

)
+
∑

v∈V (G)

(
degG(v)

3

)
.

We now describe the first syzygy of LSS ideals of trees.

Theorem 5.2. Let G be a tree on [n]. Let
{
e{i,j} : {i, j} ∈ E(G)

}
be the standard basis of

Sn−1. Then the first syzygy of LG is minimally generated by elements of the form

(a) gi,je{k,l} − gk,le{i,j}, where {i, j} 6= {k, l} ∈ E(G) and
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(b) (−1)pA(j)fk,le{i,j} + (−1)pA(k)fj,le{i,k} + (−1)pA(l)fj,ke{i,l},
where A = {i, j, k, l} ∈ CG with center at i.

Proof. The proof follows from [14, Theorem 3.2] and Remark 3.1. �

We now compute the second graded Betti number of LSS ideals of odd unicyclic graphs.

Theorem 5.3. Let G be an odd unicyclic graph on [n]. Then

β2(S/LG) = β2,4(S/LG) =

(
n

2

)
+
∑

i∈[n]

(
degG(i)

3

)
.

Proof. Let e = {u, v} ∈ E(G) such that e is an edge of the cycle. One can note that G \ e is
a tree. We consider the following short exact sequence:

0 −→ S

LG\e : ge
(−2)

·ge−→ S

LG\e
−→ S

LG
−→ 0. (4)

The long exact sequence of Tor corresponding to the short exact sequence (4) is

· · · → TorS2,j

(
S

LG\e
,K

)
→ TorS2,j

(
S

LG
,K

)
→ TorS1,j

(
S

LG\e : ge
(−2),K

)
→ · · · (5)

Note that

TorS1,j

(
S

LG\e : ge
(−2),K

)
≃ TorS1,j−2

(
S

LG\e : ge
,K

)
.

It follows from Lemma 3.3 that β1,j−2(S/LG\e : ge) = 0, if j 6= 4 and

β1,2(S/LG\e : ge) = n− 1 +

(
degG(u)− 1

2

)
+

(
degG(v)− 1

2

)
.

Now, by virtue of Theorem 5.1,

β2(S/LG\e) = β2,4(S/LG\e) =

(
n− 1

2

)
+
∑

i∈[n]

(
degG\e(i)

3

)
.

Therefore, β2,j(S/LG) = 0, for j 6= 4. Since β2,2(S/LG\e : ge) = 0 and β1,4(S/LG\e) = 0, by
(5), β2,4(S/LG) = β2,4(S/LG\e) + β1,2(S/LG\e : ge). Hence, the desired result follows. �

We now compute the minimal generators of the first syzygy of LSS ideals of odd unicyclic
graphs.

Mapping Cone Construction: Let (F., dF.) and (G., dG.) be minimal S-free resolutions
of S/LG\e and [S/LG\e : ge](−2) respectively. Let ϕ. : (G., dG.) −→ (F., dF.) be the complex
morphism induced by the multiplication by ge. The mapping cone (M(ϕ)., δ.) is the S-free
resolution of S/LG such that (M(ϕ))i = Fi ⊕Gi−1 and the differential maps are δi(x, y) =
(dFi (x)+ϕi−1(y),−dGi−1(y)) for x ∈ Fi and y ∈ Gi−1. The mapping cone need not necessarily
be a minimal free resolution. We refer the reader to [5] for more details on the mapping
cone.

Theorem 5.4. Let G be an odd unicyclic graph on [n]. Let {e{i,j} : {i, j} ∈ E(G)} denote
the standard basis of Sn. Then the first syzygy of LG is minimally generated by elements of
the form

(a) gi,je{k,l} − gk,le{i,j}, where {i, j} 6= {k, l} ∈ E(G)
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(b) (−1)pA(v)fz,we{u,v} + (−1)pA(z)fv,we{u,z} + (−1)pA(w)fv,ze{u,w}, where A = {u, v, w, z}
forms a claw in G with center u.

Proof. From Theorem 5.3, we know that the minimal presentation of LG is of the form

Sβ2,4(S/LG) −→ Sn −→ LG −→ 0,

where

β2,4(S/LG) =

(
n

2

)
+
∑

v∈V (G)

(
degG(v)

3

)
=

(
n

2

)
+ |CG|.

Let e = {u, v} ∈ E(G) such that e is an edge of the unique odd cyclic. Since G \ e is a tree,
by Theorem 5.2, we get a minimal generating set of the first syzygy of LG\e as

(a) gi,je{k,l} − gk,le{i,j}, where {i, j} 6= {k, l} ∈ E(G \ e),
(b) (−1)pA(j)fk,le{i,j} + (−1)pA(k)fj,le{i,k} + (−1)pA(l)fj,ke{i,l}, where A = {i, j, k, l} forms

a claw in G \ e with center at i,

By virtue of Lemma 3.3, we have

LG\e : ge = LG\e + (fi,j : i, j ∈ NG\e(u) or i, j ∈ NG\e(v)).

Now we apply the mapping cone construction to the short exact sequence (4). Let (G., dG.)
and (F., dF.) be minimal free resolutions of [S/LG\e : ge](−2) and S/LG\e respectively. Then

G1 ≃ Sβ1,2(S/LG\e:ge), F1 ≃ Sn−1 and F2 ≃ Sβ2(S/LG\e). Denote the standard basis of G1 by
S = S1 ⊔ S2 ⊔ S3, where S1 = {E{i,j} : {i, j} ∈ E(G \ e)}, S2 = {E{k,l} : k, l ∈ NG(v) \ {u}}
and S3 = {E{k,l} : k, l ∈ NG(u) \ {v}}. Note that |S1| = n − 1, |S2| =

(
degG(v)−1

2

)
and

|S3| =
(
degG(u)−1

2

)
. One can note that

dG1 (E{i,j}) = gi,j, if E{i,j} ∈ S1,
dG1 (E{i,j}) = fi,j, if E{i,j} ∈ S2 ⊔ S3.

Also, let {e{i,j} : {i, j} ∈ E(G \ e)} be the standard basis of F1. By the mapping cone
construction, the map from G0 to F0 is given by the multiplication by ge. Now we define ϕ1

from G1 to F1 by

ϕ1(E{k,l}) = ge · e{k,l}, if E{k,l} ∈ S1,
ϕ1(E{k,l}) = (−1)pA(k)+pA(u)+1fu,le{v,k} + (−1)pA(l)+pA(u)+1fu,ke{v,l}, if E{k,l} ∈ S2,
ϕ1(E{k,l}) = (−1)pA(k)+pA(v)+1fv,le{u,k} + (−1)pA(l)+pA(v)+1fv,ke{u,l}, if E{k,l} ∈ S3.

We need to prove that dF1 (ϕ1(v)) = ge · dG1 (v) for any v ∈ G1. For a claw A = {v, u, k, l}
with center at v, we have the relation

(−1)pA(k)+pA(u)+1fu,lgv,k + (−1)pA(l)+pA(u)+1fu,kgv,l = fk,lge.

Similarily, for a claw A = {u, v, k, l} with center at u, we have the relation

(−1)pA(k)+pA(v)+1fv,lgu,k + (−1)pA(l)+pA(v)+1fv,kgu,l = fk,lge.

This yields that dF1 (ϕ1(E{i,j})) = ge · dG1 (E{i,j}) for E{i,j} ∈ S. So the mapping cone con-
struction gives us a S-free presentation of LG as

F2 ⊕G1 −→ F1 ⊕G0 −→ F0 −→ LG −→ 0.
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Since F2 ⊕ G1 ≃ Sβ2(S/LG) and F1 ⊕ G0 ≃ Sn, this is a minimal free presentation. Hence
the first syzygy of LG is minimally generated by the images of basis elements under the map

Φ : F2 ⊕G1 −→ F1 ⊕G0, where Φ =

[
dF2 ϕ1

0 −dG1

]
. Hence the assertion follows. �

As a consequence of Theorem 5.2 and Theorem 5.4, one can compute the defining ideal
of symmetric algebra of LSS ideal of G, when G is either a tree or an odd unicyclic graph.
Similarly, one can compute the first syzygy of parity binomial edge ideals of trees and odd
unicyclic graphs and hence, the defining ideal of symmetric algebra of parity binomial edge
ideals of trees and odd unicyclic graphs.

We now study linear type LSS ideals. An ideal I ⊂ A is said to be of linear type if
Sym(I) ∼= R(I). Now, we recall the definition of d-sequence.

Definition 5.5. Let A be a commutative ring. Set d0 = 0. A sequence of elements d1, . . . , dn
is said to be a d-sequence if (d0, d1, . . . , di) : di+1dj = (d0, d1, . . . , di) : dj for all 0 ≤ i ≤ n−1
and for all j ≥ i+ 1.

We refer the reader to [12] for more properties of d-sequences.

Theorem 5.6. Let G be a graph on [n]. Assume that K is an infinite field and char(K) 6= 2.
If LG is an almost complete intersection ideal, then LG is generated by a homogeneous d-
sequence. In particular, LG is of linear type.

Proof. Assume that LG is an almost complete intersection ideal. It follows from [4, Proposi-
tion 5.1] that there exists a homogeneous set of generators {F1, . . . , Fµ(LG)} of LG such that
F1, . . . , Fµ(LG)−1 is a regular sequence in S. Since J = (F1, . . . , Fµ(LG)−1) is unmixed ideal,
by [7, Theorem 4.7], J : Fµ(LG) = J : F 2

µ(LG). Hence, LG is generated by a homogeneous

d-sequence F1, . . . , Fµ(LG). The second assertion follows from [12, Theorem 3.1]. �

In Theorem 5.6, we assume that K is an infinite field, which is not a necessary condition.
For, if K is a finite field with char(K) 6= 2 and G is an odd unicyclic graph such that LG is
almost complete intersection of type (1) or type (2) in Theorem 3.8, then it follows from the
proof of Theorem 3.8 that the generators of LG form a homogeneous d-sequence. Also, if G
is a bicyclic cactus graph such that LG is almost complete intersection, then LG is generated
by a homogeneous d-sequence (see proof of Theorem 3.9).

Now, we prove that if G is a bipartite graph such that JG is of linear type, then G is
K2,3-free graph.

Proposition 5.7. (1) Let G be a bipartite graph such that JG is of linear type, then G
is K2,3-free graph.

(2) If K4 is an induced subgraph of G, then JG is not of linear type.

Proof. Let δ : S[T{i,j} : {i, j} ∈ E(G)] −→ R(JG) is the map given by δ(T{i,j}) = fi,jt. Then
J = ker(δ) is the defining ideal of R(JG).

(1) If possible, letK2,3 be an induced subgraph of G. Without loss of generality, we may as-
sume that V (K2,3) = {1, 2, 3, 4, 5} and E(K2,3) = {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}.
Then it is easy to verify that

x3f1,4f2,5 − x4f1,3f2,5 + x3f1,5f2,4 − x5f1,3f2,4 − x4f1,5f2,3 + x5f1,4f2,3 = 0.

Thus, F = x3T{1,4}T{2,5} − x4T{1,3}T{2,5} + x3T{1,5}T{2,4} − x5T{1,3}T{2,4} − x4T{1,5}T{2,3} +
x5T{1,4}T{2,3} ∈ J . By [27, Corollary 2.3], β2,3(S/JG) = 0, i.e. there is no linear relation in
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the first syzygy of JG. Therefore, F does not belong to the module defined by first syzygy
of JG, which is a contradiction.

(2) Assume that V (K4) = {1, 2, 3, 4}. Then f1,2f3,4 − f1,3f2,4 + f1,4f2,3 = 0 and hence
F = T{1,2}T{3,4} − T{1,3}T{2,4} + T{1,4}T{2,3} ∈ J . The assertion follows, since F is a quadratic
homogeneous element. �

We have enough experimental evidence to pose the following conjecture:

Conjecture 5.8. If G is an odd unicyclic graph, then LG is of linear type.

Let A be a Noetherian local ring with unique maximal ideal m. The fiber cone of an ideal
I is the ring FI(A) = R(I)/mR(I) ∼= ⊕k≥0I

k/mIk. The analytic spread of I is the Krull
dimension of the fibre cone of I and it is denoted by l(I). Now, we prove that the fiber cone
of LSS ideals of trees and odd unicyclic graphs is a polynomial ring, i.e. µ(LG) = l(LG), if
G is either a tree or an odd unicyclic graph.

Theorem 5.9. Let G be either a tree or an odd unicyclic graph on [n]. Then µ(LG) = l(LG).

Proof. First, assume that G is a tree. Then Q∅(G) is a minimal prime of LG and ht(Q∅(G)) =
n − 1 = µ(LG). Now, the assertion follows from [7, Remark 2]. Assume that G is an odd
unicyclic graph. If char(K) = 2, then LG = IG. Since G is a non-bipartite graph, p+(G) is a
minimal prime of LG. Thus, ht(p

+(G)) = n = µ(LG). If
√
−1 ∈ K and char(K) 6= 2, then by

Remark 3.4, Ψ(η(p+(G))) is a minimal prime of LG such that ht(Ψ(η(p+(G)))) = n = µ(LG).
Suppose that

√
−1 /∈ K, then IKn

is a minimal prime of LG with ht(IKn
) = n = µ(LG).

Hence, by [7, Remark 2], the assertion follows. �
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