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Abstract

Characterizing graphs by their spectra is an important topic in spectral graph
theory, which has attracted a lot of attention of researchers in recent years. It is
generally very hard and challenging to show a given graph to be determined by its
spectrum. In Wang [J. Combin. Theory, Ser. B, 122 (2017): 438-451], the author
gave a simple arithmetic condition for a family of graphs being determined by their
generalized spectra. However, the method applies only to a family of the so called
controllable graphs; it fails when the graphs are non-controllable.

In this paper, we introduce a class of non-controllable graphs, called almost con-

trollable graphs, and prove that, for any pair of almost controllable graphs G and H

that are generalized cospectral, there exist exactly two rational orthogonal matrices Q
with constant row sums such that QTA(G)Q = A(H), where A(G) and A(H) are the
adjacency matrices of G and H, respectively. The main ingredient of the proof is a
use of the Binet-Cauchy formula. As an application, we obtain a simple criterion for
an almost controllable graph G to be determined by its generalized spectrum, which
in some sense extends the corresponding result for controllable graphs.

Keywords: Graph spectra; Cospectral graphs; Rational orthogonal matrix; Control-
lable graph.

Mathematics Subject Classification: 05C50

1 Introduction

Let G be a simple graph with vertex set V (G) = {1, 2, . . . , n}. The adjacency matrix of G
is the n× n real symmetric matrix A(G) = (aij) (simply for A) where aij = 1 if i and j are
adjacent; aij = 0 otherwise. The spectrum of a graph G, denoted by σ(G), is the multiset of
all the n eigenvalues of the matrix A(G). The generalized spectrum of a graph G is defined
to be the pair (σ(G), σ(G)), where G is the complement of G. Two graphs G and H are

∗Corresponding author: fenjinliu@yahoo.com
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called cospectral (resp. generalized cospectral) if G and H share the same spectrum (resp.
generalized spectrum).

It is well-known that for any two cospectral graphs G and H , their adjacency matrices
A(G) and A(H) are similar via an orthogonal matrix Q, that is, QTA(G)Q = A(H). An
orthogonal matrix Q is regular if each row sum of Q is 1, that is, Qe = e, where e is the
all-ones vector. Note that all regular orthogonal matrices of a fixed order n constitute a
group under the ordinary matrix multiplication. We call it regular orthogonal group and
denote it by ROn. A fundamental result, due to Johnson and Newman [3], states that the
adjacency matrices of two generalized cospectral graphs are similar via a regular orthogonal
matrix.

Theorem 1. [3] Two graphs G and H on the same vertex set {1, 2, . . . , n} are generalized
cospectral if and only if there exists a Q ∈ ROn such that QTA(G)Q = A(H).

In general, for two generalized cospectral graphs G and H , the matrix Q satisfying
QTA(G)Q = A(H) may not be unique. Indeed, if both G and H are empty graphs (i.e.,
E(G) = E(H) = ∅), then Q can take any matrix in ROn.

A key observation of Wang [11] is that under a suitable restriction, the corresponding
matrix Q is unique and rational. For a graph G with n vertices, the walk matrix of G is

W (G) := [e, A(G)e, . . . , An−1(G)e].

A graph G is controllable if W (G) is invertible. We use Gn to denote the set of all controllable
graphs with n vertices.

Theorem 2. [11] Let G ∈ Gn and H be a graph generalized cospectral to G. Then H ∈ Gn

and there exists a unique matrix Q ∈ ROn such that QTA(G)Q = A(H). Moreover, the
unique Q satisfies Q = W (G)W−1(H) and hence is rational.

A graph G is determined by the generalized spectrum (DGS for short) if, any graph
generalized cospectral with G is isomorphic to G. For controllable graphs G, using Theorem
2 as the starting point, Wang [12, 13] obtained some sufficient conditions for G to be DGS.
The overall idea can be described as follows.

Let ROn(Q) be the group consisting of all rational regular orthogonal n× n matrices,
and Sn be the group of n×n permutation matrices. Note that for any Q ∈ Sn, the graph with
adjacency matrix QTA(G)Q is isomorphic to G. So in order to show that a graph G ∈ Gn is
DGS, it suffices to show that any Q ∈ ROn(Q) such that each entry QTA(G)Q belongs to
{0, 1}, is a permutation matrix. Such an argument uses essentially the rationality of Q and
hence relies heavily on the controllability assumption of G.

The key finding of this paper is that there exists a particular subset of noncontrollable
graphs for which the corresponding Q must be rational. We will describe this particular
subset in Sec. 3; such graphs are called to be almost controllable. The first main result
is Theorem 3, which, roughly speaking, extends the rationality in Theorem 2 to almost
controllable graphs. In Sec. 4, we introduce a specific family Fn from the set of symmetric
and almost controllable graphs. The second main result is Theorem 5, which presents a
sufficient condition for a graph G ∈ Fn to be DGS. Using Theorem 3 as the new starting
point, the full proof of Theorem 5 is given in Sec. 5. Some examples are given to illustrate
Theorem 5 in the final section.
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2 Preliminaries

In this section, we cite some known results that will be used later in the paper. We begin
with the well-known Binet-Cauchy formula.

Lemma 1. [1, pp. 8–9] Suppose that a square matrix C = (cij)m×m is the product of
two rectangular matrices A = (aik)m×n and B = (bkj)n×m, i.e., cij =

∑n
s=1 aisbsj (i, j =

1, 2, . . . , m). Then the determinant of C is the sum of the products of all possible minors of
the maximal (m-th) order of A into the corresponding minors of the same order of B, i.e.,
∣
∣
∣
∣
∣
∣
∣
∣
∣

c11 c12 · · · c1m
c21 c22 · · · c2m
...

...
...

cm1 cm2 · · · cmm

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∑

1≤k1<k2<···<km≤n

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1k1 a1k2 · · · a1km
a2k1 a2k2 · · · a2km
...

...
...

amk1 amk2 · · · amkm

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

bk11 bk12 · · · bk1m
bk21 bk22 · · · bk2m
...

...
...

bkm1 bkm2 · · · bkmm

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

For a graph G, an eigenvalue is main if it has an associated eigenvector not orthogonal
to the all-ones vector e. The main polynomial is mG(x) = (x − µ1)(x − µ2) · · · (x − µm),
where µ1, . . . , µm are all main eigenvalues of G. It is known [9] that mG(x) ∈ Z[x]. The next
four lemmas state some properties of the walk matrix of a graph.

For an integer matrix M and a prime p, the p-rank of M , denote by rankp M , is the
rank of M over finite field Fp. We use rankM to denote the ordinary rank of M , that is, the
rank of M over Q.

Lemma 2. [2] The rank of the walk matrix of a graph G is equal to the number of its main
eigenvalues.

Lemma 3. [2] Let r = rankW (G). Then mG(A)e = 0 and hence Are can be written as a
linear combination of e, Ae, . . . , Ar−1e with integral coefficients.

Lemma 3 clearly indicates that the first r columns constitute a basis for the column
space of W (G) over Q. Similar conclusion also holds over finite field Fp; a proof can be found
in [8].

Lemma 4. [8] Let G be a graph and p be a prime. Let r = rankpW (G). Then the first r
columns of W (G) constitute a basis for the column space of W (G) over Fp.

Lemma 5. [10, 12] For any graph with n vertices, rank2W (G) ≤ ⌈n
2
⌉.

Lemma 6. [10, 12] For any graph with n vertices, eTAk(G)e is even for any positive integer
k.

Recall that an n× n matrix U with integer entries is called unimodular if detU = ±1.
Two n× n integral matrices M1 and M2 are called unimodular equivalent if there exist two
unimodular matrices U and V such that M1 = UM2V . It is well known that every integral
matrix M is unimodular equivalent to some diagonal matrix S = diag(d1, d2, . . . , dn), where
d1, d2, . . . , dn are nonnegative integers with di|di+1 for i = 1, 2, ..., n − 1. The matrix S is
called the Smith normal form (SNF for short) of M . The diagonal entries d1, d2, . . . , dn are
the invariant factors of M . They are unique and, in fact, di = Di/Di−1 for i = 1, 2, . . . , r,
where D0 = 1 and Di is the i-th determinant divisor of M , i.e., the greatest common divisor
of all i × i minors of M . We note that many basic properties of a matrix can be obtained
from its invariant factors, as described below.
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Fact 1. Let M be an n×n integral nonzero matrix with invariant factors d1, d2, . . . , dn. Let
p be any prime. Then the followings hold.

(i) detM = ±d1d2 · · · dn.

(ii) rankp M = max{i : di 6≡ 0 (mod p)} and rankM = max{i : di 6= 0}.

(iii) pn−rankp M | detM .

(iv) Mx ≡ 0 (mod p2) has a solution x 6≡ 0 (mod p) if and only if p2 | dn.

We remark that the last assertion will play a key role in Sec. 5.1. We refer to [12] for
a proof of this assertion.

3 Almost controllable graphs

We call a graph G with n vertices almost controllable if the walk matrix W (G) has rank
n − 1. Note that for any graph G, the number of orbits of V (G) under the automorphism
group Aut(G) is at least rankW (G) since two vertices in the same orbit have the same row
vector in W (G). Thus, if G is almost controllable, then G has either n− 1 or n orbits under
its automorphism group. We use Hn to denote the set of all almost controllable graphs of
order n. The set Hn has a natural bipartition according to numbers of orbits. We use Ha

n

to collect graphs in Hn which has n orbits, that is, asymmetric graphs in Hn. The set of
remaining graphs in Hn are denoted by Hs

n. Table 1 records the sizes of Ha
n and Hs

n for small
n. For a graph G in Hs

n, we call two vertices τ and τ ′ twin vertices, or twins, if {τ, τ ′} is an
orbit of G. Note that each graph in Hs

n has exactly a pair of twins.

Table 1: Almost controllable graphs of small order

Order n of graphs 2 3 4 5 6 7 8 9
# of graphs 2 4 11 34 156 1044 12346 274668
|Hn| 2 2 2 6 22 214 3100 86578
|Ha

n
| 0 0 0 0 0 42 926 36552

|Hs

n
| 2 2 2 6 22 172 2174 50026

The following definition based on walk matrix W (G) is crucial for almost controllable
graphs.

Definition 1. Let G ∈ Hn. Write

ξ(G) =








W1n(G)
W2n(G)

...
Wnn(G)








and Wδ(G) = [e, A(G)e, . . . , An−2(G)e, (−1)δ
1

2⌊
n
2
⌋−1

· ξ(G)], δ ∈ {0, 1},

where Wi,n(G) denotes the algebraic cofactor of the (i, n)-entry for W (G).

Before we establish the general properties of the new defined matrices W0(G) and
W1(G), we consider a small example.
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Example 1. Let G be the graph with adjacency matrix

A =









0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 0
0 0 1 0 0









.

Now,

W (G) = [e, Ae, A2e, A3e, A4e] =









1 1 2 4 6
1 2 4 6 14
1 3 4 10 14
1 1 3 4 10
1 1 3 4 10









,

and ξ(G) = (0, 0, 0, 2,−2)T. Thus,

W0(G) =









1 1 2 4 0
1 2 4 6 0
1 3 4 10 0
1 1 3 4 1
1 1 3 4 −1









and W1(G) =









1 1 2 4 0
1 2 4 6 0
1 3 4 10 0
1 1 3 4 −1
1 1 3 4 1









.

Proposition 1. Let G ∈ Hn. Then ξ(G) given in Definition 1 has the following properties.

(i) 1

2⌊
n
2
⌋−1

· ξ(G) is a nonzero integral vector.

(ii) WT(G)ξ(G) = 0.

(iii) ξT(G)ξ(G) = det V TV where V = [e, A(G)e, . . . , An−2(G)e].

(iv) If H is a graph generalized cospectral with G, then H ∈ Hn and ξT(H)ξ(H) = ξT(G)ξ(G).

Proof. Let V = [e, A(G)e, . . . , An−2(G)e] and we write Xi (i = 1, 2, . . . , n) for the matrix
obtained from V by removing row i. As Xi is a square matrix of order n− 1, we have

2(n−1)−rank2 Xi | detXi.

Noting thatXi is a submatrix ofW (G), we have rank2Xi ≤ rank2W (G) and hence rank2Xi ≤
⌈n
2
⌉ by Lemma 5. Now, (n− 1)− rank2Xi ≥ ⌊n

2
⌋ − 1 and hence 2⌊

n

2
⌋−1 | detXi. Recall that

the i-entry of ξ(G) is the algebraic cofactor Wi,n of the (i, n)-entry for W (G). Clearly, Wi,n

is (−1)n+i detXi and hence 1

2⌊
n
2
⌋−1

· ξ(G) is an integral vector. Furthermore, as G ∈ Hn, we

have rankW (G) = n− 1 by the very definition. It follows from Lemma 3 that the first n− 1
columns of W (G) are linearly independent, that is, rankV = n− 1. Thus, there exists some
i ∈ {1, 2, . . . , n} such that Xi is nonsingular. This indicates that ξ(G) is nonzero and hence
(i) is proved.

Let W ∗(G) be the adjoint matrix of W (G). Note that ξT(G) is the last row vector of
W ∗(G). By the familiar equality W ∗W = (detW ) · In, where In is the identity matrix, we
easily obtain that ξT(G)W (G) = (0, 0, . . . , 0, detW (G)). Taking transpose and noting that
detW (G) = 0 as G ∈ Hn, we have WT(G)ξ(G) = 0 and (ii) is proved.

5



Note that V is an n×(n−1) matrix and V T is an (n−1)×nmatrix. By the well-known
Binet-Cauchy formula in Lemma 1, we have

det V TV =

n∑

i=1

detXT
i detXi. (1)

On the other hand, as ξ(G) = (W1,n, . . . ,Wn,n)
T and Wi,n = (−1)n+i detXi, we have

ξT(G)ξ(G) =
n∑

i=1

W 2
i,n =

n∑

i=1

detXi detXi. (2)

This proves (iii) as detXT
i = detXi always holds.

As H is generalized cospectral with G, it follows from Theorem 1 that there is a
matrix Q ∈ ROn such that QTA(G)Q = A(H). As QTQ = In and Qe = e, we have
Ak(H)e = QTAk(G)Qe = QTAk(G)e for any k ≥ 0. Thus W (H) = QTW (G) and hence
rankW (H) = rankW (G) = n − 1, i.e., H ∈ Hn. Write S = [e, A(H)e, . . . , An−2(H)e]. We
have S = QT[e, A(G)e, . . . , An−2(G)e] = QTV and hence STS = V TV . Note that H ∈ Hn.
Using (iii) for G and H , we clearly have ξT(G)ξ(G) = ξT(H)ξ(H). This proves (iv).

Corollary 1. If G ∈ Hn, then rankWδ(G) = n for δ = 0, 1.

Proof. Expanding the determinant of Wδ(G) by the last column, we find that detWδ(G) =
(−1)δ21−⌊n

2
⌋ξT(G)ξ(G), which is nonzero by Proposition 1(i). The corollary follows.

We are ready to present the main result of this paper, which can be regarded as a
natural extension of Theorem 2 for almost controllable graphs.

Theorem 3. Let G ∈ Hn and H be a graph generalized cospectral to G. Then the equation
QTA(G)Q = A(H) for variable Q ∈ ROn has exactly two solutions Q0 = W0(G)W−1

0 (H)
and Q1 = W1(G)W−1

0 (H), both of which are rational.

Proof. As G and H are generalized cospectral, Theorem 1 indicates that the equation
QTA(G)Q = A(H) has at least one solution Q ∈ ROn. Let Q = Q̂ be any solution of
QTA(G)Q = A(H) in ROn. Note that H ∈ Hn by Proposition 1(iv). We claim that
Q̂W0(H) = W0(G) or W1(G).

As Q̂TA(G)Q̂ = A(H), we have Q̂TW (G) = W (H), i.e., WT(G)Q̂ = WT(H). As
H ∈ Hn, we have WT(H)ξ(H) = 0 by Proposition 1(ii). Thus, WT(G)Q̂ξ(H) = 0. Since
rankWT(G) = n−1, the nullspace N(WT(G)) of WT(G) is one dimensional. By Proposition
1(i-ii), we know that ξ(G) is a nonzero vector in N(WT(G)) and hence Q̂ξ(H) = xξ(G) for
some real number x. By Proposition 1(iv), the two vectors ξ(H), ξ(G) have the same length.
Thus we must have x = ±1. Now the equality Q̂ξ(H) = ±ξ(G), together with the fact that
Q̂W (H) = W (G), implies Q̂W0(H) = W0(G) or W1(G), as claimed.

From the equality Q̂W0(H) = W0(G) or W1(G), we know that Q̂ = W0(G)W−1
0 (H)

or W1(G)W−1
0 (H). From the arbitrariness of Q̂, we find that the equation QTA(G)Q =

A(H), Q ∈ ROn has at most two solutions. It remains to show that this equation has at
least two solutions.
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First consider the special equation QTA(G)Q = A(G) for the case H = G. By Lemma
2, the graph G has exactly n − 1 main eigenvalues. Therefore, there exist n orthonormal
eigenvectors p1, p2, . . . , pn such that eTpn = 0 and eTpi 6= 0 for i = 1, 2, . . . , n − 1. Let
Pδ = [p1, p2, . . . , pn−1, (−1)δpn] for δ = 0, 1. Clearly, both P0 and P1 are orthogonal, and
PT
0 A(G)P0 = PT

1 A(G)P1. Let P = P0P
T
1 . Then P is orthogonal and PTA(G)P = A(G).

As pTne = 0, one easily checks that PT
1 e = PT

0 e and hence Pe = e. Thus P ∈ ROn and P is
clearly not the identity matrix In. This proves that the equation QTA(G)Q = A(G) has at
least two solutions.

Now consider the general equation QTA(G)Q = A(H) for two generalized cospectral
graphs G and H . We already know that the equation QTA(G)Q = A(H) has at least one
solution, say Q = Q̄, by Theorem 1. Let Q = P be a solution of QTA(G)Q = A(G), where
P 6= In. One easily sees that Q = PQ̄ also satisfies the equation QTA(G)Q = A(H). Note
that PQ̄ ∈ ROn and PQ̄ 6= Q̄. This indicates that the equation QTA(G)Q = A(H) has at
least two solutions and hence completes the proof of the theorem.

A pair of generalized cospectral almost controllable graphs with two regular orthog-
onal matrices was reported in Example 10 [4], Theorem 3 gives a full explanation of this
phenomenon.

Definition 2. Let Q ∈ ROn(Q). The level of Q, denoted by ℓ(Q), or simply ℓ, is the smallest
positive integer k such that kQ is an integral matrix.

Define QG(H) = {Q ∈ ROn(Q) : QTA(G)Q = A(H)} and QG = ∪H∈Hn
QG(H). Let

G and H be two generalized cospectral graphs in Hn. We note that the two matrices in
QG(H), affirmed by Theorem 3, may not have the same level. In particular, if G = H and
G is asymmetric, then one matrix in QG(H) is the identity matrix whose level is 1, but the
other matrix in QG(H) cannot be a permutation matrix (as G is asymmetric) and hence has
level at least 2.

Proposition 2. If G is a graph in Hs
n and H is generalized cospectral with G, then the two

matrices in QG(H) have the same level.

Proof. As G ∈ Hs
n, there exists a permutation matrix P , other than the identity matrix In,

such that PTA(G)P = A(G). Let Q be a matrix in QG(H). Clearly, PQ ∈ QG(H) and
hence QG(H) = {Q,PQ}. As the rows in PQ are rearrangement of rows in P , the two
matrices must have the same level and hence the proposition follows.

An immediate corollary of Proposition 2 is the following criterion for a graph G ∈ Hs
n

to be DGS. The same criterion for controllable graphs was presented in [11].

Corollary 2. Let G ∈ Hs
n. Then G is DGS if and only if QG contains only permutation

matrices.

In the next section, we shall introduce a specific subset Fn of Hs
n. It turns out that,

for graphs G in Fn, we can give a simple condition to ensure that G is DGS.

7



4 A simple criterion for G ∈ Hs
n to be DGS

For controllable graphs, Wang [13] gave the following simple arithmetic criterion for a graph
to be DGS.

Theorem 4. [13] If detW (G)

2⌊
n
2
⌋ is odd and square-free, then G is DGS.

The determinant condition of Theorem 4 can be equivalently described using the lan-
guage of Smith normal forms.

Proposition 3. [13] detW (G)

2⌊
n
2
⌋ is odd and square-free if and only if the SNF of W (G) is

diag[1, 1, . . . , 1
︸ ︷︷ ︸

⌈n
2
⌉

, 2, 2, . . . , 2, 2b
︸ ︷︷ ︸

⌊n
2
⌋

],

where b is an odd square-free integer.

Now we introduce two particular subsets of Hs
n.

Definition 3. Let Fn = {G ∈ Hs
n : the SNF of W(G) is

diag[1, 1, . . . , 1
︸ ︷︷ ︸

⌈n
2
⌉

, 2, 2, . . . , 2, 2b, 0
︸ ︷︷ ︸

⌊n
2
⌋

],

where b is odd and square-free}. We use F∗
n to denote the subset of Fn such that the corre-

sponding (n-1)-th invariant factor 2b is exactly 2, i.e., b = 1.

Analogous to Proposition 3, the set Fn (and F∗
n) can also be described using determi-

nant condition.

Proposition 4. Let G ∈ Hs
n and τ be either of the twins. Let b be odd, square-free and

positive. Then
detWτ,n(G)

2⌊
n
2
⌋−1

= ±b (3)

if and only if the SNF of W (G) is

diag[1, 1, . . . , 1
︸ ︷︷ ︸

⌈n
2
⌉

, 2, 2, . . . , 2, 2b, 0
︸ ︷︷ ︸

⌊n
2
⌋

].

Proof. Let W ′ = [e, A(G)e, . . . , An−2(G)e, 0], which is obtained from W by replacing the
last column by zero vector. As rankW = n − 1, Lemma 3 implies that An−1(G)e can be
written as a linear combination of e, A(G)e, . . . , An−2(G)e with integral coefficients. This
means that W and W ′ are unimodular equivalent, that is, W and W ′ must have the same
Smith normal form. Note that W ′ has two equal rows corresponding to the twin vertices.
We find that all (n − 1) × (n − 1) minor of W ′ is either 0 or ± detWτn(G) and hence
Dn−1(W

′) = | detWτ,n(G)|. Thus, if the SNF of W (G) (or equivalently of W ′) has the given

structure, then Dn−1(W
′) = 2⌊

n

2
⌋−1b and hence detWτ,n(G)

2⌊
n
2
⌋−1

= ±b.
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Conversely, if | detWτn(G)| = 2⌊
n
2
⌋−1b for some odd and square-free b, then the SNF of

W ′ (or W (G)) can be written as S = diag(1, . . . , 1, 2l1, 2l2 , . . . , 2lt−1, 2ltb, 0). By Lemma 5, we
have rank2W (G) ≤ ⌈n

2
⌉ and hence t ≥ ⌊n

2
⌋− 1. Moreover, we have l1+ l2+ · · ·+ lt = 2⌊

n
2
⌋−1

since Dn−1(W
′) = 2⌊

n
2
⌋−1b. It follows that l1 = l2 = · · · = lt = 1 and t = ⌊n

2
⌋ − 1. This

proves the proposition.

It seems natural to guess that all graphs in Fn is DGS. Unfortunately, this is not true
as shown by the following example.

Example 2. Let n = 9. Let G be the graph whose adjacency matrix A = A(G) is given as
follows:

A =

















0 1 0 0 1 1 1 1 0
1 0 0 0 1 1 1 1 0
0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 1 0 0
1 1 0 1 0 0 1 1 0
1 1 0 0 1 1 0 0 1
1 1 1 0 0 1 0 0 1
0 0 1 0 0 0 1 1 0

















.

It can be easily computed that the SNF of W (G) is diag[1, 1, 1, 1, 1, 2, 2, 2×3×101, 0]. Note
that G contains the first two vertices as twin vertices. We see that G ∈ Fn. Let

Q =
1

3

















2 −1 −1 1 1 1 0 0 0
0 0 0 0 0 0 3 0 0
−1 2 −1 1 1 1 0 0 0
1 1 1 2 −1 −1 0 0 0
1 1 1 −1 2 −1 0 0 0
−1 −1 2 1 1 1 0 0 0
1 1 1 −1 −1 2 0 0 0
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 3

















.

It is easy to verify that Q is a rational orthogonal matrix with level ℓ = 3, and QTAQ is an
adjacency matrix of another graph. It follows from Corollary 2 that G is not DGS.

Although the straightforward extension of Theorem 4 is incorrect, we find that, under
an additional assumption, graphs in Fn can be shown to be DGS.

Definition 4. Let G ∈ Hs
n. We define

λ1 = λ1(G) =

{

−1 if the twins in G are adjacent,

0 otherwise.
(4)

Theorem 5. Let G ∈ Fn and 2b be the (n − 1)-th invariant factor of W (G). Then G is
DGS provided that

N(WT(G)) 6⊂ N(A(G)− λ1(G)I) over Fp, (5)

for each odd prime factor p of b. In particular, every graph in F∗
n is DGS.
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We remark that in Example 2, Condition (5) does not hold for p = 3. The proof of
this theorem will be postponed to the next section. The overall idea comes from [12] and
[13], but difficulty inevitably arises due to the increase of the dimension of the nullspace
N(WT(G)) by one. Before going into the details, we first give some structural properties on
the two-dimensional nullspace N(WT(G)), which will results in an equivalent description of
(5).

LetG ∈ Hs
n with twin vertices τ and τ ′, where τ < τ ′. We define α(G) = (a1, a2, . . . , an)

T,
where

ak =







−1 if k = τ ,

1 if k = τ ′,

0 otherwise.

(6)

The following result can be easily verified from definitions.

Proposition 5. Let G ∈ Hs
n with twins τ and τ ′, where τ < τ ′. Then WT(G)α(G) = 0,

A(G)α(G) = λ1(G)α(G) and ξ(G) = Wτ ′,n(G)α(G) = −Wτ,n(G)α(G).

Definition 5. Let G ∈ Hs
n. Write Ŵ (G) = [e, A(G)e, . . . , An−2(G)e, α(G)].

Proposition 6. Let G ∈ Fn and 2b be the (n − 1)-th invariant factor of W (G). Then
rankp Ŵ (G) = n− 1 for any odd prime factor p of b.

Proof. Let τ and τ ′ be the twin vertices of G. Then row τ and row τ ′ of W (G) are equal.
Thus, by the definition of α(G), we see that αT(G)W (G) = 0 and hence αT(G)W (G) ≡ 0
(mod p). Also, by the definition of α(G), we have αT(G)α(G) = 2 6≡ 0 (mod p). It follows
that α(G) does not belongs to the column space of W (G) over Fp. This indicates that
rankp [W (G), α(G)] = 1+rankp W (G). By the definition of Fn, we have rankpW (G) = n−2
and hence rankp [W (G), α(G)] = n − 1. Finally, as rankp W (G) = n − 2, Lemma 4 implies
that the last two columns of W (G) can be written as linear combinations of the first n − 2
columns. Thus we can safely remove the (n − 1)-th column and/or the n-th column in
[W (G), α(G)] without changing its rank. In particular, rankp Ŵ (G) = n− 1, as desired.

By Proposition 6, we know that the solution space of ŴT(G)x ≡ 0 (mod p) is one
dimensional. We define β(G; p), or simply β(G), to be a nontrivial (i.e., nonzero mod p)
integral solution in {0, 1, . . . , p − 1}n such that the last nonzero entry of β(G) is 1. We
note that β(G) is unique and hence is well-defined. In the following propositions, we always
assume that p is any odd prime factor of b as in Proposition 6.

Proposition 7. Let G ∈ Fn. Then α(G) and β(G) constitute a system of fundamental
solutions to WT(G)x ≡ 0 (mod p). Moreover, α(G)Tβ(G) ≡ 0 (mod p).

Proof. Clearly, by the definitions of α(G) and β(G), both α(G) and β(G) are nontrivial so-
lutions to WT(G)x ≡ 0 (mod p). Also, αT(G)β(G) ≡ 0 (mod p). Note that rankpW (G) =
n − 2 and hence the solution space of WT(G)x ≡ 0 (mod p) is two dimensional. We are
done if α(G) and β(G) are linearly independent over Fp. Suppose to the contrary that α(G)
and β(G) are linearly dependent. Then we have β(G) ≡ tα(G) (mod p) for some integer
t 6≡ 0 (mod p) as both α(G) and β(G) are nonzero vectors over Fp. Consequently, we have
α(G)Tβ(G) ≡ tα(G)Tα(G) = 2t 6≡ 0 (mod p). This contradiction completes the proof of the
proposition.
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Proposition 8. Let G ∈ Fn. Then there exists an integer λ0 = λ0(G; p) such that

A(G)β(G) ≡ λ0β(G) (mod p). (7)

Proof. As G and p are fixed in the following argument, we use simplified notations, for
example W means W (G). We first show that N(WT) is A-invariant over Fp. Let x be
any vector in N(WT), that is, WTx ≡ 0 (mod p). Now we have eTAix ≡ 0 (mod p) for
i = 0, 1, . . . , n−1. By Cayley-Hamilton Theorem, we know that An can be written as a linear
combination of A0, A1, . . . , An−1. Thus we have eTAnx ≡ 0 (mod p) and hence WTAx ≡ 0
(mod p). This proves that N(WT) is A-invariant.

By Proposition 7, we have N(WT) = span (α, β). As N(WT) is A-invariant, there exist
two integers c1 and c2 such that Aβ ≡ c1α + c2β (mod p). Then, as αTα = 2 and αTβ ≡ 0
(mod p), we have

αTAβ ≡ c1α
Tα + c2α

Tβ ≡ 2c1 (mod p). (8)

On the other hand, as Aα = λ1α and A is symmetric, we also have

αTAβ = βTAα ≡ λ1β
Tα ≡ 0 (mod p). (9)

It follows that 2c1 ≡ 0 (mod p), i.e., c1 ≡ 0 (mod p) as p is odd. Therefore Aβ ≡ c2β
(mod p). This proves the proposition.

In the following, we shall use λ0, or more precisely λ0(G; p), to denote an integer
such that (7) holds. That is, λ0(G; p) is the eigenvalue of A corresponding to β(G; p) over
Fp. Of course λ0(G; p) is unique up to congruence modulo p and we may safely assume
λ0(G; p) ∈ {0, 1, . . . , p− 1}.

Now we can give an equivalent description of (5).

Proposition 9. Using the notations of Theorem 5, we have (5) holds if and only if λ1(G) 6≡
λ0(G; p) (mod p).

Proof. By Proposition 7, we have N(WT(G)) = span (α(G), β(G; p)) over Fp. By Proposition
5, we have A(G)α(G) = λ1(G)α(G) and of course A(G)α(G) ≡ λ1(G)α(G) (mod p). That
is, α(G) ∈ N(A(G)− λ1(G)I) over Fp. Therefore, we find that (5) holds if and only if

β(G; p) 6∈ N(A(G)− λ1(G)I) over Fp. (10)

Clearly, (10) is equivalent to A(G)β(G; p) 6≡ λ1(G)β(G; p) (mod p). On the other hand, by
Proposition 8, we have A(G)β(G; p) ≡ λ0(G; p)β(G; p) (mod p). Thus, (10) holds if and
only if λ1(G) 6≡ λ0(G; p) (mod p). This completes the proof of this proposition.

5 Proof of Theorem 5

In this section, we present the proof of Theorem 5. Before doing so, we need several results
below.

Proposition 10. Let G ∈ Hs
n and Q ∈ QG with level ℓ. Then ℓ | dn and hence ℓ | detW0(G),

where dn is the n-th invariant factor of W0(G).
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Proof. Let H be a graph such that Q ∈ QG(H). By Theorem 3, Q = Q0 or Q = Q1, where
Q0 = W0(G)W−1

0 (H) and Q1 = W1(G)W−1
0 (H). As G ∈ Hs

n, the two matrices Q0 and Q1

must have the same level by Proposition 2. Thus, we may assume that Q = Q0. As Q0 is
orthogonal, we have QT

0 = Q−1
0 and hence QT

0 = W0(H)W−1
0 (G). Clearly, ℓ(Q0) = ℓ(QT

0 )
and hence we have ℓ = ℓ(Q0) = ℓ(W0(H)W−1

0 (G)).

Write W0(G) = Udiag(d1, d2, . . . , dn)V where U, V are unimodular and d1, d2, . . . , dn
are invariant factors of W0(G). Note that

dnW0(H)W−1
0 (G) = W0(H)V −1diag

(
dn
d1

,
dn
d2

, . . . ,
dn
dn

)

U−1.

Thus dnW0(H)W−1
0 (G) is integral as all four factors in the right hand are integral matrices.

Therefore, by the minimality of ℓ(W0(H)W−1
0 (G)), we must have ℓ(W0(H)W−1

0 (G)) | dn,
that is, ℓ | dn. This proves the proposition.

Proposition 11. Let G ∈ Fn with twin vertices τ and τ ′. Then detW0 = 2⌊
n
2
⌋b2 and

det Ŵ (G) = ±2⌊
n

2
⌋b, where b is defined in (3).

Proof. Expanding detW0(G) by the last column and using the last assertion of Proposition
5, we have

detW0(G) = 21−⌊n

2
⌋ξT(G)ξ(G) = 21−⌊n

2
⌋W 2

τ,n(G)αTα = 22−⌊n

2
⌋W 2

τ,n(G).

By (3), Wτ,n(G) = ±2⌊
n
2
⌋−1b and consequently, we have detW0(G) = 2⌊

n
2
⌋b2.

Finally, by the definition of Ŵ (G), one easily sees that Ŵ (G) can be obtained from
W0(G) after dividing the last column by 21−⌊n

2
⌋Wτ,n(G). Thus, det Ŵ (G) = 2Wτ,n(G) =

±2⌊
n
2
⌋b. This completes the proof of this proposition.

An immediate consequence of the two preceding propositions is the following corollary.

Corollary 3. Let G ∈ Hs
n and Q ∈ QG with level ℓ. Then each odd prime factor of ℓ is a

factor of b, where b is defined in (3).

5.1 The case p is odd

Let G ∈ Fn and 2b be the (n− 1)-th invariant factor of W (G). We assume that p is an odd
prime factor of b in this subsection. The main aim of this subsection is to show the following
theorem.

Theorem 6. Let G ∈ Fn and Q ∈ QG with level ℓ. If (5) holds then p ∤ ℓ.

We begin with the following general result which illustrates basic properties of Q ∈ QG

for G ∈ Fn. We remind the reader that this result does not rely on (5).

Proposition 12. Let G ∈ Fn and Q ∈ QG with level ℓ. Let τ and τ ′ be twin vertices of G
and let P be the permutation matrix obtained from In by swapping row τ and row τ ′. If p is
an odd prime factor of ℓ, then the followings hold.
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(i) −p+1
2
βT(G)β(G) is a quadratic residue modulo p. Let c0 and −c0 be the two solutions of

t2 ≡ −
p+ 1

2
βT(G)β(G) (mod p) (11)

and write γδ(G) = β(G) + (−1)δc0α(G) for δ = 0, 1.

(ii) Pγδ(G) = γ1−δ(G) for δ = 0, 1.

(iii) The column space of ℓQ, over Fp, is spanned by either γ0(G) or γ1(G). In particular,
rankp ℓQ = 1.

(iv) A(G)γδ(G) ≡ λ0γδ(G) (mod p), for δ = 0, 1.

(v) γT
δ (G)(A(G)− λ0In)γδ(G) ≡ 0 (mod p2), for δ = 0, 1.

Proof. Let H be the graph such that Q ∈ QG(H). As QTA(G)Q = A(H), we have
QTW (G) = W (H), i.e., WT(G)Q = WT(H).

Let Q̂ = ℓQ. By the definition of ℓ, the matrix Q̂ is integral and contains a column q
such that q 6≡ 0 (mod p). As Q̂TQ̂ = ℓ2In and p | ℓ, we have qTq = ℓ2 ≡ 0 (mod p2) and
hence qTq ≡ 0 (mod p). As WT(G)Q̂ = ℓWT(H) ≡ 0 (mod p), we see that WT(G)q ≡ 0
(mod p). It follows from Proposition 7 that there exist two integers c1 and c2 such that
q ≡ c1α(G) + c2β(G) (mod p). We claim that c2 6≡ 0 (mod p). If c2 ≡ 0 (mod p), that is,
q ≡ c1α(G) (mod p), then qTq ≡ c21α

T(G)α(G) ≡ 2c21 (mod p) and hence c1 ≡ 0 (mod p) as
qTq ≡ 0 (mod p). Consequently, q ≡ 0 (mod p), contradicting our choice of q. This proves
the claim.

As c2 6≡ 0 (mod p), there exists an integer c̄2 such that c2c̄2 ≡ 1 (mod p). Let q̄ = c̄2q.
Then we have q̄ ≡ c̄2c1α(G) + β(G) (mod p). As αT(G)α = 2 and αT(G)β(G) ≡ 0 (mod p),
we have q̄Tq̄ ≡ 2(c̄2c1)

2 + βT(G)β(G) (mod p). On the other hand, as qTq ≡ 0 (mod p), we
have q̄Tq̄ = (c̄2)

2qTq ≡ 0 (mod p). Therefore, 2(c̄2c1)
2 + βT(G)β(G) ≡ 0 (mod p), that is,

(c̄2c1)
2 ≡ −

p + 1

2
βT(G)β(G) (mod p).

This proves (i).

Write β(G) = (b1, b2, . . . , bn)
T. As αT(G)β(G) ≡ 0 (mod p), we easily see from (6)

that bτ ≡ bτ ′ (mod p) and indeed bτ = bτ ′ since we have restricted each entry of β(G) in
{0, 1, . . . , p− 1}. Now one finds that the two vectors β(G) + c0α(G) and β(G)− c0α(G) can
be obtained from each other by swapping the τ -th entry and τ ′-th entry. In other words,
γ1(G) = Pγ0(G) and (ii) is proved.

Let q1, q2, . . . , qs be all columns of Q̂ which are nonzero vectors over Fp. By the same
argument as in the proof of (i), there exist integers k1, k2, . . . , ks, each nonzero modulo p,
such that

kiqi ≡ ±c0α(G) + β(G) (mod p), i = 1, 2, . . . , s, (12)

where c0 is a solution to (11). Note that (iii) trivially holds if s = 1 or c0 ≡ 0 (mod p).
Thus, we may assume s ≥ 2 and c0 6≡ 0 (mod p). To show (iii), it suffices to show that the
signs must be consistent throughout all congruences in (12). Suppose to the contrary that
there exist two indices, say 1 and 2, such that k1q1 ≡ +c0α(G) + β(G) (mod p) but k2q2 ≡
−c0α(G) + β(G) (mod p). As Q̂TQ̂ = ℓ2In ≡ 0 (mod p), we have qT1 q1 ≡ qT2 q2 ≡ qT1 q2 ≡ 0
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(mod p) and hence (k1q1 − k2q2)
T(k1q1 − k2q2) ≡ 0 (mod p). Noting that k1q1 − k2q2 ≡

2c0α(G) and αT(G)α(G) = 2, we can obtain that 8c20 ≡ 0 (mod p), that is, c0 ≡ 0 (mod p)
as p is an odd prime. This contradicts our assumption and hence completes the proof of (iii).

As rankp Q̂ = 1 and q is a nonzero column vector in Q̂, we can write

Q̂ ≡ q(m1, m2, . . . , mn) (mod p),

for some integers m1, m2, . . . , mn. We use k to denote the column index corresponding to q
in Q̂. Let h = (h1, h2, . . . , hn)

T be the k-th column of A(H). Noting

A(G)Q̂ = Q̂A(H) ≡ q(m1, m2, . . . , mn)A(H) (mod p),

and taking the k-th columns on both sides, we obtain that A(G)q ≡ λq (mod p), where
λ = m1h1 + m2h2 + · · · + mnhn. By (iii), either q ∈ span (γ0(G)) or q ∈ span (γ1(G)).
Without loss of generality, we assume q ∈ span (γ0(G)). Then we have A(G)γ0(G) ≡ λγ0(G)
(mod p). Consequently, as A(G)P = PA(G), we have

A(G)Pγ0(G) = PA(G)γ0(G) ≡ λPγ0(G) (mod p). (13)

By (ii), Pγ0(G) = γ1(G) and hence (13) can be written as A(G)γ1(G) ≡ λγ1(G) (mod p).
To complete the proof of (iv), it remains to show that λ ≡ λ0 (mod p). First consider the
case that λ1(G) ≡ λ0 (mod p). That is, α(G) and β(G) correspond to the same eigenvalue
λ0. Since γ0(G) ∈ span (α(G), β(G)), we must have A(G)γ0(G) ≡ λ0γ0(G) (mod p). This
indicates that λ ≡ λ0 (mod p) for this case. Next consider the case λ1(G) 6≡ λ0 (mod p).
We claim that γ0(G) = β(G), that is, c0 ≡ 0 (mod p). Indeed, if c0 6≡ 0 (mod p) then
β(G) + c0α(G) can never be an eigenvector of A(G) since α(G) and β(G) correspond to two
distinct eigenvalues λ1(G) and λ0 over Fp. This contradicts the fact that Aγ0(G) ≡ λγ0(G)
(mod p). Thus, γ0(G) = β(G) and hence λ ≡ λ0(G) (mod p). This completes the proof of
(iv).

As q ∈ span (γ0(G)) and both q and γ0(G) are nonzero vectors over Fp, we can write
γ0 ≡ tq (mod p), i.e., γ0 = tq + pη for some integer t and integral vector η. Moreover, as
A(G)γ0(G) ≡ λ0γ0(G) (mod p) by (iv), we have A(G)q ≡ λ0q (mod p), that is,

(A(G)− λ0In)q ≡ 0 (mod p). (14)

Noting that Q̂TQ̂, Q̂TA(G)Q̂ ≡ 0 (mod p2) and q is a column of Q̂, we have qTq, qTA(G)q ≡ 0
(mod p2) and hence

qT(A(G)− λ0In)q ≡ 0 (mod p2). (15)

Write A0 = A(G)− λ0In. Note that A0 is symmetric. It follows from (14) and (15) that

γT
0 (G)A0γ0(G) = (tq + pη)TA0(tq + pη)

= t2qTA0q + 2tp · ηTA0q + p2ηTA0η
T

≡ 0 (mod p2).

Finally, as γ1(G) = Pγ0(G) and PTA0P = A0, we see that γ
T
1 (G)A0γ1(G) = γT

0 (G)A0γ0(G).
This proves (v).

The conclusion of Proposition 12 can be much simplified assuming (5).
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Corollary 4. Under the assumption of Proposition 12, if (5) holds, then we have

(i) βT(G; p)β(G; p) ≡ 0 (mod p), and

(ii) βT(G; p)(A(G)− λ0In)β(G; p) ≡ 0 (mod p2).

Proof. As (5) holds, we have λ1(G) 6≡ λ0(G; p) (mod p) by Proposition 9. From the proof
of Proposition 12(iv) we know that γ0(G) = β(G) or equivalently, c0 ≡ 0 (mod p). Since c0
is a solution of (11), we find that βT(G)β(G) ≡ 0 (mod p). Thus (i) holds. The remaining
assertion follows from Proposition 12(v) since γ0(G) = β(G; p).

Lemma 7. If (A(G) − λ0I)y ≡ pj(lα(G) + mβ(G; p)) (mod pj+1) for some l, m ∈ Z and
j ∈ {0} ∪ Z+, then

ŴT(G)y ≡ eTy(1, λ0, . . . , λ
n−2
0 , 0)T + αT(G)y(0, 0, . . . , 0, 1)T (mod pj+1). (16)

Proof. Note that the last row of ŴT(G)y is αTy. It suffices to show that eTAky ≡ λk
0e

Ty
(mod pj+1) for k = 0, 1, . . . , n− 2. Clearly eTAky ≡ λk

0e
Ty (mod pj+1) holds for k = 0. Now

assume that eTAky ≡ λk
0e

Ty (mod pj+1) holds for k < n − 2 and we are going to check it
for k+1. By Proposition 7, we have WTα,WTβ ≡ 0 (mod p) and hence eTAkα, eTAkβ ≡ 0
(mod p). Now, by the condition of this lemma and induction hypothesis, we have

eTAk+1y ≡ eTAk(λ0y + pjlα + pjmβ) ≡ λk+1
0 eTy (mod pj+1). (17)

This proves the lemma.

Lemma 8. Under the assumption of Proposition 12, if (5) holds, then we have

(i) rankp [A(G)− λ0I, α(G), β(G; p)] = n− 1, and

(ii) dimL = 3, where L = {y ∈ Fn
p : (A(G)− λ0I)y ∈ span (α(G), β(G; p))}.

Proof. For simplicity, we shall write A = A(G), Ŵ = Ŵ (G), α = α(G) and β = β(G; p). By
Proposition 7, Proposition 8 and Corollary 4(i), we have βT[A− λ0I, α, β] ≡ 0 (mod p). It
follows from the fact β 6≡ 0 (mod p) that rankp [A− λ0I, α, β] ≤ n− 1. Thus, to show (i) it
suffices to prove the inverse inequality.

As Aα = λ1α we have (A− λ0I)α = (λ1 − λ0)α ∈ span (α, β) and hence α ∈ L by the
definition of L. Also, β ∈ N(A − λ0I) ⊂ L by Proposition 8. Thus, L ⊃ span (α, β) and
hence dimL ≥ 2.

Let K = {y ∈ L : eTy = 0, αTy = 0 over Fp}. Then dimK ≥ dimL− 2. Using Lemma

7 for the special case j = 0, we find that K ⊂ N(ŴT). By Proposition 6, rankp Ŵ = n − 1

and hence dimN(ŴT) = 1. Thus, dimK ≤ 1 and we must have dimL ≤ 3. In particular,
since N(A− λ0I) ⊂ L by the definition of L, it necessarily holds that dimN(A− λ0I) ≤ 3,
i.e., rankp (A− λ0I) ≥ n− 3.

We claim that rankp (A−λ0I) 6= n−3. Suppose to the contrary that rankp (A−λ0I) =
n − 3. Then, as dimN(A − λ0I) = 3, N(A − λ0I) ⊂ L and dimL ≤ 3, we must have
L = N(A − λ0I) and dimL = 3. Noting that α ∈ L, we see that α ∈ N(A − λ0I). Thus,
N(A − λ0I) ⊃ span (α, β), that is, N(A − λ0I) ⊃ N(WT). This contradicts (5) and hence
proves the claim. Thus, it suffices to consider the following two cases.
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Case 1: rankp (A− λ0I) = n− 1.

Clearly rankp [A−λ0I, α, β] ≥ n−1, so (i) holds. Thus, rankp [A−λ0I, β] = rankp (A−
λ0I) = n − 1 and hence β = (A − λ0I)y over Fp for some vector y. We claim that
y 6∈ span (α, β) (over Fp). Suppose to the contrary that y ≡ k1α + k2β (mod p). Then,
left-multiplying A− λ0I to both sides, we obtain β ≡ k1(λ1 − λ0)α (mod p). This is a con-
tradiction as β and α are linearly independent over Fp. Therefore, y 6∈ span (α, β) and hence
rankp [α, β, y] = 3. Note that y ∈ L by the definition of L. Thus, dimL ≥ rankp [α, β, y] = 3.
This proves (ii) as we always have dimL ≤ 3.

Case 2: rankp (A− λ0I) = n− 2.

As rankp (A − λ0I) = n − 2 and β ∈ N(A − λ0I), we can find another vector β ′

such that β, β ′ constitute a basis of N(A − λ0I). By (5), we see that α 6∈ N(A − λ0I),
that is, α 6∈ span (β, β ′). Since α, β, β ′ ∈ L and dimL ≤ 3, we must have dimL = 3 and
L = span (α, β, β ′). This proves (ii).

We claim that β does not belong to the column space of A − λ0I. Suppose to the
contrary that β = (A− λ0I)y over Fp for some vector y. Then y ∈ L but y 6∈ N(A − λ0I).
As dimL = 3, we also have L = span (β, β ′, y). Since α, β, β ′ is a basis of L, we can write
y ≡ k1α + k2β + k3β

′ (mod p) for some integers k1, k2, k3. Left-multiplying A − λ0I to
both sides, we have β ≡ k1(λ1 − λ0)α (mod p), contradicting the fact that α and β are
linearly independent. This shows the claim and hence rankp [A − λ0I, β] = n − 1. Thus,
rankp [A− λ0I, α, β] ≥ n− 1 and (i) follows.

Combining Case 1 and Case 2, the lemma follows.

Lemma 9. Under the assumption of Proposition 12, if (5) holds, then there exists a vector
x 6≡ 0 (mod p) such that ŴT(G)x ≡ 0 (mod p2).

Proof. We also use the simplified notation as in the proof of Lemma 8. By Corollary 4 (ii),

βT(A−λ0I)β ≡ 0 (mod p2). That is, βT (A−λ0I)β
p

≡ 0 (mod p). Note that βT[A−λ0I, α, β] ≡

0 (mod p). By Lemma 8(i), rankp [A− λ0I, α, β] = n− 1 and consequently each solution to
βTx ≡ 0 (mod p) can be written as a linear combination of columns in [A − λ0I, α, β]. In
particular, we can write

(A− λ0I)β

p
≡ (A− λ0I)y + lα +mβ (mod p), (18)

for some vector y and scalars l, m. Multiplying both sides by p and moving terms, we can
rewrite (18) as

(A− λ0I)(β − py) ≡ p(lα +mβ) (mod p2). (19)

It follows from Lemma 7 that

ŴT(β− py) ≡ eT(β− py)(1, λ0, . . . , λ
n−2
0 , 0)T+αT(β− py)(0, 0, . . . , 0, 1)T (mod p2). (20)

Let L = {z ∈ Fn
p : (A − λ0I)z ∈ span (α, β)} and S be the two-dimensional subspace of

Fn
p spanned by (1, λ0, . . . , λ

n−2
0 , 0)T and (0, 0, . . . , 0, 1). By Lemma 7, for each z ∈ L, we

have Ŵz ∈ S. Consider a linear map σ : L 7→ S defined by σ(z) = Ŵ z for v ∈ L.
By Proposition 6, rankp Ŵ = n − 1 and hence ker σ is at most one dimensional. In fact,
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dimker σ = 1 since ker σ contains β, which is nonzero. By Lemma 8, dimL = 3. Therefore,
dim σ(L) = dimL− dimker σ = 2 and hence σ(L) = S.

Note that eTβ, αTβ ≡ 0 (mod p). We have eT(β−py), αT(β−py) ≡ 0 (mod p). Write

c1 =
eT(β−py)

p
and c2 =

αT(β−py)
p

. Then c1, c2 are integers. Letting

µ = c1(1, λ0, . . . , λ
n−2
0 , 0)T + c2(0, 0, . . . , 0, 1)

T,

we can simplify (20) as
ŴT(β − py) ≡ pµ (mod p2). (21)

As σ(L) = S and µ ∈ S, we can write µ ≡ ŴTη (mod p) for some vector η. Multiplying p
to both sides and combining with (21) leads to ŴT(β − py) ≡ ŴTpη (mod p2), that is,

ŴT(β − py − pη) ≡ 0 (mod p2). (22)

Let x = β − py − pη. Then x ≡ β (mod p) and hence x 6≡ 0 (mod p). This proves the
lemma.

Proof of Theorem 6. Suppose to the contrary that p | ℓ. By Lemma 9, ŴTx ≡ 0 (mod p2)
has a solution x 6≡ 0 (mod p). It follows from Fact 1 (iv) and (i) that p2 | det Ŵ . By
Proposition 11, we have det Ŵ = ±2⌊

n
2
⌋b and consequently p2 | b as p is odd. This means

that b is not square-free, a contradiction. This completes the proof of Theorem 6.

5.2 The case p = 2

The main idea comes from [13]. Set k = ⌊n
2
⌋ and A = A(G). Following [13], let W̃ and W̃1

be the matrix defined as follows:

W̃ =

{

(e, Ae, . . . , Ak−1e) if n is even,

(Ae,A2e, . . . , Ake) if n is odd,
(23)

and

W̃1 =

{

(e, A2e, . . . , A2k−2e) if n is even,

(A2e, A4e . . . , A2ke) if n is odd.
(24)

Proposition 13. [13, Lemma 4.1] Let G ∈ Fn and Q ∈ QG with level ℓ. If

{

v :
WT(G)W̃1

2
v ≡ 0 (mod 2)

}

⊂
{

v : W̃v ≡ 0 (mod 2)
}

, (25)

then ℓ is odd.

Remark 1. Lemma 4.1 in [13] was restricted to controllable graphs. However the assump-
tion of controllability is essentially only used for guaranteeing the rationality of Q as in
Theorem 2. Another major restriction in [13] is that rank2W (G) = ⌈n

2
⌉, which is satisfied

for graphs in Fn introduced here. Note that we have already shown that each matrix in QG

is rational for G ∈ Fn ⊂ Hn in Theorem 3. The original argument for Lemma 4.1 is also
valid in this new setting.
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The following result is new and crucial, which can be regarded as an extension of
Lemma 3.10 in [13] to noncontrollable graphs.

Proposition 14. Let G ∈ Fn. Then rank2
WT(G)W̃1

2
= ⌊n

2
⌋.

Proof. Let V be the matrix obtained from W (G) by removing the last column, that is,
V = [e, Ae, . . . , An−2e].

Claim 1: 22⌊
n
2
⌋−1 | det V TV but 22⌊

n
2
⌋ ∤ det V TV .

By Proposition 1(iii) and Proposition 5, we have

det V TV = ξT(G)ξ(G) = 2W 2
τ,n(G).

By Proposition 3, we know that Wτ,n(G) = ±2⌊
n
2
⌋−1b. Consequently, det V TV = 22⌊

n
2
⌋−1b2.

This proves the claim as b is odd.

Now assume that n is even. Then Lemma 6, together with the fact that eTe is even,
implies that V TV

2
is an integral matrix. By Claim 1, the determinant of V TV

2
is odd and

hence V TV
2

has full column rank over F2. This indicates that
V TW̃1

2
also has full column rank

as W̃1 consists of some columns of V . Moreover, as V TW̃1

2
can be obtained from WT(G)W̃1

2
by

removing the last row, we see that WT(G)W̃1

2
necessarily has full column rank. This proves

the proposition for even n.

In the following we assume that n is odd. Let U = [e, Ae, . . . , An−3e].

Claim 2: rank2
UTA2U

2
= n− 2.

As V = [e, AU ], we have

V TV =

[
n eTAU

UTAe UTA2U

]

. (26)

Define

M =

[
n eTAU

1
2
UTAe 1

2
UTA2U

]

, (27)

which is clearly an integral matrix by Lemma 6. As n is odd, we see from Claim 1 that
2n−2 | det V TV but 2n−1 ∤ det V TV . This indicates that detM is odd, that is M has full
rank over F2. Note that the first row of M is congruent to (1, 0, 0, . . . , 0) over F2. We see

that UTA2U
2

also has full rank over F2. This proves Claim 2.

Note that A2U = [A2e, A3e, . . . , An−1e] and W̃1 = [A2e, A4e, . . . , An−1e]. One easily

sees that W̃1 consists of some columns of A2U . Therefore, UTW̃1

2
must have full column rank

over F2 by Claim 2. Similarly, as UTW̃1

2
can be obtained from WT(G)W̃1

2
by removing the last

two rows, we see that WT(G)W̃1

2
necessarily has full column rank. This proves the odd case

and hence Proposition 14 follows.

Now, we are ready to present the proof of Theorem 5.

Proof of Theorem 5. Let Q ∈ QG and ℓ be its level. By Proposition 14, WT(G)W̃1

2
has full

column rank over F2. Thus, (25) trivially follows as the left space contains only the zero
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vector. It follows from Proposition 13 that ℓ is odd. Suppose to the contrary that ℓ has an
odd prime factor, say p. Then by Corollary 3, we have p | b and consequently (5) holds by
the condition of this theorem. It follows from Theorem 6 that p ∤ ℓ. This is a contradiction.
Thus, we must have ℓ = 1. This indicates that QG contains only permutation matrices and
hence G is DGS by Corollary 2. This finally completes the proof of Theorem 5.

6 Some examples

In this section, we give some examples for illustrations.

Example 3. Let Tn and Un (n ≥ 2) be two series of graphs as shown in Fig. 1. Using
Mathematica, for small n, say n < 200, we find that the determinants of W1n(Tn) and
W1n(Un) behave extremely regular, namely

detW1n(Tn) =

{

±2⌊
n
2
⌋−1 if 4 ∤ n,

0 if 4 | n,
(28)

and

detW1n(Un) =

{

±2⌊
n
2
⌋−1 if 3 ∤ n,

0 if 3 | n.
(29)

By Proposition 4, we see that Tn ∈ F∗
n when 4 ∤ n, and Un ∈ F∗

n when 3 ∤ n. By Theorem 5,
such graphs are DGS.

1

2

3 45 5 3

1

2

4

n
U

n
T

n1n - 1n -n

Fig. 1 Graphs Tn and Un

It is worth mentioning that for controllable graphs, Mao et al. [6] found a similar
phenomenon in searching n-order trees (n even) with detW (G) = 2n/2; see Conjecture 1
in [6]. Although Eqs. (28) and (29) seem simpler than the conjecture of Mao et al., direct
proofs of the two equalities are still out of reach at this moment.

Example 4. Let n = 10. Let G be a graph whose adjacency matrix A = A(G) is given as
follows:

A =



















0 1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 1 1 1
1 1 0 0 1 1 0 1 1 0
0 0 1 1 0 0 0 1 1 0
0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 1 0 1
0 0 1 1 1 0 1 0 0 1
0 0 1 1 1 0 0 0 0 1
0 0 1 0 0 0 1 1 1 0



















.
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It can be easily verified using Mathematica that the SNF of W (G) is

diag(1, 1, 1, 1, 1, 2, 2, 2, 304690, 0).

Noting that the first two vertices are twins in G and 304690 = 2×5×30469, we see G ∈ Fn.
As the twins are adjacent, we have λ1 = −1. Write p1 = 5 and p2 = 30469. Direct calculation
shows that λ0(G; p1) ≡ 2 (mod p1) and λ0(G; p2) ≡ 1224 (mod p2). Thus λ0(G; pi) 6≡ λ1

(mod pi) for i = 1, 2, that is, (5) holds for both p1 and p2. Thus, G is DGS by Theorem 5.

Now we give an example to illustrate the possibility that even when (5) fails, using
Proposition 12, we may still be able to guarantee a graph G ∈ Fn to be DGS.

Example 5. Let G be a graph with adjacency matrix

A =

























0 1 0 0 0 1 1 1 1 1 0 0 1
1 0 0 0 0 1 1 1 1 1 0 0 1
0 0 0 1 0 0 0 0 1 0 0 1 1
0 0 1 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0
1 1 0 0 0 0 0 0 1 0 0 1 1
1 1 0 1 0 0 0 1 0 0 1 1 1
1 1 0 1 1 0 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 1 0
1 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 1 1 0 1 0 0 1 0 0 0
0 0 1 0 1 1 1 0 1 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 0 0

























.

It can be easily verified using Mathematica that the SNF of W (G) is

diag(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 247799709690, 0).

Noting that G contains the first two vertices as twins and from the standard factorization
247799709690 = 2×3×5×13×3607×176153, we see that G ∈ Fn. Let p1, . . . , p5 denote the
five odd prime factors in increasing order. It can be verified that (5) holds unless p = p2 = 5.
Thus, we can not exclude the possibility that p2 | ℓ by Theorem 6, we need more calculations
suggested by Proposition 12.

For the factor p = p2 = 5, we obtain β(G; p2) = (2, 2, 1, 0, 0, 2, 2, 4, 0, 2, 1, 3, 1) and
hence −p2+1

2
βT(G; p2)β(G; p2) = −144 ≡ 1 (mod 5). Now, we can take c0 = 1 and γ0 =

(1, 3, 1, 0, 0, 2, 2, 4, 0, 2, 1, 3, 1). Note that λ1 = −1 and λ0(G; p) ≡ λ1 (mod 5). We may take
λ0 = −1 and then direct calculation shows that γT

0 (A − λ0In)γ0 6≡ 0 (mod 52). Therefore,
by Proposition 12, we must have 5 ∤ ℓ(Q) for any Q ∈ QG. Thus, G is DGS.
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