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Abstract

A certain signed adjacency matrix of the hypercube, which Hao Huang used last
year to resolve the Sensitivity Conjecture, is closely related to the unique, 4-cycle free,
2-fold cover of the hypercube. We develop a framework in which this connection is
a natural first example of the relationship between group valued adjacency matrices
with few eigenvalues, and combinatorially interesting covering graphs. In particular, we
define a two-eigenvalue cover, to be a covering graph whose adjacency spectra differs
(as a multiset) from that of the graph it covers by exactly two eigenvalues. We show
that walk regularity of a graph implies walk regularity of any abelian two-eigenvalue
cover. We also give a spectral characterization for when a cyclic two-eigenvalue cover
of a strongly-regular graph is distance-regular.

1 Introduction

In 1985, Arjeh Cohen and Jacques Tits proved the existence and uniqueness of Q̃n, a girth six,
2-fold cover of the hypercube Qn. A 2-fold cover of a graph can be specified by a ±1 signing
of its adjacency matrix, and the eigenvalues of this cover are the union of the eigenvalues of
the original graph and of the signed matrix. Last year, Hao Huang resolved the Sensitivity
Conjecture by proving that every (2n−1 + 1) vertex induced subgraph of Qn has maximum
degree at least

√
n. His proof relies on constructing a ±1 signing of the adjacency matrix

of Qn which specifies exactly the cover Q̃n described above (see Section 7.1). Motivated by
this connection, we develop a natural framework for both results. This framework extends
to covers of larger index, or equivalently, adjacency matrices whose “signings” take values
in larger cyclic groups represented by complex roots of unity. As in the ±1 signing case,
the spectra of these complex adjacency matrices encode the new eigenvalues of our covering
graphs. Our key definition is that of a two-eigenvalue cover, (or 2ev-cover) which is a
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covering graph whose adjacency spectra differs (as a multiset) from that of the graph it covers
by exactly two eigenvalues. It is worth noting that the only symmetric or hermitian matrices
with exactly one eigenvalue are scalar multiples of the identity matrix. Consequently, there
is no analogous notion of a “1ev-cover,” so we are studying the extremal case.

2ev-covering graphs occur frequently in the study of distance-regular graphs, where this
two eigenvalue condition is necessary for a lifted graph to retain the distance-regularity of
its quotient. However, this condition is not sufficient: Qn is distance-regular, while Q̃n is
not. This begs the question of which combinatorial properties are necessarily preserved by
2ev-covers. By employing ideas of Godsil and Hensel [11] we answer this question when the
structure of the cover in question is governed by an abelian group. In particular we show
walk regularity, a weaker version of distance-regularity, is preserved in abelian two eigenvalue
covers. We then show that any cyclic 2ev-cover of the complete graph is a distance-regular
and antipodal. Any cyclic 2ev-cover of a complete bipartite graph is distance-regular with
diameter four. More generally, we give a necessary and sufficient condition for a cyclic 2ev-
cover of a strongly regular graph to be distance-regular. We conclude with some examples
and directions for future work.

The theory of covering graphs was first formally developed in 1974 by Biggs [3] and
independently by Gross [14]. Biggs devoted a chapter of his book to setting down a categor-
ical definition and explicating several interesting examples. Meanwhile, Gross developed an
analogous theory as a tool for studying graph embeddings. This topological approach was
echoed by Cohen and Tits [7], who described Q̃n as the cover corresponding to a particular
index 2 subgroup of the fundamental group of the (1-skeleton of) the hypercube.

Even before these formal treatments, many interesting covering graphs were known to
mathematicians studying distance-regular graphs. This connection can be described con-
cretely by a result of Smith which states that every distance-regular graph is either prim-
itive, bipartite, or antipodal (and hence a cover). See [5], Chapter 4. In 1990, Godsil and
Hensel developed the theory of the distance-regular antipodal covers of the complete graph
(drackn’s). They described the relation between such covers and regular two-graphs, as well
as a connection to sets of equiangular lines in euclidean space. [11], [19]. This work was
extended by Coutinho et. al. [8] to relate drackns to sets of complex lines, and by Iverson
and Mixon [17], to a broader class of lines called roux.

Backtracking to 1987, Gross and Tucker [15] expanded Gross’s work and defined the per-
mutation voltage graphs, from which all covering graphs can be constructed. Zaslavsky [23]
studied these graphs from a matroidal perspective under the name gain graphs. This study
has blossomed in many different directions whose references are recorded by Zaslavsky in the
dynamic bibliography [24]. One recent example is a paper of Cavaleri, D’Angeli, and Donno
[6], wherein the authors answer a question of Zaslavsky on the algebraic characterization of
balanced gain graphs. In the final section of this paper, the authors call upon the connection
between gain graphs and covering graphs to translate their results to the latter setting. In
particular, they show that a certain condition on the balancedness of cycles is equivalent to
the associated cover being isomorphic to a disjoint union of copies of the underlying graph.
This is closely related (but of an opposite flavor) to our Theorem 5.1 on the walk regularity
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of 2ev-covers. Cavaleri, D’Angeli, and Donno have given a spectral characterization of the
covering graphs that are in some sense trivial while we are interested in those that have
interesting combinatorial structure.

Running parallel to the inquiries above, the spectral theory of ±1 signings of adjacency
matrices has been well developed. The recent advances in this area have, at least partially,
been inspired by Bilu and Linial’s [4] proposed construction of expander graphs via an
iterative sequence of 2-fold covers, and by Marcus, Spielman, and Srivastava’s [20] great
success in implementing this proposal. Interest has again been renewed by Hao Huang’s [16]
resolution of the sensitivity conjecture, which is predicated on signed adjacency matrices
with exactly two distinct eigenvalues. Even prior to Huang’s proof, the taxonomy of two-
eigenvalue signed graphs had begun to emerge, see [22], [10],[21]. Moreover, see [2] for a
survey of results on two-eigenvalue signed graphs and some interesting open problems.

2 Structure of covering graphs

We begin with a connected undirected graph Y = (V,E) and a permutation group G.
Define a symmetric arc function to be a function f : V × V → G ∪ {0} for which
f(u, v) = f(v, u)−1 whenever f(u, v) ∈ G and f(u, v) = 0 if and only if {u, v} /∈ E(Y ). The
pair (Y, f) is called a gain graph, and can be used to define a cover of Y as follows. Let
R = {1, 2, . . . , r} be a set on which G acts. The cover Y f of Y is the graph with vertex set
V ×R and (v, j) ∼Y f (u, k) exactly when v ∼Y u and f(u, v)j = k.

Many structural characteristics of Y f are immediate. If Y is a regular graph, then Y f

is regular with the same valency. This can be considered as a prototypical example of the
“combinatorial regularity” of covering graphs that we are interested in studying.

There exists a graph homomorphism γ : Y f → Y defined by γ(v, j) 7→ v; it is called
the covering map. The preimages γ−1(v) are called the fibers of Y f , and they induce
cocliques (edgeless subgraphs). The subgraph induced by any two fibers γ−1(u), γ−1(v) is a
perfect matching if {u, v} ∈ E and is a coclique otherwise.

Two distinct symmetric arc functions can yield isomorphic covering graphs. In particular,
permuting the vertices of each fiber γ−1(u) of Y f by some σu in the symmetric group Sym(r)
gives rise to an isomorphic cover Y g with symmetric arc function g(i, j) = σ−1

i f(i, j)σj .
Whenever we choose these permutations so that g(i, j) = id for all edges {i, j} of some
spanning tree of Y we call g a normalized symmetric arc function.

3 Representations of finite groups

Let Y f as above with f a normalized arc function. Denote by 〈f〉 the subgroup of Sym(r)
generated by the image of f . The linear representations of this group are a valuable tool in
studying the cover Y f . To keep this paper self contained we will briefly mention the basic
representation theory that is relevant to our work. The following discussion is essentially
identical to (a subset of) that in Sections 8 and 9 of [11]. A more detailed account can be

3



found in any text on the representation theory of finite groups, e.g, [18].
A representation φ of a group G is a homomorphism into the general linear group

GL(r,C). We say that r is the degree of the representation. For each A ∈ GL(r,C) the
map φA(g) defined by

φA(g) = Aφ(g)A−1

is also a representation of G, and is said to be equivalent to φ. The trivial representation
is the map from G onto the identity matrix Ir. If φ and ψ are representations of G with
degrees r and s respectively then the map φ+ ψ defined by

g 7→
(
φ(g) 0
0 ψ(g)

)

is a representation of degree r + s. We say that φ + ψ is the sum of φ and ψ. The set of
representations of G is closed under non-negative integral linear combinations. A represen-
tation φ is irreducible if there is no nontrivial subspace of Cr which is invariant under φ(g)
for all g ∈ G. It can be shown that a representation of a finite group is reducible if and only
if it is equivalent to a nontrivial positive integral linear combination of representations of G.

Define a vector space V to be the C-span of the elements of G and define a G-action on
this vector space where each g ∈ G, acts on the basis vectors by left multiplication (and the
action is extended linearly). In the basis of group elements of G, each g acts as a permutation
matrix ρ(g). The map ρ : G → GL(|G|,C) is called the (left) regular representation of
G.

3.1 Theorem. Let G be a finite group. Then

(a) G has finitely many inequivalent irreducible representations φi for (i = 0, 1, . . . ).

(b) If ri denotes the degree of φi and ρ is the regular representation of G then ρ is equivalent
to

∑
i riφi.

(c) If G = H1 × H2, then the regular representation of G is the tensor product of the
regular representations of H1 and H2.

(d) If G is abelian then each ri = 1 and φi(g) is a (not necessarily primitive) mth root of
unity where m is the order of G.

We have described above how to construct Y f from (Y, f). When 〈f〉 acts regularly on
the vertices of a fiber, the regular representation of 〈f〉 encodes this process as follows. Let
A = A(Y ) denote the adjacency matrix of Y , and suppose φ is a degree r representation of
〈f〉, define Aφ(f) to be the matrix obtained by replacing each non-zero entry Au,v with the
matrix φ(f(u, v)) and each zero entry with the r × r matrix of zeros.

3.2 Theorem. ([11] Sections 7, 8) If f is a normalized arc function then 〈f〉 acts regularly
on the vertices of each fiber of Y f if and only if A(Y f) = A(y)ρ(f).
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If Y f is connected then 〈f〉 acts transitively on {1, . . . , r} and |〈f〉| = r · |stab(x)| for
any x ∈ {1, . . . r}. If 〈f〉 is abelian we may quotient out this stabilizer, considering the
resulting abelian subgroup acting regularly on {1, . . . r}. In this paper we will be concerned
with abelian covers, and we will thus assume that our groups 〈f〉 act regularly on {1, . . . , r}.
Hence we will assume that A(Y f) = A(Y )ρ(f).

This issue is more subtle if 〈f〉 is not abelian: We certainly may always work with the
regular representation of 〈f〉, but we will often miss out on certain covers of small index in the
process. This is essentially the distinction between ordinary voltage graphs and permutation
voltage graphs as explicated by Gross and Tucker [15]. See Section 7.5 for an example of a
cover that is not regular.

4 Two eigenvalue covers

Since ρ is equivalent to
∑|〈f〉|

i=0 φi, it follows that A(Y )ρ is equivalent to a block diagonal
matrix whose blocks are the A(Y )φi(f). The first of these blocks is A(Y )φ0(f) = A(Y ), from
which we deduce that the spectrum of A(Y ) is a subset of the spectrum of A(Y f ). Let
Spec(A) denote the spectrum of A as a multi-set.

We say Y f is a two-eigenvalue cover (2ev-cover) if Spec((A(Y f)) \ Spec((A(Y )) has
exactly two distinct elements. Suppose Y f is a 2ev-cover, then each A(Y )φi(f) for i > 1 must
be roots of the same minimal polynomial (of degree 2). Our primary means of studying
2ev-covers is via these A(Y )φi(f).

4.1 Proposition. Let φ be some non-trivial irreducible representation of 〈f〉 and let Y f be
a cover for which S = A(Y )φ(f) has exactly two distinct eigenvalues θ and τ . Then there
exist real numbers λ, µ so that

S2 = λS + µI,

Moreover, Y is regular with valency µ = −θτ .

Proof. The minimal polynomial of S has degree 2 and may be written as x2 − λx − µ.
Since f is a symmetric arc function, S is hermitian, and has real eigenvalues θ, τ . We have
µ = −θτ and λ = −θ − τ . Moreover S satisfies the equation S2 = λS + µI. Since Y is
loopless, S has zero diagonal. Finally, the diagonal entries of S2 are equal to the diagonal
entries of A(Y )2 which are the valency of the vertices of Y .

Remark: In the event that 〈f〉 is abelian, its irreducible representations have degree 1,
and for any non-trivial irreducible representation φ, the matrix S = A(Y )φ(f) is particularly
familiar. Here S is the group valued adjacency matrix of a complex unit-gain graph. This
is a direct generalization of the signed adjacency matrix, a setting where the 2ev condition
has already been extensively investigated.
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5 Covers of walk regular graphs

A graph is walk regular if the number of closed walks of length k starting from (and
ending at) vertex v depends only on k. Equivalently, a graph with adjacency matrix A is
walk regular if Ak has constant diagonal for all positive integers k. Walk regular graphs
have been studied due to their “spectral regularity:” The subgraphs W/v have identical
characteristic polynomials for all v ∈ V (W ), (see [12]). Moreover, it can be shown that all
distance-regular graphs are walk regular. In Section 6 we will be able to say a fair amount
about cyclic two-eigenvalue covers of distance-regular graphs. Working instead with walk
regularity we can say more.

5.1 Theorem. If Y is a walk regular graph and X = Y f is a cyclic 2ev-cover of Y then X
is walk regular.

Proof. Let φ0, . . . φr−1 be the irreducible representations of 〈f〉, with φ0 the trivial repre-
sentation, and let S1 = A(Y )φ1(f). Let Ag denote the 01 matrix

(Ag)u,v =

{
1 if f(u, v) = g

0 otherwise
.

Identifying our index set with the (additive) cyclic group on {0, . . . , r − 1} we may write

S1 =
r−1∑

i=0

ωiAi

where r is the index of the cover, and ω is a primitive rth root of unity. By replacing φ1 with
φi for i ∈ {2, . . . r − 1} we exchange ω for the other rth roots of unity and obtain matrices
Sj = A(Y )φj(f) defined by

Sj =

r−1∑

i=0

ωj·iAi.

Let ◦ denote the entry-wise matrix product, and let ℓ be a non-negative integer.
Claim.

A(X)ℓ ◦ Inr = (
1

r
(

r−1∑

j=0

Sℓ
j)⊗ Ir) ◦ Inr

This will complete our proof since each of the individual Sℓ
j terms have constant diagonal:

S1 has the same support as A, so S1 has zero diagonal. By Proposition 4.1, any power of
S1 is polynomial in {I, S1}, hence Sℓ

1 has constant diagonal. As we have noted in Section 4,
the matrices Sj for j ≥ 1 must be roots of the same minimal polynomial. So each Sj is a
root of the minimal polynomial of S1, and S

ℓ
j has constant diagonal as well. By assumption

Y is walk regular, so Sℓ
0 = A(Y )ℓ has constant diagonal. Hence the diagonal of A(X)ℓ is the

diagonal of a sum of matrices with constant diagonal and we are done.
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Proof of Claim. From Theorem 3.2 we have

A(X) =
r−1∑

i=0

Ai ⊗ ρ(ωi).

So A(X)ℓ is a sum of products of the form

(Am1
Am2

. . . Amℓ
)⊗ ρ(ω

∑
k mk)

wheremi ∈ {0, . . . r−1}. Since 〈f〉 is regular, the only summands that have non-zero diagonal
entries are those for which the righthand tensor factor is the identity i.e., those terms where∑
mk = 0 mod r. Let M be the set of ℓ-tuples (m1, . . .mℓ) of elements of 〈f〉, and let M0

the subset of M for which
∑
mk = 0 mod r. The previous remark shows that A(X)ℓ has

the same diagonal as

∑

M∈M0

( ∏

mi∈M

Ami

)
⊗ Ir =

( ∑

M∈M0

∏

mi∈M

Ami

)
⊗ Ir (1)

On the other hand, notice that

Sℓ
j = (

r−1∑

i=0

ωj·iAi)
ℓ =

∑

M∈M

∏

mi∈M

ωj·miAmi

Now, summing over all such Sj we have

r−1∑

j=0

Sℓ
j =

r−1∑

j=0

∑

M∈M

∏

mi∈M

ωj·
∑

miAmi
=

∑

M∈M

r−1∑

j=0

∏

mi∈M

ωj·
∑

miAmi

For any M ∈ M\M0 the ωj term is independent of the product, hence

r−1∑

j=0

∏

mi∈M

ωj·
∑

miAmi
=

r−1∑

j=0

ωj
∏

mi∈M

ω
∑

miAmi
= 0.

And so
r−1∑

j=0

Sℓ
j =

∑

M∈M0

r−1∑

j=0

∏

mi∈M

ωj·
∑

miAmi
=

∑

M∈M0

r−1∑

j=0

∏

mi∈M

Ami
= r

∑

M∈M0

∏

mi∈M

Ami
. (2)

Putting together equations (1) and (2) proves the claim.

5.2 Corollary. If Y is a walk regular graph and X is an abelian 2ev-cover of Y then X is
walk regular.

Proof. The regular representation of the abelian group G = H1 ×H2 is the tensor product
of the regular representations of H1 and H2. Hence for each g ∈ G we have ρ(g) = ρH1

(h1)⊗
ρH2

(h2), and ρ(g) still has zero diagonal unless g = id. So the only terms in the expansion
of (

∑
g∈GAg ⊗ ρ(g))ℓ that contribute to the diagonal are those whose first tensor factor has

subscripts whose sum is zero mod |G|. The irreducible representations of ρ are still of degree
one and the argument proceeds exactly as above.
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6 Covers of strongly regular graphs

Let X be a connected regular graph and v ∈ V (X). The distance partition of X with
respect to v is a partition of V (X) into cells {Γ0(v), Γ1(v), . . . , Γd(v)} where Γi(v) consists
of the vertices at distance i from v. A partition π = (π1, . . . , πk) of V (X) is equitable if for
each pair (i, j) ∈ {0, . . . d} × {0, . . . d} the number of edges of X with one end in πi and the
other end in πj depends only on i and j.

A graph whose distance partition is equitable is distance-regular. Each distance-regular
graph of diameter d has an intersection array {b0, b1, . . . bd−1; c1, c2 . . . cd} where bi is the
number of neighbors u ∈ Γi+1 of any v ∈ Γi and ci is the number of neighbors u ∈ Γi of any
v ∈ Γi+1.

A distance-regular graph with diameter 2 is strongly regular. The parameters of a
strongly regular graph are the 4-tuple (n, k, a, c) where n is the number of vertices, k is the
valency, a := k−b1−c1 is the number of common neighbors of a pair of adjacent vertices and
c := c2 is the number of common neighbors of a pair of non-adjacent vertices. See Chapter
10 of [13] for a thorough introduction.

A graph Y of diameter d is antipodal if “v is at distance d from u” is an equivalence
relation on V (Y ). If X is antipodal and distance-regular, we consider the graph Y whose
vertices are the antipodal classes with two classes adjacent if there is an edge of X with
one end in each class. Y is called the antipodal quotient of X , and X is a cover of its
antipodal quotient. See Theorem 2.1 of [11], [5], [9]. In the case that this antipodal quotient
Y is the complete graph, X is a distance-regular antipodal cover of Kn, or drackn for short.

Distance-regular graphs are a well studied topic in algebraic graph theory. They are
related to combinatorial designs, linear codes, association schemes, and orthogonal polyno-
mials. The literature is vast, but a good starting place would be [5],[3],[13].

We take a quick detour to offer a few interesting examples.

1. The hypercube is distance-regular and antipodal with antipodal classes of size 2. Its
antipodal quotient is also distance-regular. In the case of Q3 this antipodal quotient
is the complete graph K4, and Q3 is a drackn.

2. The Hoffman-Singleton graph H is strongly regular with parameters (50,7,0,1), For
any fixed vertex v ∈ V (H) the subgraph induced by vertices at distance 2 from v is a
6-fold distance-regular antipodal cover of K7.

3. The Johnson graph J(n, k) has as its vertices the k element subsets of {1, . . . , n}.
Two vertices are adjacent if their intersection has size k − 1. Any Johnson graph is
distance-regular.

Now we will give a characterization of when a cyclic 2ev-cover of a strongly regular graph
is distance-regular.

Our key lemma shows that the 2ev condition forces the arc function to take a very
particular form.
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6.1 Lemma. Let Y be a connected distance-regular graph with parameters a := k−b1−1 and
c := c2. Let φ a non-trivial irreducible representation of 〈f〉, S = A(Y )φ(f), and x2 − λx− µ
the minimal polynomial of S. Assume that f is normalized so that S is of the form

S =




0 1 0 . . .
1T N1 B
0T BT N2
...

. . .


 .

There exist constants

t =
a− λ

r
, s =

c

r

so that

• For each i ∈ {1, . . . , r−1}, each column of the submatrix N1 contains exactly t entries
equal to ωi.

• For each j ∈ {0, . . . , r− 1} each column of the submatrix B contains exactly s entries
equal to ωj.

Proof. For a submatrix M of S, let Cm(M) denote the sum of the entires of column m of
M . Matrix multiplication shows that the first row of S2 is

(
k C1(N1) . . . Ck(N1) C1(B) . . . Cℓ(B) 0 . . . 0

)
.

On the other hand, S2 = λS + µI so the first row of S2 is

(
µ λ . . . λ 0 . . . 0

)

We have three immediate consequences.

• µ = k.

• For each 1 ≤ m ≤ k, Cm(N1) = λ.

• For each 1 ≤ n ≤ ℓ, Cn(B) = 0.

For some fixed column m′ of N1, let ti denote the number of occurrences of ωi in that
column. We may write C ′

m(N1) =
∑r−1

i=0 tiω
i. Note that S is hermitian and that λ is (minus)

the sum of the two distinct eigenvalues of S, hence λ is real. So the above expression for λ
must be symmetric under any permutation of the rth roots of unity which fixes the rationals.
It follows that t1 = t2 = · · · = tr−1. Denote this common value by t. We have

λ = Cm′(N1) = t0 + t
( r−1∑

i=1

ωi
)
= t0 − t.

9



Since Y is distance-regular, we have
∑r−1

i=0 ti = a which we may now write as

t0 + t(r − 1) = a.

Combining our equations we obtain

t =
a− λ

r
.

Note that t is independent of the chosen column m′, this proves the first claim.
For some fixed column n′ of B, let sj denote the number of occurrences of ωj in that

column. We play the same game with the equations

Cn′(B) =

r−1∑

j=0

sjω
j = 0,

r−1∑

j=0

sj = c

and find that
s := s0 = s1 = · · · = sr−1 =

c

r
.

is independent of n′. This proves the second claim.

Now we will employ this lemma to characterize cyclic 2ev-covers of strongly regular
graphs. We begin with the degenerate case.

6.2 Theorem. If Y is the complete graph on n vertices and Y f is a connected cyclic 2ev-
cover of Y , then Y f is a drackn.

Proof. Note that t > 0, since t = 0 implies Y f is the disjoint union of r copies of Kn.
Label the vertices of Y as v0, . . . , vn−1, and let γ be the covering map from Y f to Y . For

each fiber γ−1(vi) let (vi, 0), . . . , (vi, r − 1) denote the vertices of that fiber. Let v0 be the
vertex of Y indexing the first row and column of S, and choose (arbitrarily) some vertex of
γ−1(v0) to be (v0, 0). We consider the distance partition of Y f with respect to (v0, 0).

Y f has at most 4 distinct eigenvalues (n− 1, −1, and the eigenvalues of S), hence it has
diameter at most 3. Any two vertices of Y f from the same fiber are not adjacent and do not
have any common neighbors, hence the diameter of Y f is exactly 3. The assumption that S
is normalized along the first row and column is equivalent to the claim that

Γ1(v0, 0) = {(vi, 0) : i ∈ {1, . . . n− 1}}.

For any j 6= 0 and (vj , q), the result of Lemma 6.1 and the fact that t > 0 imply that,
in the jth column of S there is some entry Si,j = ωq, i 6= 0. Hence (vj , q) ∼ (vi, 0) and the
distance between (v0, 0) and (vj, q) is at most (in fact, exactly) 2. It follows that each vertex
that is neither a neighbor of (v0, 0) nor in γ

−1(v0) is at distance two from (v0, 0). Moreover
for any such vertex (vj , q) there are exactly t entries of the jth column equal to ωq. So (v0, 0)
and (vj, q) have exactly t common neighbors. It now follows from Lemma 3.1 in [11] that X
is an (n, r, t)-drackn.
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Now we consider the case where Y is strongly regular. As illustrated by Example 7.1, it
is not true that all cyclic 2ev-covers of strongly regular graphs are distance-regular, but we
can give an exact spectral characterization of those which are.

6.3 Theorem. Let Y be a connected strongly regular graph with parameters (n, k, a, c), φ
a non-trivial irreducible representation of 〈f〉, S = A(Y )φ(f), and x2 − λx − µ the minimal
polynomial of S. Then Y f is distance-regular if and only if a = λ.

Proof. Suppose a = λ. Then t = 0 and N1 is a 0-1 matrix. We construct the distance
partition of Y f with respect to (v0, 0) and find that the neighborhood of (v0, 0) induces a
subgraph isomorphic to Y [N1], call this subgraph H0, and note that, since the arc function
is trivial on N1, there are r−1 other subgraphs H1, . . .Hr−1 contained in yf , each of which is
the neighborhood of some (v0, j) for j ∈ {1, . . . r−1}. Moreover, there are no edges between
any of the distinct Hi (again, since the arc function is trivial on N1).

Since Y is connected, we have c > 0. By Lemma 6.1, each column of B contains c
r
entries

equal to each ωi. Hence each vertex (vj, i) for vj ∈ N2 is adjacent to c
r
vertices of each Hi.

This shows that Γ2(v0, 0) is the union of fibers of vertices in N2, and Γ3(v0, 0) is the union
of Hi for i > 0. Finally, Γ4(v0, 0) is the remaining r − 1 vertices of the v0 fiber. It follows
that the distance partition is equitable, with intersection array

{k, k − a− 1,
c(r − 1)

r
, 1; 1,

c

r
, k − a− 1, k}.

Now suppose a 6= λ. So t > 0 and each column of N1 other than the first contains each
ωi for i ∈ {0, . . . , r − 1}. Since Y is connected, c > 0, and each column of B also contains
at least one entry equal to each ωi.

As in the proof of Theorem 6.2, this means that when we construct the distance partition
of Y f with respect to (v0, 0), we have

Γ1(v0, 0) = {(vj , 0) : j ∈ {1, . . . , n− 1}}

and
Γ3(v0, 0) ⊇ {(v0, j) : j ∈ {1, . . . r − 1}}.

There are two types of vertices remaining. Those of the form (vα, i) for vα a neighbor of v0
and those of the form (vβ, i) for vβ at distance 2 from v0. By Lemma 6.1, each vα is adjacent
to t > 0 neighbors of v0 for which the edge joining them is assigned the value ωj. Since this
holds for all j ∈ {1, . . . , r − 1} each (vα, i) for i > 0 is at distance 2 from (v0, 0). Similarly,
by Lemma 6.1 all vertices of the fiber γ−1(vβ) are at distance two from (v0, 0), and none of
these vertices are incident with any vertex of γ−1(v0), so some vertices in Γ2 have neighbors
in Γ3 while others do not, and X is not distance-regular.

As a special case of the previous theorem, we show that every cyclic 2-ev cover of a
complete bipartite graph is distance-regular.

6.4 Corollary. Suppose Y is complete bipartite and Y f is a cyclic r-fold 2-ev cover of Y .
Then Y = Kn,n with r|n, and X is bipartite distance-regular with diameter 4.
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Proof. It follows from Proposition 4.1 that Y is regular. Hence Y is strongly regular
with parameters (2n, n, 0, n) for some n. Normalizing as in Theorem 6.3 and noting that
a = 0 we have

S =




0 1 0

1T 0n×n B
0T BT N2




Hence λ = 0 as well, and Y f is distance-regular. Moreover, each column of B contains
c
r
= n

r
entries equal to ωi, hence r|n. It is well known that a graph is bipartite if and only if

its adjacency spectrum is symmetric about 0. Y is bipartite, and S has spectrum symmetric
around zero. Hence Y f has spectrum symmetric around zero and is bipartite.

7 Examples

In this section we provide a few examples of 2ev-covers.

7.1 The Cohen-Tits cover of Qn

We wish to construct a 2-fold cover of Qn which contains no 4-cycles. We employ the
inductive construction of Qn as two copies of Qn−1 joined by a perfect matching. Consider
a ±1 signing of the edges of Qn−1, or equivalently, a symmetric arc function

f : V × V → Z2 ∪ {0}.

The condition that the resulting 2-fold cover Qf
n−1 has no 4-cycles is equivalent to the con-

dition that each 4-cycle of Qn has an odd number of edges e with f(e) = −1. It follows that
the opposite signing, f ′ = −f will also give rise to a 4-cycle free 2-fold cover. Joining these
oppositely signed copies of Qn−1 by a perfect matching whose edges are all given the same
sign (say, +1) yields a signing of Qn in which each 4-cycle has an odd number of negative
edges, and thus gives rise to the desired cover.

Performing this process at the level of the adjacency matrix is exactly the construction
given by Huang in [16]. Define

A1 =

(
0 1
1 0

)
, An =

(
An−1 In−1

In−1 −An−1

)
.

Then taking f(u, v) = (An)u,v defines a symmetric arc function on the hypercube Qn. The
resulting cover of index 2 is the unique girth six 2-fold cover of Qn determined by Cohen and
Tits in [7]. Note that this cover is not distance-regular, however its distance distribution
diagram is a tree which is not too far away from being a path. (See [5] section 9.2E).
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7.2 Folded cubes

The folded n-cube, denoted �n is the antipodal quotient of Qn. Equivalently, �n is the
graph obtained from Qn−1 by adding a perfect matching between antipodal vertices. In [5]
the authors remark, without proof, that a 4-cycle free 2-fold cover of �n exists if and only if
n is congruent to 0, 1 mod 4 and n > 4. (See [5] section 9.2E). These covers are necessarily
2ev. A construction of these covers, as well as a proof of the non-existence of such covers for
the other congruence classes can be found in the recent arxiv preprint of Alon and Zheng
[1].

Alon and Zheng have constructed what they call unitary signings of Cayley graphs for
elementary abeliean 2-groups. The graphs in question are the folded d-cubes and the carte-
sian products of folded (k+1)-cubes with (d−k)-cubes. And unitary signings can be viewed
as symmetric arc functions on the underling graphs which give rise to cyclic covers of index
4 and girth > 4.

7.3 The 3-fold cover of Kn(7, 2)

The Kneser graph Y = Kn(7, 2) has as vertices the 21 two element subsets of {0, 1, . . . 6}.
Two such subsets are adjacent if they are disjoint. Its spectrum is

{10(1), 1(14),−46}.

There is a unique antipodal distance-regular graph X of diameter 4 on 63 vertices. It’s
spectrum is

{10(1), 5(12), 1(14),−2(30),−46}.
As suggested by the spectrum, X is a 3-fold 2ev-cover of Y , (See [5] 13.2B).

7.4 Drackn’s and dracknn’s

As seen in Section 6, the drackn’s are precisely the cyclic 2-ev covers of the complete graph,
and the distance-regular antipodal covers of the complete bipartite graph (dracknn’s) are
precisely the cyclic 2-ev covers of Kn,n. In particular, the distance-regular 2-fold covers of
Kn,n are the Hadamard graphs, (See [5] Section 1.8). More generally, if H is a complex
Hadamard matrix of Butson type (meaning the entries are qth roots of unity), with

B =

(
0 H
HT 0

)

then f(u, v) = Bu,v defines a symmetric arc function which gives rise to a distance-regular
2ev-cover of Kq,q.

7.5 A non-abelian 2-ev cover

Many of our proof techniques are predicated on the cyclic or abelian nature of the group
〈f〉. In Theorem 5.1, It was important that 〈f〉 acted regularly {1, . . . , r}. In Theorems 6.2
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and 6.3, we made (implicit) use of the fact that the irreducible representations of 〈f〉 were
one-dimensional.

However, we do not lose all of our tools when considering non-abelian covers. If we work
with any permutation representation τ for 〈f〉, the the spectrum of the resulting cover will
decompose as the union of the spectra of the covers defined by the irreducible representations
of 〈f〉. The regular representation is no longer the only interesting choice. As a first example
of a non-regular 2ev-cover, consider the line graph of the Petersen graph. This graph can
be obtained as a 2ev-cover of K5 by taking the 3-dimensional permutation representation of
S3, and the following assignment with τ1 = (1, 2), τ2 = (2, 3), τ3 = (1, 3).




0 1 1 1 1
1 0 τ1 τ2 τ3
1 τ1 0 τ3 τ2
1 τ2 τ3 0 τ1
1 τ3 τ2 τ1 0




7.6 An informative non-example

There are several ways to interpret the statement “a cover with two new eigenvalues.” A
priori, it is not clear that we have chosen the correct interpretation. One alternative is to
consider covers where the number of distinct eigenvalues has increased by 2. The following
example shows that our definition is better suited to certain combinatorial investigations.

We consider a ±1 signing of A(K3n) with three distinct eigenvalues, one of which is −1
(and so coincides with the spectrum of K3n).

Construct an arc function with f(u, v) = −1 for edges {u, v} of a complete bipartite
subgraph Kn,n, and f(u, v) = 1 on all other edges. This signed matrix has spectrum

{(2n− 1)(2),−1(3n−3), (−n− 1)(1)},

compared to the spectrum
{(3n− 1)(1), (−1)(3n−2)}

of K3n. We see that the cover is possessed of two new and distinct eigenvalues and one new
eigenvalue coinciding with an eigenvalue of the base graph. However it can be shown that
this cover is not distance-regular.

8 Further questions

We have explicated the relationship between 2ev-covering graphs and the representations
of their group valued adjacency matrices. Moreover we have shown that this is a natural
setting in which to study combinatorial regularity of covering graphs. This study sits at
the intersection of several research areas, and there are many directions in which it could
progress. We name just a few that are most closely related to our present work.
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• It may be possible to extend Theorem 6.3 to start with graphs of larger diameter.
However, we expect that there are no connected 2-ev covers in this case, since a result
of Gardiner implies that any such cover could not be antipodal. See [9].

• If Y f is a 2ev-cover of Y we have very strong conditions on the balancedness of cycles
in the gain graph (Y, f). In Theorem 6.3 the condition that λ = a implies that for any
triangle in Y , with vertices a, b, c, we have f(a, b)f(b, c)f(c, a) = id. Perhaps there are
cases where these conditions imply the existence of some interesting biased graphs.

• It is possible that Theorem 5.1 can be extended to non-abelian 2ev-covers. However
our proof does not seem to extend in any straightforward way. Alternatively, there
may be non-abelian 2ev-covers of walk regular graphs which fail to be walk regular.
We would be curious to hear of any examples.

• There are already a number of constructions of±1 signings of adjacency matrices which
have exactly two eigenvalues. It could be interesting to consider the associated covering
graphs for some of these constructions. Moreover, it could be very interesting to extend
existing methods for constructing 2ev-signings of adjacency matrices to construct cyclic
2ev-covers of larger index.
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