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Abstract. We apply a one-dimensional discrete dynamical system originally considered by Arnol’d
reminiscent of mathematical billiards to the study of two-move riders, a type of fairy chess piece.
In this model, particles travel through a bounded convex region along line segments of one of two
fixed slopes.

We apply this dynamical system to characterize the vertices of the inside-out polytope arising
from counting placements of nonattacking chess pieces and also to give a bound for the period of
the counting quasipolynomial. The analysis focuses on points of the region that are on trajectories
that contain a corner or on cycles of full rank, or are crossing points thereof.

As a consequence, we give a simple proof that the period of the bishops’ counting quasipolynomial
is 2, and provide formulas bounding periods of counting quasipolynomials for many two-move riders
including all partial nightriders. We draw parallels to the theory of mathematical billiards and pose
many new open questions.

1. Introduction

The classic n-Queens Problem asks in how many ways n nonattacking queens can be placed on
an nˆn chessboard. In a series of six papers [8, 9, 10, 11, 12, 13], Chaiken, Hanusa, and Zaslavsky
develop a geometric approach involving lattice point counting to answer a generalization when the
board is made up of integer lattice points on the interior of an n-dilation of a convex polygon B,
pieces P are riders (which means they can travel arbitrarily far in a move’s direction like a queen,
bishop, or the fairy nightrider), and the number of pieces q is decoupled from the size of the board.
Their main structural result (Theorem 4.1 of [8]) is that the number of nonattacking configurations
of q P-pieces on the pn` 1q-dilation of B˝ is always a quasipolynomial in n of degree 2q.

In this paper we investigate the period of this counting quasipolynomial when the pieces have
exactly two moves, on any board and for any number of pieces. (Pieces with only one move
are completely understood while pieces with three or more moves are much more complex, as
discussed in [11].) We learn that this period is determined by the behavior of an extension of a
one-dimensional discrete dynamical system originally considered by Arnol’d (described in [1]). This
discrete dynamical system is similar to that of mathematical billiard theory in that particles travel
across a region along line segments and “bounce” when they hit the region’s boundary. However,
instead of obeying the law of reflection, the line segments have one of two slopes determined by the
moves of the fairy chess piece. Compare the diagrams in Figure 1.

The study of mathematical billiards has been a fruitful area of research for over a hundred years;
some early papers were written by Artin [2] and Birkhoff [6]. The work of Sinăi [26] stimulated
interest in the ergodic theory and chaos of billiards, and the connections to geometry, statisti-
cal physics, and Teichmüller theory give billiards a wide appeal. We recommend the surveys by
Tabachnikov, Masur, and Gutkin [27, 23, 19, 20].

The theory of the dynamical system studied in this article originally appears in [18] and [21],
where it has been developed for ovals (smooth convex closed curves) to study geodesics on Lorentz
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Figure 1. A comparison of the behavior of two discrete dynamical systems in a
convex region. On the left is the discrete dynamical system where the particle
bounces off a wall in directions that alternate between the moves of a fairy chess
piece. On the right is the classical discrete dynamical system from mathematical
billiards in which the particle bounces off a wall by obeying the law of reflection.

surfaces. It also appears when considering light-like trajectories within ellipses in the Minkowski
plane [16]. We discuss this dynamical system on all bounded convex regions, in turn developing
theory that we apply to convex polygons. This leads to a number of open questions motivated
by our study and by the billiards literature. For example, the particle flows can be periodic, can
converge to a limit set, or exhibit ergodicity, and it is not clear when each property occurs. (See
Sections 6.4 and 7.2.)

Counting lattice points in polytopes is the subject of a field of mathematics named Ehrhart
theory after the work of Eugène Ehrhart [17]. Ehrhart theory has found applications in integer
programming, number theory, and algebra, among others [14, 3, 24]; for more background, see the
accessible works by De Loera [14] and Beck and Robins [4]. Beck and Zaslavsky [5] count lattice
points in a polytope that avoid an arrangement of hyperplanes. Such a construction is called an
inside-out polytope; it is under this framework that the q-Queens Problem was converted into a
counting question. Ehrhart theory tells us that the period of the counting quasipolynomial always
divides the denominator of the inside-out polytope—the least common multiple of the denominators
of its vertices.

Theorem 5.11 characterizes the vertices of the inside-out polytope for two-move riders as points
on flows (trajectories) in the dynamical system. Vertices either involve trajectory segments that
include corners of the board or cyclic trajectory segments whose system of defining equations is
linearly independent (rigid cycles) or interior crossing points of these trajectory segments. This
characterization allows us to prove a formula for the denominator of the counting quasipolynomial
for the number of nonattacking chess piece configurations in Theorem 5.12. From a dynamical
systems point of view, this theorem is interesting because of the necessity of explicitly calculating
the crossing points of flows, which are rarely considered in a dynamical systems context. (We are
aware only of Don’s [15].) Investigating crossing points in the context of billiard theory may lead
to further insights in that field.

When we analyzed the trajectories to calculate bounds on periods of the counting quasipolynomi-
als we saw some striking behavior. Section 6.1 highlights a case where there are no rigid cycles and
the corner trajectories are well behaved. Section 6.2 discusses a case where there is one rigid cycle
that serves as an attractor to all other trajectories. In Section 6.3, the dynamical system reduces
to that of billiards. In Section 6.4 we show an example where the trajectories appear to behave
ergodically. These insights allow us to provide insight into a question of periodicity discussed by
Khmelev [22]. We are able to show that the measure of the set of pairs of slopes that lead to a
periodic orbit or a fixed point in a convex polygon is strictly positive. We show that it is of full
measure for a triangle and conjecture that it is not of full measure for any other convex polygon.
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One of the motivations of this work was to better understand nightriders, riders that move
like the knight along slopes of ˘2 and ˘1

2 , whose behavior was investigated in [12]. The authors
suggested that partial nightriders—two-move riders with a subset of the nightrider’s moves—would
be fruitful pieces to investigate. Indeed, in Section 6 we are able to determine denominators (and
therefore bounds on the period of the counting quasipolynomial) of all two-move partial nightriders.
Our work also gives a simple new proof that the period of the counting quasipolynomial for q ě 3
bishops is 2, avoiding the need to use signed graph theory which was present in the original proof
given in [13].

We now share a brief summary of our paper. We recall the necessary background information
from the theory of chess piece configurations in Section 2 and we explore hyperplanes and rank
in Section 3. Section 4 defines the discrete dynamical system and concepts related to trajectories.
In Section 5, we apply the dynamical system to polygonal boards which allows us to characterize
vertices of the inside-out polytope in Theorem 5.11 and prove the formula for its denominator in
Theorem 5.12. We then restrict to the square board to find explicit formulas for the coordinates
of points on trajectories and crossing points in Section 6, culminating with the discussion of peri-
odic trajectories in Section 6.4. We conclude with a wide variety of open problems in Section 7,
asking questions about future regions of study, properties of trajectories, and generalizations of the
dynamical system, among others.

2. Background

We gather here the necessary Ehrhart and nonattacking chess piece theory background informa-
tion and notation from [8, 9, 11]. Every q-Queens Problem involves three parameters, a board B,
a piece P, and a positive integral number of pieces q.

Our board B is a convex polygon whose corners have rational coordinates; we use the notation
B˝ and BB for its interior and boundary, respectively. (This is not to be confused with rational
polygons, defined in billiard theory whose angles are rational multiples of π.) These boards are
dilated by an integer factor of pn` 1q; pieces are placed on integer lattice points in pn` 1qB˝XZ2.
The square board refers to B “ r0, 1s2.

A piece P has a set M of non-parallel basic moves m “ pc, dq where c and d are relatively prime
integers; a piece at position px, yq may move to any position px, yq ` km for k P Z and m P M.
(This ability to move arbitrarily far along a basic move is the defining property of a rider.) For
example, the bishop is the piece with basic moves p1, 1q and p´1, 1q, while the fairy chess nightrider
is the rider with the basic moves p1,˘2q and p2,˘1q of the knight.

In this article we consider pieces that are two-move riders with basic moves m1 “ pc1, d1q and
m2 “ pc2, d2q. Three pieces that were proposed in [12] and which motivated our study are the
partial nightriders: the lateral nightrider moves along lines of slope ˘1{2, the inclined nightrider
moves along lines of slope 1{2 and 2, and the orthonightrider moves along lines of slope 1{2 and
´2.

Two pieces are said to attack if their positions differ by a multiple of a move. A configuration
of q pieces corresponds to an integral point z “ pz1, . . . , zqq P ppn` 1qBqq Ď R2q and is said to be
nonattacking if no two pieces are attacking. Mathematically, a configuration is nonattacking if it
avoids the hyperplane arrangement Aq

P consisting of all attack equations of type r,

(2.1) pzi ´ zjq ¨ pdr,´crq “ 0,

for 1 ď i ă j ď q and r “ 1, 2; we adopt the shorthand notation zi „r zj for Equation (2.1). Note
that „r is an equivalence relation.

This construction from [8] converts the question of counting the number of nonattacking con-
figurations of q P-pieces on pn ` 1qB˝, denoted uPpq;nq, into a lattice point counting question in
this inside-out polytope, denoted pBq,Aq

Pq. The boundary equations of B are avoided as well, which
justifies counting configurations in ppn` 1qBqq X Z2q instead of ppn` 1qB˝qq X Z2q.
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A vertex of pBq,Aq
Pq is any point of Bq that is the intersection of attack equations from Aq

P and
fixation equations (or simply fixations) of the form

(2.2) pα1, α2q ¨ zi “ β,

where α1x ` α2y “ β is the equation of a side of B. The denominator ∆pzq of a vertex z is the
least common multiple of the denominators of its coordinates, and the denominator DpBq,Aq

Pq of
an inside-out polytope is the least common multiple of the denominators of all its vertices. In
Theorem 5.11 we determine the structure of all vertices of the inside-out polytope for an arbitrary
board B and a two-move rider P.

As with many counting questions in Ehrhart Theory, the main structural result of [8] is that
uPpq;nq is always a quasipolynomial in n of degree 2q. That is, for each fixed q, uPpq;nq is given
by a cyclically repeating sequence of polynomials in n and its period p is the shortest length of
such a cycle. The period of the counting quasipolynomial uPpq;nq always divides the denominator
DpBq,Aq

Pq [4, Theorem 3.23]. In Ehrhart Theory the period is often difficult to obtain and can be
much smaller than this denominator, but in chess counting problems the period and denominator
always seem to agree which leads to the following conjecture.

Conjecture 2.1 ([9, Conjecture 8.6]). The period of the counting quasipolynomial uPpq;nq equals
the denominator Dpr0, 1s2q,Aq

Pq.

3. Hyperplanes and Rank.

We define the following concepts related to the geometry of the inside-out polytope.

Definition 3.1. For z “ pz1, z2, . . . , zkq P Bq we define Hpzq, the hyperplane arrangement associ-
ated to z, to be the set of all attack equations and fixations on which z lies.

In other words, Hpzq will include the attack equation zi „r zj if pieces i and j attack and will
include the fixation pα1, α2q ¨zi “ β if and only if zi lies on the edge of B defined by α1x`α2y “ β.

The rank of hyperplane arrangements, equations, and sets of points will help determine when
z P Bq is a vertex of pBq,Aq

Pq.

Definition 3.2. The rank of a hyperplane arrangement H in Rd is the rank of the system of
equations given by its hyperplanes. H has full rank if it has rank d. We say the rank of a point
z P R2q is the rank of Hpzq, and z has full rank if Hpzq has full rank. We say the rank of a set
S “ tz1, . . . , zku Ď R2 is the rank of the point z “ pz1, . . . , zkq, and S has full rank if z has full
rank.

Definition 3.3. A set H of hyperplanes in Rd is said to be linearly independent if the rank of
H is equal to its size, or equivalently, if the set of normal vectors to these hyperplanes is linearly
independent.

Lemma 3.4. z P Bq has full rank if and only if z is a vertex of pBq,Aq
Pq.

Proof. Suppose z (and therefore Hpzq) has full rank. By removing redundant hyperplanes, Hpzq can
be reduced to a linearly independent set of hyperplanes H of full rank of which z is the intersection
point, so z is a vertex of pBq,Aq

Pq. If z is a vertex, Hpzq contains this H, so Hpzq (and therefore z)
has full rank. �

Example 3.5. Consider the inclined nightrider on the square board with moves m1 “ p2, 1q and
m2 “ p1, 2q.

When z “ p0, 0, 1, 1{2q, Hpzq contains the fixations x1 “ 0, y1 “ 0, and x2 “ 1 and the attack
equation z1 „1 z2. These four equations form a system of full rank; we conclude Hpzq and z have
full rank and z is a vertex of pr0, 1s4,A2

Pq.
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When z “ p0, 0, 0, 0, 1, 1q, Hpzq consists of the fixations x1 “ 0, y1 “ 0, x2 “ 0, y2 “ 0, x3 “ 1,
and y3 “ 1 and the attack equations z1 „1 z2 and z1 „2 z2 since z1 “ z2. Hpzq contains eight
equations; the attack equations are redundant because the fixations uniquely determine z; those six
equations form a system of full rank, so Hpzq and z have full rank, and z is a vertex of pr0, 1s6,A3

Pq.
When z “ p1, 1{2, 3{4, 0q, Hpzq “ tx1 “ 1, y2 “ 0, z1 „2 z2}, which has rank at most 3, so Hpzq

is not of full rank and z is not a vertex of pr0, 1s4,A2
Pq.

Lemma 3.6. Suppose H is a hyperplane arrangement consisting of hyperplanes in R2k, and

z “ px1, y1, x2, y2, . . . , xk, ykq P R2k

is the unique intersection point of the elements of H. Then, for all i between 1 and k, H contains
at least 2 hyperplanes whose equations involve either xi or yi.

Proof. Suppose there exists i between 1 and k such that H contains at most one hyperplane with
equation involving pxi, yiq. Take H to contain 2k linearly independent hyperplanes (removing
redundant hyperplanes as necessary).

Since H only contains one equation involving xi or yi, H contains at least 2k ´ 1 hyperplanes
whose equations only involve the other 2k´ 2 variables, which contradicts the linear independence
of H. �

The rank of a point depends only on the set of its constituent coordinate pairs:

Proposition 3.7. z “ pz1, z2, . . . , zqq P Bq has full rank if and only if z1 “ pz1, . . . , zq, zqq P Bq`1

has full rank.

Proof. First, suppose z has rank 2q. Then there is a hyperplane arrangement H with rank 2q,
whose members are attack equations and fixations involving z1, . . . , zq and whose set N of normal
vectors forms a basis of R2q. Therefore the hyperplane arrangement

HY tzq`1 „1 zq, zq`1 „2 zqu

is also linearly independent because the set

N Y tp0, 0, . . . , d1,´c1,´d1, c1q, p0, 0, . . . , d2,´c2,´d2, c2qu

forms a basis of R2pq`1q.
Now, suppose z1 has full rank, so that it is the unique intersection point of a linearly independent

hyperplane arrangement H1, consisting of 2q ` 2 attack equations and fixations. Without loss of
generality, we can assume H1 contains the hyperplanes

zq`1 „1 zq and zq`1 „2 zq

If not, we can add these to H1 and remove two redundant hyperplanes.
We can ensure that H1 has at most two attack equations involving zq`1 and no fixations involving

zq`1 by replacing all other occurrences of zq`1 by zq. Then, this equivalent system of equations has
exactly two equations involving zq`1; removing these two equations leaves 2q linearly independent
equations involving z1 through zq, so z has rank 2q. �

The following observation is straightforward but helpful to state explicitly.

Lemma 3.8. Let z “ pz1, . . . , zqq P Bq. If there exists a point z1 “ pz11, . . . , z
1
qq P Bq such that

Hpzq “ Hpz1q and the sets tziu1ďiďq and tz1iu1ďiďq are different, then z is not of full rank.

Proof. Because there are two points z, z1 P R2q that satisfy the same system of equations, Hpzq
(and therefore z) is not of full rank. �
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Figure 2. With basic moves p1, 1q and p1,´1q, consecutive boundary points along
the flow lie on lines of slope 1 and ´1.

4. The discrete dynamical system for fairy chess

In this section we make precise the discrete dynamical system that arises naturally in our study
of attacking chess piece configurations. The first appearance of such a discrete dynamical system
appears to be in works of Arnol’d from the 1950’s (see [1]). Previous study including [18, 21] has
focused on ellipses and other smooth closed curves and Khmelev studied finitely many break-type
singularities [22]. Here we develop the theory further to apply to all bounded convex regions. Our
presentation has been informed by surveys on the billiard model by Gutkin [20] and Tabachnikov
[27]. Open problems related to this system have been gathered in Section 7.

We start with any bounded convex region R (our board) and any nonparallel pair of vectors m1

and m2 (our basic moves). We let M Ď S1 consist of the four unit vectors parallel to m1 or m2.
We investigate the movement of a particle, determined by its position r P R and its velocity v,
restricted to be an element of M. The particle moves along the ray starting at r in the direction
v until it hits a point b on the boundary of R, denoted BR.

In this discrete dynamical system, the particle “bounces” differently from billiards. The convexity
of R implies b has at most two vectors from M pointing toward the interior of R, including ´v.
When there is a second vector v1 pointing toward the interior of R, the particle “bounces” and
leaves b in that direction, as exemplified in Figure 2. When there is no second vector—which can
occur at a corner of R or at a point of tangency of m1 or m2, as in Figure 3(c)—we adopt the
convention that the particle pauses imperceptibly at b and then returns along ´v. Going backward
in time is as simple as applying the same dynamics after negating the velocity vector. As such,
the particle meanders through R on lines parallel to m1 and m2. (In previous work of Genin,
Khesin, and Tabachnikov [18] and Khesin and Tabachnikov [21], these line segments are geodesics
on Lorentz surfaces and are called null lines.)

Formally, the phase space Ψ is the quotient of the set

tpr,vq | r P R,v PMu

by the identifications pb,vq “ pb,v1q for b P BR and nonparallel v,v1 P M when v points away
from the interior of R and v1 points toward the interior of R, as well as pb,m1q “ pb,m2q and
pb,´m1q “ pb,´m2q for b P BR if at most one v PM points toward the interior of R. (We have
identified only two elements of the set (in an arbitrary manner) instead of all four so that b is
repeated in the Poincaré map below.) The flow F t : Ψ Ñ Ψ of the particle is how the pair pr,vq
changes over time: when r is in the interior of R, it moves with velocity v, while once it reaches
BR, it switches velocity to v1. If a particle reaches BR with velocity v and neither v1 nor ´v1
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points toward the interior of R, the particle pauses imperceptibly and switches velocity to ´v. If
no vector v PM points toward the interior of R from b P BR, the particle remains at b indefinitely.

The Poincaré section Φ “ tpb,vq P Ψ | b P BRu is the restriction of the phase space to points in
the boundary of R and the chess attack map ϕ : Φ Ñ Φ is the Poincaré map which describes the
transition from one boundary point to the next. (This chess attack map is the concept analogous
to the billiard map. Further, in [18], their circle map T is equivalent to our ϕ2.)

The orbit of a flow F t yields a doubly-infinite sequence rpbi,viqsiPZ where ϕpbi,viq “ pbi`1,vi`1q

and ϕpbi,´viq “ pbi´1,´vi´1q. When we record only the points rbisiPZ of this sequence we will
call this a trajectory and again use ϕ to denote the transition ϕpbiq “ bi`1 when the velocity vector
is understood. We use square brackets for trajectories to differentiate them from ordered n-tuples
of points in R.

We say that a trajectory is periodic if there exists an integer p ě 1 such that ϕn`ppbq “ ϕnpbq
for all integers n, and define its period to be the smallest such p. There are three types of periodic
trajectories that appear in this dynamical system: fixed point trajectories, reflection-symmetric
periodic trajectories, and cyclic trajectories.

When a trajectory T “ rbsiPZ has period p “ 1, we say that b is a fixed point and T is a fixed
point trajectory. Fixed points cannot occur when R is a smooth curve; the only place they occur
is at a corner of R when no vector v PM points toward the interior of R.

The period of a periodic trajectory that is not a fixed point trajectory must always be even
because the slopes of the incident vectors alternate between being parallel to m1 and m2.

When a periodic trajectory T with period p satisfies bi “ bi`1 for some i P Z, then the trajectory
exhibits reflection symmetry in that

rbi`1, . . . ,bi`p{2s “ rbi`p, . . . ,bi`p{2`1s.

The flow continually bounces back and forth between the two path endpoints located at bi`1 and
bi`p{2, at which there is only one vector of M that points toward the interior of R due to a
move vector tangency or an arrival at a corner with no second viable direction. We call this a
reflection-symmetric periodic trajectory.

The last type of periodic trajectory is a cyclic trajectory, in which rb1, . . . ,bps consists of p
distinct vectors. Each point bi of a cyclic trajectory has two vectors of M that point toward the
interior of R from bi.

Given a point b P BR, define its trajectory set to be the set of points in the trajectory rbisiPZ
starting at b. With this definition, the trajectory set of b is finite if and only if the trajectory
through b is periodic.

Example 4.1. Figure 3 exhibits three trajectories. In Figure 3(a), the dynamical system corre-
sponds to the square board and the basic moves p10, 3q and p11, 8q. This trajectory is not periodic,
nor are there any periodic trajectories other than the fixed points at the upper left and bottom
right corners, as proved in Proposition 6.1.

Figure 3(b) shows a hexagonal board with basic moves p1, 2q and p2, 1q. The chosen trajectory
is periodic and overlaps itself infinitely many times; its six points make up a trajectory set.

The non-polygonal board in Figure 3(c) is made up of two circular curves and one line segment.
The basic moves are p1, 1q and p0, 1q. We show an example of a periodic trajectory in the corre-
sponding dynamical system—the board has a vertical tangent at b2 and the point b´1 is located
at a corner with no points of the board accessible vertically. The associated reflection-symmetric
periodic trajectory with period 8 is

r. . . ,b0,b1,b2,b3,b4,b5,b6,b7,b8,b8, . . .s “ r. . . ,b0,b1,b2,b2,b1,b0,b´1,b´1,b0,b1, . . .s.

It will be useful to also describe the chess attack map using the following antipode maps, which
are involutions on BR, and originate from the case of one-move riders in [11].
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(a) (b) (c)

Figure 3. The behavior of three trajectories for the dynamical systems discussed in Example 4.1.

Definition 4.2. For a bounded convex region R and a pair of vectors m1 “ pc1, d1q and m2 “

pc2, d2q, define sr : BRÑ BR for r “ 1, 2 as follows. Suppose b P BR, and consider the line

` “ tb` λpcr, drq |λ P Ru.
If ` X B˝ “ H, define srb “ b. Otherwise, since R is convex, ` X BR has exactly 2 elements and
we define srb to be the other element.

The chess attack map for a point b P BR and a velocity v pointing toward the interior of R can
then be described as ϕpbq “ srb, where v is parallel to mr.

For a point b P BR and a direction v P M pointing toward the interior of R, we define a
trajectory segment to be a finite sequence T “ rb, ϕpbq, . . . , ϕl´1pbqs of distinct points. (The reader
should note that in this definition our restriction to distinct points is nonstandard.) We say T
has length l. Equivalently, a trajectory segment is a consecutive subsequence of a trajectory with
distinct points.

Note that when T is part of a cyclic trajectory of period p, then the longest trajectory segment
rb1,b2, . . . ,bls is of length p and satisfies ϕpbpq “ b1. We call such a T a cyclic trajectory segment;
it necessarily contains all points in the trajectory set of b1. The trajectory segment rb0,b1, . . . ,b5s

from Figure 3(b) is a cyclic trajectory segment.
We see that any trajectory segment in R can be obtained by alternately applying s1 and s2 to

an initial point b. In other words, every trajectory segment is of the form

rb, s1b, s2s1b, s1s2s1b, . . .s or rb, s2b, s1s2b, s2s1s2b, . . .s.

Critical to our study of periods of counting quasipolynomials are both the points on trajectory
segments T “ rb1, . . . ,bls and points on the interior of R where flows that extend a bit on either
side of b1 and bl cross.

Definition 4.3. Let Ta “ ra1,a2, . . . ,aks and Tb “ rb1,b2, . . . ,bls be trajectory segments in R.
We say c is a crossing point of Ta and Tb if c P R˝ and there exist some i and j such that c is
contained in the line segments from ai to ai`1 and from bj to bj`1 for some 1 ď i ď k ´ 1 and
1 ď j ď l ´ 1. If Ta “ Tb, we say c is a self-crossing point of Ta. See Figure 4.

Definition 4.4. Let T “ rb1, . . . ,bls be a trajectory segment in R. Then T is a consecutive
subsequence of a trajectory T 1 “ r. . . ,b1, . . . ,bl, . . .s. We define the augmentation of T to be the
sequence of points including b1 through bl where we prepend b0 from T 1 and we postpend bl`1.

Remark 4.5. An augmentation of a cyclic trajectory segment will no longer qualify as a trajec-
tory segment because it has repeated vertices. On the other hand, the flow corresponding to the
augmentation of a cyclic trajectory segment T traces out the entire cycle that the trajectory tra-
verses. Furthermore, crossing points of augmentations of trajectory segments may exist that are
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(a) (b)

Figure 4. (a) For the square board when P has moves p2, 1q and p1, 2q, the two
two-point trajectory segments starting at p0, 0q and p1, 1q have a crossing point at
C1 “ p2{3, 1{3q. The augmentations of these trajectory segments (for which we have
only shown the forward continuation to the points labeled ‘3’) have a crossing point
at C2 “ p5{6, 1{6q. (b) When P has moves p2, 1q and p1,´2q, the five-point corner
trajectory segment starting at p0, 0q has a self-crossing point at p1{4, 1{8q.

not crossing points of the trajectory segments themselves, as shown in Figure 4(a). Last, in the
case of a trajectory segment where b0 “ b1 or bl “ bl`1, its augmentation is also not a trajectory
segment, but no additional line segments (nor crossings) have been created.

5. Trajectories on polygonal boards

We apply the discrete dynamical system to the q-Queens Problem by restricting to general convex
polygonal regions B. We prove a characterization of the set of vertices z “ pz1, . . . , zqq of the inside-
out polytope pBq,Aq

Pq that depends on whether the points zi lie on certain trajectory segments or
are crossing points thereof.

5.1. Corner trajectory segments and rigid cycles. It is natural to extend the notion of rank
to a trajectory segment T in B. We define the rank of a trajectory segment T to be the rank of
the collection of points in T (recall that the points of T must all be distinct). We characterize the
types of trajectory segments that are of full rank.

Definition 5.1. A trajectory segment T is called a corner trajectory segment if it contains a corner
of B.

Definition 5.2. Let T “ rb1, . . . ,bks be a cyclic trajectory segment. If the point pb1, . . . ,bkq has
full rank, T is called a rigid cycle; otherwise T is called a treachery.

Only for certain choices of B and P do rigid cycles exist. The characterization of when they exist
is open; see Question 7.5.

Example 5.3. Let B “ r0, 1s2 and consider the piece P with moves m1 “ pm, 1q and m2 “ p´1,mq
where m ą 1. Choose b1 “ px1, y1q along the south edge of B, so that b2 “ px2, y2q “ s1b1 lies
along its east edge, b3 “ px3, y3q “ s2b2 lies along its north edge, and b4 “ px4, y4q “ s1b3 lies
along its west edge. If b1 “ s2b4, the trajectory segment T “ rb1,b2,b3,b4s is cyclic and the
coordinates of the points are given by the system of equations

(5.1) tb1 „1 b2, b2 „2 b3, b3 „1 b4, b4 „2 b1, y1 “ 0, x2 “ 1, y3 “ 1, x4 “ 0u.

T is a rigid cycle because when m ą 1 the unique solution to this system is

z “
´ 1

1`m
, 0, 1,

1

1`m
,

m

1`m
, 1, 0,

m

1`m

¯

.
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(a) (b)

Figure 5. (a) For the piece with basic moves p2, 1q and p1,´2q the cyclic trajectory
segment starting at b1 “ p13 , 0q is a rigid cycle. See Example 5.3. (b) For the
bishop, every cyclic trajectory segment is a treachery. Note that the solid and dotted
trajectory segments have the same associated hyperplane arrangement Hpbq. See
Example 5.4.

Notice this implies z is a vertex of pr0, 1s8,A4
Pq. Figure 5(a) shows the special case when m “ 2.

This example is generalized and studied in Section 6.2.

Example 5.4. When B “ r0, 1s2 and P is the bishop with moves p1, 1q and p1,´1q, there are
no rigid cycles. Trajectory segments fall into two cases—either they contain two opposite corners
of B or they form a cyclic trajectory segment T “ rpx, 0q, p1, 1 ´ xq, p1 ´ x, 1q, p0, xqs which is a
rectangle. The points of T have as their associated hyperplane arrangement the system (5.1) when
m “ 1, which is no longer of full rank. We conclude T is a treachery. Alternatively, we see that all
cyclic trajectory segments satisfy the system (5.1), so by Lemma 3.8, they are not of full rank. See
Figure 5(b).

Figure 5(b) suggests that treacheries can be displaced slightly to obtain new treacheries. We
will make this precise in Theorem 5.7. The following lemma is essential for classifying trajectory
segments that correspond to vertices of the inside-out polytope.

Lemma 5.5. Corner trajectory segments have full rank.

Proof. We show that every corner trajectory segment T “ rb1, . . . ,bls has full rank by induction
on l. When l “ 1, b1 is a corner and hence the intersection of two linearly independent fixations;
we conclude T has rank 2.

Now suppose l ą 1 is an integer, and all corner trajectory segments of shorter length l1 ă l
have full rank. Suppose that bl is not a corner of B, so that T 1 “ rb1, . . . ,bl´1s remains a corner
trajectory segment, and therefore has full rank. Then z1 “ pb1, . . . ,bl´1q is the unique intersection
point of a set H1 of 2l ´ 2 hyperplanes.

The point bl equals srbl´1 for some r P t1, 2u and also lies along an edge α1x ` α2y “ β of B.
The set of equations E “ tpα1, α2q ¨ zl “ β,bl´1 „r zlu is linearly independent because bl ´ bl´1

is not parallel to the edge α1x ` α2y “ β. (Had the difference been parallel, the definition of sr
would imply that bl “ srbl´1, however there are no repeated vertices in a trajectory segment.)

Therefore the set of 2l hyperplanes H “ H1 Y E is linearly independent and uniquely defines the
vertex z “ pb1, . . . ,blq; we conclude that T has full rank.

Finally, if bl is a corner of B, we can use a similar argument by removing b1. �

Proposition 5.6. The only trajectory segments of full rank are corner trajectory segments and
rigid cycles.
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Proof. We show that non-cyclic trajectory segments T that are of full rank must contain a corner.
The statement then follows from Lemma 5.5.

Suppose T “ rb1, . . . ,bls has rank 2l and is not cyclic. Let z “ pb1, . . . ,blq P pBBql. There exists
a set of hyperplanes H Ď Hpzq with size and rank 2l whose unique intersection point is z. Since T
is not cyclic, it either does not contain one of s1bl and s2bl, or one of these is equal to bl (if the
line parallel to a move does not intersect the interior of B).

In both cases, there can only be one attack equation between bl and another point bj . Since
the points of T are distinct, for all j between 2 and l´ 1, bj can only be related to bj´1 and bj`1

through attack equations. Finally, b1 can only be related to b2 through an attack equation. In
summary, H contains at most l ´ 1 attack hyperplanes. If each bj lies on only one fixation, then
H contains at most 2l´ 1 hyperplanes, which is impossible because H has full rank. Therefore, at
least one of the bj is a corner of B. �

We now prove a characterization of when a cyclic trajectory segment is a treachery.

Theorem 5.7. Let B be a convex polygon and let T be a cyclic trajectory segment that is not a
corner trajectory segment. Then T “ rb1, . . . ,bks is a treachery if and only if there exists a δ ą 0
and a family of cyclic trajectory segments T ptq “ rb1ptq, . . . ,bkptqs such that T p0q “ T , biptq is a
continuous function of t, and biptq lies on the interior of the same side of B as bi for all t P p´δ, δq.

Proof. Let b “ pb1, . . . ,bkq, H be the hyperplane arrangement associated to b, and A be the
|H| ˆ 2k matrix given by the equations of the hyperplanes of H in the standard bases. Since T is a
treachery there is a non-zero vector v “ pv1,v2, . . . ,vkq P R2k in the null space of A. We will show
that there exists a δ ą 0 such that for all t P p´δ, δq,

T ptq “ rb1 ` tv1, . . . ,bk ` tvks

is a treachery in B with points lying on the same sides of B as T .
The hyperplanes of H include the fixations that correspond to the edges Ei of B on which the

points bi lie. That is, pα1, α2q ¨ bi “ β for the appropriate α1, α2, and β. As a consequence,
pα1, α2q ¨ vi “ 0 so vi must be parallel to the edge Ei. Therefore the set of points defined by
Ii “ bi ` tvi for t in an interval p´δi, δiq lie along the line that includes the edge Ei. There may
be other points of T that lie on this line, so choose δi ą 0 such that it contains no points of Ei

that are more than halfway to any other point of T or any vertex of B. This is possible because
the points of T are distinct and a treachery contains no corner points by Lemma 5.5. Choose
δ “ minpδ1, . . . , δkq. Then T ptq is a set of trajectory segments with points lying on the same sides
of B as T for all t P p´δ, δq.

Since Apb ` tvq “ Ab for t P p´δ, δq, b ` tv satisfies the same set of attack equations and
fixations as b. (which are not of full rank). The above choice of δ ensures no other attack equations
or fixations are satisfied by the points of T ptq. This is because no point of T ptq becomes a corner
point and no two points of T ptq coalesce. Therefore T ptq is a treachery for all t P p´δ, δq.

To prove the converse, suppose there exists a δ ą 0 such that T “ rb1, . . . ,bks is a member of
a family of cyclic trajectory segments T ptq “ rb1ptq, . . . ,bkptqs for t P p´δ, δq in which T p0q “ T ,
biptq is a continuous function of t, and biptq lies on the interior of Ei for all i.

We will show that T is a treachery by showing that some of the members of the family T ptq
satisfy the same attack equations and fixations as T does, thereby showing that the set of these
equations is not of full rank.

First, every member of T ptq satisfies the same fixations because the points biptq lie on the same
edges. Moreover, since bi and bi`1 are attacking along move vector mr for r “ 1 or r “ 2, we
know that there exists an εi ą 0 such that for all t P p´εi, εiq, biptq and bi`1ptq must also attack
along mr because m1 and m2 have fixed non-equal slopes. We can also ensure that no new attack
equations appear by reducing εi further if necessary, similar to the argument above. By taking
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ε “ minpδ, ε1, . . . , εkq, we ensure that for all t P p´ε, εq, T ptq satisfies the exact same set of attack
equations as T . We conclude that T is a treachery. �

Remark 5.8. No two treacheries in the continuous family T ptq share a point. This is because
neither move vector m1 nor m2 is parallel to any edge Ei since the T ptq’s are cyclic trajectory
segments.

5.2. The vertices and denominator of the inside-out polytope. We will determine the
vertices and denominator of the inside-out polytope by understanding points pb1, . . . ,bqq P Bq.

Lemma 5.9. Let R be a bounded convex region, P be a piece with basic moves m1 and m2, and
S be a finite subset of BR. Then S can be partitioned into a set of trajectory segments T pSq that
travel along paths parallel to m1 and m2.

Proof. Suppose S “ tz1, . . . , zqu. Create a graph with vertices labeled by S with an edge tzi, zju
if zi ‰ zj and zi “ s1zj or zi “ s2zj . Every vertex in this graph has degree at most 2, so each
connected component is either a cycle or a path. Within each connected component the edges will
alternate between corresponding to s1 and s2. Writing the vertices of a connected component in
the order given by the path or cycle gives a trajectory segment. �

Lemma 5.10. Let B be a bounded convex polygon, P be a piece with basic moves m1 and m2, and
S be a finite subset of BB. The rank of S is the sum of the ranks of the trajectory segments in
T pSq; S has full rank if and only if each of the trajectory segments in T pSq has full rank.

Proof. Let S “ tz1, . . . , zlu and define z “ pz1, . . . , zlq. The rank of S equals the rank of Hpzq, which
includes all hyperplanes from each individual trajectory segment in T pSq and attack equations
between distinct trajectory segments in T pSq. These latter equations do not exist unless zi and
zj are in different connected components and lie on the same side of B that is parallel to a move
of P. In this case there are two fixations in Hpzq, with equations involving zi and zj respectively,
whose equations imply the attack equation linking zi and zj . This means we can remove the attack
equation with this equation from Hpzq without affecting the rank of Hpzq. This concludes the
proof. �

This tells us exactly which pb1, . . . ,bqq P pBBqq have full rank. We can extend this knowledge to
points in Bq.

Theorem 5.11. Suppose z “ pz1, z2, . . . , zqq P Bq and partition S “ tziu1ďiďq into B Ď BB and
C Ď B˝. Then z is a vertex of pBq,Aq

Pq if and only if:

(1) B can be written as the union of corner trajectory segments and rigid cycles, and
(2) C consists of crossing points of augmentations of these corner trajectory segments and rigid

cycles (which may include self-crossing points).

Proof. By Lemma 3.4 and Proposition 3.7, z is a vertex of pBq,Aq
Pq if and only if S has full rank.

We proceed by induction on the size of C. When |C| “ 0, S “ B; Proposition 5.6 and Lemma 5.10
show that S has full rank if and only if S can be decomposed into corner trajectory segments and
rigid cycles.

Now let |C| “ k ą 0. Suppose z has full rank and let H Ď Hpzq be a set of 2q equations whose
unique intersection point is z. Up to index reordering, we can choose zq P B˝ and therefore zq is
not involved in any fixations. Furthermore we can assume H contains exactly one attack equation
involving zq of each type, say zq „1 zi and zq „2 zj for 1 ď i, j ď q ´ 1. (If there were more than
one, we could replace an equation of the form zq „1 zk by zi „1 zk P Hpzq.) The removal of these
two equations from H gives 2q ´ 2 linearly independent equations involving z1 through zq´1, so

z1 “ pz1, . . . , zq´1q is a vertex of
`

Bq´1,Aq´1
P

˘

.
By induction, the set S1 “ tziu1ďiďq´1 can be partitioned into the sets B1 “ B Ď BB and

C 1 Ď B˝ which satisfy conditions (1) and (2). Every zk P C
1 is the crossing point of trajectory
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segments involving points of B, so is related by attacking equations of both types to points of B.
Since zq „1 zi and zq „2 zj , then by transitivity of „r, zq is a crossing point of augmentations
of trajectory segments involving points of B. (The need for augmentations of trajectory segments
T “ rb1, . . . ,bls arises because the crossing point may lie along the line segment leaving b1 toward
b0 or along the line segment leaving bl toward bl`1.) This completes the proof in the forward
direction.

Now, suppose the elements of C are all crossing points of augmentations of the corner trajectory
segments and rigid cycles of T pBq. By the inductive hypothesis, z1 “ pz1, . . . , zq´1q has full rank.
Let H1 Ď Hpzq be a set of hyperplanes with rank 2pq ´ 1q, whose intersection is z1.

Since zq is a crossing point of two of the augmentations of trajectory segments making up B, it
is linked by two attack equations of different types to points in B. Since the moves of P are linearly
independent, H1 with these two attack equations appended has rank 2q, and z is the intersection
point of these hyperplanes. Therefore, z has full rank. �

Now that we know the vertices of pBq,Aq
Pq, we can find its denominator.

Theorem 5.12. The denominator of pBq,Aq
Pq is equal to the least common multiple of the denom-

inators of

(1) Points on rigid cycles of length at most q,
(2) Points on corner trajectory segments of length at most q that start at corners,
(3) Self-crossing points of augmentations of corner trajectory segments or rigid cycles of length

at most q ´ 1, and
(4) Crossing points of augmentations of two distinct corner trajectory segments or rigid cycles

whose lengths sum to at most q ´ 1.

Proof. The denominator of pBq,Aq
Pq is the least common multiple of the denominator of all vertices

z “ pz1, z2, . . . , zqq of pBq,Aq
Pq. We must determine the set of all points that may occur as a

component of some vertex.
Theorem 5.11 says that the set of points S “ tziu can be partitioned into corner trajectory

segments, rigid cycles, and crossing points of augmentations of these trajectory segments. We first
consider points on corner trajectory segments and rigid cycles. Points on rigid cycles rb1, . . . ,bls

of length l ď q will occur as components of the vertex pb1, . . . ,bl,bl, . . . ,blq P pBBqq. Points on
corner trajectory segments rb1, . . . ,bls that include the corner c will occur as components of a
vertex pb11, . . . ,b

1
qq P pBBqq where T “ pb11, . . . ,b

1
lq is a trajectory segment starting at b11 “ c

and continues until l “ q or until it stops. (If l ă q, we pad our vertex with repeated points
b1l`1 “ ¨ ¨ ¨ “ b1q “ c.)

A point c that occurs as a self-crossing point of an augmentation of some trajectory segment
T “ rb1, . . . ,bls occurs as a vertex pb1, . . . ,bl, c, . . . , cq if and only if l ď q ´ 1, and a point c
that occurs as a crossing point of augmentations of trajectory segments Ta “ ra1, . . . ,aks and
Tb “ rb1, . . . ,bls occurs as a vertex pa1, . . . ,ak,b1, . . . ,bl, c, . . . , cq if and only if k` l ď q ´ 1. �

Corollary 5.13. If Conjecture 2.1 is true, the period of the counting quasipolynomial uPpq;nq on
the square board is equal to the least common multiple of the denominators of

(1) Points on rigid cycles of length at most q,
(2) Points on corner trajectory segments of length at most q that start at corners,
(3) Self-crossing points of augmentations of corner trajectory segments or rigid cycles of length

at most q ´ 1, and
(4) Crossing points of augmentations of two distinct corner trajectory segments or rigid cycles

whose lengths sum to at most q ´ 1.

Theorem 5.12 allows us to give a new and simpler proof of the main result from [13].
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Corollary 5.14. For q ě 3, the period of the counting quasipolynomial of the bishop on the square
board is 2.

Proof. The only corner trajectory segments are the diagonals of B, and there are no rigid cycles, as
shown in Example 5.4. This shows that every vertex z of pBq,Aq

Pq has zi equal to a corner of B or

p12 ,
1
2q. Therefore the denominator of the inside-out polytope is 2, which the period of the counting

quasipolynomial must divide [5, Theorem 4.1]. Lemma 3.3(III) from [10] shows that the coefficient
of n2q´6 has period 2 for q ě 3, which completes the proof. �

6. Two-move riders on square boards

We now restrict to the square board B “ r0, 1s2 and investigate the denominator Dpr0, 1s2q,Aq
Pq

of the inside-out polytope for some two-move riders. Our analysis is broken into cases depending
on the signs and magnitudes of the slopes d1{c1 and d2{c2. We will notate the open edges of B
counterclockwise by

E1 “ p0, 1q ˆ t0u, E2 “ t1u ˆ p0, 1q, E3 “ p0, 1q ˆ t1u, and E4 “ t0u ˆ p0, 1q.

6.1. Slopes of the same sign. First consider a piece whose moves have slopes of the same sign.
The non-trivial trajectories converge to the fixed points of the dynamical system. This proposition
does not require the slopes to be rational.

Proposition 6.1. Let B be the square board and let P have moves with real-valued slopes m1 and
m2 of the same sign. When the slopes are positive, the only periodic trajectories involve the the
fixed points p0, 1q and p1, 0q; whereas when the slopes are negative, the only periodic trajectories
involve the fixed points p0, 0q and p1, 1q. Every other trajectory T “ rbnsnPZ is not periodic, with
its points converging to the corresponding diametrically opposed fixed points as n approaches `8
or ´8.

Proof. Assume 0 ă m1 ă m2. The points p0, 1q and p1, 0q are fixed points of the system because
the lines of slope m1 and m2 starting there do not intersect the interior of the square. We show
the trajectory set of every other point of BB has infinite cardinality. Define the sets

Z1 “ E1 Y E4 Y tp0, 0qu and Z2 “ E2 Y E3 Y tp1, 1qu.

When b P Z1, both s1b and s2b are in Z2 and s1b is to the southeast of s2b; when b P Z2, both
s1b and s2b are in Z1 and s1b is to the northwest of s2b.

Therefore, when b P Z1, then s2b P Z2, so s1s2b is to the northwest of s2s2b “ b in Z1, and
hence s1s2b is closer to p0, 1q than b is. This is the first of the following statements, all of which
follow similarly.

When b P Z1, 0 ă |p0, 1q ´ s1s2b| ă |p0, 1q ´ b| and 0 ă |p1, 0q ´ s2s1b| ă |p1, 0q ´ b|.

When b P Z2, 0 ă |p1, 0q ´ s1s2b| ă |p1, 0q ´ b| and 0 ă |p0, 1q ´ s2s1b| ă |p0, 1q ´ b|.

We conclude that the trajectory T is not periodic with one tail continuing northwest and one tail
continuing southeast; we now show its points converge to p1, 0q or p0, 1q. When successive points
alternate between neighboring sides, the distance to p1, 0q or p0, 1q along the same edge decreases
geometrically. The trajectory may first alternate between diametrically opposite sides, but in that
case, the distance between consecutive points along the same edge is a positive constant, so the
trajectory eventually begins to alternate between neighboring sides.

The negative slope case follows by symmetry. �

We now apply Theorem 5.12 to find Dpr0, 1s2q,Aq
Pq when 0 ă m1 ă 1 ă m2. This restriction

avoids a much more complicated formula that arises from the behavior of the crossing points in the
general case.
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Theorem 6.2. Suppose P has moves m1 “ pc1, d1q and m2 “ pc2, d2q, satisfying 0 ă d1
c1
ă 1 ă d2

c2
.

The denominator of pr0, 1s2q,Aq
Pq is the least common multiple of the denominators of the first q

terms of the following sequence defined for i ě 1

(6.1)

$

&

%

p1,
`

d1c2
c1d2

˘
i´1
2 q for i odd

´

d1
c1

`

d1c2
c1d2

˘
i
2
´1
, c2d2

`

d1c2
c1d2

˘
i
2
´1
¯

for i even

and the denominators of the first tpq ´ 1q{2u terms of the following sequence defined for i ě 1

(6.2)

$

&

%

`

d1c2
c1d2

˘
i´1
2

´

c2pd1´c1q
c1d2´c2d1

, d1pd2´c2qc1d2´c2d1

¯

for i odd
`

d1c2
c1d2

˘
i
2

´

c1pc2´d2q
c1d2´c2d1

, d2pc1´d1qc1d2´c2d1

¯

for i even
.

Proof. By Proposition 6.1, the trajectory sets of points other than p1, 0q and p0, 1q have infinitely
many points, so there are no rigid cycles. Trajectories that do not contain p1, 0q or p0, 1q also
have no self-crossing points. Therefore the denominator DpBq,Aq

Pq can be found by calculating
the coordinates of all points on corner trajectory segments of length at most q starting at p0, 0q or
p1, 1q, and crossing points of augmentations of the same whose lengths sum to at most q ´ 1.

There are four corner trajectories starting at p0, 0q or p1, 1q. The trajectory segments T1 and T2
of the form rb1,b2, . . . ,bqs starting at b1 “ p0, 0q with initial velocities m1 and m2 respectively
have coordinates

bi “

$

&

%

`

1´
`

d1c2
c1d2

˘
i´1
2 , 0

˘

for i odd
`

1, d1c1

`

d1c2
c1d2

˘
i
2
´1˘

for i even
and bi “

$

&

%

`

0, 1´
`

d1c2
c1d2

˘
i´1
2
˘

for i odd
`

c2
d2

`

d1c2
c1d2

˘
i
2
´1
, 1
˘

for i even
.

The trajectory segments T3 and T4 of the form rb1,b2, . . . ,bqs starting at b1 “ p1, 1q with initial
velocities m1 and m2 respectively have coordinates

bi “

$

&

%

``

d1c2
c1d2

˘
i´1
2 , 1

˘

for i odd
`

0, 1´ d1
c1

`

d1c2
c1d2

˘
i
2
´1˘

for i even
and bi “

$

&

%

`

1,
`

d1c2
c1d2

˘
i´1
2
˘

for i odd
`

1´ c2
d2

`

d1c2
c1d2

˘
i
2
´1
, 0
˘

for i even
.

An example of these trajectory segments is shown in Figure 6.

Figure 6. For the piece with moves p1, 2q and p3, 1q we illustrate the four corner
trajectory segments T1, T2, T3, and T4 starting at p0, 0q or p1, 1q. The right image
shows two crossing points of T1 and T4.

We must now find all crossing points p P B˝. We consider crossing points of T1 and T4—the other
crossing points arise from a 180-degree rotation around p12 ,

1
2q and have the same denominators.

Let T1 “ ra1, . . . ,aks and let T4 “ rb1, . . . ,bls. The points lying along E1 starting at p0, 0q and
moving eastward are a1,b2,a3,b4, . . . and the points lying along E2 starting at p1, 1q and moving
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southward are b1,a2,b3,a4, . . .. Because line segments only have one of two slopes and because
the points are connected in increasing order in the trajectory segment, the only crossing points of
line segments from ai and ai`1 and from bj and bj`1 occur when i “ j.

Solving p „1 ai and p „2 bi for p gives

p “

$

&

%

p1, 0q `
`

d1c2
c1d2

˘
i´1
2

´

c2pd1´c1q
c1d2´c2d1

, d1pd2´c2qc1d2´c2d1

¯

for i odd

p1, 0q `
`

d1c2
c1d2

˘
i
2

´

c1pc2´d2q
c1d2´c2d1

, d2pc1´d1qc1d2´c2d1

¯

for i even
,

which will be a crossing point when i ď tpq ´ 1q{2u. The result follows from Theorem 5.12. �

Corollary 6.3. Let B be the square board, and let P be the inclined nightrider. Then the denomi-
nator of pBq,Aq

Pq is:
$

’

&

’

%

1 q “ 1

2 q “ 2

3 ¨ 2q´1 q ě 3

.

Proof. For the inclined nightrider with moves p1, 2q and p2, 1q, the denominators in Sequence (6.1)
are 2i´1 and the denominators in Sequence (6.2) are 3 ¨ 2i´1, so a factor of 3 will appear in the
denominator for all q ě 3. �

If Conjecture 2.1 is true, Corollary 6.3 also provides the formula for the period of the counting
quasipolynomial for inclined nightriders.

6.2. (Some) Slopes of opposite signs. We now investigate the dynamics of trajectories for a
piece P with moves pc1, d1q and pc2, d2q, where the slopes satisfy 0 ă d1{c1 ă 1, and d2{c2 ă ´1.
(This is a generalization of the orthogonal nightrider.) We let c1, d1, d2 ą 0 and c2 ă 0. In this
dynamical system, trajectories converge to a single rigid cycle. The general case when the moves
are of opposite signs is presented as an open question in Section 7.2.

We first consider real-valued slopes m1 and m2 satisfying 0 ă m1 ă 1 and m2 ă ´1. The point
b “

`

m1´1
m1`m2

, 0
˘

P BB has trajectory set

(6.3) O “

!´ m1 ´ 1

m1 `m2
, 0
¯

,
´

1,
m1p1`m2q

m1 `m2

¯

,
´ 1`m2

m1 `m2
, 1
¯

,
´

0,
m2p1´m1q

m1 `m2

¯)

.

An example is shown in Figure 7.
The four points of O form a rigid cycle because they are the solution to the system of equations

tz1 „1 z2, z2 „2 z3, z3 „1 z4, z4 „2 z1, y1 “ 0, x2 “ 1, y3 “ 1, x4 “ 0u,

which has full rank. In fact, O is the only rigid cycle in the system and is an attractor for all other
trajectories.

Theorem 6.4. Let B be the square board and let P have moves with real-valued slopes m1 and m2

satisfying 0 ă m1 ă 1 and m2 ă ´1. The trajectory set O in Equation (6.3) is the only finite
trajectory set in BB. Further, suppose T “ rbnsnPZ is an trajectory disjoint from O. Then as n
both increases and decreases, T either stops at a corner or converges to O. (In other words, O is
the ω-limit set of T .)

Proof. Restricting the antipode map s1 to the domain E1 is a linear contraction s1E1 Ñ E2 with
a factor of m1 because

|s1px1, 0q ´ s1px2, 0q| “ |p1,m1p1´ x1qq ´ p1,m1p1´ x2qq| “ m1|x1 ´ x2|.

Similarly, s2 : E2 Ñ E3 is a linear contraction with a factor of
ˇ

ˇ

1
m2

ˇ

ˇ, s1 : E3 Ñ E4 is a linear

contraction with a factor of m1, and s2 : E4 Ñ E1 is a linear contraction with a factor of
ˇ

ˇ

1
m2

ˇ

ˇ.
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Figure 7. The left image shows the rigid cycle O in Equation (6.3) for the piece
with moves p5, 1q and p´1, 3q. The right image is a corner trajectory segment in the
same system, whose points converge to O.

For any point b0 P BBzO, we investigate the trajectory T “ rbnsnPZ where we choose b1 “ ϕpb0q

to be on the next side counterclockwise from b0. (This is well defined because of the restrictions on
m1 and m2.) By the above reasoning, this sequence continues along sides of B in a counterclockwise
manner as n Ñ `8. Suppose o is the element of O on the same side of BB as b0. Then we know
that ϕ4poq “ o and

ˇ

ˇϕ4kpb0q ´ o
ˇ

ˇ “
m2k

1

m2k
2

|b0 ´ o|.

We conclude that bn is defined for all n ě 0 and O is the ω-limit set of T as n Ñ 8. This also
ensures that O is the only finite trajectory set.

On the other hand, if we apply ϕ´1 repeatedly to b0, the points visited can not indefinitely
cycle among the sides of B in a clockwise manner because each application of ϕ´1 is an expansion.
Therefore this sequence either stops at a corner, or two successive points b´N`1 and b´N are on
opposite edges of B. When this occurs, b´N´1 is on the edge counterclockwise from b´N and the
sequence rb´nsněN continues in a counterclockwise manner, which means that it is defined for all
n ě N and O is the ω-limit set of T as nÑ8. �

We now compute Dpr0, 1s2q,Aq
Pq when P has orthogonal slopes of the form pm, 1q and p1,´mq.

Theorem 6.5. Let B be the square board, and let P be the piece with moves pm, 1q and p1,´mq.
Then the denominator of pBq,Aq

Pq is:

$

’

’

’

&

’

’

’

%

1 q “ 1

m q “ 2

m4 `m2 q “ 3

lcmpm2 ` 1,m` 1q ¨mq´1 q ě 4

.

Proof. For this piece P, the rigid cycle

O “ tp1{pm` 1q, 0q , p1, 1{pm` 1qq , pm{pm` 1q, 1q , p0,m{pm` 1qqu

contributes a denominator of m` 1 when q ě 4.
Each corner is the start of one corner trajectory segment; by symmetry about p12 ,

1
2q the k-th point

along every trajectory segment has the same denominator. The trajectory segment T “ rb1,b2, . . .s
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starting at b1 “ p0, 0q has coordinates

bk “

$

’

’

’

&

’

’

’

%

`

0, m
m`1

˘

´ 1
mk´1

`

0, 1
m`1

˘

k ” 0 mod 4
`

1
m`1 , 0

˘

´ 1
mk´1

`

1
m`1 , 0

˘

k ” 1 mod 4
`

1, 1
m`1

˘

` 1
mk´1

`

0, 1
m`1

˘

k ” 2 mod 4
`

m
m`1 , 1

˘

` 1
mk´1

`

1
m`1 , 0

˘

k ” 3 mod 4

,

whose denominator is mk´1 for all k. (Notice, for example, that mk´1 ´ 1 is divisible by m` 1 for
k odd.)

We must also determine the denominators of crossing points of augmentations of trajectory
segments and rigid cycles. The key insight is that every crossing point c “ px, yq lies on the lines
x ´ my “ r and mx ` y “ s for some rational numbers r and s whose denominators divide the
smaller of the denominators of the two points on BB that the lines intersect. Solving these equations
for x and y we see x “ pr `msq{pm2 ` 1q and y “ ps´mrq{pm2 ` 1q. In essence, a crossing point
of the augmentation of trajectory segments and rigid cycles can not contribute anything new to
pr0, 1s2q,Aq

Pq other than pm2 ` 1q. This contribution of pm2 ` 1q will indeed occur when q ě 3
because, for example, the augmentations of the one-point corner trajectory segments Ta “ rp0, 0qs

and Tb “ rp1, 0qs have the crossing point c “
`

m2

m2`1
, m
m2`1

˘

. �

Remark 6.6. In the above formula the reader may find it useful to note that

lcmpm2 ` 1,m` 1q “

#

pm2 ` 1qpm` 1q if m is even

pm2 ` 1qpm` 1q{2 if m is odd
.

This is because lcmpm2` 1,m` 1q “ lcmpm2´m,m` 1q, and pm´ 1q, m, and pm` 1q only share
a factor if m is odd, for which the common factor is 2.

The proof for the general case of pieces with orthogonal slopes pc, dq and pd,´cq can be ap-
proached similarly but the formula is not nearly as clean. Theorem 6.5 applies to the orthogonal
nightrider with moves p2, 1q and p1,´2q.

Corollary 6.7. Let B be the square board, and P be the orthogonal nightrider. Then the denomi-
nator of pBq,Aq

Pq is:
$

’

’

’

&

’

’

’

%

1 q “ 1

2 q “ 2

20 q “ 3

15 ¨ 2q´1 q ě 4

As before, this formula would also be the period of the counting quasipolynomial for orthogonal
nightriders if Conjecture 2.1 is true.

6.3. Slopes that sum to zero. We analyze one more case—when the pieces P have moves pc, dq
and p´c, dq. In this case, the dynamical system is identical to billiards on a square board.

A key technique from polygonal billiards is the unfolding of a trajectory, where the polygon is
reflected along edges that the trajectory encounters. (See, for example, Chapter 3 of [27].) Because
the angle of incidence equals the angle of reflection, the trajectory lies along a single line in this
unfolded path. (A visualization is given in Figure 8.)

Proposition 6.8. Let B be the square board and let P have moves with with rational slopes m1 and
m2 satisfying m2 “ ´m1. There are no rigid cycles.

Proof. Section 3.1 of [27] shows that on the square board, the trajectory set of every point b P BB
is finite. Therefore, trajectory segments that start at a corner must end at a corner and every other
trajectory segment is cyclic.
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Figure 8. The unfolding of a trajectory segment for the piece with moves p5, 3q
and p5,´3q starting at b1 “ p0,

1
4q. The trajectory segment on the left lies on the

single line on the right when the unit square is reflected along the edges that are
encountered.

Suppose T “ rb1, . . . ,bls is a cyclic trajectory segment, with associated hyperplane arrangement
H “ Hpb1, . . . ,blq. Unfold T starting at b1 along the line ` defined by y “ m1x ` b for some
b P R. The integral horizontal and vertical lines (x “ r and y “ s for integers r and s) that the line
passes through correspond to the fixations in H. Because T contains no corners of B, ` does not
pass through any points in the integer lattice, and therefore there is some ε ą 0 such that the line
`1 defined by y “ m1x` b` ε passes through the integral horizontal and vertical lines in the same
order and correspond to the same fixations from H. We conclude that the trajectory segment T 1

created by refolding `1 has the same defining associated hyperplane arrangement as T , so T is not
a rigid cycle by Lemma 3.8. �

Theorem 6.9. Let B be the square board and let P be the piece with moves pc, dq and pc,´dq. Then
pBq,Aq

Pq has denominator
$

’

’

’

&

’

’

’

%

1 q “ 1
pd q “ 2

2pd 3 ď q ď
P

pd{pc
T

2pcpd q ě
P

pd{pc
T

` 1

,

where pc “ minp|c|, |d|q and pd “ maxp|c|, |d|q.

Proof. By symmetry, we only need to consider the case 0 ă c ă d.
Without rigid cycles, the denominator of pBq,Aq

Pq only depends on corner trajectory segments
and the crossing points of their augmentations. Let T “ rb1, . . . ,bks be the corner trajectory
segment starting at b1 “ p0, 0q. Unfold T to lie on the line ` of slope d{c through p0, 0q. For
1 ď i ď k, notate the image of bi under this unfolding to be b1i; observe that bi and b1i have the
same denominator. This denominator will either be c or d depending on whether ` is intersecting
a line of the form x “ r (for which b1i “ pr,

dr
c q) or a line of the form y “ s (for which b1i “ p

cs
d , sq).

The denominators of b1i will all be d until ` meets the line x “ 1. Therefore the contribution to the
denominator from corner trajectory segments is 1 if q “ 1, d if 1 ă q ď rd{cs and cd when q ą rd{cs.

We must also determine the relevant crossing points of augmentations of (possibly concurrent)
trajectory segments Ta “ ra1, . . . ,aks and Tb “ rb1, . . . ,bls. By the above reasoning, every point ai
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and bi is either of the form p
vi
d , uq or pu, wi

c q for u P t0, 1u and integers vi and wi, and furthermore
because the slopes have magnitude greater than one, at least one endpoint of the line segment
between bi and bi`1 (and bi and bi`1) is of the latter form. This means that any crossing point
c “ px, yq can be found by solving two equations of the form

y ´
w1

c
“
d

c
px´ u1q and y ´

w2

c
“ ´

d

c
px´ u2q,

from which

x “
du1 ` du2 ` w2 ´ w1

2d
and y “

du2 ´ du1 ` w1 ` w2

2c
.

Therefore, a crossing point of the augmentation of trajectory segments can not contribute anything
to pr0, 1s2q,Aq

Pq other than 2cd.
A contribution of 2 will definitely occur when q ě 3 because we can see that the augmentations

of the one-point corner trajectory segments Ta “ rp0, 0qs and Tb “ rp0, 1qs have the crossing point
c “

`

c
2d ,

1
2

˘

.
It remains to show that a contribution of c does not occur when c ą 1 and q ď rd{cs. By

symmetry we choose Ta to start at a1 “ p0, 0q and consider the options for trajectory segments Tb
where the lengths of Ta and Tb sum to at most rd{cs ´ 1. If Tb also starts at p0, 0q, then neither
augmented flow reaches x “ 1 and no crossing points exist. If Tb starts at p0, 1q, again neither
augmented flow reaches x “ 1 and the only crossing points are of the form c “

`

r c
2d ,

1
2

˘

for odd
integers r. If Tb starts at p0, 1q or p1, 1q, the augmentations of Ta does not reach far enough to the
right to reach the augmentation of Tb. This concludes the proof. �

We now apply Theorem 6.9 to the lateral nightrider with basic moves p2, 1q and p2,´1q.

Corollary 6.10. Let B be the square board and P be the lateral nightrider. Then the denominator
of pBq,Aq

Pq is
$

’

&

’

%

1 q “ 1

2 q “ 2

4 q ě 3

.

Again, if Conjecture 2.1 is true, this formula would be the period of the counting quasipolynomial
for lateral nightriders.

6.4. Moves that yield periodic trajectories. Campbell et al [7] investigated the rotation num-
bers of piecewise linear degree one circle maps. In investigating the dynamical system in this article
(which can be seen as a circle map), Khmelev [22, p. 558] mentions that it is a difficult question to
precisely determine the measure of the set of direction pairs pm1,m2q that give rational rotation
numbers or, equivalently, produce a periodic trajectory or a fixed point. We are able to conclude
that the measure of the set is positive for any polygon. We prove that this set is of full measure
for the triangle and conjecture that this set is not of full measure for any polygon with more than
three sides. Some of these results have been found independently by Nogueira and Troubetzkoy.
See, for instance, [25, Corollary 7].

For the remainder of this section we consider the probability measure on the space of direction
pairs M “ tpm1,m2q | m1,m2 P S1u that is uniform over the angle parameter and define N Ď M
be the set of all pairs of nonparallel directions pm1,m2q such that m1 and m2 gives rise to a periodic
trajectory in the polygon B under consideration. (The restriction of N to nonparallel directions is
due to our definition of the dynamical system on two nonparallel directions.)

Theorem 6.11. For any convex polygon B, the measure of N is positive.

Proof. Let b be a corner of B. Let v1 and v2 be the directions leaving b along the two sides of
B. Define S Ă S1 to be the set of directions that lie in the two (closed) convex cones that are
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nonnegative linear combinations of v1 and ´v2 or of ´v1 and v2 in S1. For any two nonparallel
vectors m1 and m2 from S, the point b is a fixed point of the corresponding dynamical system.
Since the area of these cones is positive and the set of pairs of parallel vectors is of measure 0, the
measure of N is positive. �

Proposition 6.12. For any triangle B, the set N consists of all pairs of nonparallel directions.

Proof. Let B be a triangle ABC whose oriented edges AB, BC, and CA have direction vectors v1,
v2, and v3, respectively.

Suppose that there exists a pair of nonparallel directions pm1,m2q in N that does not create a
fixed point at any of A, B, or C. We can conclude that neither of m1 and m2 is parallel to any of
v1, v2, or v3 by the following reasoning. Suppose, for instance, that m1 is parallel to v1. At least
one of the two lines with direction vector m2 passing through vertices A and B does not intersect
the interior of B—the corresponding vertex would be a fixed point of the dynamical system.

By the argument in the proof of Theorem 6.11, either ˘m1 or ˘m2 must be in each of the (open)
convex cones that is the positive or negative linear combination of v1 and ´v2, of v2 and ´v3, and
of v3 and ´v1. By the pigeonhole principle, either ˘m1 or ˘m2 is in at least two of these cones.
However, because B is a triangle, these sets are all disjoint, so no such m1 and m2 exist. �

Theorem 6.13. For the square B “ r0, 1s2, the measure of N is at least 3{4.

Proof. Write m1 “ pc1, d1q and m2 “ pc2, d2q. By the discussion preceding Theorem 6.4, if 0 ă
d1
c1
ă 1 and d2

c2
ă ´1, then there is a periodic orbit in B. The set of such direction pairs is a set of

measure 1{4. Moreover, direction pairs m1 and m2 with d1
c1

and d2
c2

having the same signs give rise

to fixed points as in Section 6.1. The set of such direction pairs has measure 1{2. As before, the
set of pairs of parallel vectors is of measure 0, so N has measure at least 3{4. �

A natural question is whether N has full measure. We believe the answer is no for all polygons
with four or more sides.

Conjecture 6.14. For all polygons with four or more sides, the measure of N is strictly less than
1.

Conjecture 6.15. For the square B “ r0, 1s2, the measure of N is 3{4.

Our intuition for these conjectures comes from behavior of the dynamical system on the square
for choices of direction slopes m1 and m2 not covered in earlier sections of Section 6. In particular,
the case when m1 and m2 have opposite signs is not fully understood.

Several types of dynamics have emerged in this case. The simplest situation is when all trajectory
segments are cyclic. This occurs when m2 “ ´m1 (see Section 6.3) and this also appears to occur
when m1 “

1
3 and m2 “ ´

2
3 . (See Figure 9.)

Convergent behavior also occurs, similar to what we saw in Figure 7 from Section 6.2 in which all
trajectories converge to the same rigid cycle. When m1 “

3
10 and m2 “ ´

4
10 , trajectories converge

to a single finite trajectory set, as shown in Figure 10.
However, these two behaviors producing finite trajectory sets seem to hinge on relationships

between the values of m1 and m2. Much more common is an ergodic behavior. For example, when
m1 “

1
3 and m2 “ ´1

4 we have the behavior shown in Figure 11. This orbit does not seem to
converge to any limiting trajectory, unlike the convergence behavior seen when move combinations
give rise to periodic orbits (as in Figures 7 and 10).

Further substantiating ergodic behavior is that the trajectory set of p0, 0q appears to be dense
in BB. We collected data about the positions of all trajectory points that lie on the western edge of
the square in Figure 11 and we computed the maximum distance gap between any two trajectory
points, in other words, the length of the largest segment that had no trajectory points. This gap
distance decreases steadily as more and more points are computed. See Table 1.



22 CHRISTOPHER R. H. HANUSA AND ARVIND V. MAHANKALI

Figure 9. m1 “
1
3 and m2 “ ´2

3 . The first trajectory segment begins at p1, 0q,

while the second begins at p1, 12q. The other points we tested on BB also have
periodic orbits.

Figure 10. m1 “
3
10 and m2 “ ´

4
10 . The first trajectory begins at p0, 0q, and the

second begins at p0, 12q. The points of the first trajectory seem to form the ω-limit
set of the second.

Figure 11. m1 “
1
3 and m2 “ ´

1
4 . These are the first 80 points in the trajectory

set of p0, 0q, which appears to be dense in BB.
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N 3 8 11 16 21 29 52 73 96
gap 0.583 0.389 0.259 0.194 0.162 0.130 0.0864 0.0576 0.0432

N 119 179 308 435 564 693 1053 1800 2545
gap 0.0360 0.0288 0.0192 0.0128 0.00960 0.00800 0.00640 0.00427 0.00285

Table 1. The largest distance gap left between any two points in the finite trajec-
tory segment on the western edge of the square in Figure 11 as a function of the
number of points plotted. The given N is the first number of points for which the
gap decreased to this value.

If the points visited by the trajectory are indeed dense in the boundary, Theorem 5.7 may be
useful to prove Conjecture 6.15—no treachery could exist because there would be no open intervals
available around its boundary points.

7. Open Questions

The variables that determine the behavior of a particle’s flow in mathematical billiards are the
shape of the region as well as the initial position and initial direction of the particle. In the
dynamical system studied in this article, the key variables are the shape of the board, the slopes
of the moves, and the initial position of the particle. The similarity of the behaviors of the flows in
the two dynamical systems leads to many open questions. Progress on Questions 7.1, 7.2, 7.3, 7.4,
and 7.13 has appeared in Nogueira and Troubetzkoy’s [25].

7.1. Fruitful regions and moves. In the study of convex billiards, circles, ellipses, and curves of
constant width have produced beautiful results. So have rational polygons, where internal angles
are rational multiples of π [27]. This leads us to ask which choices of board and moves lead to
fruitful directions in the dynamical system of this article.

Question 7.1. What properties of polygonal or general convex boards are more likely to lead to
provable results, in terms of dynamical properties or Ehrhart theory, for some choices of moves?

Question 7.2. What restrictions on moves are more likely to lead to provable results, in terms of
dynamical properties or Ehrhart theory, on a wide variety of boards?

7.2. Properties of trajectories. In convex billiards, a classic unsolved question is whether every
polygon has a periodic orbit, which has applications to the physics of point masses [20]. It is known
that every rational polygon and every acute triangle has a periodic orbit. For square regions, it
is further known that a billiard trajectory is periodic if the slope of the particle’s initial direction
is rational, and ergodic otherwise. We ask similar questions about the dynamical system in this
article.

Question 7.3. Given a polygonal board B (or an arbitrary convex board B), what conditions on
the slopes m1 and m2 will ensure that there is a periodic orbit in B?

Question 7.4. For which choice of board B, slopes m1 and m2, and initial point b is the trajectory
through b ergodic?

To apply Theorems 5.11 and 5.12, we must understand the periodic orbits and also be able to
determine the rank of their corresponding cyclic trajectory segments. This leads to the following
refinement of the Question 7.3.

Question 7.5. For which choice of board B and slopes m1 and m2 does there exist a rigid cycle?
And under which conditions is there a unique rigid cycle?
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The variety of behaviors for pieces with slopes of opposite signs in Section 6.4 leads us to ask for
a classification for these behaviors on the square board.

Question 7.6. Classify the behavior of trajectories on the square board for every choice of pieces
with moves along slopes m1 and m2. Under what conditions will there be a periodic orbit and what
is it? Under what conditions will the behavior of the system be ergodic?

We remark that in Sections 6.1 and 6.2 the dynamics do not depend on the rationality of m1

and m2, but in Section 6.3 they do. We are not sure why this is the case.

Question 7.7. Which results hold for irrational slopes in addition to rational slopes?

7.3. Generalizations of the dynamical system. There are many ways that the discrete dynam-
ical system for billiards generalizes; we wonder if this other model can also be generalized further.
First, we ask if it is possible to generalize the board B to regions that are fruitful in the study of
billiards.

Question 7.8. Can the dynamical system in this article be generalized to non-convex regions? To
hyperbolic models? To a system similar to outer billiards?

We also wonder if we can remove the restriction that there are only two moves.

Question 7.9. Is there a way to make sense of such a dynamical system involving more than two
moves?

Could studying such a dynamical system be useful in the study of three-move riders, or riders
with more moves? One possible way to allow for more moves is to require that the moves be applied
in a cyclical fashion. When there are only two moves, the trajectory must always lie in the plane
spanned by those two vectors. If one is able to find a way to involve more than two moves, the
dynamical system may be able to generalize to higher dimensions.

Question 7.10. Is there a higher-dimensional analog of this dynamical system, similar to billiards
in a polytope?

7.4. Dynamical System Theory. Inspired by dynamical systems theory we can ask about the
stability of the dynamical system by perturbing the board, perturbing the set of moves, and per-
turbing the particle’s initial position.

Question 7.11. How does a slight perturbation of the board impact the behavior of the trajecto-
ries? Of the existence or uniqueness of the rigid cycles? How do the changes depend on the piece’s
moves?

Question 7.12. How does a slight perturbation of the piece’s move vectors impact the behavior
of the trajectories? Of the existence or uniqueness of the rigid cycles? How do the changes depend
on the board?

Question 7.13. Do two trajectories that start from sufficiently close points b and b1 have the
same behavior? If b is periodic, must b1 be periodic? Must they have the same period?

Question 7.13 was partially answered in Theorem 5.7 when the trajectory is a treachery. In
general, if the answer to Question 7.13 is positive for a specific board and set of moves, that would
prove that the corresponding cyclic trajectory segments are not rigid cycles, similar to the argument
given in Proposition 6.8.

Crossing points of trajectories are central to the study of the dynamical system, but there does
not appear to be much focus on them in the discrete dynamical system literature. Perhaps such a
question can inspire new directions of research in existing dynamical systems.
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Question 7.14. What are the coordinates of crossing points of trajectories in existing discrete
dynamical systems, including billiards? For which discrete dynamical systems are the formulas of
the coordinates of these crossing points easy to calculate? Do the denominators of these coordinates
behave predictably?

7.5. Periods and Denominators. An important question in Ehrhart Theory is the relation-
ship between the period of an Ehrhart quasipolynomial and the denominator of its corresponding
polytope (or inside-out polytope).

We have found the denominator of pBq,Aq
Pq for several classes of two-move riders P when B is

the square board. This gives us provable bounds on the period of the Ehrhart quasipolynomial of
pBq,Aq

Pq, and we can use this to explicitly compute uPpq;nq through brute force. This may give
insight on the period of uPpq;nq.

Question 7.15. Is the period always equal to the denominator of pBq,Aq
Pq when P is a two-move

rider?
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