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Abstract

In this work we present a version of the so called Chen and Chvátal’s
conjecture for directed graphs. A line of a directed graph D is defined by
an ordered pair (u, v), with u and v two distinct vertices of D, as the set
of all vertices w such that u, v, w belong to a shortest directed path in D

containing a shortest directed path from u to v.
A line is empty if there is no directed path from u to v. Another

option is that a line is the set of all vertices. The version of the Chen and
Chvátal’s conjecture we study states that if none of previous options hold,
then the number of distinct lines in D is at least its number of vertices.

Our main result is that any tournament satisfies this conjecture as well
as any orientation of a complete bipartite graph of diameter three.

1 Introduction

The Chen and Chvátal’s conjecture introduced in [5] expresses a trade-off that
may occur in metric spaces similar to the well-known result saying that every
set of n points in the Euclidean plane determines at least n distinct lines unless
they are in the same line (see [9]).

Let (V, d) be a metric space. Given two distinct points x, y ∈ V , we say that
a point z ∈ V is between x and y when d(x, y) = d(x, z) + d(z, y). We denote
the set of all points between x and y by [x, y].

∗Support by Basal program AFB170001 and Fondeyct 1180994, Conicyt, PAPIIT-México

IN107218 and IN106318, CONACyT-México 282280 and UNAM-CIC ‘La Conjetura de Chen-

Chvátal en Gráficas Dirigidas’.
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The line generated by two distinct points x, y ∈ V is the following set of
points

xy := {z ∈ V : x ∈ [z, y], y ∈ [x, z] or z ∈ [x, y]}. (1)

Chen and Chvátal conjectured that in any metric space with n points, n ≥ 2,
either the entire space is a line or there are at least n distinct lines ([5]). In [1],
it was proved that a metric space with n points without universal lines contains
Ω(

√
n) different lines.
For metric spaces in which all distances are integral and are at most k,

previous bound can be improved to Ω(n/(5k)), for each k ≥ 3. In [6, 7] it was
proved that the conjecture holds for metric spaces with distances 0, 1 or 2.

A family of metric spaces with integer distances arises from metric space
induced by graphs. Here the points are the vertices of the graph and the distance
between two vertices is defined by the length of a shortest path between them.
In [2] and [4], it was proved that Chen and Chvátal’s Conjecture holds for
metric spaces induced by chordal graphs and for distance-hereditary graphs,
respectively. The previous results were extended in [3] to any graph G such
that every induced subgraph of G is either a chordal graph, has a cut-vertex or
a non-trivial module.

The purpose of this work is to present a version of this conjecture for di-
rected graphs, hereinafter referred to as digraphs, and to prove that it holds
for tournaments and for orientations of complete bipartite graphs with oriented
diameter at most three.

For digraphs the function defined by shortest dipaths does not necessarily
defines a distance. However, for directed graph we can still denote by [x, y] the
set of all vertices z such that there is a shortest dipath from x to y containing
z. Then, Equation 1 still defines the line generated by two distinct vertices x
and y in a digraph.

Here we emphasize that our definition of line inherites the oriented character
of digraphs: it is not true in general that −→xy = −→yx. Moreover, contrary to what
happens for metric space where a line xy always contains x and y, and then it
is not empty, in a directed graph, if there is no (shortest) dipaths from x to y,
then −→xy is empty. Since, this latter situation happens if and only if the digraph
is not strongly connected we restrict our study to this latter class of digraphs.

In fact, when considering strongly connected digraphs instead of graphs, we
are moving from the context of finite metric spaces to that of finite quasimetric
spaces where symmetry is not required. Though in this work we focus on di-
rected graphs, it is worth to mention that one can define lines in any quasimetric
space (V, d), simply by (re)defining the set [u, v] as the set of all points satisfying
d(u, v) = d(u, z) + d(z, v). In this context, an analogous to Chen and Chvátal’s
conjecture has the same form as the original one: if no line is universal, then
there are at least as many lines as vertices. Most results obtained so far for
finite metric spaces in the context of Chen and Chvátal conjecture rely heav-
ily in the symmetry of the distance function giving little hope to extend them
easily to the quasimetric framework. One exception could be the lower bound
Ω(

√
n) proved in [1], Theorem 3.1. Its proof does not use the symmetry of the
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distance function but use Lemma 2.2 which does use it. However, the statement
of Lemma 2.2 translate to a meaningful question for a quasimetric space (V, d)
without universal line: given t points x1, . . . , xt ∈ V such that xi ∈ [xi−1, xi+1],
for each i ∈ {2, . . . , t− 1}, is it true that (V, d) has at least t different lines?

Chen and Chvátal’s conjecture is trivial for bipartite graphs, simple for com-
plete graphs and it has been solved asymptotically, for graphs with bounded
diameter. It has also been solved for graphs of diameter at most two but requir-
ing much more effort. To the best of our knowledge it is still open for graphs of
diameter at most three (see [8] for a recent survey).

Our contribution

Here we prove that tournaments satisfies Chen and Chvátal’s conjecture. Sur-
prinsingly, the proof we found is much more involved than that for complete
graphs. We also prove this conjecture for orientations of complete bipartite
graphs with oriented diameter at most three.

Let D be a strongly connected graph. Let L(D) be the set of all lines defined
by distinct pairs of vertices of D. In the next property we present a criteria that
allows us to focus our analysis in digraphs with minimum in and out-degree at
least two.

Lemma 1. Let D be a strongly connected digraph with minimum in-degree or
minimum out-degree at most one. Then V ∈ L(D).

Proof. We only consider the case where D has a vertex y with in-degree one;
the case when y has out-degree at one is analogous.

Let xy ∈ A. Since (x, y) is a dipath from x to y of length one, it is the
shortest (x, y)-dipath. So, x, y ∈ −→xy. For z ∈ V , z 6= y, there is a dipath from
z to y and, since the in-degree of y is one, this dipath ends with the arc (x, y).
Hence, [zxy] and then z ∈ −→xy. This proves that V ∈ L(D).

The proof of Lemma 1 shows that if y has in-degree one then for xy ∈ A,
the line −→xy is universal. Similarly, if x has out-degree one and xy ∈ A, then the
line −→xy is universal as well. The converse in not true. By instance, take a two
dicycles xyz and x′y′z′ connected by the arcs xy′, x′y, yz′, y′z, zx′, z′x. Then
each vertex has in-degree and out-degree two and each arc defines a universal
line.

The following corollary is an immediate consequence of Lemma 1.

Corollary 2. Let D = (V,A) be a strongly connected orientation of a graph G
with minimum degree at most three. Then, V ∈ L(D).

Proof. Let v a vertex of G with dG(v) ≤ 3. As d+
D
(v) + d−

D
(v) = dG(v) we get

that d+(v) ≤ 1 or d−(v) ≤ 1 and from Lemma 1 we obtain the conclusion.
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2 Lines defined by an arc

For a strongly connected digraph D = (V,A) and two vertices u, v ∈ V , we
denote by d(u, v) the length of a shortest dipath (directed path) from u to v.
Even though d(·, ·) is not a distance, since d(u, v) and d(v, u) may differ, it
satisfies d(u, v) = 0 if and only if u = v, and the triangle inequality d(u, v) ≤
d(u,w) + d(w, v) for all u, v, w ∈ V .

In this section we study some properties of lines defined by arcs, that is
lines defined by two vertices x and y such that xy ∈ A. We first notice that if
uv ∈ A, then x ∈ −→uv if and only if u ∈ [x, v] or v ∈ [u, x]. Hence, if x ∈ −→uv, then
d(x, u) < d(x, v) or d(v, x) < d(u, x).

Lemma 3. Let D = (V,A) an oriented graph. Let uv ∈ A and x ∈ V \ {u, v}.

(I) If vx, xu ∈ A, then x ∈ −→uv.

(O) If d(x, v) ≤ d(x, u) and d(u, x) ≤ d(v, x), then x /∈ −→uv. Hence, if
xv, ux ∈ A, then x /∈ −→uv.

(R) If ux, vx ∈ A, then x ∈ −→uv implies that d(x, v) ≥ 3.

(L) If xu, xv ∈ A, then x ∈ −→uv implies that d(u, x) ≥ 3.

Proof. In the first case, since vx ∈ A and D is an oriented graph we get that
d(x, v) ≥ 2. But since xuv is a dipath in D we get that it is a shortest path
from x to v containing u. Hence, x ∈ −→uv.

In the second situation, ux ∈ A implies that v /∈ [u, x]. Similarly, xv ∈ A
implies that u /∈ [x, v] does not hold. Then, x /∈ −→uv.

In the third case, as x ∈ −→uv either u ∈ [x, v] or v ∈ [u, x]. But, as before,
ux ∈ A implies that v /∈ [u, x]. Hence, u ∈ [x, v] holds. Since D is an oriented
digraph and ux ∈ A we have that d(x, u) ≥ 2 and then we get the conclusion
d(x, v) ≥ 3.

The last case is similar to the previous one. Now, the only possibility for x
to be in −→uv is that v ∈ [u, x] holds. Since D is an oriented digraph, under the
assumption xv ∈ A we get that d(v, x) ≥ 2 and then d(u, x) ≥ 3.

We shall use extensively the properties proved in Lemma 3. To ease the
presentation we shall refer to them just as cases (I), (O), (R) or (L).

Let exemplify their use in the digraph T5 = (V,A) in Figure 1. It is a
tournament on five vertices.

Hence, given uv ∈ A and w 6= u, v, exactly one of the hypothesis of the cases
(I), (O), (R) or (L) holds. Moreover, since all the distance are at most two, case
(I) holds if and only if w ∈ −→uv. It can be seen easily that the vertices appearing
to the right of line −→uv in the middle table of Figure 1 do satisfy case (I).

By case (O) we have x′ /∈ −→ax, y′ /∈ −→ya and x′ /∈ −→xy. By case (R) we have

x /∈ −→
ax′, x′ /∈ −→

y′a and y′ /∈ −→xy, y /∈ −→
x′x. By case (L) we have y′ /∈ −→

ax′, y /∈ −→
y′a

and a /∈ −→
x′x.
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d(·, ·) a x x′ y y′

a 0 1 1 2 2
x 2 0 2 1 1
x′ 2 1 0 1 2
y 1 2 2 0 1
y′ 1 2 2 2 0

−→ax {a, x, y, y′}−→
ax′ {a, x′, y}
−→ya {a, y, x, x′}−→
y′a {a, y′, x}
−→xy {a, x, y}−→
x′x {x′, x, y′}

a

x
x′

y
y′

Distances Six distinct lines T5

Figure 1: Use of Lemma 3.

Lemma 4. Every strongly connected oriented graph D with at most five vertices
satisfies V ∈ L(D) or |L(D)| ≥ |D|.

Proof. From previous discussion and Corollary 2 we only need to consider
strongly connected oriented graph with five vertices. From Lemma 1 we can
assume that for each v ∈ V , d+(v), d−(v) ≥ 2 and then, since d+(v)+d−(v) ≤ 4
that d+(v), d−(v) = 2. It is easy to see that up to isomorphism T5 is the unique
oriented graph with this property. And, we have already shown that T5 has at
least six distinct lines.

3 Tournaments

To ease the presentation we use the following notation for a ∈ V ,

a+ = {x : ax ∈ A} and a− = {y : ya ∈ A}.

For a ∈ V , B ⊆ a+ and C ⊆ a− we define the sets (a,B) and (C, a) as
follows.

(a,B) = {−→az : z ∈ B} and (C, a) = {−→za : z ∈ C}.

Lemma 5. Let D = (V,A) be a tournament. Let a ∈ V , B ⊆ a+ and C ⊆ a−.
Then |(a,B)| = |B| and |(C, a)| = |C|.

Proof. Since D is a tournament, for z, z′ ∈ B we can assume that zz′ ∈ A.

Then, case (O) implies that z /∈ −→
az′. Similarly, for z, z′ ∈ C we can assume that

zz′ ∈ A. Then, case (O) implies that z′ /∈ −→za.

Our main theorem is the following.

Theorem 6. Any strongly connected tournament D has at least |D| distinct
lines or a universal line.
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Simple cases

From Lemma 4 we can assume that |V | ≥ 6. The proof of Theorem 6 requires
yet some additional properties. In order to focus on the difficult cases let us
consider now the situation when for some a ∈ V , (a, a+) ∩ (a−, a) = ∅. Then,
from Lemma 5, D has at least |a+|+ |a−| = |V | − 1 distinct lines.

Lemma 7. Led D be a strongly connected tournament and a ∈ V such that
(a, a+) ∩ (a−, a) = ∅. Then |L(D)| ≥ |V |.

Proof. In order to obtain a line not in (a, a+)∪(a−, a) we consider two situations.
If there are x ∈ a+ and y ∈ a− such that yx ∈ A, then by case (O), a /∈ −→yx.
Since any line in (a, a+) ∪ (a−, a) contains a, we conclude that −→yx is not in
(a, a+) ∪ (a−, a). Therefore, |L(D)| ≥ |V |.

Otherwise, we can assume that for every x ∈ a+ and y ∈ a− we have that
xy ∈ A. In this case, d(x, a) = 2, for all x ∈ a+. From Lemma 1 we also can
assume that d−(x) ≥ 2. Then, there is x′ ∈ a+, x′ 6= x and such that x′x ∈ A.

Since d(x, a) = 2, from case (R) we get that a /∈ −→
x′x. As before, this shows that

there are at least |V | lines in D.

Repeated lines

In the rest of this section we assume that for all a ∈ V , there is x ∈ a+ and
y ∈ a− such that −→ax = −→ya.

Lemma 8. Let a be a vertex of D. If there are x ∈ a+ and y ∈ a− such that−→ax = −→ya then xy ∈ A.

Proof. If yx ∈ A, then y ∈ [x, a] because x ∈ −→ya. Then, there is z with xz ∈ A
such that y ∈ [z, a]. Hence, za /∈ A and then d(a, y) ≤ d(x, y). Thus, x /∈ [a, y]
and a /∈ [y, x] which shows the contradiction y /∈ −→ax.

For the proof of Theorem 6 we consider a vertex a of D, x ∈ a+ and y ∈ a−

such that −→ax = −→ya. Let X,Y and Z be the following sets of lines.

X := (a− ∩ x−, x) ∪ (x, a+ ∩ y− \ {x}),

Y := (y, a+ ∩ y+) ∪ (a− ∩ x+ \ {y}, y)
and

Z := (a, a+) ∪ (a−, a).

We shall prove that in this case X ∪ Y ∪Z ∪ {−→xy} has at least |V | distinct lines
(see Figure 2).

Lemma 9. Let a be a vertex of D, x ∈ a+, y ∈ a− such that −→ax = −→ya. Then,
X,Y and Z are pairwise disjoint and −→xy /∈ X ∪ Y .
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a+
a+ ∩ y− a+ ∩ y+

a−
a− ∩ x+ a− ∩ x−

a

x′ x x′′

y′ y y′′

Figure 2: A representation of sets a+, a−, a+∩y−, a+∩y+, a−∩x+ and a−∩x−,
and the roles of vertices x, x′, x′′, y, y′ and y′′.

Proof. Clearly each line in Z contains a. We prove that no line in X∪Y contains
a. From this the last statement follows easily since from Lemma 8 xy ∈ A and
then a ∈ −→xy.

By case (O) no line in (a− ∩ x−, x) ∪ (y, a+ ∩ y+) contains a.
By case (I), a+ ∩ y− ⊆ −→ya. Since −→ax = −→ya and case (O) we get that a+ ∩

y− \ {x} ⊆ x+. As d(x′, a) = 2, for every x′ ∈ a+ ∩ y− from case (L) we get
that no line in (x, a+ ∩ y− \ {x}) contains a.

Similarly, by case (I), a− ∩ x+ ⊆ −→ax. Since −→ax = −→ya and case (O) we get
that a− ∩ x+ \ {y} ⊆ y−. As d(a, y′) = 2, for every y′ ∈ a− ∩ x+ from case (R)
we get that no line in (a− ∩ x+ \ {y}, y) contains a. Therefore, no line in X ∪Y
contains a.

Notice that any line in X contains x and any line in Y contains y.
By case (R) no line in (x, a+ ∩ y− \ {x}) contains y. Similarly, by case (L)

no line in (a− ∩ x+ \ {y}, y) contains x.
Hence, it only remains to show that (a− ∩ x−, x) ∩ (y, a+ ∩ y+) = ∅.
We have that d(y, x) = 2. If there are x′′ ∈ a+ ∩ y+ and y′′ ∈ a− ∩ x−

such that
−−→
yx′′ =

−−→
y′′x, then y′′y /∈ A since, case (L) and y ∈ −−→

y′′x imply that

d(y, x) ≥ 3. Hence, yy′′ ∈ A. As y′′ ∈ −−→
yx′′ case (O) implies that x′′y′′ ∈ A, but

case (R) and d(y′′, x′′) = 2 imply the contradiction y′′ /∈ −−→
yx′′.

Lemma 10. Let a ∈ V , x ∈ a+ and y ∈ a− such that −→ax = −→ya and −→xy ∈ Z.
Then a+ ∩ y− = {x} and a− ∩ x+ = {y}.

Proof. From Lemma 8 we know that xy ∈ A. Let z ∈ a+ \ {x}. We prove that
if x ∈ −→az, then y /∈ −→az.
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Since ax, az ∈ A by case (O) we have that zx ∈ A. The same case shows
that z /∈ −→ax. But under the assumption −→ax = −→ya and again case (O) we get that
yz ∈ A. Case (L) and d(a, y) = 2 shows that y /∈ −→az.

In a similar manner we can prove that when z ∈ a− \ {y} and y ∈ −→za, then
x /∈ −→za. In fact, if y ∈ −→za, then by case (O) we get that yz ∈ A and thus
z /∈ −→ya = −→ax. Hence, zx ∈ A and, by case (R) and d(x, a) = 2 we get that
x /∈ −→za.

In fact with the same idea given in the proof of Lemma 10 it can be proven
that when −→xy ∈ Z, then −→xy = −→ax = −→ya = {a, x, y}.

Lemma 11. Let a be a vertex of D. Let x ∈ a+ and y ∈ a− be such that−→ax = −→ya. Then, |(a, a+) ∩ (a− ∩ x+, a)|, |(a−, a) ∩ (a, a+ ∩ y−)| ≤ 1.

Proof. Let us assume that there are x′ ∈ a+ ∩ y− and y′ ∈ a− such that−→
ax′ =

−→
y′a. Notice that it is enough to prove that x′ = x since

−→
y′a = −→ya implies

that y′ = y, for Lemma 5.
From Lemma 8 we know that xy, x′y′ ∈ A. For the sake of contradiction, let

us assume that x′ 6= x. From the assumption x′y ∈ A and case (I) we get that

x′ ∈ −→ya = −→ax and y ∈ −→
ax′ =

−→
y′a, and by case (O) that xx′ ∈ A and yy′ ∈ A. By

case (O), y′ /∈ −→ya = −→ax. By case (I), y′x ∈ A. Then, d(x′, x) = 2 which by case
(R) implies the contradiction x′ /∈ −→ax.

When there are x′ ∈ a+ and y′ ∈ a− ∩ x+ such that
−→
ax′ =

−→
y′a, we proceed

in a similar way.

We now give the proof of Theorem 6.

Proof. (of Theorem 6) Let a be any vertex of D. From Lemma 7 we can assume
that (a, a+) ∩ (a−, a) 6= ∅. Let x ∈ a+ and y ∈ a− such that −→ax = −→ya. From
Lemma 8 we have that xy ∈ A.

We know from Lemma 9 that the sets X,Y and Z are pairwise disjoint. Let
W = X ∪ Y ∪ Z and W = L(D) \W .

Since
(a, a+) ∪ (a− ∩ x+, a), (a−, a) ∪ (a, a+ ∩ y−) ⊆ Z,

(a− ∩ x−, x), (x, a+ ∩ y− \ {x}) ⊆ X

and
(y, a+ ∩ y+), (a− ∩ x+ \ {y}, y) ⊆ Y,

the cardinality of W is at least the maximum of the following values.

• |(a, a+) ∪ (a− ∩ x+, a)|+ |(a− ∩ x−, x)|+ |(y, a+ ∩ y+)|.

• |(a, a+) ∪ (a− ∩ x+, a)|+ |(a− ∩ x−, x)|+ |(a− ∩ x+ \ {y}, y)|.

• |(a−, a) ∪ (a, a+ ∩ y−)|+ |(a− ∩ x−, x)|+ |(y, a+ ∩ y+)|.

• |(a−, a) ∪ (a, a+ ∩ y−)|+ |(y, a+ ∩ y+)|+ |(x, a+ ∩ y− \ {x})|

8



From Lemma 11 we have that |(a, a+)∩(a−∩x+, a)|, |(a−, a)∩(a+∩y−, a)| ≤ 1.
Hence, |W | is at least the maximum of the following values:

• |a+|+ |a− ∩ x+| − 1 + |a− ∩ x−|+ |a+ ∩ y+| = |V |+ |a+ ∩ y+| − 2,

• |a+|+ |a− ∩ x+| − 1 + |a− ∩ x−|+ |a− ∩ x+| − 1 = |V |+ |a− ∩ x+| − 3,

• |a−|+ |a+ ∩ y−| − 1 + |a− ∩ x−|+ |a+ ∩ y+| = |V |+ |a− ∩ x−| − 2,

• ||a−|+ |a+ ∩ y−| − 1 + |a+ ∩ y+|+ |a+ ∩ y−| − 1 = |V |+ |a+ ∩ y−| − 3.

Then,
|L(D)| ≥ |V |+ |W |+ k − 2,

where

k = max{|a+ ∩ y−| − 1, |a− ∩ x+| − 1, |a+ ∩ y+|, |a− ∩ x−|}.

From Lemma 4 we can assume that |V | ≥ 6. As

V = {a} ∪ (a+ ∩ y−) ∪ (a+ ∩ y+) ∪ (a− ∩ x+) ∪ (a− ∩ x−),

we get that k ≥ 1. If W is not empty, then we get the conclusion |L(D)| ≥ |V |.
Otherwise, −→xy ∈ W . From Lemma 9 we get that −→xy ∈ Z and from Lemma 10
we get that a+ ∩y− = {x} and a− ∩x+ = {y}. But, since |V | ≥ 6, in this latter
situation k ≥ 2.

4 Orientation of complete bipartite graphs

Let B = (V,A) be an orientation of diameter at most three of a complete
bipartite graph with independent sets X and Y . We prove that |L(B)| ≥ |V |
or V ∈ L(B). If V /∈ L(B), then from Lemma 1 we know that, for each u ∈ V ,
|u+|, |u−| ≥ 2 and then |X |, |Y | ≥ 4.

Due to the restriction on the diameter we have that d(u, v) = d(v, u) = 2,
when u and v belong to the same independent set, and that d(u, v) ∈ {1, 3}
when they are in different independent sets.

Hence, if u and v are in X , then

−→uv = {u, v} ∪ (u+ ∩ v−) ∪ (u− ∩ v+).

Though −→uv = −→vu, these lines still have a nice property: −→uv ∩ X = {u, v}.
Hence, B has at least

(

|X|
2

)

different lines of this type. Since we can assume
that |X | ≥ ⌈|V |/2⌉, we get the result for |V | ≥ 9.

We now focus in the case when B has 8 vertices. We prove that lines defined
by arcs are different from the

(

4

2

)

= 6 previous ones, and that there are at least
two different such lines.

Let uv ∈ A. Then −→uv ∩ u+ = {v} and −→uv ∩ v− = {u}. In fact, if z ∈ u+,
z 6= v, then d(z, u) = 3 > d(z, v) = 2 which implies that u /∈ [z, v]. As v /∈ [u, z]
we get that z /∈ −→uv. A similar argument shows the second statement.
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From them we get the analogous of Lemma 5: |(u, u+)| = |u+| and |(v−, v)| =
|v−|, and the structure of the line −→uv:

−→uv = {u, v} ∪ u− ∪ v+.

Moreover, if u ∈ X , then |−→uv∩X | = |{u}∪v+| ≥ 3 and |−→uv∩Y | = |{v}∪u−| ≥ 3.
This last property shows that the lines in (u, u+) are different from lines

defined by two vertices in the same independent set. Since |(u, u+)| = |u+| ≥ 2
we conclude that B has at least

(

6

2

)

+ 2 = 8 different lines showing the validity
of the following result.

Theorem 12. Orientations of diameter at most three of complete bipartite
graphs satisfy Chen and Chvátal’s conjecture.

5 Conclusion

We believe that with similar ideas to those developed in this work it can be
proved that strongly connected orientations with oriented diameter at most two
have either an universal line or have at least as many lines as vertices.
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[5] X. Chen and V. Chvátal, Problems related to a de Bruijn - Erdős theorem,
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[7] V. Chvátal, A de Bruijn-Erdős theorem for 1-2 metric spaces, Czechoslovak
Mathematical Journal 64 (1) (2014), 45–51.

10
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