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Abstract. The character theory of symmetric groups, and the theory
of symmetric functions, both make use of the combinatorics of Young
tableaux, such as the Robinson-Schensted algorithm, Schützenberger’s
“jeu de taquin”, and evacuation. In 1995 Poirier and the second author
introduced some algebraic structures, different from the plactic monoid,
which induce some products and coproducts of tableaux, with homo-
morphisms. Their starting point are the two dual Hopf algebras of
permutations, introduced by the authors in 1995. In 2006 Aguiar and
Sottile studied in more detail the Hopf algebra of permutations: among
other things, they introduce a new basis, by Möbius inversion in the
poset of weak order, that allows them to describe the primitive elements
of the Hopf algebra of permutations. In the present Note, by a similar
method, we determine the primitive elements of the Poirier-Reutenauer
algebra of tableaux, using a partial order on tableaux defined by Taskin.

1. Introduction

In 1995 the authors of the present paper introduced two dual Hopf al-
gebra structures on permutations [11]. The products and coproducts of
permutations originated from the concatenation Hopf algebra and shuffle
Hopf algebra on Z〈N>0〉, the module generated by words of positive inte-
gers, from Solomon’s descent algebra [14] and Gessel’s (internal) coalgebra
[5] of quasi–symmetric functions. The two Hopf structures on ZS, the mod-
ule with Z–basis all the permutations in S = ∪n≥0Sn, for Sn the symmetric
group on {1, . . . , n}, are autodual [2].
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2 C. MALVENUTO AND C. REUTENAUER

In the same year [10], carrying on these themes, Poirier and the second
author proved that the two dual Hopf structures on ZS are free associa-
tive algebras. By restriction on the plactic classes they obtained two dual
structures of Hopf algebras on the Z–module ZS with basis the set T of all
standard Young tableaux. The product and coproduct are described there
in term of Schützenberger’s “jeu de taquin” [7]. They also provided different
morphisms between these structures and the descent algebras, symmetric
functions and quasi-symmetric functions. In particular, the map sending a
permutation into its left tableau in the Schensted correspondence is a Hopf
morphism.

Loday and Ronco [8] characterized the product of two permutations by
the use of the weak order of permutations: it is the sum of all permutations
in some interval for this order. In 2005 [1], Aguiar and Sottile studied in
further and thorough details the structure of the Hopf algebras of permu-
tations, giving explicit formulas for its antipode, proving that it is a cofree
algebra and determining its primitive elements. For the latter task, they in-
troduced a new basis of ZS, related to the basis of permutations via Möbius
inversion in the poset of the Bruhat weak order of the symmetric groups.
In [4], Duchamp, Hivert, Novelli and Thibon studied the Hopf algebra of
permutations (denoted there FQSYM), and gave among others a faithful
representation by noncommutative polynomials.

The Hopf algebra of tableaux was used by Jöllenbeck [6], and Blessenohl
and Schocker [2], to define their noncommutative character theory of the
symmetric group. Moreover, Muge Taskin [15] used the order on tableaux,
induced by the weak order of permutations, to characterize the product of
two tableaux, in a way reminiscent of the result of Loday and Ronco.

The purpose of this Note is to find the primitive elements of ZT , the Hopf
algebra of tableaux with respect to the product and coproduct, following the
approach of Aguiar and Sottile. A new basis for ZT is obtained by Möbius
inversion for the Taskin order of tableaux. The nice feature of the proofs here
is that we manage to avoid “jeu de taquin”, and use a simpler description
through a shifted left and right concatenation product of tableaux.

2. Preliminaries on permutations

We denote by Sn symmetric group on {1, . . . , n}. We often represent
permutations as words: σ ∈ Sn is represented as the word σ(1)σ(2) · · · σ(n).
By abuse of notation, we identify σ and the corresponding word. A word
in the sequel will always be on the alphabet of positive integers, also called
letters. We denote by |σ| the number of letters of σ.

We denote by ≤ the right weak order of permutations. Recall that it is
defined as the reflexive and transitive closure of the relation u < v, u, v ∈ Sn,
v = u◦τ , for some adjacent transposition τ ∈ Sn such that l(u) < l(v), where
l(u) denotes as usual the length of u in the sense of Coxeter groups. Recall
that this order may also be defined by comparing inversions sets: let Inv(σ)
be the set of inversions (‘by values’) of σ, that is, the set of pairs (j, i) with
j > i and σ−1(j) < σ−1(i); then u ≤ v if and only if Inv(u) ⊆ Inv(v). Note
that (j, i) is an inversion of σ if and only if j > i and j appears on the left
of i in the word representing σ. This definition applies also to any word.
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Given σ ∈ Sn, and a subset I of [n], σ | I denotes the word obtained by
removing in the word σ the digits not in I (whereas the restriction of σ to
I is the subword σ |I of the images of the letters in I). For example, for
σ = 2517643, one has 2517643 | {2, 3, 6} = 263 (while σ |{2,3,6}= 514).

Moreover, v being a word without repetition of letters, st(v) denotes the
standard permutation of the word v, obtained by replacing each letter in v
by its image under the unique increasing bijection form the set of letters in
v onto {1, 2, . . . , |v|}. For example, st(5713) = 3412.

Lemma 2.1. If s ≤ t are permutations in Sn and I an interval in {1, . . . , n},
then st(s | I) ≤ st(t | I).

Proof. Let (j, i) be an inversion of s | I; then i, j ∈ I. Then (j, i) is an
inversion of s, hence of t. It follows that it is also an inversion of t | I.
Since standardizing amounts to apply an increasing bijection, we deduce
the lemma. �

Let S =
⋃

n≥0 Sn be the disjoint union of all symmetric groups. There
is a classical associative product on S, denoted by �, which turns it into a
free monoid [10]: let u ∈ Sp and v ∈ Sq; let v̄ be obtained by adding p to
each digit in v; then u�v is the concatenation uv̄ of u and v̄ (or right shifted
concatenation). For example, 231�12 = 23145, with here p = 3. The free
generators of this free monoid are the indecomposable permutations, which
have some importance in algebraic combinatorics; see [3].

A variant of this product is as follows: given two permutations as above,
v △ u = v̄u (which we refer to as left shifted concatenation). Example:
12△ 231 = 45231.

Clearly, the product � and the opposite product of △ are conjugate under
the mapping w 7→ w̃ which reverses words:

v △ u = ˜̃u�ṽ.

It follows that S with the product △ is also a free monoid, freely generated
by the permutations which are indecomposable for this product, which are
the reversals of the indecomposable permutations.

For later use, we need

Lemma 2.2. The weak order ≤ on permutations is compatible with the
product △: u ≤ u′, v ≤ v′ ⇒ v △ u ≤ v′ △ u′.

Proof. Let u ∈ Sp, v ∈ Sq. Suppose that u ≤ u′, v ≤ v′. We show that
v△ u ≤ v′ △ u′. Let (j, i) be an inversion of v△ u = v̄u. If i, j ≤ p, then by
construction of the product △, (j, i) is an inversion of u, hence of u′ (since
u ≤ u′), hence of v′ △ u′. If i, j > p, then (j − p, i− p) is an inversion of v,
hence of v′ (since v ≤ v′) and therefore (j, i) is an inversion of v′ △ u′. If
i ≤ p and j > p, then (j, i) is an inversion of v′ △u′. There is no other case,
since i < j. �

3. Hopf algebra of permutations

Denote by ZS be the free Z-module with basis S. We define on ZS
a product, denoted by ∗ (called destandardized concatenation), and a co-
product (called standardized unshuffling), denoted by δ, which turn it into
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a Hopf algebra (see [11]). If α ∈ Sp, β ∈ Sq, α ∗ β is the sum of all
permutations in Sp+q of the form uv (concatenation of u and v), where
u, v are of respective lengths p, q and st(u) = α, st(v) = β; for example,
12 ∗ 21 = 1243 + 1342 + 1432 + 2341 + 2431 + 3421. Moreover, for σ ∈ Sn,

δ(σ) =
∑

0≤i≤n

σ | {1, . . . , i} ⊗ st(σ | {i+ 1, . . . , n}).

An example of coproduct is δ(3124) = ǫ⊗ st(3124) + 1 ⊗ st(324) + 12 ⊗
st(34)+312⊗st(4)+3124⊗ǫ = ǫ⊗3124+1⊗213+12⊗12+312⊗1+3124⊗ǫ.
Here ǫ is the empty permutation in S0, the neutral element of the bialgebra
ZS.

Following Aguiar and Sottile [1], we define a new linear basis Mσ of ZS,
indexed by permutations, and called monomial basis. (Notice that Aguiar
and Sottile deal with the isomorphic dual Hopf algebra, the isomorphism
being σ 7→ σ−1, and also that they use the left weak order.) These elements
are given by the formula

σ =
∑

σ≤w

Mw,

which defines them recursively, via Möbius inversion formula, since ≤ is an
order.

The following result is equivalent to a result due to Aguiar and Sottile
([1] Theorem 3.1).

Theorem 3.1. For any permutation σ, one has

δ(Mσ) =
∑

σ=v△u

Mu ⊗Mv.

We give below the proof of this result; it may help to understand the
proof of the similar result on the Hopf algebra of tableaux, which we give in
Section 6.

We begin by a lemma, that will also have an analogue for tableaux.

Lemma 3.1. Let n = p + q, σ ∈ Sn, a = σ | {1, . . . , p}, b = st(σ |
{p+1, . . . , n}. Then, for v ∈ Sq, u ∈ Sp, σ ≤ v△u if and only if a ≤ u and
b ≤ v.

Proof. 1. We show first that σ ≤ b△ a. We have b△ a = ba (concatenation
of words), where it is easily seen that b = σ | {p + 1, . . . , n} (add p to each
letter of b).

Let (j, i) be an inversion of σ. Then i < j and j is at the left of i in σ. If
j, i ≤ p, then (j, i) is an inversion of a, and therefore also of b△a. If j, i > p,
then (j, i) is an inversion of b, hence of b△ a. If i ≤ p and j > p, then (j, i)
is an inversion of b△ a, since in this latter permutation, each letter > p is
at the left of each letter ≤ p. There is no other case since j > i.

Thus (j, i) is in each case an inversion of b△ a, hence σ ≤ b△ a.
2. Suppose that a ≤ u and b ≤ v. Then clearly b△ a ≤ v△ u, by Lemma

2.2. Hence by 1, σ ≤ v △ u.
3. Suppose that σ ≤ v △ u. If (j, i) is an inversion of a, then it is an

inversion of σ, hence of v △ u = v̄u; therefore it is an inversion of u since
i, j ≤ p; thus a ≤ u. Similarly, b ≤ v. �
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Proof of Theorem 3.1. Define the Z-linear mapping δ1 : ZS 7→ ZS ⊗ ZS by
δ1(Mσ) =

∑
σ=v△u Mu ⊗Mv. It is enough to show that δ1 = δ. We have

for any permutation σ ∈ Sn,

δ1(σ) = δ1(
∑

σ≤w

Mw) =
∑

σ≤w

∑

w=v△u

Mu ⊗Mv =
∑

σ≤v△u

Mu ⊗Mv.

This is by Lemma 3.1 equal to
∑

0≤i≤n

∑

σ|{1,...,i}≤u

st(σ|{i+1,...,n}≤v

Mu ⊗Mv

=
∑

0≤i≤n

(
∑

σ|{1,...,i}≤u

Mu)⊗ (
∑

st(σ|{i+1,...,n})≤v

Mv)

=
∑

0≤i≤n

σ | {1, . . . , i} ⊗ st(σ | {i+ 1, . . . , n} = δ(σ),

by the definition of the basis Mσ. �

In order to understand the equivalence between the previous theorem
and the theorem of Aguiar and Sottile, it may be useful to use the notion
of global descents, introduced by them. Recall that according to Aguiar
and Sottile ([1], Definition 2.12), a global descent of σ ∈ Sn is a position
i ∈ {1, . . . , n−1} such that for any j ≤ i and any k > i one has σ(j) > σ(k).

Then the permutations that are indecomposable for the product△ (which
are the free generators of the free monoid S) are those which have no global
descents. Moreover, if σ = σ1△ . . .△σk with indecomposable σi’s, then the
global descents of σ are the positions |σ1|, |σ1|+ |σ2|, . . . , |σ1|+ . . . |σk−1|.

For example, 78465213 = 12△132△213 has 2 and 5 as global descents, and
12, 132, 213 are indecomposable for △, equivalently, have no global descents.

Corollary 3.1. The submodule of primitive elements of ZS is spanned by
the Mσ such that σ has no global descent, or equivalently, σ is indecompos-
able for the product △.

4. Preliminaries on tableaux

For unreferenced results quoted here, see [13]. Denote by Tn denotes the
set of standard Young tableaux (we say simply tableaux) whose entries are
1, . . . , n. We denote by (P (σ), Q(σ)) the pair of tableaux associated with
σ ∈ Sn by the Schensted correspondence.

Let T = ∪n≥0Tn be the set of all standard tableaux. The plactic equiv-
alence on T is the smallest equivalence relation generated by the Knuth
relations xjiky ∼plax xjkiy, xikjy ∼plax xkijy, i < j < k, for i, j, k ∈ N and
x, y ∈ N

∗.
By Knuth’s theorem, one has P (σ) = P (τ) if and only if σ ∼plax τ .

Thus we may identify tableaux and plactic classes. In the sequel, we use
systematically this identification.

Following Taskin [15] , we define the weak order of tableaux as follows:
let U, V ∈ Tn; let u, v ∈ Sn be such that P (u) = U,P (v) = V . Define the
relation U ≤ V if u ≤ v; then ≤ is the transitive closure of this relation.

In other words, the weak order on tableaux is the smallest order on T
such that the mapping P : S → T is increasing for the weak order.
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This order was introduced by Melnikov [9] (called there Duflo order) and
Taskin [15] (denoted there ≤weak). The difficulty here is to show that it is
indeed an order.

For two tableaux A,U , one has A ≤ U if and only if there exist n ≥ 1
and permutations α0, . . . , αn−1, β1, . . . , βn such that

(1) P (α0) = A,α0 ≤ β1 ∼ α1 ≤ β2 ∼ . . . αn−1 ≤ βn, P (βn) = U.

The product △ of permutations induces a product of tableaux, still de-
noted by △. This follows from the next lemma.

Lemma 4.1. The plactic equivalence is compatible with the product △, that
is: u ∼plax u′ ⇒ v △ u ∼plax v △ u′.

Proof. Suppose indeed that u, u′ ∈ Sp, v ∈ Sq and for some letters 1 ≤
i < j < k ≤ p, and words x, y, one has u = xjiky, u′ = xjkiy. Then
v̄u = v̄xjiky, v̄u′ = v̄xjkiy and therefore v△u ∼plax v△u′. There are other
similar cases, left to the reader. �

Therefore, one has for any permutations u, v

P (v △ u) = P (v)△ P (u),

which means that P is a homomorphism from the monoid S into the monoid
T , both with the product △.

Note that one may compute directly V △ U as follows: V △ U is the
tableau obtained by letting fall V̄ onto U , with V̄ obtained by adding p to
each letter in V (this follows from the dual Schensted correspondence, that
is, column insertion). Thus V △ U is the tableau denoted U/V in [15], p.
1109. For example:

U
2

1 3
, V 1 2 →

4 5

2

1 3

→ V △ U

4

2 5

1 3

We need also the following.

Lemma 4.2. The weak order ≤ on tableaux is compatible with the product
△: U ≤ U ′, V ≤ V ′ ⇒ V △ U ≤ V ′ △ U ′.

Proof. This follows from Lemma 2.2, and the characterization through
Eq.(1) of the order, using the fact that P is an increasing surjective ho-
momorphims S → T . �

By Proposition 2.5 in [7], p.133, the plactic equivalence is compatible with
the restriction to intervals, and with standardization. It follows that the
plactic equivalence is compatible with the composition of the two operations:
if u, v ∈ Sn, u ∼plax v, and I is an interval of [n], then st(u | I) ∼plax st(v |
I). Thus, if A = P (u), we may denote without ambiguity by st(A | I)
the tableau P (st(u | I)). By the work of Schützenberger, the corresponding
tableau is obtained by jeu-de-taquin straightening of the skew tableau which
is the restriction to I of the tableau P (u); but we do not need this fact.
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Lemma 4.3. Let A,B ∈ Tn such that A ≤ B, and I be an interval in [n].
Then st(A | I) ≤ st(B | I).

Proof. This follows from the characterization through Eq.(1) of the order,
Lemma 2.1, the previous observation, and the fact that P is increasing. �

5. Main lemma

Recall the Taskin weak order on tableaux, denoted ≤.

Lemma 5.1. Let n = p+ q and Σ ∈ Tn. Let A = st(Σ | {1, . . . , p}), and let
B = st(Σ | {p + 1, . . . , n}). Then for U ∈ Tp, V ∈ Tq, one has: Σ ≤ V △ U
if and only if A ≤ U and B ≤ V .

Proof of Lemma 5.1. 1. We show first that Σ ≤ B△A. Let σ ∈ Sn be such
that Σ = P (σ). Let a = st(σ | {1, . . . , p}) and b = st(σ | {p + 1, . . . , n}).
Then σ ≤ b△ a by Lemma 3.1. It follows that Σ ≤ B △ A by Lemmas 4.1
and 4.2.

2. Suppose that A ≤ U and B ≤ V . Then by 1. and Lemma 4.2, we have
Σ ≤ B △A ≤ V △ U .

3. Suppose now that Σ ≤ V △ U . Let u ∈ Sp, v ∈ Sq be such that
U = P (u), V = P (v). Then by Lemma 4.3, we have A = st(Σ | {1, . . . , p}) ≤
st((V△U) | {1, . . . , p}) = P (st((v△u) | {1, . . . , p})) = P (u) = U . Moreover,
by the same lemma,

B = st(Σ | {p + 1, . . . , n}) ≤ st((V △ U) | {p + 1, . . . , n})

= P (st((v △ u) | {p+ 1, . . . , n})) = P (v) = V.

�

6. Primitive elements in the Hopf algebra of tableaux

The free Z-module ZT , based on the set T of tableaux, becomes a struc-
ture of Hopf algebra, quotient of the Hopf algebra ZS of Section 3, and whose
product and coproduct are therefore also denoted by ∗ and δ. The quotient
is obtained by identifying plactic equivalent permutations. In other words,
consider the submodule I spanned by the elements u−v, u ∼plax v; then I is
an ideal and a co-ideal of ZS, and the quotient ZS/I is canonically isomor-
phic with ZT . Moreover, the canonical bialgebra homomorphism ZS → ZT
maps each permutation σ onto P (σ). See [10], Théorème 3.4 and 4.3 (iv),
where the product and coproduct are there denoted ∗′ and δ′.

Now we introduce a new basis of ZT , following the method of Aguiar and
Sottile [1], replacing the weak order on permutations by the Taskin weak
order on tableaux. The new basis (that we may call the monomial basis,
following [1]) MW , W ∈ T , is completely defined by the identities

Σ =
∑

Σ≤W

MW ,

for all tableau Σ, via Möbius inversion on the poset (T,≤).

Theorem 6.1. Let Σ ∈ Tn. Then

δ(MΣ) =
∑

Σ=V△U

MU ⊗MV .
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Proof. Define the Z-linear mapping δ1 : ZT 7→ ZT ⊗ ZT by

δ1(MW ) =
∑

W=V△U

MU ⊗MV .

It is enough to show that δ1 = δ.
We have

δ1(Σ) = δ1(
∑

Σ≤W

MW ) =
∑

Σ≤W

∑

W=V△U

MU ⊗MV =
∑

Σ≤V△U

MU ⊗MV

=
∑

p+q=n

∑

Σ≤V △U

V ∈Tq,U∈Tp

MU ⊗MV .

This is by Lemma 5.1, and with its notations, equal to
∑

p+q=n

(
∑

st(Σ|{1,...,p})≤U

MU )⊗ (
∑

st(Σ|{p+1,...,n})≤V

MV )

=
∑

p+q=n

(st(Σ | {1, . . . , p}))⊗ (st(Σ | {p+ 1, . . . , n})).

Choose σ such that P (σ) = Σ. Then by definition of st(Σ | I), the latter
quantity is equal to

∑

p+q=n

P (st(σ | {1, . . . , p}))⊗ P (st(Σ | {p+ 1, . . . , n}))

= (P ⊗ P )(
∑

p+q=n

st(σ | {1, . . . , p}) ⊗ st(σ | {p + 1, . . . , n}))

= (P ⊗ P )(δ(σ)) = δ(P (σ) = δ(Σ)),

since P is a homomorphism of bialgebra, as recalled at the beginning of
Section 6. �

Corollary 6.1. The submodule of primitive elements of ZT is spanned by
the MΣ sucht that Σ is indecomposable for the product △.

The dimensions of the graded components of the submodule of primitive
elements is therefore the sequence of the numbers of tableaux indecompos-
able for the product△; it is denoted an in [10], p.88-89. For n = 1, 2, . . . , 10,
they are the numbers

1, 1, 1, 3, 7, 23, 71, 255, 911, 3535.

They appear as sequence A140456 in the Online Encyclopedia of Integer
Sequences [12], with other interpretations.

7. Further remarks

7.1. Product formulas using ∆. The product △, both for permutations
and tableaux, plays a role in product formulas in the dual Hopf algebras of
ZS and ZT .

First, one has to consider also the product � of permutations: let a ∈ Sp,
b ∈ Sq; then a�b = ab̄, where b̄ is obtained from b by adding p to each letter
in b.
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Recall the shifted shuffle product of permutations, denoted �: a�b is the
shuffle of a and b̄. This product is the dual product of the coproduct δ of
ZS. On has

Theorem 7.1. (Loday-Ronco [8] Theorem 4.1) Let a, b ∈ S. Then

a�b =
∑

a�b≤σ≤b△a

σ.

In other words, a�b is the sum of all permutations in the interval [a�b, b△
a] of the weak order.

The product � is compatible with the plactic equivalence, hence � is
well-defined on tableaux. Denote also by � the product which is the dual
of δ in the dual coalgebra of ZT . Then one has

Theorem 7.2. (Taskin [15] Theorem 4.1) Let A,B ∈ T . Then

A�B =
∑

A�B≤T≤B△A

T.

In other words, A�B is the sum of all tableaux belonging to the interval
[A�B,B △ A] of the weak order. Note that the product A�B is denoted
A\B in [15], p. 1109. It corresponds to put the tableau B aside the tableau
A, then push every row of B toward A. For example:

A

2

1 3
, B

3

2

1 4
→

2

1 3

6

5

4 7
→ A�B

6

2 5

1 3 4 7

7.2. Multiplicative basis. Note that Theorem 6.1 means that in the dual
Hopf algebra of ZT , the dual basis M∗

T of the basis MT is multiplicative, in
the sense of [4]: one has for tableaux A,B,

M∗
A�M∗

B = M∗
B△A.

Indeed, using the canonical pairing between ZT and its dual,

〈M∗
A�M∗

B ,MΣ〉 = 〈M∗
A⊗M∗

B, δ(MΣ)〉 = 〈M∗
A⊗M∗

B ,
∑

Σ=V△U

MU⊗MV 〉

=
∑

Σ=V△U

〈M∗
A,MU 〉〈M

∗
B ,MV 〉.

This is 1 exactly when Σ = B △ A, otherwise it is 0. Thus it is equal to
〈M∗

B△A,MΣ〉, which proves the formula.

7.3. A counter-example by Franco Saliola. Our basis MΣ was inspired
by the construction of Aguiar and Sottile in [1]. They prove further that
the structure constants for multiplication are positive (Theorem 4.1 in their
article). This is not true in the case of Poirier–Reutenauer Hopf algebra
of tableaux, as shows a counter-example of Franco Saliola, that he kindly
permitted us to reproduce here. Indeed, he computed that

MP (123) ∗MP (123) = MP (123456)
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−MP (241356)−MP (251346)−MP (261345)−MP (351236)−MP (361245)−MP (461235)

+MP (256134) +MP (346125) +MP (356124) + 2MP (456123)

+2MP (362514) −MP (462513)−MP (543126).

Acknowledgments. We thank Franco Saliola, who allowed us to include a
counter-example arising from his computations.
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