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Abstract

Aldous and Fill conjectured that the maximum relaxation time for the random

walk on a connected regular graph with n vertices is (1 + o(1))3n
2

2π2 . This conjecture

can be rephrased in terms of the spectral gap as follows: the spectral gap (algebraic

connectivity) of a connected k-regular graph on n vertices is at least (1+ o(1))2kπ
2

3n2 ,

and the bound is attained for at least one value of k. Based upon previous work

of Brand, Guiduli, and Imrich, we prove this conjecture for cubic graphs. We also

investigate the structure of quartic (i.e. 4-regular) graphs with the minimum spectral

gap among all connected quartic graphs. We show that they must have a path-like

structure built from specific blocks.
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1 Introduction

All graphs we consider are simple, that is undirected graphs without loops or multiple

edges. The difference between the two largest eigenvalues of the adjacency matrix of a

graph G is called the spectral gap of G. If G is a regular graph, then its spectral gap is

equal to the second smallest eigenvalue of its Laplacian matrix and known as algebraic

connectivity.

In 1976, Bussemaker, Čobeljić, Cvetković, and Seidel ([4], see also [5]), by means of a

computer search, found all non-isomorphic connected cubic graphs with n ≤ 14 vertices.

They observed that when the algebraic connectivity is small the graph is long. Indeed, as

the algebraic connectivity decreases, both connectivity and girth decrease and diameter

increases. Based on these results, L. Babai (see [9]) made a conjecture that described

the structure of the connected cubic graph with minimum algebraic connectivity. Guiduli

[9] (see also [8]) proved that the cubic graph with minimum algebraic connectivity must

look like a path, built from specific blocks. The result of Guiduli was improved as follows

confirming the Babai’s conjecture.

Theorem 1.1 (Brand, Guiduli, and Imrich [3]). Among all connected cubic graphs on

n vertices, n ≥ 10, the graph Gn (given in Figure 1) is the unique graph with minimum

algebraic connectivity.

Figure 1: The cubic graph Gn, n ≥ 10, with minimum spectral gap on n ≡ 2 (mod 4)

and n ≡ 0 (mod 4) vertices, respectively

The relaxation time of the random walk on a graphG is defined by τ = 1/(1−η2), where

η2 is the second largest eigenvalue of the transition matrix of G, that is the matrixD−1A in

which D and A are the diagonal matrix of vertex degrees and the adjacency matrix of G,

respectively. A central problem in the study of random walks is to determine the mixing

time, a measure of how fast the random walk converges to the stationary distribution. As

seen throughout the literature [2, 6], the relaxation time is the primary term controlling

mixing time. Therefore, relaxation time is directly associated with the rate of convergence

of the random walk.

Our main motivation in this work is the following conjecture on the maximum relax-

ation time of the random walk in regular graphs.
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Conjecture 1.2 (Aldous and Fill [2, p. 217]). Over all connected regular graphs on n

vertices, max τ = (1 + o(1))3n
2

2π2 .

In terms of the eigenvalues of the normalized Laplacian matrix, that is the matrix

I − D−1/2AD−1/2, the Aldous–Fill conjecture says that the minimum second smallest

eigenvalue of the normalized Laplacian matrices of all connected regular graphs on n

vertices is (1 + o(1))2π
2

3n2 . This can be rephrased in terms of the spectral gap as follows,

giving another equivalent statement of the Aldous–Fill conjecture.

Conjecture 1.3. The spectral gap (algebraic connectivity) of a connected k-regular graph

on n vertices is at least (1 + o(1))2kπ
2

3n2 , and the bound is attained at least for one value of

k.

It is worth mentioning that in [1], it is proved that the maximum relaxation time

for the random walk on a connected graph on n vertices is (1 + o(1))n
3

54
settling another

conjecture by Aldous and Fill ([2, p. 216]).

In [3], it is mentioned without proof that the algebraic connectivity of the graphs Gn

(of Theorem 1.1) is (1 + o(1))2π
2

n2 , where its proof is postponed to another paper which

has not appeared. We prove this equality, thus, showing that the minimum spectral gap

of connected cubic graphs on n vertices is (1 + o(1))2π
2

n2 , which implies the Aldous–Fill

conjecture for k = 3. As the next case of the Aldous–Fill conjecture and as a continuation

of Babai’s conjecture, we investigate the connected quartic, i.e. 4-regular, graphs with

minimum spectral gap. We show that similar to the cubic case, these graphs must have a

path-like structure with specified blocks (see Theorem 3.1 below). Finally, we put forward

a conjecture about the unique structure of the connected quartic graph of any order with

minimum spectral gap.

2 Minimum spectral gap of cubic graphs

In this section, we prove that the minimum spectral gap of connected cubic graphs on n

vertices is (1 + o(1))2π
2

n2 .

Let G be a graph on n vertices and L(G) = D − A be its Laplacian matrix. For any

x ∈ R
n, the value x

⊤L(G)x
x⊤x

is called a Rayleigh quotient. We denote the second smallest

eigenvalue of L(G) known as the algebraic connectivity of G by µ(G). It is well known

that

µ(G) = min
x 6=0,x⊥1

x⊤L(G)x

x⊤x
, (1)
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where 1 is the all-1 vector. An eigenvector corresponding to µ(G) is known as a Fiedler

vector of G. In passing we note that if x = (x1, . . . , xn)
⊤, then

x⊤L(G)x =
∑

ij∈E(G)

(xi − xj)
2,

where E(G) is the edge set of G.

Considering the graphs Gn of Theorem 1.1, we let Π = {C1, C2, . . . , Ck} (numbered

consecutively from left to right) be a partition of the vertex set V (Gn) such that each cell

Ci has size 1 or 2, consisting of the vertices drawn vertically above each other as depicted

in Figure 1. We note in passing that partition Π is a so-called ‘equitable partition’ of Gn.

Lemma 2.1 ([3]). Let x be a Fiedler vector of Gn.

(i) Then the components of x on each cell Ci of the partition Π are equal.

(ii) Let x1, . . . , xk be the values of x on the cells of Π. Then the xi form a strictly

monotone sequence changing sign once.

Recall that a block of a graph is a maximal connected subgraph with no cut vertex—a

subgraph with as many edges as possible and no cut vertex. So a block is either K2 (a

trivial block) or is a graph which contains a cycle. If a graph G has no cut vertex, then

G itself is also called a block. The blocks of a connected graph fit together in a tree-like

structure, called the block tree of G. The block tree of the graphs Gn are paths which

justifies the description ‘path-like structure.’

We now present the main result of this section.

Theorem 2.2. The minimum algebraic connectivity of cubic graphs on n vertices is (1+

o(1))2π
2

n2 .

Proof. In view of Theorem 1.1, it suffices to show that µ(Gn) = (1 + o(1))2π
2

n2 . To prove

this, we consider two cases based on the value of n mod 4.

Case 1. n ≡ 2 (mod 4)

In this case Gn is the upper graph of Figure 1. Let m+2 be the number of non-trivial

blocks of Gn. So we have n = 4m+ 10.

We first prove that (1 + o(1))2π
2

n2 is an upper bound for µ(Gn).

We define the vector x = (x1, . . . , x2m)
⊤ with

xi = cos

(

(2i− 1)π

4m

)

, i = 1, . . . , 2m.
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x1

x1

x1

x1

x1 x1

x1+x2

2

x1+x2

2

x2 x3

x3+x4

2

x3+x4

2

x4

x2m−1+x2m

2

x2m−1+x2m

2

x2m

x2m

x2m

x2m

x2m

Figure 2: The components of x′ on Gn, n ≡ 2 (mod 4)

Note that x is skew symmetric vector, i.e. x2m−i+1 = −xi, for i = 1, . . . , m, and so x ⊥ 1.

We extend x to define the vector x′ on Gn as shown in Figure 2.

The vector x′ (like x) is a skew symmetric. It follows that x′ ⊥ 1. Therefore, by (1)

we have

µ(Gn) ≤
x′⊤L(Gn)x

′

x′⊤x′

≤

∑2m−1
i=1 (xi − xi+1)

2

∑2m
i=1 x

2
i + 2

∑m
i=1

1
4
(x2i−1 + x2i)2 + 10x2

1

≤
4 sin2( π

4m
)
∑2m−1

i=1 sin2( πi
2m

)
∑2m

i=1 cos
2( (2i−1)π

4m
) + 2 cos2( π

4m
)
∑m

i=1 cos
2( (2i−1)π

2m
)

(2)

=
4m sin2( π

4m
)

m+m cos2( π
4m

)
(3)

= (1 + o(1))
2π2

n2
.

Note that (2) is obtained using the identities cosα − cos β = −2 sin α+β
2

sin α−β
2

and

cosα + cos β = 2 cos α+β
2

cos α−β
2
. For (3) we use the identities

2m−1
∑

i=1

sin2

(

πi

2m

)

=
2m
∑

i=1

cos2
(

(2i− 1)π

4m

)

= m,
m
∑

i=1

cos2
(

(2i− 1)π

2m

)

=
m

2

which are a consequence of the fact that sin2(α)+sin2(π
2
−α) = cos2(α)+cos2(π

2
−α) = 1.

We now prove that (1 + o(1))2π
2

n2 is a lower bound for µ(Gn).

Let y = (y1, y2, . . . , yn)
⊤ be a Fiedler vector of Gn. Let B1, . . . , Bm+2 be the non-trivial

blocks of Gn, and E1 be the set of edges of B1, . . . , Bm+2 and E2 be the set of all bridges

of Gn. Then we have

µ(Gn) =
y⊤L(Gn)y

y⊤y

=

∑

ij∈E(Gn)
(yi − yj)

2

∑n
i=1 y

2
i

=

∑

ij∈E1
(yi − yj)

2 +
∑

ij∈E2
(yi − yj)

2

∑n
i=1 y

2
i

. (4)
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The graph Gn has 2m+2 cut vertices. Consider the components of y on the cut vertices of

Gn together with the four components y1, y3, yn−2, yn; we define z as the vector consisting

of these 2m+ 6 components, as depicted in Figure 3.

z1 z2

z3 z4 z5 z6 z7

z2m+6z2m+5

Figure 3: The vector z defined on cut vertices and end blocks of Gn

Note that y is skew symmetric. To verify this, observe that by the symmetry of

Gn, y
′ = (yn, yn−1, . . . , y1) is also an eigenvector for µ(Gn). It follows that y − y′ itself

is a skew symmetric eigenvector for µ(Gn) (note that from Lemma 2.1, it is seen that

y − y′ 6= 0), so that we may replace y − y′ for y. Now, from Lemma 2.1, it follows

that z = (z1, z2, . . . , z2m+6) 6= 0. As y is skew symmetric, it follows that z is also skew

symmetric and thus z ⊥ 1. Let Bk be one of the middle blocks of Gn, i.e. 2 ≤ k ≤ m+1.

The components of y on the left vertex and the right vertex of Bk are z2k and z2k+1,

respectively. Let t be the component of y on the two middle vertices of Bk (which are

equal by Lemma 2.1) as shown in Figure 4.

z2k

t

t

z2k+1

Figure 4: The components of y on a middle block Bk

Then
∑

ij∈E(Bk)

(yi − yj)
2 = 2(z2k − t)2 + 2(t− z2k+1)

2.

The right hand side, considered as a function of t, is minimized at t = 1
2
(z2k + z2k+1).

This implies that
∑

ij∈E(Bk)

(yi − yj)
2 ≥ (z2k − z2k+1)

2.
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It follows that

∑

ij∈E1

(yi − yj)
2 =

∑

ij∈E(B1)

(yi − yj)
2 +

m+1
∑

k=2

∑

ij∈E(Bk)

(yi − yj)
2 +

∑

ij∈E(Bm+2)

(yi − yj)
2

≥ 4(z1 − z2)
2 + 2(z2 − z3)

2 +

m+1
∑

k=2

(z2k − z2k+1)
2

+ 2(z2m+4 − z2m+5)
2 + 4(z2m+5 − z2m+6)

2

≥ (z1 − z2)
2 +

m+2
∑

k=1

(z2k − z2k+1)
2 + (z2m+5 − z2m+6)

2,

which in turn implies that

∑

ij∈E1

(yi − yj)
2 +

∑

ij∈E2

(yi − yj)
2 ≥

2m+5
∑

r=1

(zr − zr+1)
2. (5)

We also have
n

∑

i=1

y2i ≤ 2
2m+6
∑

i=1

z2i , (6)

which holds because y21 + y22 = 2z21 , y
2
3 + y24 = 2z22 , y

2
5 + y27 ≤ 2z23 , y

2
6 + y28 ≤ 2z24 , . . . , y

2
n−4 +

y2n−7 ≤ 2z22m+4, . . . (cf. Lemma 2.1). Now, from (4), (5) and (6) we infer that

µ(Gn) ≥

∑2m+5
i=1 (zi − zi+1)

2

2
∑2m+6

i=1 z2i
. (7)

Note that the right hand side of (7) is the Rayleigh quotient of z for the path P2m+6.

Thus, by the fact that µ(Ph) = 2(1− cos π
h
) (see [7]), it follows that

∑2m+5
i=1 (zi − zi+1)

2

∑2m+6
i=1 z2i

≥ µ(P2m+6) = (1 + o(1))
π2

4m2
.

Therefore,

µ(Gn) ≥ (1 + o(1))
2π2

n2
.

Case 2. n ≡ 0 (mod 4)

In this case, Gn is the bottom graph of Figure 1. We define the graph Hn+2 as

shown in Figure 5. The symmetries of Hn+2 are similar to those of the graph Gn−2.

So the arguments of the previous case also work for Hn+2, in particular Hn+2 has a

skew symmetric Fiedler vector. Therefore, we have µ(Hn+2) = (1 + o(1)) 2π2

(n+2)2
. Let

x = (x1, . . . , xn)
⊤ be the Fiedler vector of Gn with ‖x‖ = 1. We define the vector y of

7



y2

y1

y4

y3

y6

y5

y7 y8

y9

y10 yn

yn−1

yn+2

yn+1

Figure 5: The graph Hn+2 and the components of y

length n+ 2 by

yi =



















xi − δ i = 1, 2, 3, 4,

x5 − δ i = 5, 6,

xi−2 − δ i = 7, . . . , n+ 2,

where δ = 2x5

n+2
. It is seen that y is orthogonal to 1. We label the vertices of Hn+2

by the components of y as shown in Figure 5. We observe that
∑

ij∈E(Gn)
(xi − xj)

2 =
∑

ij∈E(Hn+2)
(yi − yj)

2. On the other hand,

‖y‖2 =

n+2
∑

i=1

y2i

=
n

∑

i=1

(xi − δ)2 + 2(x5 − δ)2

=

n
∑

i=1

x2
i − 2δ

n
∑

i=1

xi + nδ2 + 2(x5 − δ)2

= 1 + 2x2
5

(

1−
2

n + 2

)

.

So ‖y‖ > 1, which means that the Rayleigh quotient for y on Hn+2 is smaller than µ(Gn).

It follows that (1 + o(1)) 2π2

(n+2)2
= µ(Hn+2) ≤ µ(Gn). By a similar argument, we see that

µ(Gn) ≤ µ(Gn−2) = (1 + o(1)) 2π2

(n−2)2
. Therefore, µ(Gn) = (1 + o(1))2π

2

n2 .

3 Structure of quartic graphs with minimum spectral

gap

Motivated by the Aldous–Fill Conjecture and also as an analogue to Babai’s conjecture,

we consider the problem of determining the structure of connected quartic graphs with

minimum spectral gap. We prove that such graphs have a path-like structure (see Figure 6)

and specify their blocks. Finally, we pose a conjecture which precisely describes the

connected quartic graphs with minimum spectral gap.
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We remark that in a quartic graph, any cut vertex belongs to exactly two blocks and

further has degree 2 in each of them. Therefore, in the quartic graphs having a path-

like structure, the middle and end blocks have exactly two and one vertices of degree 2,

respectively.

Figure 6: The path-like structure

One of our goals in this section is to specify the structure of the blocks of a quartic

graph with minimum spectral gap. As we shall prove, the blocks of such graphs are of

two types: ‘short’ and ‘long’. By short blocks we mean those given in Figure 7.

M M1 M2 M3

D1 D2 D3 D4

Figure 7: Short blocks of a quartic graph

The long blocks, roughly speaking, are constructed by putting some short blocks to-

gether with the general structure given in Figure 8.

B1 B2 Bs

Figure 8: General structure of a long block

More precisely, the building ‘bricks’ of long blocks are the graphs M ′
1,M

′
2,M

′
3, D

′
3, D

′
4,

obtained by removing the right degree 2 vertex of the corresponding short blocks, and

the graphs M ′′
1 ,M

′′
2 , obtained by removing both degree 2 vertices of M1,M2. For any of

these graphs, say B, we denote its mirror image by B̃. A long block is constructed from

some s ≥ 2 bricks B1, . . . , Bs, where each Bi is joined by two edges to Bi+1 (as shown in

Figure 8). There are three types of long blocks:

(i) long end block: B1 ∈ {D′
3, D

′
4}, B2, . . . , Bs−1 ∈ {M ′′

1 ,M
′′
2 }, and Bs ∈ {M̃ ′

1, M̃
′
2, M̃

′
3};

(ii) long middle block: B1 ∈ {M ′
1,M

′
2,M

′
3}, B2, . . . , Bs−1 ∈ {M ′′

1 ,M
′′
2 }, and Bs ∈

{M̃ ′
1, M̃

′
2, M̃

′
3};
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(iii) long complete block: B1 ∈ {D′
3, D

′
4}, B2, . . . , Bs−1 ∈ {M ′′

1 ,M
′′
2 }, and B1 ∈ {D̃′

3, D̃
′
4}

We note that long complete blocks are quartic and long end blocks and middle blocks

have exactly one or two vertices of degree 2, respectively.

Here is the main result of this section.

Theorem 3.1. Let G be a graph with the minimum spectral gap in the family of connected

quartic graphs on n vertices. If G is a block, then either n ≤ 9 and G is one of the graphs

of Figure 9, or n ≥ 10 and G is a long complete block. If G itself is not a block, then

it has a path-like structure in which each left end block is either one of D1, . . . , D4 or a

long end block, and each middle block is either one of M,M1,M2,M3, M̃3 or a long middle

block. Each right end block is the mirror image of some left end block.

G5 G6 G7 G8 G8′ G9

Figure 9: The graphs of Theorem 3.1 on n ≤ 9 vertices

Subsection 3.2 is devoted to the proof of Theorem 3.1. In fact, Theorem 3.1 follows

from Theorems 3.11 and 3.15 below.

3.1 Elementary moves and their effect on algebraic connectivity

In this subsection we present the main tool of the proof of Theorem 3.1, that is, a local

operation on edges of a graph which preserves the degree sequence of the graph.

Let G be a graph. By ‘∼’ and ‘≁’ we denote, respectively, adjacency and non-adjacency

in G. An elementary move or switching in G is a switching of parallel edges: let a ∼ b, c ∼

d and a ≁ c, b ≁ d, then the elementary move denoted by sw(a, b, c, d) removes the edges

ab and cd and replaces them by the edges ac and bd.

Definition 3.2. Let G be a graph and ρ : V (G) −→ R be a Fiedler vector of G, considered

as a weighting on the vertices; for v ∈ V (G) we write ρv = ρ(v). For convenience, we

may assume the vertex set is [n] = {1, 2, . . . , n} and that the vertices are numbered so

that ρ1 ≥ ρ2 ≥ · · · ≥ ρn. We call this a proper labeling of the vertices (with respect to the

eigenvector ρ).

The following two lemmas were initially used by Guiduli [9] (see also [8]) for cubic

graphs but they also hold for quartic graphs.
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Lemma 3.3. Let G be a connected graph. Let ρ : V (G) −→ R be a Fiedler vector of G.

If there are vertices {a, b, c, d} in G such that a ∼ b, c ∼ d, a ≁ c, b ≁ d, with ρa ≥ ρd,

and ρc ≥ ρb, then sw(a, b, c, d) does not increase the algebraic connectivity.

Definition 3.4. A switch or elementary move is said to be proper if it satisfies the

conditions of Lemma 3.3. In particular, with proper labeling on the vertices, sw(a, b, c, d)

is proper if a < d and c < b.

We will use proper switchings to transfer the graphs into the path-like structure with-

out increasing the algebraic connectivity. The following lemma keeps the graph connected

during this procedure.

Lemma 3.5. Let G be a properly labeled connected graph on [n] and n′ < n. Assume

that G \ [n′] is disconnected and that each of its components has an edge which is not a

bridge. Then we may reconnect the graph using proper elementary moves to make G \ [n′]

connected, not increasing the algebraic connectivity.

In the arguments which follow, we use proper elementary moves to connect two specific

vertices x and y. The following remark demonstrates when such a switch does, or does

not, exist.

Remark 3.6. Let G be a graph whose vertices [n] are properly labeled and x, y be two

vertices of G with x < y. Suppose we are looking for a proper switch to connect x and y

without altering the induced subgraph on [x]. From Lemma 3.3 it is evident that such a

switch does not exist if and only if any neighbor of x in [n]\ [y] is adjacent to any neighbor

of y in [n] \ [x].

3.2 Proof of Theorem 3.1

Theorem 3.1 follows from Theorems 3.11 and 3.15, which will be proved in this subsection.

Hereafter, we assume that Γ is a connected quartic graph with n vertices, whose

vertices are labeled properly as described in Definition 3.2. Our goal is to utilize proper

elementary moves to transfer Γ to one of the graphs described in Theorem 3.1.

3.2.1 The subgraph on the first few vertices

Our first goal is to prove that we can reconnect (by proper elementary moves) the first

few vertices of Γ to get one of the four subgraphs D1, D2, D
′
3, D

′
4.

In the process of reconnecting Γ, we are usually in the situation that for some r < n, we

have already built some specific subgraph on [r] and continue to build a desired subgraph
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on Γ \ [r] in a way not to alter the subgraph already constructed on [r]. The next two

lemmas deal with such situations.

Lemma 3.7. Let H be a connected graph with vertices r+1, . . . , r+m where all the vertices

have degree 4 except the first two, which have degree 3. Then, by proper switchings, H can

be transferred into a graph in which r + 1 ∼ r + 2, or m = 5, 8 and H can be transferred

into D̃′
4 or D̃′

3, respectively.

Proof. If some neighbor x of r + 1 is not adjacent to some neighbor y of r + 2, then

sw(r + 1, x, r + 2, y) connects r + 1 to r + 2. Otherwise any neighbor of r + 1 is adjacent

with any neighbor of r + 2. This is only possible in two cases: (i) r + 1 and r + 2 share

three neighbors all of which are adjacent to each other or (ii) H is the graph of Figure 10a.

If (i) is the case, then m = 5 and H is D̃′
4. In the case (ii), with no loss of generality,

we assume that x < z < k, y < w < l, and x < y. We first sw(r + 2, y, x, w) and then

sw(r + 2, x, r + 1, z), which result in Figure 10b. Now we perform sw(r + 2, w, x, l), and

then either sw(r + 2, l, k, y) if k < l or sw(r + 1, k, l, z) if l < k. As a result we obtain D̃′
3

(the outcome in the case k < l is shown in Figure 10c).

r + 1

r + 2

x z k

y w l

(a)

r + 1

r + 2

x z k

y w l

(b)

z
y

lw

x

k

r + 1

r + 2

(c)

Figure 10: The graph H withm = 8 before and after switchings in the proof of Lemma 3.7

Lemma 3.8. Let H be a graph with vertices r + 1, . . . , r +m where all the vertices have

degree 4 except for r + 1, r + 2 which have exactly two neighbors among r + 3, . . . , r +m.

Further r+1 ∼ r+3, r+4. Then by proper switchings, H can be transferred into a graph

with r+ 2 ∼ r+ 3, or m = 6 and H can be transferred into the the graph D̄1 (depicted in

Figure 11b).

Proof. First suppose that r+2 ∼ r+4. If r+2 ≁ r+3, then r+3 has a neighbor x which is

not adjacent with r+4 (otherwise r+4 should have degree 5). Then sw(r+2, r+4, r+3, x)

makes r + 2 and r + 3 adjacent.

Next suppose that r + 2 ≁ r + 4. If some neighbor x of r + 3 is not adjacent to some

neighbor y of r + 4, then sw(r + 3, x, r + 4, y) connects r + 3 to r + 4. Otherwise r + 3
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and r+4 must share three neighbors all of which are adjacent to each other. In this case,

the neighbors of r+2 and the neighbors of r+3 cannot be adjacent. So there is a switch

to connect r + 2 to r + 3 and we are done. Therefore we suppose that r + 3 ∼ r + 4. If

some neighbor of r + 2 is not adjacent with some neighbor of r + 3, then we are done.

Otherwise either we are in the situation of Figure 11a and so by sw(r + 2, y, r + 4, x),

r+2 ∼ r+4, which implies r+2 ∼ r+3 as discussed above; or r+2 and r+3 share two

neighbors, say x, y, such that x ∼ y and r + 4 is adjacent to both x and y, which means

that m = 6 and H is the graph D̄1 given in Figure 11b. Note that r+1 and r+ 2 can be

either adjacent or non-adjacent, which is illustrated by dashed edges in Figure 11.

r + 1

r + 2

r + 3

r + 4x

y

(a)

r + 1

r + 2

r + 4

x

r + 3

y

(b)

Figure 11: An exceptional case in the proof of Lemma 3.8 and the graph D̄1

Now, we can prove that the first few vertices of Γ can be reconnected to induce the

subgraphs asserted in Theorem 3.1.

Lemma 3.9. The induced subgraphs on the first few vertices in Γ can be transferred by

proper switchings into one of the four subgraphs D1, D2, D
′
3, D

′
4. Furthermore, if n ≤ 9,

then Γ can be transferred into one of the graphs G5, G6, G7, G8, G8′, or G9.

Proof. In Steps 1–5 below, we show that the induced subgraph on the first five to seven

vertices of Γ can be transferred into D′
4 or to one of the subgraphs H1, H2 given in

Figure 12, or Γ has at most 9 vertices and it is one of the graphs G5, G6, G7, G8, G8′ , or

G9. In the final Step 6, from H1, H2 we obtain one of D1, D2, D
′
3, D

′
4.

1
2

3
4

5

6

H1

1

2
3

4

5

6

7

H2

Figure 12: Two subgraphs on the first few vertices of Γ

Step 1. Connecting 1 to 2, 3, 4, 5 and 2 to 3. Assume that 1 is not adjacent with some

x ∈ {2, 3, 4, 5}. So 1 has some neighbor y > 5. It is not possible that y is adjacent with

13



any neighbor of x (this requires y having degree 5). So there is some vertex z such that

z ∼ x and z ≁ y. Now, sw(1, y, x, z) makes 1 adjacent to x.

We may assume that Γ − 1 is connected. The desired switch to 2 ∼ 3 is possible,

unless 2 and 3 share three neighbors in Γ− 1 and all the three neighbors are adjacent to

each other. But this contradicts the fact that Γ− 1 is connected.

Step 2. Connecting 2 to 4. Again we may assume by Lemma 3.5 that Γ\ [3] is connected.

If no proper switch leading to 2 ∼ 4 exists, then, similarly to Step 1, we see that 4 ∼ 5.

Also, we may assume that 3 ≁ 4, because otherwise 2 has a neighbor y with y ≁ 3, and so

sw(2, y, 4, 3) connects 2 to 4. Let x be a neighbor of 2 other than 1 and 3. First suppose

that 2 ≁ 5. If x ∼ 4, then by Remark 3.6 the desired switch exists, except in the two

situations (a) and (b) of Figure 13. For (a), we are done by sw(2, x, 4, 5). Note that (b) is

not possible in view of the fact that Γ \ [3] is connected. If x ≁ 4, then the desired switch

exists, except in the situation (c) of Figure 13 for which sw(2, x, 5, y) implies 2 ∼ 5. So

we are left with the case that 2 ∼ 5. If x ≁ 5, then sw(2, x, 4, 5). Otherwise, 1, 2, 4, x are

all the neighbors of 5. Let y 6= 1, 5, x be the fourth neighbor of 4. Then sw(2, 5, 4, y).

1

2

3

4

5

x

(a)

1

2

3

4

5

x

(b)

1

2

3

4

5

x

y

(c)

Figure 13: Some possible situations in Step 2

Step 3. Connecting 2 to 5. Let x 6= 1, 3, 4 be the fourth neighbor of 2. We consider the

following two cases.

(i) x ∼ 5. Let y and z be the other two neighbors of x. If y 6∼ 5 or z 6∼ 5, then the

desired switch is possible. Otherwise we are in the situation of Figure 14a. We first

show that 3 ∼ 5 or 4 ∼ 5. If y ≁ z, then by examining the neighbors of 3 and 4,

proper switches to 3 ∼ 5 or 4 ∼ 5 will clearly exist. If y ∼ z, then the desired switch

will exist, except when 3 ∼ 4, 3 ∼ y, and 4 ∼ z in which case n = 8 and Γ = G8.

So we have that 3 ∼ 5 or 4 ∼ 5 and thus we are in either of the situations (b) or

(c) of Figure 14. (Note that if there is no edge 4x in (b) or 3x in (c), then it is easy

to find a switch that connects 2 to 5.) For (b), 3 has a neighbor y 6= 4 and y ≁ x.

Then sw(3, y, 5, x). For (c), 4 has a neighbor y 6= 3 and y ≁ x. Then sw(4, y, 5, x).

It turns out that both (b) and (c) lead to the subgraph (d) of Figure 14. If both 3

and 4 are adjacent to x, then n = 6 and we get G6. Therefore we suppose that both
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3 and 4 cannot be adjacent to x. Then either 3 ≁ x or 4 ≁ x, for which we apply

sw(2, x, 5, 3) or sw(2, x, 5, 4), respectively.

1

2

3

4

5x
y

z

(a)

1

2

3

4

5

x

(b)

1

2

3

4

5

x

(c)

1

2

3

4

5

x

(d)

Figure 14: Some possible situations in Step 3, Case (i)

(ii) x ≁ 5. If the remaining neighbors of x and 5 are not the same, then the desired

switch is available. Otherwise, similarly to (i), we have 3 ∼ 5 or 4 ∼ 5. So in view

of Remark 3.6, we are in either of the situations (a) or (b) of Figure 15. For (a),

first let y ≁ z. If x < z, then sw(x, y, 5, z), and if z < x, then sw(z, 5, 4, x) connects

x to 5, which reduces the graph to Case (i). Now let y ∼ z. If 3 ∼ y and 3 ∼ z,

then n = 8, and by sw(3, y, 5, 4) and then sw(3, 5, 4, x) we transfer Γ to G8. If 3 ≁ y

or 3 ≁ z, then there is a neighbor w of 3 such that either w ≁ y and w 6= y, and

then sw(3, w, 5, y), or w ≁ z and w 6= z. Then sw(3, w, 5, z) connects 3 to 5. We do

the same for (b) to connect 4 to 5. So both (a) and (b) lead to the subgraph (c) of

Figure 15. Now sw(3, x, 4, 5) connects x to 5, which reduces the graph to Case (i).

1

2

3

4

5
x

y

z

(a)

1

2

3

4

5
x

y

z

(b)

1

2

3

4

5

x

(c)

Figure 15: Some possible situations in Step 3, Case (ii)

Step 4. Connecting 3 to 4. Let x 6= 1, 2 be a neighbor of 3. If 4 ∼ 5, we may choose

x so that x ≁ 5, and then sw(3, x, 4, 5). So assume that 4 ≁ 5. From Remark 3.6, it

is seen that the desired switch is available, except in the situations of Figure 16. For

each of them, we first show that 4 ∼ 5. Then, with this edge, the desired switches can

be found. In the one in Figure 16a, if 5 is adjacent to both y and z, then n = 8 and

Γ = G8′ . Otherwise 5 has a neighbor w 6= y, z and w ≁ x. We first sw(4, x, 5, w) and then

sw(3, x, 4, 5). The other two situations are similar. Note that in Figure 16b, if 5 ∼ x and
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5 ∼ y, then n = 7 and Γ = G7; and in Figure 16c, if z ∼ w, 5 ∼ x, and 5 ∼ y, then n = 9.

By sw(5, x, 3, y) and then sw(3, 5, 4, z), we can thus transfer Γ to G9.

1

2

3

4

5
x

y z

(a)

1

2

3

4

5
x

y

(b)

1

2

3

4

5
x

y

z

w

(c)

Figure 16: Some possible situations in Step 4

Step 5. So far we obtain on the first five vertices either the subgraph (a) or (b) of

Figure 17. If (a) is the case, letting x to be the fourth neighbor of 3, then sw(3, x, 5, 4)

connects 3 to 5, and so we obtain D′
4. Now, assume that (b) is the case. If we can find a

switch to connect 3 to 5, we again reach D′
4. Otherwise, it is easily seen that by proper

switching we can connect 3 to 6 as shown in Figure 17c. Furthermore, if we can find a

suitable switch to connect 4 to 6, we reach the graph H1 of Figure 12. Otherwise, it is

easily seen by switching that 4 ∼ 7 and that we can reach Figure 17d. If there is no

switch to connect 4 to 6, then we can find a proper switch to connect 5 to 6, except when

all the three vertices 5, 6, and 7 are adjacent to 8 and 9 and 8 ∼ 9, in which case n = 9

and Γ = G9. Now, from (d), if 5 ≁ 7, then sw(4, 7, 6, 5) connects 4 to 6 and thus H1 is

obtained. Otherwise 5 ∼ 7 and we reach the graph H2 of Figure 12.

1

2

3

4

5

(a)

1

2

3

4

5

(b)

1

2
3

4

5

6

(c)

1

2
3

4

5

6

7

(d)

Figure 17: Some possible situations in Step 5

Step 6. So far we have obtained one of the subgraphs D′
4, or H1, H2 of Figure 12, unless

n ≤ 9, in which case we obtained the graphs Gi of Figure 9. We show that continuous

reconnecting, starting from H1 and H2, leads to D1, D2, D
′
3, or D

′
4.

First, consider H1. We have either 5 ∼ 6 or 5 ≁ 6. Let 5 ∼ 6. It is easy to find

a switch that connects 5 to 7. If further 6 ∼ 7, then we have the block D1. If 6 ≁ 7,

it is easily seen, by switching, that 6 ∼ 8. Then sw(3, 6, 5, 7) reduces the subgraph on

{1, . . . , 5} to D′
4. Now, let 5 ≁ 6. By switching it is seen that 5 ∼ 7 and 5 ∼ 8. Thus

we are in the situation of Lemma 3.8 for r = 4, which leads to either of the subgraphs
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(a) or (b) of Figure 18. Now, sw(3, 6, 5, x) reduces (b) to the subgraph of Figure 18c,

which is the unique graph of Theorem 3.1 on 10 vertices. For (a), first let 6 ∼ 8. If

further 7 ∼ 8, then we get D′
3, otherwise sw(5, 8, 6, 7) and then sw(3, 6, 5, 7) reduce the

subgraph on {1, . . . , 5} to D′
4. Now, let 6 ≁ 8. Then sw(3, 6, 5, 8) reduces the subgraph

on {1, . . . , 5} to D′
4.

1
2

3
4

5

6

7

8

(a)

1
2

3
4

5

6

x

(b) (c)

Figure 18: Some possible situations in Step 6

Secondly, consider H2. We have either 6 ∼ 7 or 6 ≁ 7. First let 6 ∼ 7. It is easy to

find a switch that connects 6 to 8. If further 7 ∼ 8, then we obtain the block D2. If 7 ≁ 8,

then sw(4, 7, 6, 8) reduces the graph to D1. Now, let 6 ≁ 7. Then sw(3, 6, 5, 7) reduces

the subgraph on {1, . . . , 5} to D′
4.

3.2.2 General Steps

In this section, we continue reconnecting Γ by proper switchings to construct the middle

and end blocks with the structure described in Theorem 3.1.

Lemma 3.10. Let H be a graph with vertices r, . . . , r + ℓ− 1 where all the vertices have

degree 4 except for r, which has degree 2. If ℓ ≥ 10, then, by proper switchings, we can

transform the induced subgraph on the first four or five vertices into one of the subgraphs

given in Figure 19. If ℓ ≤ 9, then H can be transformed into either of D̃1, D̃2, D̃3 or D̃4.

r

r + 1

r + 2

r + 3

r + 4

(a)

r

r + 1

r + 2

r + 3

r + 4

(b)

r

r + 1

r + 2

r + 3

r + 4

r + 5

(c)

r

r + 1

r + 2

r + 3

r + 4

r + 5

(d)

Figure 19: Subgraphs which can be constructed on first few vertices of H in Lemma 3.10

Proof. First we show that r ∼ r+1, r+2. To see this, assume that r is not adjacent with

some x ∈ {r + 1, r + 2}. So r has some neighbor y > r + 2. It is not possible that y is
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adjacent with any neighbor of x (this requires y having degree 5). So there is some vertex

z such that z ∼ x and z ≁ y. Now, sw(r, y, x, z) makes r adjacent to x. The graph H − r

satisfies the conditions of Lemma 3.7 with m = ℓ − 1, and so if ℓ = 6, 9, H − r can be

transferred into D̃′
4, D̃

′
3 which means that H can be transferred into D̃4, D̃3, respectively.

For ℓ = 6, 9, nothing remains to be proved and so we assume that ℓ 6= 6, 9. Hence, from

Lemma 3.7, it follows that r + 1 ∼ r + 2. By the same argument given above for r, we

see that r + 1 is adjacent with both r + 3 and r + 4. Now H − r satisfies the conditions

of Lemma 3.8 and so if ℓ = 7 (i.e. m = 6), H − r can be transferred into D̄1 (with

r + 1 ∼ r + 2) and so H to D̃1. Therefore, we assume that ℓ 6= 7. Thus from Lemma 3.8

it follows that r+2 ∼ r+3. So far we have obtained the desired subgraph on r, . . . , r+3,

which is the same on all the graphs of Figure 19.

To conclude the proof, we consider the possible adjacencies between the three vertices

r + 2, r + 3, and r + 4. If r + 2 ∼ r + 4, we are done as we obtain either the subgraph

(a) or (b) of Figure 19. So, in what follows we assume that r + 2 ≁ r + 4. We claim that

r + 3 ∼ r + 4. By Lemma 3.5, we may assume that H \ {r, r + 1, r + 2} is connected.

Let x 6= r, r + 1, r + 3 be the fourth neighbor of r + 2. If x ∼ r + 4, the desired switch

is available, except in the case (a) of Figure 20 (in which case m = 8 and the block D̃2

is obtained). If x ≁ r + 4, by Remark 3.6 the desired switch is available in any situation

other than the case (b) of Figure 20. Then either y ≁ z or y ≁ w for which by either

sw(r + 3, y, r + 4, z) or sw(r + 3, y, r + 4, w), respectively, we have r + 3 ∼ r + 4 and the

claim follows. Again we may assume that H \ {r, . . . , r + 3} is connected. Our goal is to

show that r + 2 ∼ r + 5 and r + 3 ∼ r + 5 and thus we will come up with either of the

subgraphs (c) or (d) of Figure 19. As above x 6= r, r + 1, r + 3 is the fourth neighbor of

r + 2. There are two possibilities:

(i) x ∼ r + 4. A switch to connect r + 2 to r + 4 exists, except in the situation of

Figure 20c. If x = r + 5, then we are done by reaching the subgraph given in

Figure 19c. If y = r + 5, let z and w be the other neighbors of r + 5. Then

sw(r+2, x, r+5, z) and sw(r+3, x, r+5, w) give rise to the subgraph of Figure 19c

again. If y 6= r + 5 and x 6= r + 5, then r + 5 has two neighbors z and w that

are non-adjacent to x. Then by sw(r + 2, x, r + 5, z) and sw(r + 3, x, r + 5, w) the

subgraph of Figure 19d is obtained.

(ii) x ≁ r + 4. A switch to connect r + 2 to r + 4 exists, except in the situation of

Figure 20d. If x = r+ 5, then we are done by reaching the subgraph of Figure 19d.

Otherwise, in a similar manner, the switches which give rise to the subgraph of

Figure 19d can be found easily by examining the adjacencies between the neighbors

of r + 5 and r + 2 (or r + 3).
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Figure 20: Some possible situations in the proof of Lemma 3.10

We are now in a position to prove the ‘first half’ of Theorem 3.1, that is to show that

Γ can be transferred to one of the graphs of Theorem 3.1.

Theorem 3.11. By proper switchings, any connected quartic graph can be turned into

one of the graphs described in Theorem 3.1.

Proof. For n ≤ 9 the assertion is proved in Lemma 3.9. So we may assume that n ≥ 10.

We start rebuilding Γ on its first few vertices as in Lemma 3.9. As we saw there, the first

few vertices of Γ can be transformed into one of the subgraphs D1, D2, D
′
3, D

′
4. Moreover,

whatever we obtained, we ended up either with a cut vertex, or with one of the situations

(i) or (ii) of Table 1. Since cut vertices in a quartic graph have necessarily degree 2, we

can employ Lemma 3.10 for reconnecting following a cut vertex. Doing so, we again reach

at one of the situations (i), (ii), or (iii) of Table 1. We now demonstrate what can be

constructed afterwards. As verified below, by proper switchings, the situation of the next

few vertices can be determined from the situation of v, v + 1 according to Table 1.

In Case (i) it is easily seen, by switching, that v ∼ v+2. If further v+1 ∼ v+2, then

we obtain the first possible outcome. If v +1 ≁ v+2, it is easily seen, by switching, that

v+1 ∼ v+3. Now, we can employ Lemma 3.7 (with H = Γ \ [v+1]), which implies that

either v + 2 ∼ v + 3 or either of D̃′
3 or D̃′

4 as an end block can be obtained.

In (ii), we assume that v ≁ v + 1, otherwise we return to Case (i). It is easily seen,

by switching, that v ∼ v + 2 and v ∼ v + 3. Then, H = Γ \ [v − 1] satisfies Lemma 3.8

and so that either v + 1 ∼ v + 2, or we obtain the third possible outcome, in which case

we either get D̃′
3 or we are left with one of the two situations (a) or (b) of Figure 21. For

(a), by sw(y, v + 1, x, v) and then sw(x, v + 1, v, z), and for (b), by sw(x, v + 1, v, z), we

obtain D̃′
4. So we assume that v + 1 ∼ v + 2. If we further have v + 1 ∼ v + 3, we come

up with the first possible outcome. So assume that v + 1 ≁ v + 3. Then it easy to find a

switch that ensures v + 1 ∼ v + 4. If v + 2 ∼ v + 3 and v + 2 ∼ v + 4, then we obtain
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situation of v, v + 1 situation of next few vertices after appropriate switchings

(i)

v

v + 1

v

v + 1

v + 2

v

v + 1

v + 2

v + 3

v

v + 1

v

v + 1

(ii)

v

v + 1

v

v + 1

v + 2

v + 3

v

v + 1

v + 2

v + 3

v + 4

v

v + 1

or returning to (i)

(iii)

v

v + 1

v

v + 1

v + 2

v + 3

or v turns to a cut vertex

Table 1: The situation of two vertical vertices and the possible structures following them

the second possible outcome. Otherwise, we have either v + 2 ≁ v + 3 or v + 2 ≁ v + 4,

and then sw(v, v + 3, v + 1, v + 2) or sw(v, v + 2, v + 1, v + 4), respectively, ensures that

v ∼ v + 1, which return us to Case (i).

In (iii), it is easily seen, by switching, that v ∼ v + 2 and v ∼ v + 3, as shown in

Figure 21c. If v + 1 ≁ v + 2, then, by sw(x, v + 1, v, v + 2), v is turned to a cut vertex

v. Now, let v + 1 ∼ v + 2. If further v + 1 ∼ v + 3, then we obtain the first outcome,

otherwise by sw(x, v + 1, v, v + 3), v is turned into a cut vertex v.

y

x

v

v + 1

z

(a)

x

v

v + 1

z

(b)

x

v

v + 1

v + 2

v + 3

(c)

Figure 21: Some of possible situations in the proof of Theorem 3.11

The outcome of Table 1 is either an end block or, after proper reconnecting, we are

again in one of the situations (i), (ii), (iii). Therefore, we may keep repeating this until

we end up with an end block.

We need further switchings to transform the blocks into the structure asserted in

Theorem 3.1. Two types of structures may still appear in our graph: X-shape (Figure 22a)

and X′-shape (Figure 22b). The X′-shape, in which a ≁ c and b ≁ d, should be avoided.

We can simply remove it by sw(a, b, c, d), which transfers it to Figure 22c. For X-shapes

the situation is different. They should only appear in specific places, namely in the short
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blocks M,M3, M̃3 or in an M ′
3 or M̃ ′

3 as the first brick or the last brick in a long block,

respectively.

x

a

y

c

b

(a)

a

c

b

d

(b)

a

c

b

d

(c)

Figure 22: X- and X′-shape

First note that if we have two consecutive X-shapes as in Figure 23a, then by sw(a, b, c, d),

we can transfer it to Figure 23d. If in an X-shape, the two right vertices are adjacent and

it is neither in an M-block, nor in an M̃ ′
3 (as the last brick in a long block), then it must

be in the situation of Figure 23b, which can be transferred by sw(a, b, c, d) to Figure 23e.

If in an X-shape, the two left vertices are adjacent and it is neither in an M-block, nor in

an M ′
3 (as the first brick in a long block), then it must be in the situation of Figure 23c,

which can be transferred by sw(a, b, c, d) to Figure 23f.
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Figure 23: Some possible situations for X-shapes and the results of applying sw(a, b, c, d)

The above arguments show that Γ can be transformed into one of the graphs described

in Theorem 3.1.

3.2.3 Final Step

Let M denote the family of graphs described in Theorem 3.1. To complete the proof of

Theorem 3.1, we need to show that all connected quartic graphs with minimum algebraic

connectivity belong to M. In fact, it might be possible that Γ is transformed (by means

of proper switchings) to a graph G ∈ M, where we still have µ(Γ) = µ(G). We show

that, under these circumstances, Γ must be isomorphic to G.
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Remark 3.12. Considering the structure of the graphs G ∈ M, we regard the vertices

drawn vertically above each other as a cell. The cells of G, in fact constitute an ‘equi-

table partition’ of G. Each cell contains one or two vertices (except for the first cells in

D1, D
′
3, D

′
4, or some cells in the Gi’s (of Figure 9) that have size 4 and 3, respectively).

Further, we know that the weights on the vertices of G given by a Fiedler vector ρ of G are

non-increasing from left to right. We may assume that the vertices that are in the same

cell have the same weight. Otherwise, let ρ′ be a vector obtained from ρ by interchanging

the weights of the vertices within all cells (in fact this is carried out by the action of an

automorphism of G, which also works for the first cells in D1, D
′
3, D

′
4). Then ρ′ and thus

ρ+ ρ′ is an eigenvector corresponding to µ(G) where ρ+ ρ′ is constant on each cell. Thus

we may assume that ρ is a non-increasing eigenvector for µ(G) and is constant on each

cell. The above argument may not work for G8′ , but for this small graph this can be done

by direct inspection.

Lemma 3.13. Let G ∈ M and ρ be a non-increasing Fiedler vector of G which is constant

on each cell. Then ρ is indeed strictly decreasing on the cells from left to right.

Proof. By contradiction, suppose that there are two vertices a, b in two different cells with

the same weight under ρ. We may assume that a ∼ b and that at least one of a or b has

a neighbor c with ρc 6= ρa = ρb. Let α and β be the sum of the weights of the neighbors

of a and b, respectively. Then, from the structure of the graphs in M, it is evident that

α ≥ β. But we have the strict inequality α > β by the existence of c.

We may suppose that ‖ρ‖ = 1. Let λ be the second largest eigenvalue of the adjacency

matrix A of G. Then µ(G) = 4 − λ and λ = ρ⊤Aρ. We choose a real ǫ with 0 < ǫ <

(α − β)/(1 + λ). Now, in the vector ρ we replace the weights of a and b by ρa + ǫ and

ρb − ǫ, respectively, to obtain a new vector ρ′. As ρ ⊥ 1, we have ρ′ ⊥ 1. We have

λ = max
x 6=0,x⊥1

x⊤Ax

x⊤x
≥

ρ′⊤Aρ′

ρ′⊤ρ′
=

λ+ 2ǫ(α− β − ǫ)

1 + 2ǫ2
,

where the right hand side is larger than λ by the choice of ǫ, a contradiction.

Lemma 3.14. Any proper elementary move on a graph in M leaves a graph isomorphic

to the original.

Proof. For the graphs in M, with a Fiedler vector which satisfies Lemma 3.13, proper

switchings cannot be found except when a, b are in the same cell, and c, d are in the same

cell, a ∼ c, b ∼ d, a ≁ d, and b ≁ c. In this case, sw(a, c, d, b) leaves a graph isomorphic

to the original. Also, any proper elementary move on G5, G6, G7, G8, G8′, G9, and D1, D2,

D′
3, and D′

4 gives a structure isomorphic to themselves.
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Now we can settle the ‘second half’ of Theorem 3.1. The following theorem, combined

with Theorem 3.11, completes the proof of Theorem 3.1.

Theorem 3.15. Let Γ be a connected quartic graph such that after a sequence of proper

switchings, it is turned to G ∈ M. If µ(Γ) = µ(G), then Γ is isomorphic to G.

Proof. Let sw1, . . . , swt be a sequence of proper switchings which turn Γ into G. Consider

the graphs Γ = G0, G1, . . . , Gt = G in which Gi is obtained from Gi−1 by applying swi.

Since µ(Γ) = µ(G), we have µ(Gi) = µ(G), for i = 1, . . . , t. Let swt = sw(a, b, c, d). Then

0 = µ(Gt−1)− µ(G) ≥ ρ⊤L(Gt−1)ρ− ρ⊤L(G)ρ = 2(ρa − ρd)(ρc − ρb) ≥ 0.

It follows that ρa = ρd or ρc = ρb. Without loss of generality, suppose that ρa = ρd. From

Lemma 3.13 it then follows that a, d are in the same cell of G. Note that sw(d, b, c, a) is

the reverse of sw(a, b, c, d), and so, when applied on G, yields Gt−1. However, sw(d, b, c, a)

is indeed a proper switching, and so by Lemma 3.14, Gt−1 must be isomorphic to G.

Similarly, it follows that all Gi, for i = 0, . . . , t− 2, are isomorphic to G.

3.3 Concluding Remarks

By Theorem 3.1 it can be seen that the connected quartic graphs on n ≤ 10 vertices with

minimum spectral gap are G5, G6, G7, G8, G9, and the graph of Figure 18c, respectively.

For n ≥ 11, we pose the following conjecture on the puniness and the precise structure

of the connected quartic graphs with minimum spectral gap. The conjecture suggests

that in such graphs all middle blocks are M1 and end blocks are one of the short blocks

D1, D2, D4 or the block D5 given in Figure 24.

Figure 24: The block D5

Conjecture 3.16. The connected quartic graph on n ≥ 11 vertices with minimum spec-

tral gap is the unique graph G described below. Let q and r < 5 be non-negative integers

such that n − 11 = 5q + r. Then G consists of q middle blocks M1 and each end block

is one of D1, D2, D4, or D5. If r = 0, then both end blocks are D4. If r = 1, then the

end blocks are D4 and D1. If r = 2, then both end blocks are D1. If r = 3, then the end

blocks are D1 and D2. Finally, if r = 4, then the end blocks are D4 and D5.
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