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TWO-ARC-TRANSITIVE GRAPHS OF ODD ORDER – II

CAI HENG LI, JING JIAN LI, AND ZAI PING LU

Abstract. It is shown that each subgroup of odd index in an alternating group
of degree at least 10 has all insoluble composition factors to be alternating. A
classification is then given of 2-arc-transitive graphs of odd order admitting an
alternating group or a symmetric group. This is the second of a series of papers
aiming towards a classification of 2-arc-transitive graphs of odd order.

1. Introduction

Let Γ = (V,E) be a graph with vertex set V and edge set E, which is finite, simple
and undirected. The number of vertices |V | is called the order of the graph. A 2-arc
in Γ is a triple of distinct vertices (α, β, γ) such that β is adjacent to both α and γ.
In general, for an integer s > 1, an s-arc is a sequence of s+1 vertices with any two
consecutive vertices adjacent and any three consecutive vertices distinct. A graph
Γ is said to be (G, s)-arc-transitive if G 6 AutΓ is transitive on both the vertex
set and the set s-arcs of Γ , or simply called s-arc-transitive. By the definition, an
s-arc-transitive graph is also t-arc-transitive for 1 6 t < s.

The class of s-arc-transitive graphs has been one of the central topics in algebraic
graph theory since Tutte’s seminal result [18]: there is no 6-arc-transitive cubic
graph, refer to [17, 19] and [1, 4, 5, 7, 8, 10, 12, 13, 15], and references therein. A
great achievement in the area was due to Weiss [19] who proved that there is no
8-arc-transitive graph of valency at least 3. Later in [9], the first named author
proved that there is no 4-arc-transitive graph of odd order. Moreover, it was shown
in [9] that an s-arc-transitive graph of odd order with s = 2 or 3 is a normal cover
of some (G, 2)-arc-transitive graph where G is an almost simple group, led to the
problem:

Classify (G, 2)-arc-transitive graphs of odd order with G almost simple.

This is one of a series of papers aiming to solve this problem, and does this work
for alternating groups and symmetric groups. The first one [11] of the series of
papers solves the problem for the exceptional groups of Lie type, and the sequel will
solve the problem for other families of almost simple groups.

Let Γ = (V,E) be a connected (G, 2)-arc-transitive graph of odd order, where G
is an almost simple group with socle being an alternating group. For the case where
G is primitive on V , it is easily deduced from [16] that Γ is one of the complete
graphs and the odd graphs. The main result of this paper shows that these are all
the graphs we expected.

The project was partially supported by the NNSF of China (11771200, 11931005, 11861012,
11971248, 11731002) and the Fundamental Research Funds for the Central Universities.
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Theorem 1.1. Let G be an almost simple group with socle being an alternating

group An, and let Γ be a connected (G, 2)-arc-transitive graph of odd order. Then

either

(i) Γ is the complete graph Kn, and n is odd; or

(ii) Γ is the odd graph O2e−1, and n =
(

2e+1−1
2e−1

)

for some integer e > 2.

Remark. It would be infeasible to extend the classification in Theorem 1.1 to those
graphs of even order. This is demonstrated by the work of Praeger-Wang in [16]
which presents a description of (G, 2)-arc-transitive and G-vertex-primitive graphs
with socle of G being an alternating group.

As a byproduct, the following result shows that subgroups of alternating groups
and symmetric groups of odd index are very restricted: each insoluble composition
factor is alternating except for three small exceptions.

Theorem 1.2. Let G be an almost simple group with socle An, and let H be an

insoluble proper subgroup of G of odd index. Then G ∈ {An, Sn} and either

(i) every insoluble composition factor of H is an alternating group; or

(ii) (G,H) = (A7,GL(3, 2)), (A8,AGL(3, 2)) or (A9,AGL(3, 2)).

The notation used in the paper is standard, see for example the Atlas [3]. In
particular, a positive integer n sometimes denotes a cyclic group of order n, and
for a prime p, the symbol pn sometimes denotes an elementary abelian p-group.
For groups A and B, an upward extension of A by B is denoted by A.B, and a
semi-direct product of A by B is denoted by A:B.

For a positive integer n and a prime p, let np denote the p-part of n, that is,
n = npn

′ such that np is a power of p and gcd(np, n
′) = 1. For a subgroup H of a

group G, let |G : H| = |G|/|H|, the index of H in G, and denote by NG(H) and
CG(H) the normalizer and the centralizer of H in G, respectively.

2. Examples

We study the graphs which appear in our classification.

It is easily shown that, for an integer n > 3, the complete graph Kn is (G, 2)-arc-
transitive if and only if G is a 3-transitive permutation group of degree n. Thus, if
n > 5 is odd then Kn is one of the desired graphs.

The second type of example is the odd graph, defined below.

Example 2.1. Let Ω = {1, 2, . . . , 2m+1}, and let Ω{m} consist of m-subsets of Ω .
Define a graph (V,E) with vertex set and edge set

V = Ω{m}, E = {(α, β) | α ∩ β = ∅},

respectively, which is called an odd graph and denoted by Om.

The graph Om has valency m+ 1, and has Sym(Ω) = S2m+1 to be the automor-
phism group, see [6, pp. 147, Corollary 7.8.2]. The order of Om is given by

|V | = |Ω{m}| =

(

2m+ 1

m

)

=
(2m+ 1)!

m!(m+ 1)!
.
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For example, the Petersen graph is O2, which has order
(

5
2

)

= 10 and valency 3; O3

has order
(

7
3

)

= 35 and valency 4. The former has even order, and the latter has

odd order. We next give a necessary and sufficient condition for
(

2m+1
m

)

to be odd.

For a positive integer n, letting 2t+1 > n > 2t for some integer t > 0, set

s(n) =
[n

2

]

+
[ n

22

]

+ · · ·+
[ n

2i

]

+ · · ·+
[ n

2t

]

,

where [x] is the largest integer which is not larger than x. Then [ n
2i
] is the number

of integers in {1, 2, . . . , n} which are divisible by 2i, and it follows that the 2-part
of n! is equal to 2s(n). Clearly, 2s(n) = 2s(n−1)n2 if n > 2, where n2 is the 2-part of
n. We observe that [m

2i
] + [ n

2i
] 6 [m+n

2i
] for all positive integers i. It follows that

(2.1) s(m) + s(n) 6 s(m+ n),

and

(2.2) s(m) + s(n) = s(m+ n) ⇐⇒
[m

2i

]

+
[ n

2i

]

=

[

m+ n

2i

]

for all i > 1.

Further, if s(m) + s(n) = s(m+ n) then at least one of n and m is even.

Let 1 6 m 6 n and
[

m
2i

]

+
[

n
2i

]

=
[

m+n
2i

]

for some i ≥ 1. Suppose that a :=
[

m
2i

]

6=

0. Then b :=
[

n
2i

]

> a. Write m = a2i + c and n = b2i + d for c, d < 2i. We have
[

m+ n

2i+1

]

=

[

a+ b

2
+

c+ d

2i+1

]

>

[

a + b

2

]

>
[a

2

]

+

[

b

2

]

=
[ m

2i+1

]

+
[ n

2i+1

]

.

Noting that
[

a+b
2

]

> 1, if
[

m+n
2i+1

]

=
[

m
2i+1

]

+
[

n
2i+1

]

then b > 2, and so
[

n
2i+1

]

6= 0.
Then, using (2.1) and (2.2), we have the following lemma.

Lemma 2.2. Assume that s(m + n) = s(m) + s(n). If m 6 n and
[

m
2i

]

6= 0 then
[

n
2i+1

]

6= 0; in particular, m < n, and n > 2t if
[

m+n
2t

]

6= 0.

The following is a criterion for
(

2m+1
m

)

to be odd.

Lemma 2.3. The number
(

2m+1
m

)

= (2m+1)!
m!(m+1)!

is odd if and only if m+1 is a 2-power.

Proof. Suppose that
(

2m+1
m

)

is odd. Then s(2m + 1) = s(m) + s(m + 1). Write

2k 6 m < 2k+1. By Lemma 2.2,
[

m+1
2k+1

]

6= 0, yielding m + 1 > 2k+1, and so

m+ 1 = 2k+1.

Conversely, we assume m+ 1 = 2ℓ for some positive integer ℓ. Since m = 2ℓ − 1
and 2m+ 1 = 2ℓ+1 − 1, we obtain

[m

2i

]

=

[

2ℓ − 1

2i

]

=

{

2ℓ−i − 1, for 1 6 i 6 ℓ− 1,
0, for i > ℓ.

[

2m+ 1

2i

]

=

[

2ℓ+1 − 1

2i

]

=

{

2ℓ+1−i − 1, for 1 6 i 6 ℓ,
0, for i > ℓ+ 1.

Therefore, we have

s(m) = (2ℓ−1 − 1) + (2ℓ−2 − 1) + · · ·+ (2− 1),
s(m+ 1) = 2ℓ−1 + 2ℓ−2 + · · ·+ 2 + 1,
s(2m+ 1) = (2ℓ+1−1 − 1) + (2ℓ+1−2 − 1) + · · ·+ (2− 1).
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Then s(m) + s(m+ 1) = s(2m+ 1), and
(

2m+1
m

)

is odd. ✷

By the above lemma, we get the following consequence.

Corollary 2.4. The odd graph Om is of odd order if and only if m+1 is a 2-power.

3. Subgroups with odd index in An or Sn

Let G be an almost simple group with socle An. Then either G ∈ {An, Sn} or
n = 6 and G ∈ {PGL(2, 9),M10,PΓL(2, 9)}. In this section, we shall determine the
insoluble composition factors of subgroups of G of odd index.

For the natural action of Sn on Ω = {1, 2, . . . , n} and a subset ∆ ⊆ Ω , the
symmetric group Sym(∆) is sometimes identified with a subgroup of Sn. Thus
we write the set-stabilizer G∆ as (Sym(∆) × Sym(Ω \ ∆)) ∩ G or simply, G∆ =
(Sm × Sn−m) ∩ G if |∆| = m. Also, (Sm ≀ Sk) ∩ G stands for the stabilizer in G of
some partition of Ω into k parts with equal size m.

Based on O’Nan-Scott theorem, the following lemma was first obtained by Liebeck
and Saxl [14].

Lemma 3.1 ([14])). Let G have socle T = An with n > 5 and have a maximal

subgroup M of odd index. Then one of the following holds:

(1) M = (Sm × Sn−m) ∩G with 1 6 m < n
2
; or

(2) M = (Sm ≀ Sk) ∩G, where n = mk and m, k > 1; or
(3) G = A7 and M ∼= SL(3, 2), or G = A8 and M ∼= AGL(3, 2); or
(4) G = PGL(2, 9), M10 or PΓL(2, 9), and M is a Sylow 2-subgroup of G.

In particular, if G 6= A7 or A8, then each insoluble composition factor of M is an

alternating group.

For a subgroup X 6 Sn fixing a subset ∆ ⊆ Ω , denote by X∆ the permutation
group induced by X on ∆.

Lemma 3.2. Let G = Sn or An with n > 5, and let H be a subgroup of G with odd

index |G : H| > 1. Suppose that H normalizes a subgroup L = Sym(∆1) × · · · ×
Sym(∆t) of Sn, where t > 2 and Ω = ∪t

i=1∆i. Then

(1) |(L ∩G) : (L ∩H)| and |(L ∩G)∆i : (L ∩H)∆i| are odd, where 1 6 i 6 t;
(2) each composition factor of L∩H is a composition factor of some (L∩H)∆i.

Proof. By the assumption LH is a subgroup of Sn, and so H 6 LH ∩ G = (L ∩
G)H 6 G. Thus |(L ∩ G)H : H| is odd. Then |(L ∩ G) : (L ∩ H)| is odd as

|(L ∩G)H : H| = |L∩G|
|L∩H|

.

Let Li be the kernel of L ∩ G acting on ∆i, where 1 6 i 6 t. Then L∆i ∼= L/Li,
(L ∩ G)∆i ∼= (L ∩ G)/(Li ∩ G) and (L ∩H)∆i ∼= (L ∩H)(Li ∩ G)/(Li ∩ G). Since
|(L∩G) : (L∩H)| is odd, |(L∩G) : (L∩H)(Li ∩G)| is odd, and so is |(L∩G)∆i :
(L ∩H)∆i|, as in part (1).
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Let S be a composition factor of L∩H . Since (L∩H)∆t ∼= (L∩H)(Lt∩G)/(Lt∩
G) ∼= (L∩H)/(Lt∩H), it follows that S is a composition factor of one of (L∩H)∆t

and Lt ∩ H . If S is a composition factor of (L ∩ H)∆t , then part (2) holds by
taking i = t. Now let S be a composition factor of Lt ∩H , and consider the triple
(Lt, Lt∩G,Lt ∩H). By induction, we may assume that S is a composition factor of
(Lt∩H)∆i for some i 6 t−1. Since Lt∩H✂L∩H , we have (Lt∩H)∆i ✂ (L∩H)∆i ,
and thus S is a composition factor of (L ∩H)∆i . Then part (2) follows. ✷

Now we prove Theorem 1.2 for G = Sn.

Lemma 3.3. Let G = Sn with n > 5, and let H be an insoluble subgroup of G
with odd index |G : H| > 1. Then each insoluble composition factor of H is an

alternating group.

Proof. We prove this lemma by induction on n. Let S be an insoluble composition
factor of H . Take a maximal subgroup M of G with H 6 M . By Lemma 3.1, either
M = Sm × Sn−m with 1 6 m < n/2, or M = Sm ≀ Sk with mk = n and m, k > 1.

For M = Sm × Sn−m, Lemma 3.2 works for H and M , which yields that S is a
composition factor of a subgroup with odd index in Sk for some k < n, and the
lemma holds by induction. Thus, let M = Sm ≀ Sk with mk = n and m, k > 1 in the
following.

Let L be the base subgroup of the wreath product Sm ≀ Sk. Then Lemma 3.2
works for the triple (L,H, L ∩H), and hence the lemma holds by induction if S is
a composition factor of L ∩H .

Assume that S is not a composition factor of L ∩ H . Then S is a composition
factor of H/(L ∩ H). Noting that HL/L ∼= H/(L ∩ H), it implies that S is a
composition factor of HL/L. Consider that pair M/L and HL/L. Since |G : H|
is odd, |M : (HL)| and hence |(M/L) : (HL/L)| is also odd. Further, M/L ∼= Sk.
Then, since k < n, the lemma holds by induction. ✷

Now we handle the case G = An.

Lemma 3.4. Let G = An with n > 5. Let H be an insoluble subgroup of G with

odd index |G : H| > 1. Then either

(i) (G,H) is one of (A7,GL(3, 2)), (A8,AGL(3, 2)) and (A9,AGL(3, 2)); or
(ii) every insoluble composition factor of H is an alternating group.

Proof. If n 6 9 then the lemma is easily shown by checking the subgroups of An. In
the following, by induction on n, we show (ii) of this lemma always holds for n > 10.

Let n > 10, and let S be an insoluble composition factor of H . Take a maximal
subgroup M of An with H 6 M . By Lemma 3.1, M = (Sm × Sn−m) ∩ An with
1 6 m < n/2, or M = (Sm ≀ Sk) ∩ An with mk = n and m, k > 1.

Suppose that n = 10. Then M ∼= S8 or 24:S5. By the Atlas [3], S8 has no
insoluble subgroup of odd index. Then M ∼= 24:S5, and we have S = A5. Thus, in
the following, we let n > 11, and process in two cases.

Case 1. Let M = (Sm × Sn−m) ∩ An. If m = 1 then M = An−1 and, since
10 6 n − 1 < n, S is alternating by induction. Now let m > 2. Writing M =
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(Sym(∆)×Sym(Ω\∆))∩An with |∆| = m, we haveM = (Alt(∆)×Alt(Ω\∆))〈σ1σ2〉,
where σ1 ∈ Sym(∆) and σ2 ∈ Sym(Ω \∆) are transpositions. Then M∆ ∼= Sm and
MΩ\∆ ∼= Sn−m. By Lemma 3.2, S is a composition factor of a subgroup with odd
index in either Sm or Sn−m. Then S is alternating by Lemma 3.3.

Case 2. Let M = (Sm ≀ Sk) ∩ An. Let L = Sk
m be the base group of the wreath

product Sm ≀Sk. Note that S is a composition factor of one of H/(L∩H) and L∩H .

Assume that S is a composition factor of H/(L ∩ H). Then S is a composition
factor of HL/L as HL/L ∼= H/(L ∩H). It is easily shown that |(M/L) : (HL/L)|
is odd. Further, since M/L ∼= Sk, we know that S is alternating by Lemma 3.3.

Now let S be a composition factor of L∩H . Write L = Sym(∆1)×· · ·×Sym(∆k),
where |∆i| = m. Then L ∩ An = (Alt(∆1) × · · · × Alt(∆k))〈σ1σt, σ2σt, . . . , σt−1σt〉,
where σi ∈ Alt(∆i) are transpositions. It follows that (L∩An)

∆i ∼= Sm for 1 6 i 6 t.
Thus, using Lemmas 3.2 and 3.3, S is an alternating group. ✷

Finally, if n = 6 and G = PGL(2, 9), M10 or PΓL(2, 9) then, by Lemma 3.1, G has
no insoluble proper subgroup of odd index. The proof of Theorem 1.2 now follows
from Lemmas 3.3 and 3.4.

4. 2-Arc-transitive graphs

In this section, we assume that Γ = (V,E) is a connected (G, 2)-arc-transitive
graph of odd order and valency at least 3, where G 6 AutΓ .

4.1. Stabilizers. Fix a 2-arc (α, β, γ) of Γ . Let Gα be the stabilizer of α in G.

Then Gα acts 2-transitively on the neighborhood Γ (α) of α in Γ . Let G
[1]
α be the

kernel of Gα on Γ (α), and let G
Γ (α)
α be the 2-transitive permutation group induced

by Gα on Γ (α). Then G
Γ (α)
α

∼= Gα/G
[1]
α . Clearly, G

[1]
α ✂Gαβ, and

(4.3) (G[1]
α )Γ (β)

✂G
Γ (β)
αβ

∼= G
Γ (α)
αβ .

Let G
[1]
αβ = G

[1]
α ∩G

[1]
β , the point-wise stabilizer of the ‘double star’ Γ (α) ∪ Γ (β). A

fundamental result about 2-arc-transitive graphs characterizes G
[1]
αβ.

Theorem 4.1. (Thompson-Wielandt Theorem) G
[1]
αβ is a p-group with p prime.

By definition, we have G
[1]
αβ ✂G

[1]
β ✂Gβγ , and so

(G
[1]
αβ)

Γ (γ)
✂ (G

[1]
β )Γ (γ)

✂G
Γ (γ)
βγ .

Let Op((G
[1]
β )Γ (γ)) and Op(G

Γ (γ)
βγ ) be the maximal normal p-subgroups of (G

[1]
β )Γ (γ)

and G
Γ (γ)
βγ , respectively. Then

(G
[1]
αβ)

Γ (γ)
✂Op((G

[1]
β )Γ (γ))✂ Op(G

Γ (γ)
βγ ).

Suppose that (G
[1]
αβ)

Γ (γ) = 1. Then G
[1]
αβ 6 G

[1]
γ , and so G

[1]
αβ 6 G

[1]
βγ . Noting that

G
[1]
αβ

∼= G
[1]
βγ , we have G

[1]
αβ = G

[1]
βγ . Then the connectedness of Γ yields that G

[1]
αβ =

G
[1]
α′β′ for each arc (α′, β ′) of Γ , and hence G

[1]
αβ = 1. Thus, if G

[1]
αβ is a non-trivial
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p-group, then so is (G
[1]
αβ)

Γ (γ), and then Op(G
Γ (γ)
βγ ) 6= 1. Noting that G

Γ (α)
αβ

∼= G
Γ (γ)
βγ ,

we have a useful conclusion.

Lemma 4.1. Let {α, β} ∈ E. If G
[1]
αβ is a nontrivial p-subgroup, then G

Γ (α)
αβ has a

nontrivial normal p-subgroup, where p is a prime.

Recall that G
Γ (α)
α is 2-transitive on Γ (α). Inspecting 2-transitive permutation

groups (refer to [2, page 194-197, Tables 7.3 and 7.4]), we have the following result.

Lemma 4.2. Let G be an almost simple group with socle An, and {α, β} ∈ E. Then

either Gα is soluble, or G ∈ {An, Sn} and one of the following holds.

(1) soc(G
Γ (α)
α ) ∼= Am for some m > 5, and one of the following holds:

(i) G
Γ (α)
α

∼= Am or Sm for even m > 6, and G
Γ (α)
αβ

∼= Am−1 or Sm−1, respec-

tively;

(ii) G
Γ (α)
α

∼= PSL(2, 5) or PGL(2, 5), and G
Γ (α)
αβ

∼= D10 or 5:4, respectively;

(iii) G
Γ (α)
α

∼= PSL(2, 9).O, and G
Γ (α)
αβ

∼= 32:(4.O), where O 6 22.

(2) G
Γ (α)
α

∼= 24:H, where H = G
Γ (α)
αβ

∼= A5, S5, 3×A5, (3×A5).2, A6, S6, A7 or

A8; in particular, G
[1]
αβ = 1.

Proof. Note that

(4.4) Gα = G[1]
α .GΓ (α)

α = (G
[1]
αβ.(G

[1]
α )Γ (β)).GΓ (α)

α .

Clearly, if G
Γ (α)
α is insoluble then Gα is insoluble. If G

Γ (α)
α is soluble then, by (4.3),

(G
[1]
α )Γ (β) is soluble, and so Gα is soluble by (4.4). Thus Gα is soluble if and only if

G
Γ (α)
α is soluble. To finish the proof of this lemma, we assume that Gα is insoluble

in the following; in particular, G ∈ {An, Sn} by Theorem 1.2. Since Γ is (G, 2)-arc-

transitive, G
Γ (α)
α is an insoluble 2-transitive permutation group. As |V | is odd, the

valency |Γ (α)| is even, and so G
Γ (α)
α is of even degree.

Case 1. First assume that G
Γ (α)
α is an almost simple 2-transitive permutation

group with socle S say. By Theorem 1.2, either S ∼= Am for some m > 5, or one of
the following cases occurs:

(a) G = A7, Gα = SL(3, 2);
(b) G = A8, Gα = AGL(3, 2);
(c) G = A9, Gα = AGL(3, 2).

For (a) and (b), we have that |V | = 15, and G is 2-transitive on V , yielding
Γ ∼= K15. Noting that Γ is (G, 2)-arc-transitive, it follows that G = A7 or A8 is
3-transitive on the 15 vertices of Γ , which is impossible.

Suppose that (c) occurs. Let G
Γ (α)
α be of affine type. Then Gαβ = SL(3, 2); in this

case, as a subgroup, SL(3, 2) is self-normalized in A9. Thus there is no element in G

interchanging α and β, which contradicts the arc-transitivity of G on Γ . Thus G
Γ (α)
α

is almost simple. Then G
[1]
α = Z

3
2 and G

Γ (α)
α

∼= SL(3, 2) ∼= PSL(2, 7). Since Γ has
even valency, considering the 2-transitive permutation representations of SL(3, 2),
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we have |Γ (α)| = 8. Then G
[1]
α is not faithful on Γ (β) \ {α}, and so G

[1]
αβ is a non-

trivial normal 2-group. By Lemma 4.1, G
Γ (α)
αβ has a non-trivial 2-subgroup; however,

G
Γ (α)
αβ

∼= Z7:Z3, a contradiction.

Let S ∼= Am. Note that A5
∼= PSL(2, 5) and A6

∼= PSL(2, 9). By the classification
of 2-transitive permutation groups (refer to [2, page 197, Table 7.4]), since |Γ (α)|
is even, either |Γ (α)| = m with m even, or (S, |Γ (α)|) is one of (PSL(2, 5), 6) and
(PSL(2, 9), 10). Then part (1) follows.

Case 2. Now suppose that G
Γ (α)
α is an insoluble affine group. Then |Γ (α)| = 2d

for some positive integer d > 3, and G
Γ (α)
αβ 6 GL(d, 2). In particular, by [19], we

have G
[1]
αβ = 1. Since each insoluble composition factor of G

Γ (α)
α is alternating, by

the classification of affine 2-transitive permutation groups (see [2, page 195, Table

7.3]), we conclude that d = 4 and G
Γ (α)
αβ is isomorphic to one of A5 (isomorphic to

SL(2, 4)), S5 (isomorphic to ΣL(2, 4)), Z3×A5 (isomorphic to GL(2, 4)), (Z3×A5).2
(isomorphic to ΓL(2, 4)), A6 (isomorphic to Sp(4, 2)′), S6 (isomorphic to Sp(4, 2)),
A7 and A8 (isomorphic to GL(4, 2)). This gives rise to the candidates in part (2).
✷

Let G be an almost simple group with socle An. We next organize our analysis
of the candidates for Gα according to the description in Lemma 4.2. Note that
G ∈ {An, Sn} if Gα is insoluble.

4.2. Almost simple stabilizers. Assume that G
Γ (α)
α is almost simple, where α ∈

V . First we consider the candidates in Lemma 4.2 (1)(i).

Lemma 4.3. Let {α, β} ∈ E. Assume G
Γ (α)
α

∼= Am or Sm, and G
Γ (α)
αβ

∼= Am−1 or

Sm−1, respectively, where |Γ (α)| = m > 6 is even. Then one of the following holds:

(i) (Gα, G) = (Am,Am+1) or (Sm, Sm+1), and Γ = Km+1, where m is even;

(ii) Gα = (Sm × Sm−1) ∩ G, G = A2m−1 or S2m−1, respectively, and Γ = Om−1,

where m is a power of 2.

Proof. Since G
Γ (α)
αβ is almost simple, G

[1]
αβ = 1 by Lemma 4.1, and so

(4.5) Gα = G[1]
α .GΓ (α)

α = (G
[1]
αβ.(G

[1]
α )Γ (β)).GΓ (α)

α = (G[1]
α )Γ (β).GΓ (α)

α .

Since (G
[1]
α )Γ (β) is isomorphic to a normal subgroup of G

Γ (α)
αβ , we have (G

[1]
α )Γ (β) =

1, or (G
[1]
α )Γ (β) ∼= Am−1 or Sm−1. It follows that Gα

∼= Am, Sm, Am−1 × Am,
(Am−1 × Am).2 or Sm−1 × Sm.

Case 1. Assume first that Gα
∼= Am or Sm, where m is even. Since G = An

or Sn and |G : Gα| is odd, it follows that either n = m + 1 and Gα = Sm ∩ G, or
n = m+ k, G = Am+k and Gα

∼= Sm for k ∈ {2, 3}.

Suppose that n = m + k, G = Am+k and Gα
∼= Sm, where k = 2 or 3. Then

Gαβ
∼= Sm−1 since Γ is of valency m. Consider the maximal subgroups of G = Am+k

which contains Gα. By Lemma 3.1, we conclude that Gα is contained in the stabilizer
of an m-subset of Ω = {1, 2, . . . , m + k}, say ∆ = {1, 2, . . . , m}. Thus we may let
Gα = Alt(∆).〈σ〉, where σ = (1 2)(m + 1 m + k). Without loss of generality, we
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may assume that Gαβ = Alt(∆ \ {m}).〈σ〉. Let g ∈ G interchange α and β. Then g
normalizes Gαβ , and hence g fixes ∆ \ {m} setwise, and σg = (i j)(m+1 m+ k). It
follows that ∆ and {m+1, m+k} are two orbits of 〈Gα, g〉, which is a contradiction
since 〈Gα, g〉 should be equal to G. Thus (Gα, G) = (Am,Am+1) or (Sm, Sm+1). It
then follows that Γ = Km+1, as in part (i).

Case 2. Now assume that Gα has a subgroup isomorphic to Am×Am−1. Clearly,
n > 2m− 1. Recall that 2s(l) is the 2-part of l!, see Section 2. Then |G|2 > 2s(n)−1

and |Gα|2 6 2s(m)+s(m−1). Since |G : Gα| is odd, s(m) + s(m − 1) > s(n) − 1 >
s(2m− 1)− 1. By (2.1) given in Section 2, s(2m− 1) > s(m) + s(m− 1), and so

s(2m− 1) > s(m) + s(m− 1) > s(n)− 1 > s(2m− 1)− 1.

Since m is even, 2m is divisible by 22, and hence s(2m) > s(2m− 1) + 2. It follows
that n < 2m. Therefore, we have

n = 2m− 1

and s(2m − 1) = s(m) + s(m − 1). Then m is a power of 2 by Lemma 2.3. Since
|G : Gα| is odd, either G = A2m−1 and Gα = (Am × Am−1).2, or G = S2m−1 and
Gα = Sm × Sm−1. That is to say, Gα is the stabilizer of G acting on the set of
(m− 1)-subsets of {1, 2, . . . , 2m− 1}. It follows since Γ is (G, 2)-arc-transitive that
Γ = Om−1 is an odd graph, as in part (ii). ✷

Next, we handle the candidates in part (1)(ii-iii) of Lemma 4.2.

Lemma 4.4. There is no 2-arc-transitive graph corresponding to part (1)(ii) of

Lemma 4.2.

Proof. Suppose that G
Γ (α)
α

∼= PSL(2, 5) or PGL(2, 5), and G
Γ (α)
αβ

∼= D10 or 5:4. By

Lemma 4.1, G
[1]
αβ is a 5-group, and so |G

[1]
α |2 = |(G

[1]
α )Γ (β)|2 divides |G

Γ (β)
αβ |2. Thus

|Gα|2 = |G[1]
α |2|G

Γ (α)
α |2 6 25,

that is, a Sylow 2-subgroup of Gα has order a divisor of 25. It follows that G 6 S7.

Since G
Γ (α)
α

∼= PSL(2, 5) or PGL(2, 5), we conclude that either G = A7 and Gα
∼= S5,

or G = S7 and Gα = S2 × S5. Then Γ is an orbital graph of G = S7 acting on 2-
subsets of {1, 2, . . . , 7}, which is not 2-arc-transitive. ✷

Lemma 4.5. There is no 2-arc-transitive graph corresponding to to part (1)(iii) of
Lemma 4.2.

Proof. Suppose that G
Γ (α)
α

∼= PSL(2, 9).O, and G
Γ (α)
αβ

∼= 32:(4.O), where O 6 22. By

Lemma 4.1, G
[1]
αβ is a 3-group, and so |G

[1]
α |2 = |(G

[1]
α )Γ (β)|2 divides |G

Γ (β)
αβ |2. We have

|Gα|2 = |G[1]
α |2|G

Γ (α)
α |2 6 29,

that is, a Sylow 2-subgroup of Gα is of order dividing 29. It follows that G 6 A13,
and further, either G 6 S11, or G is one of A12 and A13.

Suppose |G|2 = 29. ThenG = S11, A12 or A13, and moreover, G
Γ (α)
α

∼= PSL(2, 9).22

and G
[1]
α

∼= 32:[24], and hence

Gα = (PSL(2, 9)× (32:4)).[24].
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By the Atlas [3], G does not have a subgroup of odd index which contains a normal
subgroup PSL(2, 9) × (32:4), which is a contradiction. Thus |G|2 6 28, and then
G 6 A11 or S10. Checking the subgroups of G with odd index, we conclude that
A7 6 G 6 S7 and A6 6 Gα 6 S6. It follows that Γ = K7, which is not possible
since Γ should have valency 10. ✷

4.3. The affine stabilizers. Let {α, β} ∈ E. Assume that G
Γ (α)
α is an affine 2-

transitive permutation group.

Now consider the case where Gα is soluble. By [11], Theorem 1.1 holds for the
case where Gα is soluble.

Lemma 4.6. If Gα is soluble, then Γ has valency 4, and either

(i) n = 5 and Γ is the complete graph K5, or

(ii) n = 7 and Γ is the odd graph O3 of order 35.

We now consider the candidates for G
Γ (α)
α in part (2) of Lemma 4.2.

Lemma 4.7. There is no 2-arc-transitive graph corresponding to part (2) of Lemma 4.2.

Proof. Suppose thatG
Γ (α)
α

∼= 24:H is affine and described as in part (2) of Lemma 4.2.

Let {α, β} ∈ E. Since G
[1]
αβ = 1, (4.3) yields that G

[1]
α is isomorphic to a normal

subgroup of H = G
Γ (α)
αβ . Then the outer automorphism group of G

[1]
α has order at

most 4. It follows that Gα has a (minimal) normal subgroup N which is regular on
Γ (α), and thus

Gα = N :Gαβ, CGα
(N) = N ×G[1]

α .

Moreover, |G
[1]
α |2 is a divisor of |G

Γ (β)
αβ |2 = |H|2, and then |G|2 = |Gα|2 is a divisor

of 24|H|22. In particular, 26 6 |G|2 6 216, and then 8 6 n 6 19.

Consider the natural action of Gα on Ω = {1, 2, . . . , n}, and choose a Gα-orbit ∆
such that N is nontrivial on ∆. Let |∆| = m. Then m is even, and |G∆

α |2 = |Sm|2
or |Am|2 by Lemma 3.2.

Let K be the kernel of Gα acting on ∆. Then K ∩ N = 1 as N is a minimal

normal subgroup of Gα, and so K ≤ CGα
(N) = N ×G

[1]
α . It follows that K ≤ G

[1]
α ,

and hence G∆

α is insoluble. In particular, m > 6.

Case 1. Suppose that K is soluble. Then |K|2 = 1, and 24|H|2||G
[1]
α |2 = |Gα|2 =

|G∆

α |2 = |Sm|2 or |Am|2. Recalling that |Gα|2 = |G|2 = |Sn|2 or |An|2, we have
n 6 m + 3. If N is transitive on ∆, then m = |N | = 16, yielding |Gα|2 = 215 or
214, which is impossible. Thus N is intransitive on ∆, and then G∆

α . Sℓ ≀ Sk, where
ℓ, k > 1, m = ℓk and ℓ is the size of each N -orbit. In particular, ℓ = 2, 4 or 8.

For ℓ = 4 or 8, since m = ℓk 6 n 6 19, we have m = 16, which yields a
contradiction as above. Therefore, ℓ = 2 and, since G∆

α is insoluble, 5 6 k 6 9. Then
Gα has exactly one insoluble composition factor, and thus |Gα|2 = |G∆

α |2 = 24|H|2.
This implies that k = 5, m = 10, and |Gα|2 = 27 or 28. Then G = A11 or A10, and
Gα = 24:S5 which is faithful on ∆. Thus Gαβ

∼= S5, which has two orbits on ∆ of
equal size 5.
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Let g ∈ G with (α, β)g = (β, α). Then g normalizes Gαβ , fixes Ω \ ∆ and
either interchanges or fixes those two Gαβ-orbits on ∆. It follows that g ∈ Gα, a
contradiction.

Case 2. Suppose that K is insoluble. In this case, Gα is intransitive on Ω , and K
has a normal subgroup L isomorphic to Ar, where r ∈ {5, 6, 7, 8}. Choose a Gα-orbit
∆′ such that L is faithful on ∆′. Then m′ := |∆′| > r, and 19 > n > m+m′ > m+r.

Note that 24|H|2 6 |G∆

α |2 6 25|H|2, and |G∆

α |2 = |Sm|2 or |Am|2. If r = 8 then
m > 12, and so n ≥ m + r > 20, a contradiction. Suppose r = 7. Then m > 8
and n > 15, and so |G|2 > 210. It follows that |G|2 = 210 and m = 8; however, in
this case, G∆

α
∼= 24:A7, which can not be contained in a group isomorphic to S8. For

r = 6 and H ∼= A6, we get a similar contradiction as above. Suppose that r = 6 and
H ∼= S6. Then 28 6 |G∆

α |2 6 29, and thus 10 6 m 6 13, yielding n > 16. This leads
to |Gα|2 > 214, which is impossible.

By the above argument, we have r = 5 and |Gα|2 = 28, 29 or 210, and then n 6 15.
On the other hand, 26 6 |G∆

α |2 6 28, we have m 6 11, yielding m = 10 and n = 15.
It follows that G = A15 and Gα = (Alt(∆′)× 24:S5)〈στ〉, where σ is a transposition
in Sym(∆′) and τ is a product of five disjoint transpositions in Sym(∆′). Then both
Gα and Gαβ have two orbits ∆′ and ∆ on Ω . Thus there is no element g ∈ NG(Gαβ)
such that 〈Gα, g〉 is transitive on Ω , a contradiction. ✷

4.4. Proof of Theorem 1.1. Let G be an almost simple group with socle An, and
let Γ be (G, 2)-arc-transitive.

The sufficiency is obvious since the complete graphs Kn and the odd graphs are
clearly 2-arc-transitive under the action of An.

The necessity has been established in several lemmas, explained below. By
Lemma 4.2, the vertex stabilizer Gα is either soluble or divided into two parts (1)-

(2), according to G
Γ (α)
α being almost simple or affine. For the case where G

Γ (α)
α is

almost simple, Lemmas 4.3-4.5 show that Γ is a complete graph or an odd graph.
For the affine case, Lemmas 4.6-4.7 verify the theorem. ✷
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