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Abstract

We study the problems of bounding the number weak and strong
independent sets in r-uniform, d-regular, n-vertex linear hypergraphs
with no cross-edges. In the case of weak independent sets, we provide
an upper bound that is tight up to the first order term for all (fixed)
r ≥ 3, with d and n going to infinity. In the case of strong independent
sets, for r = 3, we provide an upper bound that is tight up to the
second order term, improving on a result of Ordentlich-Roth (2004).
The tightness in the strong independent set case is established by an
explicit construction of a 3-uniform, d-regular, cross-edge free, linear
hypergraph on n vertices which could be of interest in other contexts.
We leave open the general case(s) with some conjectures. Our proofs
use the occupancy method introduced by Davies, Jenssen, Perkins, and
Roberts (2017).

1 Introduction

A classic result in the extremal theory of bounded-degree graphs is the result
of Jeff Kahn [13] that a disjoint union of copies of the complete d-regular
bipartite graph (Kd,d) maximizes the number of independent sets over all
d-regular bipartite graphs on the same number of vertices. The result was
later extended to all d-regular graphs by Yufei Zhao [19].
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Theorem 1 (Kahn, Zhao). Let i(G) denote the total number of independent
sets of a graph G. For all d-regular graphs G,

log i(G)

|V (G)|
≤

log i(Kd,d)

2d
.

The logarithmic formulation of the theorem is equivalent to that in
the preceding paragraph since i(G) is multiplicative over unions of disjoint
graphs.

This result has led to many extensions and generalizations; Galvin and
Tetali [12] extended Kahn’s result from counting independent sets to count-
ing graph homomorphisms (and weighted independent sets). For a recent
survey of extremal results for regular graphs see [20].

The broad question we aim to address here is what are the possible
generalizations of Theorem 1 to hypergraphs?

A hypergraph G = (V,E) is a set of vertices V and a collection of
edges E with each edge a subset of V . A hypergraph is r-uniform if each
edge contains exactly r vertices. The degree of a vertex v ∈ V is d(v) =
|{e ∈ E : v ∈ e}|. We say u ∼ v (u is a neighbor of v) if u 6= v and
there is some edge e ∈ E(H) with {u, v} ⊆ e. The neighborhood of v is
N(v) = {u ∈ V (H) | u ∼ v}.

A hypergraph is linear if each pair of distinct vertices appear in at most
one common edge. A cross edge in the neighborhood of a vertex v is an edge
e that contains two neighbors u1, u2 of v but not v itself. A hypergraph is
cross-edge free is it contains no cross-edges. In an ordinary graph (a 2-
uniform hypergraph) being cross-edge free is being triangle free.

A k-independent set in a hypergraph is a a set I ⊆ V (G) so that |I ∩
e| < k for all e ∈ E(G). Let Ik(H) be the set of all k-independent sets
of a hypergraph H, and ik(G) = |Ik(H)|. We refer to a 2-independent
set as a strong independent set, and an r-independent set in an r-uniform
hypergraph as a weak independent set, and for simplicity we focus mainly
on these two cases.

The main question we consider here is the generalization of Theorem 1
to linear hypergraphs.

Question 2. Which d-regular, r-uniform, linear hypergraph on a given num-
ber of vertices has the most k-independent sets?

1.1 Strong independent sets

Apart from the trivial cases r = 1 or d = 1, a tight answer to Question 2 is
known in only two cases: Theorem 1 gives the answer for r = 2 (the case of
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ordinary graphs for which strong and weak independent sets coincide): for
every 2-uniform, d-regular hypergraph G on n vertices,

log i2(G)

n
≤

log i2(Kd,d)

2d
=

log(2d+1 − 1)

2d
=

1

2
+

1

2d
− exp(−Θ(d)) .

Here and in what follows we write log x for log2 x and lnx for the natural
logarithm. We also use standard asymptotic notation O(·),Ω(·),Θ(·), as
r, d → ∞. A function f(r, d) = O(g(r, d)) if there exists a constant C so
that f(r, d) ≤ Cg(r, d) for all r, d.

The following result [8] answers the question for d = 2. As originally
phrased, the theorem states that a union of copies of Kr,r maximizes the
number of matchings of any r-regular graph on the same number of vertices.
However, for any graph G we can define a 2-regular, linear hypergraph GT

with a vertex in GT for every edge of G and an edge for every vertex of
G, comprising of all of its incident edges (we choose this notation since the
transformation transposes the edge-vertex incidence matrix). Then G 7→ GT

is a bijection between r-regular (2-uniform, simple) graphs on n vertices and
2-regular, r-uniform, linear hypergraphs on rn/2 vertices, and matchings in
G correspond naturally to strong independent sets in GT . Thus one of the
results of [8] can be equivalently phrased as:

Theorem 3 (Davies, Jenssen, Perkins, Roberts). For any 2-regular, r-
uniform hypergraph G,

log i2(G)

|V (G)|
≤

log i2(K
T
r,r)

r2
= Θ

(
log r

r

)
.

In other words, for strong independent sets in 2-regular hypergraphs the
maximizing hypergraph is KT

r,r, the r × r grid.
Prior to Kahn’s work, when the case of ordinary graphs was still unset-

tled, Ordentlich and and Roth [15] gave a general bound for the number of
strong independent sets (k = 2) in regular, uniform, linear hypergraphs.

Theorem 4 (Ordentlich and and Roth). For every r-uniform, d-regular,
linear hypergraph G on n vertices,

log i2(G)

n
≤ 1

r
+O

(
log2(rd)

rd

)
.

Their interest in the problem was motivated by understanding the num-
ber of independent sets in the Hamming graph H(n, q) with vertex set
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{0, 1, . . . , q− 1}n and edges between vectors at Hamming distance 1. (They
were particularly interested in q > 2, since much more precise information
was already known about the q = 2 case [14, 17]). As observed in [15], a
subset of the Hamming graph H(n, q) is an independent set if and only if
it is also a (strong) independent set in the q-uniform, n-regular linear hy-
pergraph with the same vertex set as H(n, q) and with hyperedges being
the subsets of vertices that agree in all but one coordinate. Thus Theo-
rem 4 gives corresponding bounds on the number of independent sets in the
Hamming graph for all q ≥ 2.

We conjecture that the second-order term in Theorem 4 can be improved.

Conjecture 5. Let H be an r-uniform, d-regular, linear hypergraph on n
vertices. Then

log i2(G)

n
≤ 1

r
+O

(
log r

rd

)
.

Our first main result is to confirm this for the cases r = 3 with the
additional assumption of cross-edge freeness.

Theorem 6. Let G be a 3-uniform, d-regular, linear hypergraph on n ver-
tices without cross-edges. Then

log i2(G)

n
≤ 1

3
+O

(
1

d

)
.

In Section 1.3 we will show that the dependence on d in the second-order
term is best possible.

The proof of Theorem 6 is in fact more general and gives an upper bound
on the independence polynomial,

ZG(λ) =
∑

I∈I2(G)

λ|I| ,

for all values of λ > 0. The function ZG(λ) is known in statistical physics
as the partition function of the hard-core model. We can recover i2(G) by
taking λ = 1. Both Theorems 1 and 3 also hold at this level of generality;
that is, the normalized log partition function is maximized by Kd,d and KT

r,r

respectively for all values of λ > 0. We discuss the hard-core model and the
method of proof in further detail in Section 2. While we believe the method
of proof can be extended to additional small cases of r, additional insight
would be required to push the technique to work for r > 7. For this reason,
we restrict our attention to r = 3 in the current presentation.
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1.2 Weak independent sets

Next we consider r-independent sets in r-uniform hypergraphs. Recently
Balabonov and Shabanov [2] used the method of hypergraph containers
([18, 4]) to give a general upper bound on ir for r-uniform, linear, regu-
lar hypergraphs.

Theorem 7 (Balabonov, Shabanov). Suppose G is a linear, r-uniform, d-
regular hypergraph on n vertices. Then for 2 ≤ j ≤ r,

log ij(G)

n
≤ j − 1

r
+O((log d)2(j−1)/j · d−1/j) .

The case of weak independent sets, j = r, was implicit in [18].
Our second main result is an improved upper bound on the number of

weak independent sets in cross-edge free hypergraphs.

Theorem 8. Suppose G is a linear, r-uniform, d-regular hypergraph on n
vertices with no cross-edges. Then

log ir(G)

n
≤ r − 1

r
+O

(
d−1/(r−1)

)
.

1.3 Constructions and conjectures

Part of the appeal of Theorems 1 and 3 is that the bound is exact, with
explicit extremal examples. While we do not have an exactly matching upper
bound, we provide a construction below establishing asymptotic tightness
of Theorem 6.

A construction for Theorem 6. Consider the tripartite hypergraph K
with 3d2 vertices and partsA = {a1, a2, · · · , ad2}, B = {b1, b2, · · · , bd2}, C =
{c1, c2, · · · , cd2} and hyperedges

{akd+i, bkd+j , cid+j} ,

for all 0 ≤ k ≤ d− 1, 1 ≤ i ≤ d.
By definition it is 3-uniform and d-regular. It is also linear, since the

choice of two “adjacent” vertices (meaning those that belong to a common
hyperedge) identifies k, i, j and hence a unique third vertex of the edge. It
is also cross-edge free, since the graph induced by the neighborhood of a
vertex is a matching. (See Figure 1.)
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akd+i

A
bkd+1

B

cid+1

C

Figure 1: The neighborhood of vertex akd+i in the hypergraph K.

Now to bound the number of (strong) independent sets from below,
observe that the graph induced by each pair of parts is a disjoint union of d
copies of Kd,d. Thus,

i2(K) ≥ (2d+1 − 1)d ≥ 2d(d+1/2) ,

which yields
log i2(K)

3d2
≥ d2 + d/2

3d2
=

1

3
+O

(
1

d

)
.

We will now present constructions and give bounds that we believe are
asymptotically tight in the general setting, without the (seemingly artificial)
cross-edge free assumption. We will use the following easy observation.

Small r-partite hypergraphs.
Suppose H is an r-uniform, d-regular r-partite hypergraph on N vertices.

Then i2(H) ≥ r · 2N/r − r + 1, and

log i2(H)

N
≥ 1

r
+

log r

N
−O(2−N/r).
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Thus for N of order rd we can get asymptotically tight graphs for Con-
jecture 5 if we manage to construct a linear H. The following examples deal
with some cases of r and d, but we are not aware of a general construction.

The mod graph.
For r = 3, let V1, V2, V3 be vertex sets of size d each identified with the

integers 1, . . . , d and let V (Hmod) = V1 ∪ V2 ∪ V3. A triple (v1, v2, v3) with
vi ∈ Vi is an edge iff v1 + v2 + v3 = 0 (mod d). This graph is 3-uniform,
d-regular and linear (for each v1 ∈ V1, v2 ∈ V2 there is a unique v3 ∈ V3 so
that (v1, v2, v3) ∈ E(Hmod). It is not cross-edge free.

We have

i2(H
mod) = 3 · 2d − 2,

and so

log i2(H
mod)

3d
=

1

3d
log
(

3 · 2d − 2
)

=
1

3
+

log 3

3d
+O(2−d).

Similarly, we have

ir(H
mod) ≥ 3 · 22d − 3 · 2d + 1,

and so

log ir(H
mod)

3d
≥ 1

3d
log
(

3 · 22d − 3 · 2d + 1
)

=
2

3
+

log 3

3d
+O(2−d).

For general r the mod construction is not linear.

A 4-uniform construction.
Here we describe a special case of a general construction detailed below

that was brought to our attention by Dmitry Shabanov.
For r = 4 and d odd, consider the following graph. Let V (H4) = V1 ∪

· · · ∪ V4, with each vi identified with {0, . . . d − 1}. Say (v1, v2, v3, v4) ∈
E(H4) if v1 + v2 = v3 (mod d) and v1 + 2v2 = v4 (mod d). H4 has the
property that any two vertices in two different parts appear in exactly one
edge together. Thus H4 is linear and d-regular. We have i2(H4) = 4 · 2d− 3
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and ir(H4) = 4 · 23d − 6 · 22d + 4 · 2d − 1, giving

log i2(H4)

4d
=

1

4
+

log 4

4d
(1 + o(1))

log ir(H4)

4d
=

3

4
+

log 4

4d
(1 + o(1)).

To find examples that give the asymptotics of Conjecture 5 for general
r, we have to limit our options on the degree d :

An r-partite, r-uniform, linear hypergraph, for r ≥ 3 and prime
d > r. This classical construction, whose special case r = 4 was described
above and works for all odd numbers d. For r ≥ 3, consider the r-uniform,
r-partite hypergraph H(r, d) with the vertex set V = ∪ri=1Vi, consisting of
disjoint sets Vi = {1, 2, . . . , d}, for i = 1, 2, . . . , r. The number of vertices is
n = rd. An r-tuple (x1, x2, . . . , xr), with xi ∈ Vi, is an edge iff the following
set of congruences is satisfied:

x3 ≡ x1+x2 (mod d), x4 ≡ x1+2x2 (mod d), . . . , xr ≡ x1+(r−2)x2 (mod d) .

Note that when d is prime, the choice of any two of the xi from an
edge determine the rest, implying that H(r, d) is a linear hypergraph. The
number of strong independent sets equals r × 2d − (r − 1), coming from
choosing any subset of a particular class Vi of vertices. The number of weak
independent sets is at least r2(r−1)d −

(
r
2

)
2(r−2)d. Thus

log i2(H(r, d))

rd
=

1

r
+

log r

rd
−O(2−d)

log ir(H(r, d))

rd
=
r − 1

r
+

log r

rd
−O(2−d).

Considering the above constructions, we conjecture that the constant in
front of the second order term in the bound on the normalized logarithm of
i2(H) and ir(H) should be 1.

Conjecture 9. Suppose r, d ≥ 2. Then for any r-uniform, d-regular linear
hypergraph H on n vertices

log i2(H)

n
≤ 1

r
+

log r

rd

and

log ir(H)

n
≤ r − 1

r
+

log r

rd
.

This is consistent with the above constructions. The bound for r = 2
is attained by Kd,d, for r = 3 by the mod graph and for r ≥ 4 by our last
example.
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2 Occupancy fraction and the hard-core model

In this section we give a brief overview of the method we will use to prove
Theorems 6 and 8.

Let G be an r-uniform hypergraph on n vertices. Fix some k ∈ {2, . . . r}.
The hard-core model on G at fugacity λ is a random independent set I ∈
Ik(G) chosen with probability

Prλ(I = I) =
λ|I|

ZG(λ)
(1)

where

ZG(λ) =
∑

I∈Ik(G)

λ|I| .

We omit the dependence on k in the notation, as it should be clear from
context. As mentioned above, the function ZG(λ) is the independence poly-
nomial, or the partition function of the hard-core model: the normalizing
constant that ensures that (1) defines a valid probability distribution. The
partition function encodes a large amount of information about the indepen-
dent sets of G: for example, ZG(1) = ik(G), and the highest order term of
the polynomial tells us both the size and number of maximum independent
sets of G.

The main technique used in this paper for obtaining upper bounds on
the number of independent sets follows the occupancy method of Davies,
Jenssen, Perkins, and Roberts [8]. We define the occupancy fraction of the
hard-core model on G as

αG(λ) =
1

|V (G)|
Eλ|I| ,

that is, the expected fraction of vertices of G in a random independent set
I drawn from the hard-core model.

Crucially for our purposes, the occupancy fraction is the scaled derivative
of the logarithm of the partition function:

αG(λ) =
1

|V (G)|

∑
I∈Ik(G) |I|λ|I|

ZG(λ)

=
λ

|V (G)|
Z ′G(λ)

ZG(λ)

=
λ

|V (G)|
(lnZG(λ))′ .
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As αG(0) = 0 for any G, we can write

1

|V (G)|
lnZG(λ) =

∫ λ

0

αG(t)

t
dt . (2)

In [8], Davies, Jenssen, Perkins, and Roberts proved the following theo-
rem.

Theorem 10. For all d-regular graphs G and all λ > 0,

αG(λ) ≤ αKd,d
(λ)

with equality if and only if G is a union of copies of Kd,d.

Theorem 10 strengthens Theorem 1 as we can integrate the bound in
Theorem 10 from 0 to 1 to obtain Theorem 1, as in (2). Theorem 3 was
proved in the same paper by proving the corresponding result for the oc-
cupancy fraction of matchings in regular graphs. To summarize, to prove
an upper bound on the number of independent sets in G it suffices to prove
an upper bound on the occupancy fraction of the hard-core model at all
fugacities λ ∈ (0, 1).

To do this, we consider a collection {Nv}v∈V (G) of neighborhoods Nv ⊂
V (G) such that each vertex u is counted in the same number D of neigh-
borhoods, i.e., |{v : u ∈ Nv}| = D does not depend on u. Then we can write
the occupancy fraction α in two different ways:

α =
1

n

∑
v

Pr(v ∈ I)

=
1

n

∑
u

1

D

∑
v:u∈Nv

Pr(u ∈ I) =
1

nD

∑
v

E(|I ∩Nv|).

In either case, we can condition on the value J = I \N of the independent
set outside Nv, giving

α =
1

n

∑
v

∑
J

pJ Pr(v ∈ I | I \Nv = J) (3)

=
1

nD

∑
v

∑
J

pJE(|I ∩Nv| | I \Nv = J),

where pJ = Pr(I \Nv = J). In practice, we will group terms in the sum over
J by the distribution of Nv∩I given J , yielding a sum over a relatively small
number of possible local configurations Cv. Given the local configuration it is
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typically not difficult to compute the conditional distribution of I ∩Nv, but
the probabilities pCv are global properties depending on the graph. Instead
of calculating them directly, we note that the equality of the two formulae for
α may in fact yield nontrivial constraints on the possible values of pCv . This
is because when Nv is actually a neighborhood of v configurations where v
is likely to be in I must in expectation have fewer neighbors of v in I.

To bound α, we merely bound the sum for all probability distributions
pCv subject to the equality of the two expressions for α. This is a linear
program in variables pCv ; any feasible solution to its dual implies a bound
on the objective function. In some cases a tighter bound may be obtainable
by enforcing several such constraints. Formulating such constraints and
solving the resulting linear programs is the essence of the occupancy method;
see [5, 16, 9] for several recent examples.

3 Weak independent sets: proof of Theorem 8

Applying the method outlined in the previous section, we prove an upper
bound on the weak independent set occupancy fraction in linear, cross-edge
free hypergraphs.

Recall that the neighborhood of v is N(v) = {u ∈ V (H) | u ∼ v}.
Note that since H is d-regular, r-uniform, and linear, every u ∈ V (H) is in
exactly d(r − 1) neighborhoods. For a fixed vertex v, call a vertex u ∼ v
externally covered by I ⊆ V (H) if there is some edge f 3 u such that
f ∩ N(v) = {u} and f \ {u} ⊆ I. Conditioned on I \ N(v) = J , I cannot
contain any neighbor u of v which is externally covered by J , so such a
vertex may be safely ignored when calculating E(|I| ∩N(v) | I \N(v) = J).
We can also ignore the hyperedges containing u, since those constraints are
automatically satisfied by ensuring that u 6∈ I.

Given an independent set I and vertex v, define the local configuration
Cv to be the following hypergraph on the vertex set N̂ consisting of v and
its externally uncovered neighbors: for each edge e of H, include the edge
e ∩ N̂ as an edge of Cv if (a) e ∩ N̂ 6= ∅, (b) e \ N̂ ⊆ I, and (c) e does not
contain any externally covered neighbor of v. Note that any edge containing
v satisfies both conditions (a) and (b), but may be omitted from Cv if it
contains an externally covered vertex. Conditioned on I \ N(v), the edges
of Cv are the remaining constraints on I ∩N(v) to ensure that I is a weak
independent set, and the conditional distribution of I∩N(v) is precisely the
distribution given by the hard-core model on Cv.

In the case where H is cross-edge free the only possible local config-
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v

Figure 2: A neighborhood configuration of a vertex v in a 3-regular, 5-
uniform linear hypergraph (in the case of weak independent sets). Externally
covered vertices are greyed out (their external neighbors in I are not shown)
and are omitted from the configuration Cv along with the edges connecting
them to v (dashed). The dotted edge is a cross-edge, which we disallow.
This configuration corresponds to parameters j = 1 and k = 5.

urations consist of v, j ≤ d edges containing v each of size r, and k ≤
(d − j)(r − 2) vertices whose adjacencies to v have been omitted from Cv.
The configuration is completely characterized by the parameters j and k. (If
cross-edges were allowed, Cv might have additional edges not containing v.)
Keeping the above shorthand convention µ = 1+λ, the partition function of
such a local configuration is Zj,k = (Z−j + λZ+

j )µk, where Z−j = µ(r−1)j and

Z+
j = (µr−1 − λr−1)j count independent sets on the neighbors of v in Cv,

conditioned on v 6∈ I and v ∈ I, respectively. The conditional probability
that v ∈ I given the local cofiguration is then

αvj =
λZ+

j

Z−j + λZ+
j

.

Using the formulas(
Z−j

)′
=

(r − 1)j

µ
Z−j

λ
(
Z+
j

)′
=

(r − 1)j

µ

(
λZ+

j − Z
+
j

λr−1

µr−1 − λr−1

)
,

the conditional expectation of the fraction of occupied vertices among the
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neighbors of v (not including v itself) is

αNj,k =
1

d(r − 1)

kλ
µ

+ λ

(
Z−j + λZ+

j

)′
Z−j + λZ+

j

−
λZ+

j

Z−j + λZ+
j


=

λ

d(r − 1)

(
k

µ
+

(r − 1)j

µ
·
Z−j + λZ+

j − Z
+
j

λr−1

µr−1−λr−1

Z−j + λZ+
j

)

=
λ

d(r − 1)

(
k

µ
+

(r − 1)j

µ

(
1−

Z+
j

λr−1

µr−1−λr−1

Z−j + λZ+
j

))

=
λ

µd(r − 1)

(
k + (r − 1)j − (r − 1)j

αvj
λ

(
λr−1

µr−1 − λr−1

))
Following (3), we can write

α =
∑
j,k

pj,kα
v
j =

∑
j,k

pj,kα
N
j,k, (4)

where pj,k is the probability that Cv is the local configuration with param-
eters j, k when we pick v uniformly at random and I from the hard-core
model with fugacity λ. That is, we take expectations over the conditional
expectations given by the preceding formulas.

To apply the occupancy method, we relax the optimization problem of
maximizing αG(λ) over all graphs to maximizing α as given by (4) over
all probability distributions pj,k subject to the constraint that these two
formulations in (4) are equal. This yields the primal LP

α∗(λ) = max
∑
j,k

pj,kα
v
j s.t.

∑
j,k

pj,k(α
v
j − αNj,k) = 0

∑
j,k

pj,k = 1

pj,k ≥ 0 .

Following the discussion in Section 2, we have that for any d-regular,
linear, cross-edge free hypergraph G,

αG(λ) ≤ α∗(λ) ,
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and therefore,
log ir(G)

n
≤ 1

ln 2

∫ λ

0

α∗(t)

t
dt . (5)

In what follows we derive an upper bound on α∗(λ) and integrate this
bound to obtain Theorem 8.

Proposition 11. For any λ ∈ [0, 1],

α∗(λ)

λ
=

(r − 1)(µλr − λµr)µd(r−1) +
(
µ2λr + λ(r − µ− 1)µr

)(
µr−1 − λr−1

)d
µ
(
r(µλr − λµr)µd(r−1) + λ(µλr + (r − µ)µr)(µr−1 − λr−1)d

)

=:
αw(r, d, λ)

λ
,

where α∗(λ) is defined in the linear program above, and where we have writ-

ten µ
def
= λ+ 1 for brevity.

Before proving Proposition 11, we derive Theorem 8 from it. Along
with (5), the following claim gives Theorem 8.

Claim 12. For any fixed r ≥ 3,

1

ln 2

∫ 1

0

αw(r, d, λ)

λ
dλ =

r − 1

r
+

cw,r

d1/(r−1)
(1 + od(1))

where

cw,r =
1

ln 2

∫ ∞
0

1

r + r2
(
ecr−1 − 1

) dx.
Proof. Let G(r, d, λ) = αw(r,d,λ)

λ − r−1
rµ . That is,

G(r, d, λ) =
(λr(λ+ r)− λµr)

(
µr−1 − λr−1

)d
r
(
r(µλr − λµr)µd(r−1) + λ(µλr + (r − µ)µr)(µr−1 − λr−1)d

) .
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We can take the asymptotics of G(r, d, λ) as d→∞ for λ = Θ(d−1/(r−1)):

G(r, d, λ) = (1 + od(1))
−λµr

(
µr−1 − λr−1

)d
r
(
λ(µλr + (r − µ)µr)(µr−1 − λr−1)d − λrµd(r−1)+r

)

= (1 + od(1))
1

r
(
r
(
µd(r−1)(µr−1 − λr−1)−d − 1

)
+ µ− λrµ1−r

)
= (1 + od(1))

1

r2
(
µd(r−1)(µr−1 − λr−1)−d − 1

)
+ r

= (1 + od(1))
1

r + r2
(

µd(r−1)

(µr−1−λr−1)d
− 1
) ,

and with the parameterization λ = cd−1/(r−1), we obtain

G(r, d, λ) =
1

r + r2
(
ecr−1 − 1

)(1 + od(1)) ,

and note that

1

ln 2

∫ 1

0

αw(r, d, λ)

λ
dλ =

1

ln 2

∫ 1

0

r − 1

r

1

1 + λ
dλ+ (1 + od(1))

1

ln 2

∫ ∞
0

1

r + r2
(
ecr−1 − 1

) dc
=
r − 1

r
+

cw,r
d1/(r−1)

(1 + od(1))

as desired.

Proof of Proposition 11. We can construct a candidate optimal solution p̃j,k
by putting support only on (j, k) ∈ {(d, 0), (0, (r − 2)d)}. Solving the con-
straint yields

p̃d,0 =
αv0 − αN0,d(r−2)

αv0 − αN0,d(r−2) − α
v
d + αNd,0

=
λ

λ+ (r − 1)µ(αNd,0 − αvd)

15



and

α̃

λ
=

(r − 1)αNd,0 − (r − 2)αvd

λ+ (r − 1)µ(αNd,0 − αvd)

=
1

µ

(
1− p̃d,0

Z−d − Z
+
d

Z−d + λZ+
d

)

=
1

µ

1−
Z−d − Z

+
d

r(Z−d + λZ+
d )− (r − 1)

(
µr−λr

µr−1−λr−1

)
Z+
d

.
As a check, note that αv0 > αN0,d(r−2) ≥ 0 and αNd,0 ≥ αvd ≥ 0, so 0 ≤ p̃d,0 ≤ 1.

The dual LP (in variables Λc,Λp corresponding to the two equality con-
straints of the primal) is

min Λp s.t.

Λp + (αvj − αNj,k)Λc ≥ αvj ∀ j, k.

Guided by our candidate primal optimal solution, we can find candidate
dual variables by solving for equality in the (j, k) = (d, 0), (0, (r − 2)d)
constraints. This yields Λ̃p = α̃ and

Λ̃c = (r − 1)
(

1− µ
λ Λ̃p

)
.

What remains to show is that this candidate dual solution Λ̃p, Λ̃c is
feasible; that is,

Λ̃p + (αvj − αNj,k)Λ̃c ≥ αvj ∀ j, k .

Note that Λ̃p = α̃ ≤ λ
µ (as αvj ≤ λ

µ for all j) and so Λ̃c ≥ 0. Thus we may

assume that k = (d−j)(r−2) as decreasing k only decreases αNj,k and makes
the constraint easier to satisfy. So we must show that for j = 0, . . . d, and
all λ ∈ [0, 1],

Λ̃p + (αvj − αNj,(d−j)(r−2))Λ̃c ≥ α
v
j .

16



Equivalently, writing αj := αvj/λ and s for r − 1,

Λ̃p
λ
≥

sαNj,k/λ− (s− 1)αvj/λ

1 + sµ
(
αNj,k/λ− αvj/λ

)
=

1
µd

(
k + sj − sjαj

(
λs

µs−λs
))
− (s− 1)αj

1 + 1
d

(
k + sj − sjαj

(
λs

µs−λs
))
− sµαj

=

(
1

µ

) k + sj − sjαj
(

λs

µs−λs
)
− (s− 1)µdαj

d+ k + sj − sjαj
(

λs

µs−λs
)
− sµdαj

=
1

µ

1 +
µdαj − d

sd+ j − sjαj
(

λs

µs−λs
)
− sµdαj


=

1

µ

1− d (µs − λs)
j(λssαj−(µs−λs))

µαj−1 + sd (µs − λs)

 =: f(j)

Note that the left hand side is equal to f(d), so we need to show that
f(j) ≤ f(d). This is equivalent to showing that g(j) ≤ g(d) for

g(j) = d (µs − λs)
(

1

1− µf(j)
− s
)

=
j (sαjλ

s − (µs − λs))
µαj − 1

=
j
(
sZ+

j λ
s − (µs − λs)

(
Z−j + λZ+

j

))
µZ+

j −
(
Z−j + λZ+

j

)
=
j
(
sZ+

j λ
s + Z−j λ

s −
(
Z−j+1 + λZ+

j+1

))
Z+
j − Z

−
j

= j
Cj
Bj

where Bj := µjs − νj , Cj := µjsν + λγνj , and µ, ν, γ are the auxiliary
variables

µ := 1 + λ

ν := (1 + λ)s − λs

γ := (1 + λ)s − λs−1(λ+ s).

17



Now g(d) ≥ g(j) can be rewritten as dBjCd ≥ jBdCj , which in turn is
equivalent to

(d− j)µ(d+j)s − (d− j)λγνd+j−1 ≥
dµsdνj − jµjsνd + jλγµsdνj−1 − dλγµjsνd−1

or

(d− j)µ(d+j)s ≥µjsνj−1
(
ν(dµ(d−j)s − jνd−j)− λγ(dνd−j − jµ(d−j)s)

)
+ (d− j)λγνd+j−1 (6)

Notice that it suffices to show g is increasing. Thus, we may assume d = j+1
and reduce (6) to

µ(2j+1)s ≥ µjsνj−1
(
ν
(
(j + 1)µs − jν

)
− λγ

(
(j + 1)ν − jµs

))
+ λγν2j .

Set ρ := µs and σ := λs, thus ρ− ν = σ. The desired inequality can be now
written as

ρ2j+1 ≥ ρjνj−1
(
ν
(
(j + 1)ρ− jν

)
− λγ

(
(j + 1)ν − jρ

))
+ λγν2j . (7)

Substituting

(j + 1)ρ− jν = (j + 1)ρ− j(ρ− σ) = ρ+ jσ

and
(j + 1)ν − jρ = (j + 1)(ρ− σ)− jρ = ρ− (j + 1)σ

into (7) we get the equivalent

ρ2j+1 ≥ ρjνj−1
(
ν
(
ρ+ jσ

)
− λγ

(
ρ− (j + 1)σ

))
+ λγν2j . (8)

We will prove (8) by induction on j. For j = 1, we substitute ν = ρ − σ
and, after expanding and canceling out, we are left with

ρσ2 ≥ λγσ2,

which holds, since ρ ≥ γ ≥ λγ. Now assume (8) holds for some j. Using it
for ρ2j+3 = ρ2 · ρ2j+1, the statement for j + 1 reduces to

ρ2

(
ρjνj−1

(
ν
(
ρ+ jσ

)
− λγ

(
ρ− (j + 1)σ

))
+ λν2jγ

)
≥

ρj+1νj
(
ν
(
ρ+ (j + 1)σ

)
− λγ

(
ρ− (j + 2)σ

))
+ λν2j+2γ.
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By writing (k+ 1)σ = kσ + σ for k = j, j + 1 and moving everything to the
left hand side we get

ρj+1νj−1

(
ν
(
ρ+jσ

)
(ρ−ν)−λγ

(
ρ−(j+1)σ

)
(ρ−ν)−νσ(ν+λγ)

)
+λν2jγ(ρ2−ν2) ≥ 0.

Since ρ− ν = σ, we can cancel σνj−1, and we are left with proving

ρj+1

(
ν
(
ρ+ jσ

)
− λγ

(
ρ− (j + 1)σ

)
− ν(ν + λγ)

)
+ λνj+1γ(ρ+ ν) ≥ 0,

which is equivalent to

ρj+1ν(ρ−ν)+jσνρj+1+(j+1)λγσρj+1 ≥ λγρ(ρj+1−νj+1)+λγν(ρj+1−νj+1),

or
(j + 1)ρj+1σ(ν + λγ) ≥ λγ(ρj+1 − νj+1)(ρ+ ν).

Now observe that

ρj+1 − νj+1 = σ

j∑
k=0

ρkνj−k ≤ (j + 1)σρj

So it suffices to prove
ρ(ν + λγ) ≥ λγ(ρ+ ν),

i.e. ρ ≥ λγ, which is obviously true.

4 Strong independent sets in 3-uniform hypergraphs

Now we turn to strong independent sets and prove Theorem 6. Using another
linear programming relaxation, we will prove the following upper bound on
the occupancy fraction.

Proposition 13. Let

αs(r, d, λ)

λ
=

∑r
t=1

(
r−1
t−1
)∏r−1

i=t ((1 + iλ)d−1 − 1)∑r
t=1((1 + (t− 1)λ)d + λ)

(
r−1
t−1
)∏r−1

i=t ((1 + iλ)d−1 − 1)
. (9)

Then for any d-regular, 3-uniform, linear, cross-edge free hypergraph G, and
for any λ > 0,

αG(λ) ≤ αs(3, d, λ) .
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Note that we define αs(r, d, λ) for general r, while only considering r = 3
in the proposition. We believe the inequality holds for r ≤ 6, and leave
proving this as an open problem.

Once we prove Proposition 13, Theorem 6 will follow via integration
from the next claim.

Claim 14.

1

ln 2

∫ 1

0

αs(3, d, λ)

λ
dλ =

1

3
+
cs,3
d

(1 + od(1))

where

cs,3 =
1

ln 2

∫ ∞
0

3e2c − 1

3(1− 3ec + 3e3c)
dc ≈ 0.603772 .

Proof. The proof is similar to that of Claim 12. Let

G3(d, λ) =
αs(3, d, λ)

λ
− 1

3

1

1 + λ

=
3(1 + 2λ)d − 1− 2λ

3(1 + λ) [1− 3(1 + λ)d + 3(1 + λ)d(1 + 2λ)d + λ(2− 6(1 + λ)d + 3(1 + 2λ)d)]
.

Paramterizing by λ = c/d, we have

G3(d, c/d) =
αs(3, d, λ)

λ
− 1

3

1

1 + λ

=
3e2c − 1 +O(1/d)

3(1 + c/d) [1− 3ec + 3e3c +O(1/d)]

=
1− 3e2c

3(3ec − 3e3c − 1)
(1 +O(1/d))

as d→∞, and so we have

1

ln 2

∫ 1

0

αs(3, d, λ)

λ
dλ =

1

ln 2

∫ 1

0

1

3

1

1 + λ
+G3(d, λ) dλ

=
1

ln 2

∫ 1

0

1

3

1

1 + λ
dλ+

1

ln 2

∫ d

0

G3(d, λ)

d
dc

=
1

3
+
cs,3
d

(1 +O(1/d)) .

20



Now we prove Proposition 13.
We can get a local estimate of αG by examining (along with the inde-

pendent set I) a uniformly random vertex v and a random edge e containing
v, so that αG = Pr[v ∈ I]. Note that because G is regular and uniform this
is equivalent to picking e uniformly and then picking v uniformly from e.

Say a vertex x is covered by a vertex y if y ∈ I and x ∼ y. Note that
any x ∈ I is uncovered. Call an uncovered vertex which is also unoccupied
available, and let A be the set of available vertices. Let N(v) denote the
neighborhood of v, and let N̂(v) = N(v) ∪ {v}.

Call a vertex externally uncovered if it is not covered by any vertex
outside of N̂(v), and let Cv be the hypergraph G restricted to v and its
externally uncovered neighbors (keeping all partial edges through v, so that
v has still degree d, but Cv is no longer uniform). Let C be the collection of
all such possible configurations. For each C ∈ C write p(C) = Pr[Cv = C]
for the distribution of Cv and let PC(λ) be the partition function for the
hypergraph C. Note that this partition function includes one configuration
with v ∈ I (of weight λ).

We are interested in maximizing

αG =
∑
C∈C

p(C) Pr[v ∈ I | Cv = C] =
∑
C∈C

p(C)
λ

PC(λ)

over all hypergraphs G. However, the only terms in this formula which
depend on the original hypergraph G at all are the probabilities p(C). Thus
it will be useful to know more about which distributions p can actually arise
from hypergraphs in this way.

Let t(e) := |e∩A| be the number of available vertices in e. We also know
that

Pr[v ∈ A | t(e) = t] = t/r

for each 0 ≤ t ≤ r. Conditioning on Cv = C, we have

t

r
Pr[t(e) = t] = Pr[v ∈ A, t(e) = t]

=
∑
C

p(C) Pr[v ∈ A, t(e) = t | Cv = C]

=
∑
C

p(C) Pr[v ∈ A | Cv = C] Pr[t(e) = t | v ∈ A, Cv = C].
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We can calculate Pr[v ∈ A | Cv = C] = 1/PC(λ) (since only the empty
independent set on C leaves v available) and

Pr[t(e) = t | v ∈ A, Cv = C] =
dt(C)

d
=: ηt(C),

where dt(C) is the number of size-t edges containing v in C (since whenever
v is available t(e) = |e| and all d edges containing v are equally likely). Thus
the probabilities p(C) must satisfy∑

C

p(C)
ηt(C)

PC(λ)
=
t

r
Pr[t(e) = t] =

t

r

∑
C

p(C) Pr[t(e) = t | Cv = C]

giving linear constraints∑
C

p(C)

(
t Pr[t(e) = t | Cv = C]− r ηt(C)

PC(λ)

)
= 0 ∀ 0 ≤ t ≤ r.

When t = r the constraint holds for any choice of p(C), since t(e) = r
precisely when v is available and we pick an edge e of size r in C. It is also
trivial for t = 0, since ηt = 0 (every edge containing v has size at least 1).

These linear constraints (along with the constraint that p should be a
probability distribution over neighborhood configurations) give an LP re-
laxation for the problem of maximizing the occupancy fraction over all d-
regular, r-uniform linear hypergraphs G, and the optimal probability dis-
tribution will give an upper bound on the occupancy fraction of such a
graph—if we can solve the LP.

It remains to calculate Pr[t(e) = t | Cv = C], which can be quite compli-
cated. However, the computation is vastly simplified by assuming that the
hypergraph is cross-edge free. The possible neighborhood configurations C
in a cross-edge free hypergraph are completely parameterized by the number
of edges dt(C) of each size t, as these are the only nontrivial edges in Cv.
For such a neighborhood configuration C,

PC(λ) = λ+
r∏
s=1

(1 + (s− 1)λ)ds(C).

For t 6= 0, one can obtain t(e) = t given C either by picking e to be an edge
of size t and taking the empty independent set or by picking an edge of size
t + 1 and covering v by one or more vertices outside that edge (the edge
itself must be unoccupied, of course). That is, for 1 ≤ t ≤ r

Pr[t(e) = t | Cv = C] =
ηt(C) + ηt+1(C)(PCt(λ)− 1)

PC(λ)
,
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where PCt(λ) is the partition function for C with an edge of size t + 1 and
v removed (this is just a collection of disjoint edges). In particular,

PCt(λ) =
PC(λ)− λ

1 + tλ
.

Finally, we can write a linear program relaxation of our problem with
variables p(C):

α∗

λ
= max

∑
C

p(C)
1

PC(λ)
subject to (10)

∑
C

p(C)

PC(λ)

(
ηt(C) + ηt+1(C)

(
PC − λ
1 + tλ

− 1

)
− r ηt

t

)
= 0 ∀ 1 ≤ t ≤ r − 1

∑
C

p(C) = 1

p(C) ≥ 0 ∀C ∈ C

Remark. This LP relaxation generalizes both the relaxation for independent
sets and that for matchings used in [8], which correspond to the cases r = 2
and d = 2, respectively.

We will use LP duality to show that the optimizer p∗ of this relaxation
is supported on the neighborhoods It with with ηt(It) = 1 (so that all of the
edges in It have size t). There is in fact a unique feasible solution with this
support, which is realized in the case r = 2 by Kd,d and in the case d = 2
by the r × r grid KT

r,r. For d, r > 2 the optimal solution for the relaxation
does not seem likely to be feasible for the unrelaxed problem (i.e. cannot be
realized by a hypergraph) and so the relaxation probably does not provide
a tight bound.

If we enforce support only on configurations Is the only nonzero terms
in the primal constraint for t are those with C ∈ {It, It+1}. Writing q(s) =
p∗(Is)/PIs , the constraint then becomes

q(t)(1− r
t ) + q(t+ 1)((1 + tλ)d−1 − 1) = 0 ∀1 ≤ t ≤ r − 1.

This is effectively a recursion in q(t), along with the constraint that

r∑
t=1

p∗(It) =
r∑
t=1

q(t)PIt = 1.
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Writing

v(t)
def
=

q(t)

q(r)
=

r−1∏
i=t

q(i)

q(i+ 1)

=
r−1∏
i=t

( i

r − i

)
((1 + iλ)d−1 − 1) =

(
r − 1

t− 1

) r−1∏
i=t

((1 + iλ)d−1 − 1)

and Z =
∑r

t=1 PIt(λ)v(t), the proposed solution to the primal is

q(t) =
v(t)

Z

p∗(It) = PIt(λ)q(t) =
PIt(λ)v(t)

Z
.

The objective function evaluated at this solution is

α∗

λ
=

r∑
t=1

p(It)

PIt
=

r∑
t=1

q(t) =

∑
t v(t)

Z
. (11)

The LP dual to (10) is (in variables Λ and Λt, 1 ≤ t ≤ r − 1)

α∗

λ
= min Λ subject to

ΛPC(λ) +

r−1∑
t=1

Λt

(
ηt+1(C)

(
PC(λ)− λ

1 + tλ
− 1

)
− ηt(C)

(r
t
− 1
))
≥ 1 ∀C ∈ C

To show that the primal optimum is supported on the configurations Is,
we show that there is a feasible solution to the dual for which the corre-
sponding constraints are tight. We can solve for candidate values Λ∗ and
Λ∗t by setting these r constraints to equality. To simplify notation, we will
write

Qt := PIt(λ)− λ = (1 + (t− 1)λ)d.

Since for Is only the t = s and t = s− 1 terms in the sum are nonzero,
the corresponding constraint becomes

Λ∗PIs + Λ∗s−1

(
Qs

1 + (s− 1)λ
− 1

)
− Λ∗s

(r
s
− 1
)

= 1, (12)

where we take the convention that Λ∗s = 0 whenever s ≤ 0 or s ≥ r. This
gives a system of linear equations for the dual variables which clearly has a
unique solution.
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We can rewrite this (for 0 ≤ s < r) as

Λ∗s =

(
s

r − s

)[
Λ∗s−1

(
Qt

1− (s− 1)λ
− 1

)
+ Λ∗(Qs + λ)− 1

]
.

Claim 15. The solution to the recurrence at = ftat−1 + gt with ft 6= 0 is

at =

(
t∏

k=1

fk

)(
a0 +

t∑
m=1

gm∏m
k=1 fk

)
.

We can use this to give an explicit formula for the Λ∗t s, using

at = Λ∗t , ft =

(
t

r − t

)(
Qt

1− (t− 1)λ
− 1

)
, gt =

(
t

r − t

)
Λ∗(Qt+λ).

The only hitch here is that by this definition we have f1 = 0. However, since
f1 is only ever used to multiply by Λ0 = 0 we can actually set it to whatever
we like. In this case it is easiest to set f1 = 1. Then the formula is

Λ∗t =

(
t∏

k=2

fk

)(
t∑

m=1

gm∏m
k=2 fk

)
.

Furthermore,

t∏
k=2

fk =

∏t−1
k=1((1 + kλ)d−1 − 1)(

r−1
t

) =
t

r − t

(
v(1)

v(t)

)
.

Plugging this in above gives (for 1 ≤ t < r)

Λ∗t =
t

r − t

t∑
s=1

v(s)

v(t)
(Λ∗PIs(λ)− 1) (13)

=
1

Z

t

r − t

t∑
s=1

v(s)

v(t)

r∑
i=1

v(i)(Qs −Qi).

This formula of course fails for t = r (because fr is undefined), but
plugging Λ∗r = 0 into (12) for s = r allows us to solve for Λ∗ and verify that
it is equal to α∗/λ from the primal solution, as expected from complementary
slackness.
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We must show that the setting of the dual variables Λ∗ and Λ∗t is dual-
feasible. In particular, for every neighborhood configuration C, we must
show

Λ∗PC(λ) +
∑
t

Λ∗t ηt+1(C)
PC(λ)− λ

1 + tλ
≥ 1 +

∑
t

Λ∗t ηt+1(C) +
∑
t

Λ∗t ηt(C)
(r
t
− 1
)

= 1 +
∑
t

ηt(C)
[
Λ∗t−1 + Λ∗t

(r
t
− 1
)]
.

Recalling the notation Qt = PIt(λ) − λ, we will also slightly abuse this
notation by writing Qη = PC(λ) − λ =

∏
tQ

ηt
t (where η = (ηt(C))rt=1; we

may also use this second formula to define Qη for any η ∈ Rr). Substituting

Λ∗t−1 + Λ∗t

(r
t
− 1
)

= Λ∗PIt(λ) + Λ∗t−1
Qt

1 + (t− 1)λ
− 1

from (12), the constraint for C becomes

Λ∗PC(λ) +
∑
t

ηt+1
Λ∗tQη
1 + tλ

≥ 1 +
∑
t

ηt

[
Λ∗PIt(λ) +

Λ∗t−1Qt

1 + (t− 1)λ
− 1

]
or equivalently∑

t

ηt

[
Λ∗PC(λ) +

Λ∗t−1Qη

1 + (t− 1)λ

]
≥
∑
t

ηt

[
Λ∗PIt(λ) +

Λ∗t−1Qt

1 + (t− 1)λ

]
By substituting PC(λ) = Qη + λ and PIt(λ) = Qt + λ in the left and right
hand side respectively, it reduces to∑

t

ηtQη

[
Λ∗ +

Λ∗t−1
1 + (t− 1)λ

]
≥
∑
t

ηtQt

[
Λ∗ +

Λ∗t−1
1 + (t− 1)λ

]
.

Finally, we can write the constraints simply as a slack constraint∑
t

ηt(Qη −Qt)
(

Λ∗ +
Λ∗t−1

1 + (t− 1)λ

)
≥ 0 (14)

for all convex combinations η such that dη is integral.
Recalling the formulas (11) and (13) for Λ∗ = α∗/λ and Λ∗t and multi-

plying through by the nonnegative common denominator Z, the constraint
(14) expands to

r∑
t=1

ηt(Qη −Qt)
1 + (t− 1)λ

r∑
i=1

v(i)

(
1 + (t− 1)λ+

( t− 1

r − t+ 1

) t−1∑
s=1

v(s)

v(t− 1)
(Qs −Qi)

)
≥ 0
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We would like to show that

S(η)
def
=
∑
t

ηtct(Qη −Qt) ≥ 0

for every convex combination η, where

ct
def
= Λ∗ +

Λ∗t−1
1 + (t− 1)λ

.

Since we have equality (by construction) when η is a basis vector, it
suffices to show that the only local minima of S(η) on the simplex are at its
vertices.

If η is not a vertex of the simplex, then there is a vector u such that
the line segment [η − u, η + u] is contained in the simplex. If η is also a
local minimum of S, then for every such u the univariate function Ŝ(x) =
S(η+xu) has a local minimum on [−1, 1] at x = 0, so we must have Ŝ′(0) = 0
and Ŝ′′(0) > 0. Set Q̂(x) = Qη+xu to get

Ŝ(x) =
∑
t

ct(ηt + utx)(Q̂(x)−Qt).

To compute the derivatives of S(x), we need the derivatives of Q̂(x). Since

ln Q̂(x) =
∑
t

(ηt + utx) lnQt,

we have
d

dx
[ln Q̂(x)] =

Q̂′(x)

Q̂(x)
=
∑
t

ut lnQt = lnQu.

Thus
Q̂′(x) = Q̂(x) lnQu

and
Q̂′′(x) = Q̂(x)(lnQu)2.

Using the above relations, we get

Ŝ′(x) =
∑
t

ct

[
ut(Q̂(x)−Qt) + (ηt + utx)Q̂′(x)

]
and

Ŝ′′(x) = Q̂(x) lnQu
∑
t

ct[ut(2 + x lnQu) + ηt lnQu]
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So at a non-vertex local minimum we would have

0 = Ŝ′(0) =
∑
t

ct [ut(Qη −Qt) + ηtQη lnQu]

and

0 ≤ Ŝ′′(0) =
∑
t

ct
[
2utQη lnQu + ηtQη ln2Qu

]
= lnQu

∑
t

ct [2utQη + ut(Qt −Qη)]

= lnQu
∑
t

ctut(Qt +Qη) ,

which implies ∑
t

ctut(Qt +Qη) ≥ 0 (15)

for every u ∈ Rr with
∑

t ut = 0, Qu ≥ 1, and supp(u) ⊆ supp(η).
In particular, if i = max(supp(η)) and j = min(supp(η)) it suffices to

show that the sum in (15) is negative for u = ei − ej (where ek is the kth
basis vector), i.e., that

ci(Qi +Qη) < cj(Qj +Qη).

Since Qη can be anything between Qj and Qi and the cks are (as we will
show) decreasing in k, this is the same as showing that

ci(Qi +Qj) < 2cjQj ,

whenever i > j.
We will show that this is true when r = 3. (When r ≥ 4 it does not

seem to be the case that Ŝ′′(0)− lnQuŜ
′(0) > 0 for some u = ei − ej).

Specializing to the case r = 3,

Zc1 = (1 + λ)d−1(1 + 2λ)d−1 + (1 + 2λ)d−1 − (1 + λ)d−1

Zc2 =
3(1 + 2λ)d−1 − 1

2(1 + λ)

Zc3 =
2(1 + λ)d−1 − 1

1 + 2λ
.

We must show that c1 > c2 > c3 > 0 and that

ci(Qi +Qj) < 2cjQj ,

whenever i > j.
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Claim 16. c1 > c2 > c3.

Proof. To see the first inequality it suffices to see that

(1 + λ)d((1 + 2λ)d−1 − 1) + (1 + λ)(1 + 2λ)d−1 > 2(1 + 2λ)d−1 − 1

>
3

2
(1 + 2λ)d−1 − 1

2
.

For the second it suffices to show that

3(1 + 2λ)d − (1 + 2λ) > 4(1 + λ)d − 2(1 + λ).

Indeed, this is true termwise as polynomials in λ:

2 + (6d− 2)λ+
d∑

k=2

3

(
d

k

)
2kλk > 2 + (4d− 2)λ+

d∑
k=2

4

(
d

k

)
λk.

since 3(2k) ≥ 4 when k ≥ 2.
Finally, it is clear from inspection that c3 > 0.

Claim 17. ci(Qi +Qj) < 2cjQj whenever 1 ≤ j < i ≤ 3.

Proof. For i = 2 and j = 1 we must show that

(3(1 + 2λ)d−1 − 1)((1 + λ)d + 1) < 4(1 + λ)d((1 + 2λ)d−1 − 1) + 4(1 + λ)(1 + 2λ)d−1).

This simplifies to showing

(1 + λ)d(1 + 2λ)d−1 + (1 + 2λ)d + 2λ(1 + 2λ)d−1 − 3(1 + λ)d + 1 > 0.

As before, this is true termwise as a polynomial in λ:

(1 + λ)d(1 + 2λ)d−1 + (1 + 2λ)d + 2λ(1 + 2λ)d−1 − 3(1 + λ)d + 1

= λ(d+ 2(d− 1) + 2d− 3d) +
∑
k≥2

λk
(∑

`

(
d
k−`
)(
d−1
`

)
2` +

(
d
k

)
2k +

(
d−1
k−1
)
2k − 3

(
d
k

))

> 0 ,

since 2k > 3 when k ≥ 2.
For i = 3 and j = 1, we must show that

(2(1 + λ)d−1 − 1)((1 + 2λ)d + 1) < 2((1 + λ)d−1 + 1)(1 + 2λ)d − 2(1 + λ)d−1(1 + 2λ).
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This simplifies to

3(1 + 2λ)d − 4(1 + λ)d + 1 > 0,

which is once again true termwise:

3(1 + 2λ)d − 4(1 + λ)d + 1 =
∑
k≥1

λk
(

3

(
d

k

)
2k − 4

(
d

k

))
> 0

since 3(2k) > 4 when k ≥ 1.
For i = 3 and j = 2, we must show that

(2(1 + λ)d − (1 + λ))((1 + 2λ)d + (1 + λ)d) < (3(1 + 2λ)d − (1 + 2λ))(1 + λ)d.

This simplifies to

(1 + 2λ)d − (1 + λ)d−1
(

2(1 + λ)d − (1 + 2λ)d + λ
)
> 0,

so it suffices to see that

2(1 + λ)d − (1 + 2λ)d =
∑
k≥0

(2− 2k)λk < 1.

We conclude by noting that from (11) the optimum of the LP can be
written as (9), and thus we have proved Proposition 13.

5 Conclusions

In this paper we conjectured some general upper bounds on the number
of independent sets in uniform, regular, linear hypergraphs (Conjectures 5
and 9) and using the occupancy method proved new bounds in some cases
(Theorems 6 and 8). One immediate direction for future work would be to
remove the cross-edge free assumption in these results; as far as we know it
is unnecessary, but configurations with cross-edges significantly complicate
the analysis of the linear programming relaxations used in the proofs (but in
principle this can be done, see [8]). Another direction to pursue would be to
find a simpler analysis of the linear programming relaxations (or a different
set of constraints) that might generalize Theorem 6 to all r ≥ 3.

30



5.1 Non-linear hypergraphs

While we have focused on linear hypergraphs here, there are many inter-
esting open questions about independent sets in general (non-linear) hyper-
graphs.

Question 18. For r, d ≥ 2, 2 ≤ k ≤ r, which r-uniform, d-regular hyper-
graph H maximizes the quantity

1

|V (H)|
log ik(H) ?

By analogy with the graph case (r = 2) a first guess would be that
perhaps the complete r-partite hypergraph is the maximizer. However, along
with several other new results in the non-linear case, Balogh, Bollobás, and
Narayanan [3] have recently shown that this is not true in general by finding
a better construction.

5.2 Lower bounds

Finally, while we have focused exclusively on upper bounds on the number
of independent sets in hypergraphs in this paper, there are many interesting
questions about lower bounds on both the maximum size of independent
sets and the number of independent sets in various classes of hypergraphs.

Ajtai, Komlós, Pintz, Spencer, and Szemerédi [1] proved a lower bound
on the maximum size of a weak independent set in a uniform hypergraph of
girth at least 5 and a given average degree. Duke, Lefmann, and Rödl proved
a similar lower bound under the weaker assumption that the hypergraph is
linear [11] (instead of girth ≥ 5), and Cooper, Dutta, and Mubayi [6] proved
a lower bound on the number of weak independent sets in a uniform, linear
hypergraph of a given average degree.

The occupancy method has been used to sharpen the lower bound on the
number of independent sets in a triangle-free graph [10], and one could ask if
improvements via the same technique are possible in the case of hypergraphs.

5.3 Non-regular hypergraphs

Finally let us mention that one can ask for the maximum number of inde-
pendent sets in a hypergraph with a given number of vertices and edges (not
necessarily regular), and in this case Cutler and Radcliffe have determined
that the maximizer is the ‘lexicographic hypergraph’ [7]. The structure of
the maximizing hypergraph and the techniques employed are significantly
different than the regular case studied here.
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