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Abstract. A cellular string of a polytope is a sequence of faces stacked on top of each

other in a given direction. The poset of cellular strings, ordered by refinement, is known
to be homotopy equivalent to a sphere. The subposet of coherent cellular strings is the

face lattice of the fiber polytope, hence is homeomorphic to a sphere. In some special

cases, every cellular string is coherent. Such polytopes are said to be all-coherent. We
give a complete classification of zonotopes with the all-coherence property in terms of

their oriented matroid structure. Although the face lattice of the fiber polytope in this
case is not an oriented matroid invariant, we prove that the all-coherence property is

invariant.

1. Introduction

We consider the problem of realizing spaces of polytopal subdivisions as the boundary
complex of a polytope. For example, the set of triangulations of a convex polygon form
the vertices of a polytope known as the associahedron. The facets of an associahedron
correspond to diagonals where a facet and vertex are incident exactly when the triangulation
includes the diagonal. In this situation, we are given the combinatorics of the polytope,
namely the face lattice, and we need to provide a geometric realization.

Among the many polytopal realizations of the associahedron (see [8] for a survey), the
secondary polytope construction of Gelfand, Kapranov, and Zelevinsky is particularly ele-
gant [15, Chapter 7]. Given a finite set of points A in Rd, the secondary polytope Σ(A) is
the Newton polytope of the A-determinant. Its vertices correspond to regular triangulations
of A, where a triangulation T is regular (or coherent) if there exists a function f : A → R
such that T is the set of lower faces of the convex hull of {(x, f(x)) : x ∈ A} ⊆ Rd+1.
If A is the set of vertices of a convex polygon, then every triangulation is regular, so the
secondary polytope realizes the associahedron.

Given a linear surjection of polytopes π : P → Q, the Baues poset ω(P,Q) is the set of
polytopal subdivisions of Q by images of faces of P , ordered by refinement; see Section 2.1
for a more precise definition. For example, when P is a simplex, the maximally refined
subdivisions of Q in ω(P,Q) are a family of triangulations with specified vertices. For
generic functions π, Baues observed that if P is a d-simplex and Q is 1-dimensional, then
ω(P,Q) is the face lattice of a (d − 1)-cube [3]. If P is a d-cube and Q is 1-dimensional,
then ω(P,Q) is the face lattice of a (d − 1)-dimensional permutahedron. When P is a d-
dimensional permutahedron, the maximally refined subdivisions of Q may be identified with
reduced words for the longest element of a type Ad Coxeter system. Baues noticed that the
order complex of ω(P,Q) is not always a simplicial sphere, but he conjectured that it is
homotopy-equivalent to a sphere. This was proved for any polytopes P,Q with dimQ = 1
by Billera, Kapranov, and Sturmfels [5]. We refer to the survey article by Reiner for many
other results of this type [18].

As with triangulations, there is a distinguished subset of polytopal subdivisions in
ω(P,Q) called coherent subdivisions. Generalizing the secondary polytope construction, the
fiber polytope introduced by Billera and Sturmfels is a polytope of dimension dimP −dimQ
whose faces correspond to coherent subdivisions of Q [6]. Hence, the Baues poset ω(P,Q)
contains a canonical spherical subspace of dimension dimP −dimQ−1, and Baues’ original
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question is whether this subspace is homotopy-equivalent to the full poset ω(P,Q). We
consider the stronger question:

Question 1.1. For which projections f : P → Q is ω(P,Q) isomorphic to the face lattice
of a polytope of dimension dimP − dimQ?

Using the fiber polytope construction, the poset ω(P,Q) is the face lattice of a (dimP −
dimQ)-dimensional polytope exactly when every element of ω(P,Q) is coherent; see Sec-
tion 2.2 for details. Hence, we may rephrase Question 1.1 as asking whether every subdivision
of Q by faces of P is coherent. If π : P → Q has this property, we say the projection is
all-coherent.

In this work, we examine the special case of Question 1.1 where P is a zonotope and
Q is 1-dimensional. A zonotope with n zones is the image of a n-dimensional cube under
a linear map. To any zonotope with a distinguished linear functional, one may associate
an (acyclic) oriented matroid, an abstract combinatorial object that records the faces of
the zonotope. Some background on oriented matroids is given in Section 3. Given P and
Q as above, it is known that the facial structure of the fiber polytope of π : P → Q is
not an oriented matroid invariant. That is, there exists a zonotope with two distinct linear
functionals defining the same oriented matroid whose fiber polytopes are not combinatorially
equivalent; see Example 3.1. However, we prove that the all-coherence property is invariant.

Our main result is a characterization of the all-coherence property for the set of cellular
strings of a zonotope.

Theorem 1.2. Let Z be a zonotope with a generic linear functional π. The following are
equivalent.

(1) The pair (Z, π) is all-coherent.
(2) The Baues poset ω(Z, π) is the face lattice of a polytope.
(3) The order complex ∆(ω(Z, π)) is a simplicial sphere.
(4) Every monotone path is coherent.
(5) The acyclic oriented matroidM associated to (Z, π) is in the list given in Section 5.

The equivalence of (1)-(3) is proved for all polytopes in Corollary 2.2. Since the order
complex ∆(ω(Z, π)) only depends on the oriented matroid corresponding to (Z, π), we may
take Statement (3) as the definition of the all-coherence property for an oriented matroid.
We prove the equivalence of (1) and (4) in Corollary 4.2. Our proof of this equivalence
works for zonotopes only. Finally, we give a complete classification of zonotopes with the
all-coherence property in Section 5 using the techniques developed in Section 4.

The all-coherence property was previously studied for projections P → Q where P is a
cube and Q is 2-dimensional [11] or P and Q are cyclic polytopes [1]. It was observed that in
many cases of an all-coherent projection, there is a “nice” formula for the number of generic
tilings. In Section 3.3, we demonstrate a family of zonotopes for which every cellular string
is coherent. As in the preceding literature, the monotone paths of these zonotopes admit a
nice enumeration.

This paper continues the work by the first author [12], which contained several tech-
niques to detect incoherent monotone paths and had a partial classification of all-coherent
zonotopes. However, our proof of the full classification primarily relies on Proposition 4.5,
which is new to this paper.

2. Universal coherence for polytopes

In this section, we recall coherence and the Baues poset of polyhedral subdivisions in-
duced by a projection of polytopes. In Section 2.2, we prove that every element of the Baues
poset is coherent exactly when its order complex is homeomorphic to a sphere of a certain
dimension.

2.1. Fiber polytope. Given a polytope P and linear functional ψ, let Pψ be the face

Pψ = {x ∈ P : ψ(x) = min
y∈P

ψ(y)}.
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That is, Pψ is the face of P at which ψ is minimized. The normal fan of P ⊆ Rd is
a subdivision of (Rd)∗ into relatively open cones where ψ1 and ψ2 lie in the same cone if
Pψ1 = Pψ2 . Let π : P → Q be a surjective (affine) linear map of polytopes. A collection ∆
of faces of the boundary complex of P is called a π-induced subdivision of Q if

• {π(F ) : F ∈ ∆} is a polyhedral complex subdividing Q with all π(F ) distinct, and
• if π(F ) ⊆ π(F ′) then F = F ′ ∩ π−1(π(F )).

For any π : P → Q, there is always the trivial subdivision ∆ = {P}. A π-induced
subdivision ∆ is coherent if there exists a linear functional ψ : P → R such that for x ∈ Q
and F ∈ ∆ with x ∈ π(F ),

π−1(x)ψ = F ∩ π−1(x).

Any linear functional ψ defines a unique coherent subdivision ∆ψ. For example, ∆0 is the
trivial subdivision.

The Baues poset ω(P,Q) is the set of π-induced subdivisions, partially ordered by refine-
ment: ∆ ≤ ∆′ if for any face F in ∆ there exists F ′ in ∆′ such that F ⊆ F ′. The subposet
of coherent subdivisions is denoted ωcoh(P,Q).

The fiber polytope Σ(P,Q) was defined by Billera and Sturmfels as the Minkowski integral
1

Vol(Q)

∫
Q
π−1(x)dx; see [6] for details. This polytope lives in the ambient space of P and is

of dimension dimP − dimQ. The faces of the fiber polytope encode coherent subdivisions
of Q in the following sense. For linear functionals ψ1, ψ2 : P → R, ∆ψ1 = ∆ψ2 if and only if
ψ1 and ψ2 lie in the relative interior of the same cone of the normal fan of Σ(P,Q). For the
most part, we will only need results about the normal fan of a fiber polytope rather than
the polytope itself.

2.2. All-coherence property. Given a poset X, the order complex ∆(X) is the abstract
simplicial complex whose faces are chains x0 < · · · < xd of X. If X has a unique maximum or
minimum element, we let X be the same poset with these elements removed. In particular,
ω(P,Q) is the poset of nontrivial subdivisions of Q by faces of P .

We say that a projection π : P → Q is all-coherent if every π-induced subdivision of
Q is coherent. The following theorem gives a useful characterization of the all-coherence
property.

Theorem 2.1. Given a projection π : P → Q, the following statements are equivalent.

(1) The map π is all-coherent.
(2) The Baues poset ω(P,Q) is isomorphic to the face lattice of a polytope of dimension

dimP − dimQ.
(3) The order complex ∆(ω(P,Q)) is a simplicial sphere of dimension dimP−dimQ−1.

Proof. We prove (1)⇒(2)⇒(3)⇒(1).
If P → Q is all-coherent, then ω(P,Q) = ωcoh(P,Q). The latter poset is isomorphic to

the face lattice of the fiber polytope Σ(P,Q), which is a polytope of dimension dimP−dimQ.
If ω(P,Q) is the face lattice of a polytope R, then its proper part ω(P,Q) is the face poset

of its boundary complex ∂R. The order complex ∆(ω(P,Q)) is realized by the barycentric
subdivision of ∂R, so it is a simplicial sphere. If dimR = dimP −dimQ, then its boundary
complex has dimension dimP − dimQ− 1.

Now assume ∆(ω(P,Q)) is a simplicial sphere of dimension d = dimP − dimQ− 1. The
inclusion ωcoh(P,Q) ↪→ ω(P,Q) induces an injective simplicial map

∆(ωcoh(P,Q)) ↪→ ∆(ω(P,Q)).

The geometric realization of this map is a continuous map Sd → Sd which is a homeomor-
phism onto its image. If it is not surjective, then we obtain a subspace of Rd which is
homeomorphic to Sd. This is well-known to be impossible, e.g. by an application of the
Borsuk-Ulam Theorem; see [17, Theorem 2.1.1]. Hence, ω(P,Q) = ωcoh(P,Q) holds, which
means that P → Q is all-coherent. �

If dimQ = 1, we can drop the dimension condition. This proves the equivalence of
Theorem 1.2(1)-(3).

3



Corollary 2.2. If dimQ = 1, then the following are equivalent.

(1) The map π : P → Q is all-coherent.
(2) The Baues poset ω(P,Q) is the face lattice of a polytope.
(3) The order complex ∆(ω(P,Q)) is a simplicial sphere.

Proof. The proof of (1)⇒(2)⇒(3) is immediate. It remains to show (3) implies (1).
Suppose dimQ = 1 and ∆(ω(P,Q)) is a simplicial sphere. Then [5, Theorem 1.2]

states that ∆(ω(P,Q)) is homotopy equivalent to a sphere of dimension dimP − 2. Hence,
∆(ω(P,Q)) is homeomorphic to SdimP−2. By Theorem 2.1, it follows that π is all-coherent.

�

3. Oriented matroids

In this section, we develop some notation for oriented matroids. For more background
on oriented matroids, we recommend [7].

3.1. Hyperplane arrangements. The normal fan of a zonotope is the set of cones cut
out by a real, central hyperplane arrangement. In this section, we recall some notation for
hyperplane arrangements.

A real hyperplane arrangement (or arrangement) is a finite set of hyperplanes in a real
vector space V . We will assume that the arrangement is central, which means that every
hyperplane contains the origin. Each hyperplane partitions V into two open half-spaces and
the hyperplane itself. We typically assume that an arrangement comes with an orientation;
that is, for each hyperplane H, we set H0 = H and assign the label H+ and H− to the two
open half-spaces defined by H. A face of an arrangement A is any nonempty cone of the
form

⋂
H∈AH

x(H) where x ∈ {0,+,−}A. Maximal faces are called chambers. A sign vector

is an element of {0,+,−}E for some finite set E. A sign vector x ∈ {0,+,−}A is a covector
of A if there is a face F of A such that F =

⋂
H∈AH

x(H). The set of covectors of A will be
denoted L(A).

We say a zonotope Z = Z(ρ) is generated by a set of vectors ρ = {ρ1, . . . , ρn} ⊆ V if
it is (an affine translation of) the image of [0, 1]n under the matrix with columns vectors
ρ1, . . . , ρn. The normal fan of Z is the hyperplane arrangement A = {H1, . . . ,Hn} in V ∗

where Hi is the set of linear functionals annihilating ρi. In this situation, we say that Z is
dual to A.

Example 3.1. Set I = [0, 1] and let π : I6 → Z be a generic projection from the standard
6-dimensional cube to a 2-dimensional zonotope Z with 6 zones. We may assume that π
takes the form (

1 1 1 1 1 1
a1 a2 a3 a4 a5 a6

)
for some a1 < · · · < a6. A linear map π̂ : R6 → R3 that is a factor of π takes the form 1 1 1 1 1 1

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6


for some b1, . . . , b6 ∈ R. Let Ẑ be the image of I6 under π̂. For 1 ≤ i < j < k ≤ 6, let ∆

a
ijk

denote the minor

aibj − aibk + ajbk − ajbi + akbi − akbj .
The sequence of signs (sgn ∆

a
ijk)1≤i<j<k≤6 is the chirotope of Ẑ, and it completely deter-

mines the facial structure of Ẑ. As a function of b, the minor ∆
a
ijk is a linear form on R6.

Hence, the normal fan of the fiber polytope associated to the projection π is the set of cones
cut out by the hyperplane arrangement

Aa = {ker ∆
a
ijk : 1 ≤ i < j < k ≤ 6},

which is known as a discriminantal arrangement (cf. [4]).
4



Figure 1. A zonogon tiling

The Baues poset ω(I6, Z) is the collection of subdivisions of Z by zonogons, each of which
is the Minkowski sum of several edges of Z. In particular, the maximally refined subdivisions
of Z are by rhombi. The coherent rhombic tilings correspond to the chambers of Aa. There
are a total of 904 distinct rhombic tilings of Z. However, there is no choice of vector a for
which all 904 tilings are coherent. A simple way to see this is that the (proper) subposet of
ω(I6, Z) of tilings refining the zonotopal subdivision in Figure 1 is a rank 4 Boolean lattice,
but the subposet of coherent subdivisions is the face lattice of a 4-dimensional polytope.
Moreover, the number of chambers of Aa may vary for different choices of a. For example,
one can check that A(1,2,3,4,5,6) has 888 chambers, whereas A(1,2,3,4,5,7) has 892 chambers.
Sturmfels [20] classified the combinatorial types of discriminantal arrangements of this form,
showing that it has at least 876 and at most 892 chambers.

The all-coherence property for a projection of the form π : In → Z, Z ⊆ R2 was
completely classified by Edelman and Reiner [11]. In that paper, the authors observed
that the number of rhombus tilings of Z admits a nice product formula when they are all-
coherent, as given by MacMahon when Z is a hexagon [16] or Elnitsky when Z is an octogon
[13]. Interestingly, many (but not all) of the discriminantal arrangements are free when the
projection π has the all-coherence property. However, no direct connection between freeness
and all-coherence is known. Bailey [2] observed a similar connection between all-coherence
of the zonotopal tilings of a 3-dimensional zonotope Z and freeness of the corresponding
discriminantal arrangement.

3.2. Cellular strings. Fix an arrangement A of hyperplanes in Rn. Designate one of the
chambers of A to be the fundamental chamber c0. Given two chambers c and c′ of A, let
S(c, c′) denote the set of hyperplanes of A for which c and c′ lie on opposite sides of the
hyperplane. A gallery is a sequence of chambers c0, . . . , cl such that |S(ci−1, ci)| = 1 for all
i. This gallery may be drawn as a path in Rn connecting generic points in each chamber. It
is reduced if |S(c0, cl)| = l, which means that it may be represented by a path that crosses
each hyperplane at most once. For our purposes, a gallery is always assumed to be reduced
and connecting a pair of antipodal chambers c0, −c0. Such a gallery defines a total order
on the arrangement A where H < H ′ if H is crossed before H ′. If Z is a zonotope dual to
A, then a gallery on A corresponds to a monotone path on Z. For this correspondence, one
chooses a linear functional π that is minimized on Z at v0, the vertex whose normal cone is
c0.

The cellular strings of A may be defined in several equivalent ways, e.g. as sequences
of faces, covectors (Section 3.4), or chambers. Given a fundamental chamber c0, we orient
each H ∈ A so that c0 is on the negative side of H. We define a cellular string as a sequence
of faces (F1, . . . , Fl) of A such that for each H ∈ A, there exists i ∈ [l] such that Fi is
supported by H, Fj ⊆ H− if j < i and Fj ⊆ H+ if j > i. In particular, a cellular string
determines an ordered set partition (A1, . . . ,Al) of the set A.

5



In terms of a zonotope Z with generic functional π, a cellular string is a sequence of faces
(F1, . . . , Fl) where F1 contains the bottom vertex, Fl contains the top vertex, and adjacent
faces Fi, Fi+1 meet at a vertex vi such that π(x) ≤ π(vi) ≤ π(y) for x ∈ Fi, y ∈ Fi+1.
We note that this definition of a cellular string agrees with that of a π-induced subdivision
given in Section 2.1.

Lemma 3.2. Given a real vector space V , let A be a set of hyperplanes in V ∗ and let π
be a generic point in V ∗. For H ∈ A, let vH be a vector in V such that 〈vH , H〉 = 0 and
π(vH) > 0, and let Z be the zonotope generated by {vH : H ∈ A}. Then an ordered set
partition (A1, . . . ,Al) of A defines a π-coherent cellular string of Z if and only if there exists
ψ ∈ V ∗ such that

ψ(vH)

π(vH)
=
ψ(vH′)

π(vH′)

for H,H ′ in the same block, and

ψ(vH)

π(vH)
<
ψ(vH′)

π(vH′)

if H ∈ Ai, H ′ ∈ Aj , i < j.

Proof. First assume that the ordered set partition (A1, . . . ,Al) of A defines a π-coherent
cellular string. Let F = (F1, . . . , Fl) denote the sequence of faces of Z and (x1, . . . , xl) the
sequence of covectors associated to this cellular string. Since this string is π-coherent, there
exists a linear functional ψ such that ∆ψ = F.

For an index i, let pi =
∑
j: j<i

∑
H∈Aj

vH . The face Fi is the Minkowski sum of the

point pi with the image of [0, 1]|Ai| under a matrix with column set {vH : H ∈ Ai}.
Fix some q ∈ R such that q > π(pi) and q < π(pi + vH) for H ∈ A. By the coherence

assumption, the face π−1(q)ψ is equal to π−1(q)∩ Fi. Fix H,H ′ ∈ A, and set v = vH , v
′ =

vH′ . Pick λ, λ′ ∈ [0, 1] such that π(pi + λv) = q = π(pi + λ′v′). Then λπ(v) = λ′π(v′).
Assume H and H ′ are both in Ai. Then ψ(pi + λv) = ψ(vi + λ′v′), so λψ(v) = λ′ψ(v′).

Consequently, ψ(v)
π(v) = ψ(v′)

π(v′) .

On the other hand, suppose H ∈ Ai and H ′ ∈ Aj with i < j. Then pi + λ′v′ is in Z but

not in Fi. Hence, ψ(pi + λv) < ψ(pi + λ′v′) holds, which implies ψ(v)
π(v) <

ψ(v′)
π(v′) .

Now let (A1, . . . ,Al) be an ordered set partition of A and assume that there exists
ψ ∈ V ∗ such that

ψ(vH)

π(vH)
=
ψ(vH′)

π(vH′)

for H,H ′ in the same block, and

ψ(vH)

π(vH)
<
ψ(vH′)

π(vH′)

if H ∈ Ai, H ′ ∈ Aj , i < j.

For each i, let λi denote the ratio ψ(vH)
π(vH) for some H ∈ Ai. Let pi =

∑
j: j<i

∑
H∈Aj

vH .

Let Fi be the zonotope generated by {vH : H ∈ Ai}, translated by pi.
We claim that Fi is a face of Z, namely that Fi = Zψi where ψi = ψ− λiπ. For H ∈ A,

ψi(vH) = ψ(vH)− λiπ(vH)


= 0 if H ∈ Ai
< 0 if H ∈ Aj , j < i

> 0 if H ∈ Aj , j > i

.

Using the case H ∈ Ai, we see that ψi takes a common value ψi(pi) on the zonotope Fi.
The zonotope Z is the set of points

Z = {
∑
H∈A

µHvH : (µH) ∈ [0, 1]A}.

6



For p ∈ Z, there exists a representation p − pi =
∑
H∈A µHvH where µH ≤ 0 for

H ∈ Aj , j < i and µH ≥ 0 for H ∈ Aj , j > i. By the previous calculation, we have
ψi(p− pi) ≥ 0. Hence, ψi is minimized on Z at Fi.

The image π(Fi) is the interval [π(pi), π(pi+1)]. Hence, the images of the faces Fi parti-
tion the image of Z into intervals. For q ∈ π(Fi), ψi is minimized on π−1(q) at Fi ∩ π−1(q).
But ψi = ψ − λiπ and π is constant on π−1(q), so ψ is minimized on π−1(q) at Fi ∩ π−1(q)
as well. Therefore, (F1, . . . , Fl) is a π-coherent cellular string induced by ψ.

�

Since the set of cellular strings of A starting from c0 does not depend on the choice of
π ∈ c0, we may define the pair (A, c0) to be all-coherent if there exists some π in the interior
of c0 such that π : Z → R1 is all-coherent. If π is replaced by some other π′ in c0, it would
still be all-coherent by Corollary 2.2.

Given a gallery γ in A and an intersection subspace X, there is an induced gallery γX on
the localized arrangement AX where γX crosses elements of AX in the same order as γ. If
X ∈ L2, then there are two possibilities for γX . If γ and γ′ are galleries, the L2-separation
set L2(γ, γ′) is the set of X ∈ L2 such that γX 6= γ′X . The set of galleries forms a graph
such that γ and γ′ are adjacent if |L2(γ, γ′)| = 1.

Remark 3.3. The graph of galleries is known to be connected [9]. More recently, the
diameter of this graph was investigated by Reiner and Roichman [19]. In their paper, they
observe that the graph-theoretic distance between two galleries γ and γ′ is bounded below
by |L2(γ, γ′)|. On the other hand, if (A, c0) is all-coherent, then there exists a path between
γ and γ′ of length equal to |L2(γ, γ′)|. We conjecture that the converse statement holds: If
the distance between any reduced galleries γ and γ′ is given by |L2(γ, γ′)|, then (A, c0) is
all-coherent.

3.3. An all-coherent family. In this section, we consider an explicit 2-parameter family
of zonotopes Z with linear functional π such that (Z, π) is all-coherent. We present this
example in detail as it will be useful for the classification in Section 5.

Fix positive integers r,m. Let e1, . . . , er be the elementary basis vectors in Rr, and
define vectors a1, . . . , am where ai = ier +

∑r
j=1 ej . Let Z be the zonotope generated by

E = {a1, . . . , am, e1, . . . , er}. Let π : Rr → R be the sum of coordinates function. In
particular, π(ei) = 1 and π(aj) = j + r.

We claim that (Z, π) is all-coherent. To prove this, we first determine some necessary
conditions for a permutation of E to define a monotone path. Then we show that each such
permutation may be realized as a coherent monotone path by a suitable linear functional.
Finally, we invoke Lemma 4.1 to complete the proof.

Let p be a monotone path on Z, and let ≺ be the induced total order on E. For
1 ≤ k < l ≤ m, we have a relation (l − k)er − al + ak = 0, so either er ≺ al ≺ ak or
ak ≺ al ≺ er holds. Combining these relations, we have either er ≺ am ≺ · · · ≺ a1 or
a1 ≺ · · · ≺ am ≺ er. By the relation ai = ier +

∑r
j=1 ej , the maximum and minimum

elements under ≺ must be elementary basis vectors.
Now assume ≺ is a total ordering on E whose maximum and minimum elements are

elementary basis vectors, and either er ≺ am ≺ · · · ≺ a1 or a1 ≺ · · · ≺ am ≺ er holds.
We construct a linear functional ψ realizing ≺ as a coherent monotone path. To do so, we
distinguish three cases:

(1) er is maximal with respect to ≺,
(2) er is minimal with repsect to ≺, or
(3) er is neither minimal nor maximal.

We let ψj = ψ(ej) and α =
∑r
j=1 ψj . We observe that ψ(ej)/π(ej) = ψj and ψ(ai)/π(ai) =

(α+ iψr)/(i+ r). We assume throughout that ψ is chosen so that if ei ≺ ej then ψi < ψj .
We impose additional constraints on ψ separately for the three cases above.

Suppose we are in Case 1, and let ek be the minimum element under ≺. Set ψr = 1, and
for j ∈ [r − 1] \ {k}, let ψj be a positive number such that 0 < ψj < 1 and

7



• if ai ≺ ej then i
i+r < ψj , and

• if ej ≺ ai then ψj <
i
i+r .

Finally, choose ψk < 0 such that α = 0. Then ψ(ai)/π(ai) = i
i+r . By the preceding

conditions, we conclude that ≺ is realized as a coherent monotone path by ψ.
Case 2 follows by similar reasoning as Case 1. Assume we are in Case 3, and let ek and el

be the minimum and maximum elements of E under ≺, respectively. Furthermore, assume
that a1 ≺ · · · ≺ am ≺ er holds. Set ψr = 0, and for j ∈ [r − 1] \ {k, l}, let ψj be a real
number such that

• if ai ≺ ej then −1
i+r < ψj , and

• if ej ≺ ai then ψj <
−1
i+r .

Finally, choose ψk < 0, ψl > 0 such that ψk < ψi < ψl for all i and α = −1. Then
ψ(ai)/π(ai) = −1

i+r , and we again conclude that ≺ is realized as a coherent monotone path
by ψ. A similar argument exists when er ≺ am ≺ · · · ≺ a1 holds. In that case, we fix α = 1
and choose ψ accordingly.

We have now proven that every monotone path is coherent. By Lemma 4.1, this implies
that every cellular string is coherent.

In our proof of all-coherence of (Z, π), we identified the monotone paths on Z with total
orderings of E such that

(1) the maximum and minimum elements of E are equal to ek, el for some k, l, and
(2) either er ≺ am ≺ · · · ≺ a1 or a1 ≺ · · · ≺ am ≺ er holds.

Using this characterization of monotone paths, we may q-count them as follows. Let γ0
be the monotone path corresponding to the sequence (e1, . . . , er−1, a1, . . . , am, er). Then∑

γ

q|L2(γ0,γ)| = (1 + qm+2)[r − 1]!q

[
m+ r − 1
m+ 1

]
q

.

We use condition 2 to distinguish two cases for a monotone path γ. If a1 ≺ · · · ≺ am ≺ er,
then γ may be constructed by taking an arbitrary permutation τ of [r − 1] and shuffling
(eτ(2), . . . , eτ(r−1)) with (a1, . . . , am, er). We may identify this shuffle with a partition λ in
a (r − 2)× (m+ 1) box. Then |L2(γ0, γ)| is equal to the number of inversions of τ plus the
size of λ. Hence, these monotone paths contribute

[r − 1]!q

[
m+ r − 1
m+ 1

]
q

to the q-count. On the other hand, if er ≺ am ≺ · · · ≺ a1 holds, then γ may be constructed
in the same way except that (eτ(1), . . . , eτ(r−2)) is shuffled with (er, am, . . . , a1). Flipping

(a1, . . . , am, er) and pushing eτ(r−1) to the end adds a factor of qm+2 to the previous q-count
for these paths.

Remark 3.4. In Example 3.1, we noted the large overlap between zonogons whose rhombic
tilings are all coherent and whose discriminantal arrangements are free, as observed in [11].
In contrast, the arrangements dual to the fiber zonotopes in the 2-parameter family of
zonotopes described in this section are not free in general. This lack of freeness is already
present when r = 4 and m = 1. Indeed, its characteristic polynomial (x− 1)x(x2− 9x+ 26)
does not factor into linear polynomials over Z.

3.4. Covector axioms. Fix a finite set E. Recall a sign vector is an element of {+,−, 0}E .
Sign vectors form a monoid under composition, where

(x ◦ y)(e) =

{
x(e) if x(e) 6= 0

y(e) otherwise
,

for x, y ∈ {+,−, 0}E . We note that the identity element of the monoid is the 0-vector. The
set {+,−, 0} is partially ordered where 0 < +, 0 < −, and + and − are incomparable.
This ordering extends to {+,−, 0}E by the product ordering. The negation −x is the vector
whose signs are reversed from x. Given sign vectors x, y, the separation set S(x, y) is the
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set of elements e ∈ E such that x(e) = −y(e) and x(e) 6= 0. The support of a sign vector x
is the set supp(x) = {e ∈ E : x(e) 6= 0}.

A submonoid L of sign vectors is said to be the set of covectors of an oriented matroid
if it is closed under negation and

• for x, y ∈ L, e ∈ S(x, y), there exists z ∈ L such that z(e) = 0 and z(f) =
(x ◦ y)(f) = (y ◦ x)(f) for f ∈ E \ S(x, y). (elimination)

As an example, the set of covectors of a hyperplane arrangement defined in §3.1 satisfies
these properties. An oriented matroid that comes from a hyperplane arrangement is said
to be realizable. While not every oriented matroid is realizable, a theorem of Folkman and
Lawrence states that oriented matroids are “close” to being realizable [14]. For our purposes,
we use the following consequence: the proper part of the poset of covectors of any oriented
matroid is isomorphic to the poset of faces of a regular CW-sphere.

The set of covectors completely determines the rest of the data associated with an ori-
ented matroid. Hence, we say that two oriented matroids are equal if they have the same
set of covectors. For a discussion of other axiomatizations of oriented matroids, we refer to
[7, Chapter 3].

Cellular strings may be defined at the level of oriented matroids as they were for zono-
topes in Section 3.2. If (M, E) is an acyclic oriented matroid with c0 = −E being the
all-negative covector, then a cellular string ofM is a sequence of covectors (x1, . . . , xl) such
that x1 ◦ c0 = c0, xl ◦ (−c0) = −c0 and xi ◦ (−c0) = xi+1 ◦ c0 for all i. We let ω(M) denote
the set of cellular strings of M.

The main difference between cellular strings of zonotopes and oriented matroids is that
we do not know of a notion of “coherence” for oriented matroids. In particular, given two
realizations (Z, π), (Z ′, π′) of an acyclic oriented matroid, a cellular string may be coherent
for (Z, π) but incoherent for (Z ′, π′). However, using Theorem 2.1, we can say M is all-
coherent if ω(M) is homeomorphic to a sphere.

4. All-coherence property for zonotopes

4.1. Coherence of monotone paths. The main result in this section is Lemma 4.1, which
says that if all monotone paths of a zonotope are coherent, then so is every cellular string.
This lemma appeared previously as [12, Lemma 4.16].

For this section, we fix a zonotope Z = Z(A) for some matrix A and generic linear
functional π. We let E denote the set of column vectors of A. We will assume that E
contains no zero vectors nor any parallel or antiparallel pairs of vectors. Furthermore, we
scale the elements of E so that π(e) = 1 for each e ∈ E. This results in no loss of generality
as the poset of cellular strings is invariant under these changes.

Lemma 4.1 ([12]). Let F be a cellular string. If every cellular string properly refining F
is coherent, then F is coherent.

Proof. Assume that every cellular string properly refining F is coherent. Let (E1, . . . , El)
be the ordered set partition of E induced by F. Let F(1) be a maximal proper cellular string
of F. Then F(1) corresponds to the ordered set partition

(E1, . . . , Ek−1, E
′
1, . . . , E

′
m, Ek+1, . . . , El)

which differs from F by breaking up a unique block Ek. Let F be the element of F gener-
ated by Ek. Then F is a zonotope containing a cellular string generated by (E′1, . . . , E

′
m).

Consequently, F admits an opposite cellular string generated by (E′m, . . . , E
′
1). Hence, there

is a cellular string F(2) of Z generated by

(E1, . . . , Ek−1, E
′
m, . . . , E

′
1, Ek+1, . . . , El).

By assumption, both F(1) and F(2) are coherent cellular strings. Hence, there exist

linear functionals ψ(1), ψ(2) such that F(i) = ∆ψ(i)

for i = 1, 2. By Lemma 3.2 and the
9



Figure 2. A zonotope with the all-coherence property

normalization assumption (π(e) = 1 for all e ∈ E), there is a unique value ψ
(i)
Ej

= ψ(i)(e) for

e ∈ Ej . We may similarly define ψ
(i)
E′j

for blocks E′j .

Let t be the smallest number in the interval [0, 1] such that there exists j ∈ {1, . . . ,m−1}
with

(1− t)ψ(1)
E′j

+ tψ
(2)
E′j

= (1− t)ψ(1)
E′j+1

+ tψ
(2)
E′j+1

.

Let ψ = (1 − t)ψ(1) + tψ(2). It is clear that ψ is constant on each block of F(1). As
before, we let ψEj

= ψ(e) for e ∈ Ej and ψE′j = ψ(e) for e ∈ E′j . Then for e ∈ Ek, we have

ψE1 < · · · < ψEk−1
< ψE′1 ≤ · · · ≤ ψE′m < ψEk+1

< · · · < ψEl

and ψE′j = ψE′j+1
. Hence ∆ψ is a cellular string that refines F and is properly refined by

F(1). By the maximality of F(1), we deduce F = ∆ψ, as desired.
�

Letting F be the trivial cellular string, we deduce the following corollary.

Corollary 4.2. If every monotone path is coherent, then (Z, π) is all-coherent.

Remark 4.3. The analogue of Lemma 4.1 for general polytope projections fails to hold.
For example, there exists a point configuration with two coherent triangulations connected
by an incoherent bistellar flip [10, Example 5.3.4].

Example 4.4. Consider the zonotope in Figure 2 with a linear functional π such that the
bolded path is monotone. This path can be flipped to the left through the middle hexagon
face or to the right through one of the rhombic faces. Indeed, one can check that every
monotone path is adjacent to exactly two monotone paths. Hence, the graph of monotone
paths is a cycle. Since the subgraph of coherent paths is also a cycle, we conclude that every
monotone path is coherent. Corollary 4.2 then implies that the zonotope is all-coherent.

4.2. Gradedness. The face lattice of a polytope is graded by dimension. Thus, if (A, c0)
is all-coherent, then ω(A, c0) is a graded lattice. In practice, the poset of cellular strings is
typically not graded, which makes this a useful criterion for the all-coherence property. In
the following proposition, we give a useful refinement to this criterion.

Proposition 4.5. Let (A, c0) be all-coherent, and let r = rk(A).

(1) ω(A, c0) is graded and every maximal chain contains exactly r elements.
(2) There does not exist a proper cellular string F such that

∑
x∈F(rkx− 1) ≥ r − 1.

Proof. The first claim is immediate from Theorem 2.1.
Let F be a cellular string of (A, c0), and suppose it contains a covector x such that

rkx > 1. Set X = suppx. Let y be any covector such that x ≤ y and rkx = rk y + 1.
Then yX is a cocircuit of AX , and there exists a cellular string F′ of (AX , (c0)X) containing
yX . This cellular string lifts to a partial cellular string of A between x ◦ c0 and x ◦ (−c0).
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Replacing x in F by this partial cellular string, we obtain a new cellular string F′ < F such
that

1 +
∑
z∈F′

(rk z − 1) ≥
∑
z∈F

(rk z − 1).

Suppose (A, c0) has a proper cellular string F such that
∑
x∈F(rkx− 1) ≥ r − 1. Then

we may apply the above construction repeatedly to obtain a chain with at least r elements.
Extending this chain by the trivial cellular string gives a chain of with at least r+1 elements,
contradicting (1). �

Proposition 4.5(2) gives a useful test for incoherence, as in the following example.

Example 4.6. Let Z be the image of the 4-cube under the map

π =

1 0 1 0
0 1 1 0
0 1 0 1


and define f : R3 → R such that f(x, y, z) = x + y + z. Let M be the acyclic oriented
matroid associated to (Z, f) with ground set {a, b, c, d} corresponding to the six columns of
π. We order the ground set a < b < c < d to agree with the ordering of the columns of π.
Then M has a unique circuit (+,+,−,−), along with its negative (−,−,+,+). The other
14 elements of {+,−}{a,b,c,d} are maximal covectors of M.

The oriented matroidM has a cellular string consisting of two cocircuits (0,−,−, 0) and
(+, 0, 0,+). But (rk(0,−,−, 0) − 1) + (rk(+, 0, 0,+) − 1) = 2 = rkM− 1, so (Z, f) is not
all-coherent by Proposition 4.5(2).

4.3. Matroid operations. Let V be a real vector space of dimension r. Fix an r × n real
matrix A, and let E be the set of column vectors of A. We let Z = Z(A) and let π be a
linear functional on Rr that is generic with respect to Z. This defines an acyclic oriented
matroid M. Since the coherence of cellular strings is invariant under scaling the columns
of A, we will assume throughout this section that π(e) = 1 for all e ∈ E. Let A be the
set of hyperplanes in V ∗ for which L(A) is the normal fan of Z. Let c0 be the chamber of
A containing π. For simplicity, we will assume that the set E does not contain any zero
vectors or pairs of parallel vectors.

Lemma 4.7 (cf. [12](Corollary 5.2)). Let Z̃ be the direct sum of Z with an m-cube. We

realize this zonotope by a matrix Ã = A ⊕ Im where Im is the rank m identity matrix. If
π̃ is a generic linear functional on Rr+m whose restriction to Z is equal to π, then (Z, π) is

all-coherent if and only if (Z̃, π̃) is all-coherent.

Proof. It suffices to prove the lemma for m = 1 since if m > 1, the zonotope Z̃ decomposes
as (Z⊕ [0, 1]m−1)⊕ [0, 1], and the result follows by induction. Hence, we will assume m = 1
for the remainder of the proof.

Let e be the unit vector in the last coordinate of Rr+1. Let π̃ be a generic linear
functional on Rr+1 whose restriction to Z is π. We may assume that π̃(e) = 1 without

affecting coherence of a cellular string on Z̃.

Let γ̃ be a cellular string on Z̃. Let γ be the cellular string on Z obtained by deleting e
from γ̃. Suppose γ is π-coherent. Then there exists a linear functional ψ on Rr that picks
out γ. Let (E1, . . . , El) be the ordered set partition of {a1, . . . , an} induced by γ. This
means for a ∈ Ei, b ∈ Ej , ψ(a) ≤ ψ(b) if i ≤ j.

We define a linear functional ψ̃ that determines the string γ̃ as follows. For each ai, set

ψ̃(ai) = ψ(ai). If e is added to a block Ei to form γ̃, then set ψ̃(e) = ψ(a) for some a ∈ Ei.
If e is in its own block between Ei and Ei+1, then set ψ̃(e) to be a value strictly between
ψ(a) and ψ(b) where a ∈ Ei, b ∈ Ei+1. In either case, we have produced the desired linear
functional.

Conversely, if we start with a π̃-coherent string γ̃ induced by ψ̃, then ψ induces γ on Z.
This completes the proof. �
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For oriented matroids (M, E), (M′, E′) on disjoint ground sets E,E′, the direct sum
M⊕M′ ofM andM′ is an oriented matroid with covectors L(M)×L(M′). An oriented
matroid is indecomposable if cannot be expressed as a direct sum of two nontrivial oriented
matroids. It is straightforward to show that the circuits ofM⊕M′ is the union of C(M)×{0}
and {0} × C(M′) [7, Proposition 7.6.1].

Lemma 4.8. LetM be an acyclic oriented matroid that decomposes asM1⊕M2. If both
M1 and M2 have a circuit supported by at least 3 elements, then M is not all-coherent.

Proof. Let Ei be the ground set of Mi for i = 1, 2. Assume that M1 and M2 each have
a circuit supported by at least 3 elements. Then for i = 1, 2 there exists xi ∈ L(Mi) such
that xi is a corank 1 covector and rkMi \ x−1i (0) ≥ 2.

Let Fi = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
li

) be a cellular string of Mi containing xi such that each cell

y
(i)
j is rank 1 unless y

(i)
j = xi for i = 1, 2. Without loss of generality we may assume that

l1 ≤ l2. By the assumption on xi, we have l1 ≥ 3. We define a new string F = (y1, . . . , ym)

for M where yj = y
(1)
j ⊕ y

(2)
j if j ≤ l1 and yj = +E1 ⊕ y(2)j if l1 < j ≤ l2. Then

∑
(rk yj − 1) =

l1∑
j=1

rk y
(1)
j +

l2∑
j=1

(rk y
(2)
j − 1)

≥ (rkM1 + 1) + (rkM2 − 1)

= rkM.

By Proposition 4.5, we conclude that M is not all-coherent. �

Example 4.9. Let Z be the image of the 6-cube under the map
1 0 .5 0 0 0
0 1 .5 0 0 0
0 0 0 1 0 .5
0 0 0 0 1 .5


and define π : R4 → R such that π(w, x, y, z) = w+x+y+z. We note that π(v) = 1 for each
column vector v. Let M be the acyclic oriented matroid associated to (Z, π) with ground
set {a, b, c, d, e, f} corresponding to the four columns of the matrix. Then M decomposes
into two rank 2 matroids, each of corank 1. Hence, (Z, π) is not all-coherent.

In particular, we claim that the cellular string {0 − −0 − −, + − − + −0, + − 0 +
−+, +0 + +0+} is not coherent. Suppose to the contrary that it is picked out by a linear
functional ψ : R4 → R. By definition, this means

ψ(a) = ψ(d) < ψ(f) < ψ(c) < ψ(b) = ψ(e).

But the first and last equality imply

2ψ(c) = ψ(a) + ψ(b) = ψ(d) + ψ(e) = 2ψ(f),

contradicting the inequality ψ(f) < ψ(c).

The last general construction we consider are weak map images. Given two oriented
matroids M,M′ with the same ground set E, there is a weak map M  M′ if for every
circuit x of M, there exists a circuit y of M′ such that y ≤ x. That is, every circuit of
M “contains” a circuit of M′. Geometrically, a weak map image of a vector configuration
is obtained by moving the vectors to a more special position. The map is said to be rank-
preserving if M and M′ have the same rank. We remark that if e ∈ E, there exist weak
maps M  M/e and M  M \ e. Here, we view the contraction M/e as an oriented
matroid on E where e is a coloop, and we view the deletion M\ e as an oriented matroid
on E where e is a loop. In this way, the weak maps M M/e and M M\ e are both
rank-preserving.
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Proposition 4.10. Let M,M′ be acyclic oriented matroids with the same rank. Assume
that there is a rank-preserving weak map M M′. If M is all-coherent, then so is M′.

To prove this proposition, one may observe that the list of oriented matroids in the
classification in Section 5 is closed under rank-preserving weak map images. Unfortunately,
we do not have a direct proof.

The rank preservation assumption in Proposition 4.10 is necessary since the n-cube In

is all-coherent, but every oriented matroid on E = {1, . . . , n} is a weak map image of the
free oriented matroid M(In), including incoherent ones.

5. Classification

5.1. Affine models and monotone families. Let Z be a zonotope generated by v1,
. . . , vn ∈ V and let π ∈ V ∗ be a generic linear functional. Let Hπ be the hyperplane
{x ∈ V : π(x) = 1}. We define

P(Z, π) :=

n⋃
i=1

({tvi : t ∈ R} ∩Hπ).

Thus, P(Z, π) is a set of n points in Hπ. Note that the oriented matroid of Z depends only
on the oriented matroid of P(Z, π) as an affine point set. In particular, the all-coherence
property depends only on this oriented matroid. We will call any set of points in affine space
with the same oriented matroid as P(Z, π) an affine model for (Z, π).

Given an affine space W , we define a (closed) half-space of W to be a subset of the form
{x ∈ W : ψ(x) ≤ c} for some affine map ψ : W → R and c ∈ R. Note that ∅ and W are
half-spaces of W in this definition. We denote the set of all half-spaces of W by HS(W ),
and give it a topology in the obvious way. For K ∈ HS(W ), we denote by ∂K and K◦ the
boundary and interior, respectively, of K as a subspace of W .

If P is a finite set of points in W , we define a monotone family with respect to P to be
a continuous path {Kt}t∈[0,1] in HS(W ) such that

(1) K0 = ∅
(2) K1 = W
(3) For every p ∈ P, there exists tp ∈ (0, 1) such that p ∈ ∂Ktp and p ∈ K◦t for all

t > tp.

To each monotone family {Kt}t∈[0,1] with respect to P we associate an ordered set partition
of P as follows: Let t1 < · · · < tl be all the numbers in (0, 1) such that ∂Kti ∩P 6= ∅. Then
the ordered set partition associated to {Kt}t∈[0,1] is

(∂Kt1 ∩ P, ∂Kt2 ∩ P, . . . , ∂Ktl ∩ P).

We call any partition of P obtained in this way a monotone partition. As the following
proposition states, monotone partitions of affine models are in bijection with proper cellular
strings.

Proposition 5.1. Let P be an affine model for (Z, π). Then there is a bijection from the
set of all monotone partitions of P to the set of all proper cellular strings of (Z, π), and such
that the image of (E1, . . . , El) under this bijection is (F1, . . . , Fl) where dim(Fi) = |Ei|.

Proof. We may assume P = P(Z, π). We have a homeomorphism from S(V ∗) := {ψ ∈ V ∗ :
‖ψ‖ = 1} to HS(Hπ) given by ψ 7→ {x ∈ Hπ : ψ(x) ≥ 0}. Recall that each proper cellular
string of (Z, π) can be specified by a path γ : [0, 1] → S(V ∗) such that γ(0) = −π/‖π‖,
γ(1) = π/‖π‖, and for each i, γ intersects the hyperplane {ψ ∈ V ∗ : ψ(vi) = 0} exactly once.
The image of the set of all such paths under the above homeomorphism is precisely the set
of monotone families with respect to P(Z, π). It is easy to check that this homeomorphism
induces a bijection between the proper cellular strings of (Z, π) and the monotone partitions
of P(Z, π), and this bijection satisfies the desired property. �

In the proof of classification we will need the following lemma.
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Figure 3. The affine model R3

Lemma 5.2. Let P be a finite set of points in an affine space W . Suppose that K1, . . . ,
Km ∈ HS(W ) are such that for each 1 ≤ i < m, (Ki \K◦i+1) ∩ P = ∅. Then there exists a
monotone family with respect to P containing K1, . . . , Km.

Proof. We define a family {Lt}t∈(−∞,∞) of half-spaces of W as follows: For i = 1, . . . , m,
let Li = Ki. If K1 = {x ∈W : ψ1(x) ≤ c1}, then for t < 1 define

Lt = {x ∈W : ψ1(x) ≤ c1 + t− 1}

and if Km = {x ∈W : ψm(x) ≤ cm}, for t > m define

Lt = {x ∈W : ψm(x) ≤ cm + t−m}.

Finally, if i < t < i+ 1 for i = 1, . . . , m− 1, we define Lt as follows. Let `i = ∂Ki ∩ ∂Ki+1.
Then `i is a codimension 2 affine subspace of W , and the set

Φi := {K ∈ HS(W ) : ∂K ⊃ `i}

is homeomorphic to a circle and contains Ki, Ki+1. We let {Lt}t∈[i,i+1] be the shortest arc
in Φi with Li = Ki and Li+1 = Ki+1.

The condition (Ki \K◦i+1) ∩ P = ∅ guarantees that in the above construction, for every
p ∈ P there exists tp ∈ (−∞,∞) such that p ∈ ∂Ltp and p ∈ L◦t for all t > tp. Thus, setting
L−∞ = ∅ and L∞ = W we obtain a monotone family with respect to P containing K1, . . . ,
Km. �

5.2. Classification theorem. To classify the all-coherent zonotopes, it suffices to give
their affine models. Here are four such affine models:

(1) The set U2,n of n points in a straight line. This corresponds to a zonotope of
dimension 2 and any generic linear functional.

(2) For r ≥ 3, the set Er,m = {e1, . . . , er, a1, . . . , am}, where e1, . . . , er are the vertices
of an (r − 1)-dimensional simplex and a1, . . . , am are points in the interior of the
simplex such that a1, . . . , am, er are collinear. This is the affine model for the
all-coherent family in Section 3.3.

(3) For r ≥ 3, the set Ẽr,m, which is defined in the same way as Er,m except a1 is on
the boundary of the simplex.

(4) The set R3, the set of 6 points in R2 shown in Figure 3. The corresponding zonotope
Z for R3 is shown in Figure 2, with π the vertical direction in the figure. One can
check that the poset of proper cellular strings of (Z, π) is homoemorphic to a circle,
which implies the all-coherence property for R3.

We now show that, up to the addition of coloops, these are the only all-coherent affine
models.

Theorem 5.3. Let Z be a zonotope of dimension r and π a generic linear functional. The
following are equivalent.

(1) (Z, π) is all-coherent.
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(2) There does not exist a proper cellular string (F1, . . . , Fl) of (Z, π) with

l∑
i=1

(dim(Fi)− 1) ≥ r − 1.

(3) The affine model for (Z, π) is E ∪ L, where E is of the form ∅, U2,n, Er,m, Ẽr,m, or
R3 and L is a (possibly empty) set of coloops of E ∪ L.

Proof. (1)⇒(2) follows from Proposition 4.5, and (3)⇒(1) has been proven earlier. Our goal
is to prove (2)⇒(3).

Assume (2) holds. Let P be an affine model for (Z, π). We may assume P is full-
dimensional in Rr−1. For any polytope Q, let V (Q) denote its vertex set. We first show the
following.

Claim 5.4. The convex hull of P is a simplex.

Proof. Suppose the contrary, and let Q be the convex hull of P. Let F be any facet of Q.
If there are at least two vertices of Q not in F , then there is an edge e of Q disjoint from F .
Otherwise, Q is a pyramid over F , and since Q is not a simplex, if we replace F with any
other facet of Q then there will be two vertices of Q not in F . So we may assume there is
an edge e of Q disjoint from F .

Let K1 be the half-space of Rr−1 which does not contain Q and whose boundary supports
F . Let K2 be any half-space of Rr−1 which contains Q and whose boundary supports e.
Then (K1 \K◦2 ) ∩ Q = ∅, so by Lemma 5.2, there is a monotone family with respect to P
containing K1, K2. In particular, the associated monotone partition of P contains V (F )
and V (e). Thus, by Proposition 5.1, there is a cellular string (F1, . . . , Fl) of (Z, π) with

l∑
i=1

(dim(Fi)− 1) ≥ (|V (F )| − 1) + (|V (e)| − 1) ≥ (r − 2) + 1 = r − 1.

This contradicts (2), proving the claim. �

Now, let σ denote the convex hull of P.

Claim 5.5. If a1, a2 are distinct points in P \ V (σ), then there exists b ∈ V (σ) such that
a1, a2, and b are collinear.

Proof. Suppose the contrary. Let ` be the line through a1 and a2, and let p1, p2 be the
endpoints of the segment ` ∩ σ. Let C1 and C2 be the vertex sets of the minimal faces of σ
containing p1 and p2, respectively. By assumption, C1 and C2 have at least two elements.
It is thus possible to choose a partition (B1, B2) of B such that Ci 6⊆ Bj for all i, j.

Let σ1, σ2 be the faces of σ with vertex sets B1, B2 respectively. Let K1 be a half-space
of Rr−1 which does not contain σ and whose boundary supports σ1. Let K2 be a half-space
of Rr−1 whose boundary contains ` and such that σ1 ⊂ K◦2 and σ2 ∩ K2 = ∅. (This is
possible by the definitions of σ1 and σ2.) Finally, let K3 be a half-space of Rr−1 which
contains σ and whose boundary supports σ3. Then (K1 \K◦2 ) ∩ σ = (K2 \K◦3 ) ∩ σ = ∅, so
by Lemma 5.2 there is a monotone family with respect to P containing K1, K2, K3. Hence,
there is a cellular string (F1, . . . , Fl) of (Z, π) with

l∑
i=1

(dim(Fi)− 1) ≥ (|V (σ1)| − 1) + (|{a1, a2}| − 1) + (|V (σ2)| − 1) = r − 1

which contradicts (2). �

We can now complete the proof. If P \ V (σ) has at most one points, then it is easy to
see that P is of one of the forms described in (3). Assume P \V (σ) has at least two distinct
points a1, a2, and let `12 be the line through these points. By Proposition 5.5, `12 contains
some vertex b12 of σ. If every point of P \ V (σ) is on `12, then P is of one of the forms
described in (3), as desired.
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Assume there is some a3 ∈ P \ V (σ) not on `12. Then by Proposition 5.5, there are
vertices b13 and b23 of σ such that a1, a3, b13 lie on a line `13 and a2, a3, b23 lie on a line
`23. Moreover, since a3 /∈ `12, b12 6= b13 6= b12. Since `12 and `13 intersect at a1, there is a
2-plane P containing `12 and `13. Since a2, a3 ∈ P , we have `23 ⊂ P , and hence b23 ∈ P .
Hence a1, a2, a3, b12, b13, b23 all lie in P , and thus a1, a2, a3 are all in the face F of σ with
vertices b12, b13, b23. It is easy to check that these six points must be in the configuration
R3.

Now suppose that there is some a4 ∈ P \ (V (σ) ∪ {a1, a2, a3}). The above argument
works with a4 instead of a3. However, because a1 is in the interior of F , F is the only 2-face
of σ containing a1, and hence a4 ∈ F . However, it is easy to check that one cannot have 4
distinct points in a triangle, not all on the same line, such that the line through any two of
them passes through a vertex of the triangle. Thus there is no such a4. Hence, P = R3 ∪L,
where L is a set of coloops of P. This concludes the proof. �
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