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Abstract

Permutation statistics wm and rlm are both arising from permu-
tation tableaux. wm was introduced by Chen and Zhou, which was
proved equally distributed with the number of unrestricted rows of
a permutation tableau. While rlm is shown by Nadeau equally dis-
tributed with the number of 1’s in the first row of a permutation
tableau.

In this paper, we investigate the joint distribution of wm and rlm.
Statistic (rlm,wm, rlmin,des, (321)) is shown equally distributed with
(rlm, rlmin,wm,des, (321)) on Sn. Then the generating function of
(rlm,wm) follows. An involution is constructed to explain the sym-
metric property of the generating function. Also, we study the triple
statistic (wm, rlm, asc), which is shown to be equally distributed with
(rlmax−1, rlmin, asc) as studied by Josuat-Vergès. The main method
we adopt throughout the paper is constructing bijections based on a
block decomposition of permutations.

Keywords: bijection, involution, permutation tableaux, block decomposi-
tion, pattern

1 Introduction

In this paper, we mainly investigate two permutation statistics wm and rlm
which are arising from permutation tableaux.

Permutation tableaux were introduced by Steingŕımsson and Williams
[19]. They are related to the enumeration of totally positive Grassmannian
cells [15, 17, 18, 20] and a statistical physics model called Partially Asym-
metric Exclusion Process (PASEP) [5, 8, 9, 10, 11, 13]. Several papers on
the combinatorics of permutation tableaux have also been published, see
[2, 3, 4, 6, 7, 12, 16].
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A permutation tableau is a Ferrers diagram with possibly empty rows
together with a 0, 1-filling of the cells satisfying the following conditions:

1. each column has at least one 1,

2. there is no 0 which has a 1 above it in the same column and a 1 to the
left of it in the same row.

The length of a permutation tableau is defined to be the number of rows
plus the number of columns. Let PT (n) denote the set of permutations of
length n.

Several statistics over permutation tableaux are defined, among which
urr and topone are two interesting ones. A 0 in a permutation tableau is
row-restricted if there is a 1 above in the same column. A row is said to
be unrestricted if it contains no row-restricted 0. For T ∈ PT (n), as given
by Corteel and Kim [6], let urr(T ) be the number of unrestricted rows of
T and let topone(T ) be the number of 1’s in the first row of T . Using
recurrence relations, Corteel and Nadeau [7] obtained an explicit formula for
the generating function of permutation tableaux of length n with respect to
the statistics urr and topone. Corteel and Kim [6] rewrote this formula as
follows

∑

T∈PT (n)

xurr(T )−1ytopone(T ) = (x+ y)n−1, (1.1)

where (x)n = x(x+1) · · · (x+n−1) for n ≥ 1 with (x)0 = 1. Moreover, they
gave two beautiful bijective proofs of (1.1).

Permutation tableaux are in bijections with permutations. Let [n] =
{1, 2, . . . , n} and Sn be the set of permutations on [n]. Steingŕımsson and
Williams [19] gave a Zig-Zag map Φ from PT (n) to Sn. Given T ∈ PT (n),
we label T as follows. First, label the steps in the south-east border with
1, 2, · · · , n from north-east to south-west. Then, label a row (resp. col-
umn) with i if the row contains the south (resp. west) step with label i.
A zigzag path on a permutation tableau is a path entering from the left of
a row or the top of a column, going to the east or to the south changing
the direction alternatively whenever it meets a 1 until exiting the tableau.
Let π = π1π2 · · ·πn = Φ(T ), where πi = j if the zigzag path corresponding
to label i exits T from a row or a column labeled by j. As an example,
Φ(π) = 8, 6, 1, 5, 3, 4, 9, 2, 7, 11, 10 for π given in the left of Figure 1.1.

Corteel and Nadeau [7] found another two bijections between permutation
tableaux and permutations, one of which we denote by Γ is given depend on
the alternative representation of permutation tableaux. As given in Corteel
and Kim [6], the alternative representation of a permutation tableau T is
the diagram obtained from T by replacing the topmost 1’s by ↑’s and the
rightmost restricted 0’s by ←’s and removing the remaining 0’s and 1’s, see
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1 0 1 1 0 0 1

2 0 0 0 1 1 1

4 0 0 0 0 1

7 0 1 1

10 1

11 9 8 6 5 3

1 ↑ ↑ ↑

2 ← ↑ ↑

4 ←

7

10 ↑

11 9 8 6 5 3

Figure 1.1: A permutation tableau (left) and its corresponding alternative
representation (right).

Figure 1.1 as an example. Given T ∈ PT (n), π = π1π2 · · ·πn = Γ(T ) can be
obtained as follows

1. write down the labels of the unrestricted rows of T in increasing order,

2. for each column i from left to right, if row j contains a ↑ in column i and
i1, i2, · · · , ir(i1 < · · · < ir) contains a ← in column i, then add i1, i2, · · · , ir, i
in increasing order before j in π.

As an example, Γ(π) = 9, 4, 6, 5, 2, 8, 3, 1, 7, 11, 10 for π given in the right
of Figure 1.1.

Statistics wm and rlm on permutations are closely related to statistics
urr and topone by Φ and Γ. We present the definitions of wm and rlm first.
Given π = π1π2 · · ·πn ∈ Sn, the index i is said to be a weak excedance of π
if πi ≥ i. Otherwise, it is called a non-weak excedance. An index i is called
a mid-point of π if there exist j < i and k > i such that πj > πi > πk.
Otherwise, i is called a non-mid-point. Let wm(π) = |WM(π)| and

WM(π) = {πi| i is a weak excedance and a non-mid-point of π }.

For a word w = w1w2 · · ·wn of distinct integers, wi is called a RL-maximum
of w if wi > wj for all j > i. While wi is called a LR-maximum, if wi > wj

for all j < i. The RL-minimum and LR-minimum can be defined simi-
larly. Let Rlmax(w), Lrmax(w), Rlmin(w) and Lrmin(w) be the set of RL-
maxima, LR-maxima, RL-minima and LR-minima of w, respectively. Set
rlmax(w), lrmax(w), rlmin(w) and lrmin(w) to be the corresponding numer-
ical statistics. Let Rlm(π) be the set of the RL-maxima of the subword of
π which is to the left of the 1 in π. Write rlm(π) = |Rlm(π)|. As an exam-
ple, for π = 6, 5, 1, 10, 4, 3, 8, 9, 2, 11, 7, 12, we have WM(π) = {6, 10, 11, 12},
wm(π) = 4, Rlm(π) = {5, 6} and rlm(π) = 2.

Corteel and Nadeau [7], Nadeau [16], Chen and Zhou [3] proved the first,
the second and the third item in the following proposition, respectively.
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Proposition 1.1. For T ∈ PT (n), let Γ(T ) = π and Φ(T ) = σ, then

1. urr(T ) = rlmin(π);

2. topone(T ) = rlm(π);

3. urr(T ) = wm(σ).

It can be checked that topone(T ) 6= rlm(Φ(T )). So it is interesting to
investigate the distributions of (rlm,wm). On the other hand, from the
perspective of permutations, we see that the definition of rlm is closely related
to rlmax, while wm is indeed the statistic lrmax (proved in Lemma 2.1).
rlmax and lrmax are interesting Stirling statistics over permutations and
have been widely studied. So this is another motivation of our work. More
definitions and notations needed in this paper are listed as follows.

Given π = π1π2 · · ·πn ∈ Sn, its reverse πr ∈ Sn is given by πr(i) =
π(n+1− i). Its complement πc is given by πc(i) = n+1− π(i). Let π−1 de-
note the inverse of π, where π−1(j) = i if and only if π(i) = j. For convenient,
we also write c(π) = πc and i(π) = π−1. Assume that W = {i1, i2, . . . , in}
with i1 < i2 < · · · < in. Given a permutation w of W , we define st(w) =
(σ,W ), where σ ∈ Sn and σ is order-isomorphic to w. Conversely, set
st−1(σ,W ) = w. As an example, st(31574) = (21453, {1, 3, 4, 5, 7}) and
st−1(21453, {1, 3, 4, 5, 7}) = 31574.

A descent (ascent) of π is a position i ∈ [n− 1] such that πi > πi+1 (πi <

πi+1). The descent set and the ascent set of π are given by Des(π) = {i : πi >

πi+1} and Asc(π) = {i : πi < πi+1}. Let des(π) = |Des(π)| and asc(π) =
|Asc(π)| be the descent number and ascent number of π, respectively. Set
ides(π) = des(π−1).

An occurrence of a classical pattern p in a permutation σ is a subsequence
of σ that is order-isomorphic to p. For instance, 41253 has two occurrences
of the pattern 3142 in its subsequences 4153 and 4253. σ is said to avoid p if
there exists no occurrence of p in σ. The vincular pattern is a generalization of
the classical pattern. Adjacent letters that are underlined must stay adjacent
when they are placed back to the original permutation. As an example,
41253 now contains only one occurrence of the vincular pattern 3142 in its
subsequence 4153, but not in 4253. See [14] for more details about vincular
patterns. Given a vincular pattern τ and a permutation π, we denote by
(τ)π the number of occurrences of the pattern τ in π. We write Sn(τ) as the
set of permutations of length n that avoid τ .

An inversion sequence of length n is a word s = s1s2 · · · sn with 0 ≤ si ≤
i− 1 for 1 ≤ i ≤ n. Let In be the set of all inversion sequences of length n.
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Assume that

Zero(s) = {i : 1 ≤ i ≤ n, si = 0},

Max(s) = {i : 1 ≤ i ≤ n, si = i− 1},

Dist(s) = {2 ≤ i ≤ n : si 6= 0 and si 6= sj for all j > i},

and zero(s), max(s) and dist(s) is the numerical statistics, respectively.

In this paper, we find that (rlm,wm) and (rlm, rlmin) are equally dis-
tributed on Sn(321), as well as on Sn. Particularly, we have the following
theorems.

Theorem 1.2. Statistic (rlm, rlmin,wm, des, ides) are equally distributed with
statistic (rlm,wm, rlmin, des, ides) over Sn(321).

Theorem 1.3. Statistic (rlm, rlmin,wm, des, (321))) are equally distributed
with statistic (rlm,wm, rlmin, des, (321))) on Sn, and hence we have

∑

π∈Sn

xwm(π)−1yrlm(π) = (x+ y)n−1. (1.2)

Notice that x and y are symmetric in (1.2). We have the following theo-
rem, which we will reprove by an involution over Sn.

Theorem 1.4. Statistics (rlm,wm−1) and (wm−1, rlm) are equally dis-
tributed on Sn.

Josuat-Vergès [13] showed that

ZN =
∑

π∈SN+1

α− rlmax(π)+1β− rlmin(π)+1yasc(π)−1q(312)π,

where ZN is the partition function of a partially asymmetric exclusion process
(PASEP) on a finite number of sites with open and directed boundary con-
ditions, see Theorem 1.3.1 in [13]. Inspired by this, we obtain the following
equidistribution by constructing bijections.

Theorem 1.5. Statistics (rlm,wm, asc) and (rlm, rlmin, asc) are equally dis-
tributed with (rlmax−1, rlmin, asc) on Sn.

The paper is organized as follows. In Section 2, we present bijective
proofs of Theorem 1.2 and 1.3. In Section 3, we construct an involution
which implies Theorem 1.4. In section 4, we bijectively prove Theorem 1.5
by using inversion sequences.
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2 Bijective proofs of Theorem 1.2 and 1.3

In this section, we first deduce that statistic wm is indeed statistic lrmax.
Then, two bijections based on a block decomposition of permutations are
given which imply Theorem 1.2 and 1.3, respectively.

Lemma 2.1. Given π ∈ Sn, πi ∈WM(π) if and only if πi is a LR-maximum
of π.

Proof. Suppose that πi ∈ WM(π), we claim that πi is a LR-maximum of π.
Assume to the contrary that there exists j < i such that πj > πi. Since πi is
a weak excedance of π, it is easily checked that there exists k > i such that
πk < πi. Hence, πjπiπk is a 321-pattern of π. It follows that πi is a mid-point
of π, which contradicts with the fact that πi ∈WM(π). The claim is verified.

Conversely, assume that πi is a LR-maximum of π. Since it is larger that
all the elements to its left, then πi ≥ i and πi is a non-mid-point. It follows
that πi ∈WM(π). This completes the proof.

Now, we proceed to prove Theorem 1.2. As pointed out by Burstein [2],
321-avoiding permutations have the property given in Lemma 2.2. Based on
this, Corollary 2.3 follows obviously.

Lemma 2.2. π is 321-avoiding if and only if each element of π is either a
LR-maximum or an RL-minimum, i.e. if and only if π is identity or a union
of two nondecreasing subsequences.

Corollary 2.3. Given π ∈ Sn(321), if π1 = 1, then rlm(π) = 0. Otherwise,
rlm(π) = 1.

The following lemma can be easily checked. And then, we are prepared
to give a proof of Theorem 1.2.

Lemma 2.4. Assume that π = π1π2 · · ·πn ∈ Sn(321) with π1 6= 1 and πn 6=
n. Let σ = πrc, then rlm(π) = rlm(σ) = 1 and

(rlmin, lrmax, des, ides)π = (lrmax, rlmin, des, ides)σ.

Proof of Theorem 1.2. It suffices to construct a bijection χ over Sn(321),
which maps (rlm, rlmin, lrmax, des, ides) to (rlm, lrmax, rlmin, des, ides).

Assume that π = π1π2 · · ·πn is 321-avoiding. If π1 = 1, we set l =
max{j | π1 = 1, · · · , πj = j}, otherwise, l = 0. If πn = n, we set r =
min{j | πj = j, · · · , πn = n}, otherwise, r = n+ 1.
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Let p = p1 · · · pn = χ(π) be the permutation 1 2 · · · l h r r + 1 · · ·n, where

h = st((n+ 1− πr−1)(n + 1− πr−2) · · · (n+ 1− πl+1), {l + 1, · · · , r − 1}).

It should be noted that 12 · · · l is assumed to be empty if l = 0, while r r +
1 · · ·n is assumed to be empty if r = n + 1. Clearly, we have p ∈ Sn(321).
Based on Lemma 2.4, it can be easily verified that

(rlmin, lrmax, des, ides)(π) = (lrmax, rlmin, des, ides)(p).

By Corollary 2.3, we have rlm(p) = rlm(π) = 0 if l = 0, while rlm(p) =
rlm(π) = 1 if l > 0. This completes the proof.

Example 2.5. Let π = 123468759, then l = 4, r = 9 and h = st(5324, {5,
6, 7, 8}) = 8657. Thus we have p = χ(π) = 123486579. It is easy to check
that rlmin(π) = lrmax(p) = 6, lrmax(π) = rlmin(p) = 7, des(π) = des(p) = 2
and ides(π) = ides(p) = 2.

In the remaining part of this section, we are dedicated to proving Theorem
1.3. Given a permutation π, put a bar after each RL-minimum, and then
put a bar before each LR-maximum if there is no bar before it. Thus we
obtain a block decomposition of π. Write the block decomposition of π as
B1B2 · · ·Bk, we define

N(π) = {Bi |Bi contains neither LR-maximum nor RL-minimum},

T(π) = {Bi |Bi contains both LR-maximum and RL-minimum},

A(π) = {Bi |Bi contains a LR-maximum and no RL-minimum},

I(π) = {Bi |Bi contains an RL-minimum and no LR-maximum}.

For convenience, we call a block in N(π) a N-block. The T-block, A-block
and I-block are defined similarly. Propositions of the block decomposition
below can be easily verified.

Proposition 2.6. For any π ∈ Sn, write π = B1B2 · · ·Bk, we have

1. |T (π)| ≥ 1.

2. N(π) ∪ T (π) ∪ A(π) ∪ I(π) =
⋃

1≤i≤k{Bi}.

3. If Bi ∈ N(π), then there exist integers j < i and h > i such that Bj ∈
T(π), Bh ∈ T(π), {Bj+1, · · · , Bi−1} ⊂ I(π) and {Bi+1, · · · , Bh−1} ⊂
A(π).

4. Let T(π) ∪ A(π) = {Bx1
, · · · , Bxh

}, where x1 < · · · < xh, then

max(Bx1
) < · · · < max(Bxh

).
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5. Let T(π) ∪ I(π) = {Bx1
, · · · , Bxh

}, where x1 < · · · < xh, then

min(Bx1
) < · · · < min(Bxh

).

In the following, we define two operations on permutations. Given π =
π1π2 · · ·πn ∈ Sn, assume that min(π) = πi and max(π) = πj , let

L(π) = πi+1 · · ·πnπ1 · · ·πi,

R(π) = πj · · ·πnπ1 · · ·πj−1.

Proposition 2.7. For π = π1 · · ·πn ∈ Sn, we have

1. R ◦ L(π) = π if and only if max(π) = π1.

2. L ◦R(π) = π if and only if min(π) = πn.

3. If max(π) = π1, then (321)(π) = (321)(L(π)).

4. If min(π) = πn, then (321)(π) = (321)(R(π)).

Now we are ready to present the map ϕ over Sn such that for any π ∈ Sn

(rlm, rlmin,wm, des, (321))π = (rlm,wm, rlmin, des, (321))ϕ(π).

Let π = B1B2 · · ·Bk ∈ Sn and assume that

N(π) = {BN1
, · · · , BNh

}, T (π) = {BT1
, · · · , BTl

},

A(π) = {BA1
, · · · , BAp

}, I(π) = {BI1, · · · , BIq}.
(2.1)

If N(π) = ∅, then we may view h = 0. It is similar for A(π) and I(π). We
can obtain σ = ϕ(π) through the following there steps:

Step 1 Write down the blocks in N(π) and T(π), which keeps the relative
order in π, we obtain σ′;

Step 2 Insert R(BI1), · · · , R(BIq) to σ′ by letting the maximal letter (i.e.
the first letter) of R(BI1), · · · , R(BIq), BT1

, · · · , BTl
increase. Between

two T-blocks, R(BIc)(1 ≤ c ≤ q) is always to the right of a N-block, if
there is any. Then we obtain σ′′;

Step 3 Insert L(BA1
), · · · , L(BAp

) to σ′′ by letting the minimal letter (i.e.
the last letter) of L(BA1

), · · · , L(BAp
), BT1

, · · · , BTl
increase. Between

two T-blocks, L(BAd
)(1 ≤ d ≤ p) is always to the left of a N-block and

R(BAc
)(1 ≤ c ≤ q), if there is any. Then we obtain σ.

8



Example 2.8. Let π = 10, 2, 6, 11, 1, 8, 13, 3, 5, 9, 4, 12, 7, then the block de-
composition of π is

∣

∣10 2 6
∣

∣11 1
∣

∣ 8
∣

∣13 3
∣

∣ 5 9 4
∣

∣ 12 7
∣

∣

and N(π) = {8}, T (π) = {11 1, 13 3}, A(π) = {10 2 6}, I(π) = {5 9 4, 12 7}.
By the three steps given above, we have

σ′ = 11 1, 8, 13 3, σ′′ = 9 4 5, 11 1, 8, 12 7, 13 3

σ = 9 4 5, 11 1, 6 10 2, 8, 12 7, 13 3

Proposition 2.9. Let σ = ϕ(π), we have

(1) T (σ) = {BT1
, · · · , BTl

};

(2) A(σ) = {R(BI1), · · · , R(BIq)};

(3) I(σ) = {L(BA1
), · · · , L(BAp

)};

(4) N(σ) = {BN1
, · · · , BNh

}.

Proof. Firstly, we wish to show that the first letter of BTj
(i.e.max{BTj

}),
where 1 ≤ j ≤ l, is a LR-maximum of σ, while the last letter of BTj

(i.e.min{BTj
}) is an RL-minimum of σ. By definition of step 1 in the descrip-

tion of ϕ, we easily check that the first letter of BTj
is a LR-maximum of σ′.

Since the maximal letter R(BI1), · · · , R(BIq), BT1
, · · · , BTl

increase in step 2,
we have the first letter of BTj

is a LR-maximum of σ′′. Assume that L(BAi
)

is to the left of BTj
in σ, then we have min{BAi

} < min{BTj
}. It follows

that BAi
is to the left of BTj

in π, which means that max{BAi
} < max{BTj

}.
Above all, the first letter of BTj

is a LR-maximum of σ.

Now we proceed to show that the last letter of BTj
is an RL-minimum of

σ. Clearly, min{BTj
} is an RL-minimum of σ′. the maximal letter (i.e. the

first letter) of R(BI1), · · · , R(BIq), BT1
, · · · , BTl

increase.

Assume thatR(BIi) is to the right ofBTj
in σ, then max{BTj

} < max{BIi}.
It means that BIi is to the right of BTj

in π. Hence, min{BIi} > min{BTj
}.

Assume that L(BAi
) is to the right of BTj

in σ, then by the definition of step
3, it is easily seen that min{BAi

} > min{BTj
}. Hence, the last letter of BTj

is an RL-minimum of σ, as desired.

Secondly, we need to show that the first letter of R(BIj )(i.e.max{BIj}),
where 1 ≤ j ≤ q, is a LR-maximum of σ and it contains no RL-minimum
of σ. Clearly, the first letter of R(BIj) is a LR-maximum of σ′′. Assume
that L(BAi

) is to the left of R(BIj ) in σ, we wish to prove that max{BAi
} <

max{BIj}. Let BTx
be the nearest T-block that is to the right of BAi

in
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π, then we have max{BAi
} < max{BTx

} and min{BAi
} > min{BTx

}. By
step 3 in the description of ϕ, BTx

is to the left of L(BAi
), and hence to

the left of R(BIj ) in σ. It follows that max{BTx
} < max{BIj}. Thus,

max{BAi
} < max{BIj}. Hence, the first letter of R(BIj ) is a LR-maximum

of σ.

Let BTy
be the nearest T-block that is to the left of BIj in π, then we

have max{BIj} < max{BTy
} and min{BIj} > min{BTy

}. By step 2, BTy
is

to the right of R(BIj) in σ. It follows from the fact min{BIj} > min{BTy
}

that R(BIj ) contains no RL-minimum of σ, as desired.

Thirdly, we wish to show that the last letter of L(BAj
)(1 ≤ j ≤ p) is

an RL-minimum of σ and it contains no LR-maximum of σ. By description
of step 3 in ϕ, the last letter of L(BAj

) (i.e.min{BAj
}) is smaller than all

letters of T -blocks and N -blocks which are to the right of it. Now we assume
that R(BIi) is to the right of L(BAj

) in σ, if there is any, we aim to show
that min{BIi} > min{BAj

}. Let BTx
be the nearest T -block that is to the

left of BIi in π. Thus, we have max{BIi} < max{BTx
} and min{BIi} >

min{BTx
}. It follows from description of step 2 that BTx

is to the right of
R(BIi) in σ, and hence to the right of L(BAj

). Thus, by step 3, we see that
min{BAj

} < min{BTx
}. Hence, min{BIi} > min{BAj

} and the last letter of
L(BAj

)(1 ≤ j ≤ p) is an RL-minimum of σ.

Let BTy
be the nearest T -block that is to the right of BAj

in π, then
max{BAj

} < max{BTy
} and min{BAj

} > min{BTy
}. By step 3, BTy

is to
the left of L(BAj

) in σ. Then, BAj
contains no LR-maximum follows from

the fact that max{BAj
} < max{BTy

}, as desired.

Notice that BNj
(1 ≤ j ≤ h) contains no RL-minimum nor LR-maximum

of σ. By all the analysis above, we may obtain a block decomposition of σ
and propositions (1)− (4) follows. This completes the proof.

Proof of Theorem 1.3. Let π = π1π2 · · ·πn ∈ Sn with a block decomposition
given in (2.1) and σ = ϕ(π). It suffices to show that ϕ is an involution over
Sn such that

(rlm, rlmin, lrmax, des, (321))(π) = (rlm, lrmax, rlmin, des, (321))(σ). (2.2)

Firstly, we prove that ϕ is an involution, i.e. ϕ(σ) = π. Assume that
p = ϕ(σ), by applying Proposition 2.9 twice, we have

N(p) = {BN1
, · · · , BNh

},

T (p) = {BT1
, · · · , BTl

},

A(p) = {R ◦ L(BA1
), · · · , R ◦ L(BAp

)},

I(p) = {L ◦R(BI1), · · · , L ◦R(BIq)}.

10



Notice that max{BAc
} is the first letter of BAc

for 1 ≤ c ≤ p, while min{BId}
is the last letter of BId for 1 ≤ d ≤ q. Then from items 1, 2 in Proposition
2.7 we deduce that

N(p) = {BN1
, · · · , BNh

}, T (p) = {BT1
, · · · , BTl

},

A(p) = {BA1
, · · · , BAp

}, I(p) = {BI1 , · · · , BIq}.

Comparing with the block decomposition of π given in (2.1), we see that
p = π. Hence ϕ2(π) = π and ϕ is an involution over Sn.

Now, we proceed to prove (2.2). Viewing (2.1) and Proposition 2.9, we
have lrmax(π) = rlmin(σ) = p and rlmin(π) = lrmax(σ) = q. If π1 = 1,
then it is easy to check that σ1 = 1. Hence, we have rlm(π) = rlm(σ) = 0.
Otherwise, suppose that Rlm(π) = {πr1 , πr2 , · · · , πrs}, where r1 < r2 < · · · <
rs. Then, πr1 is the nearest LR-maximum of π that is to the left of 1. It
follows that πr1 · · · 1 is a T-block of π. Hence, πr1 · · · 1 remains a T-block
of σ by Proposition 2.9. Thus, Rlm(σ) = {πr1, πr2 , · · · , πrs} and we obtain
that rlm(π) = rlm(σ) = s. We claim that all descents of a permutation are
always contained in blocks. Assume that i is a descent of π with πi > πi+1,
then πi is not an RL-minimum and πi+1 is not a LR-maximum. Hence there
is no bar neither after πi nor before πi+1. The claim is verified. It follows
directly that des(π) = des(σ). Combining with items 3, 4 in Proposition 2.7,
we have (321)(π) = (321)(σ). This completes the proof.

It should be mentioned that ϕ does not keep the statistic ides. We check
the following conjecture by computer for n ≤ 9.

Conjecture 2.10. Statistic (rlm, rlmin, lrmax, des, ides, (321)) are equally
distributed with Statistic (rlm, lrmax, rlmin, des, ides, (321)) over Sn.

3 A bijective proof of Theorem 1.4

In this section, we present an involution over Sn to give a combinatorial
interpretation of Theorem 1.4. In view of Lemma 2.1, it is enough to prove
the following theorem.

Theorem 3.1. There exists an involution φ on Sn such that

rlm(π) = lrmax(φ(π))− 1, (3.1)

lrmax(π)− 1 = rlm(φ(π)). (3.2)

In the following, we shall give such an involution. We first consider some
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special cases. Define

S1
n = {π = π1 · · ·πn| πn = 1},

Sn
n = {π = π1 · · ·πn| πn = n}.

Lemma 3.2. There is a bijection ρ from Sn
n to S1

n, such that

rlm(π) = lrmax(ρ(π))− 1, (3.3)

lrmax(π)− 1 = rlm(ρ(π)). (3.4)

Proof. Given a permutation π ∈ Sn
n , assume that πk = 1 and π = w1un,

where w and u can be empty. Let πi = max(w) and j be the least element
such that k < j < n and πj > πi, if there exist. Then, assume that a =
π1 · · ·πi−1, b = πi · · ·πk−1, c = πk+1 · · ·πj−1 and d = πj · · ·πn−1 Thus, we
decompose π into six blocks, namely, π = ab1cdn. It should be noted that
each of the blocks a, b, c, d can be empty. Define ρ(π) to be π′ = brcndrar1
Clearly, π′ ∈ S1

n. It follows that ρ is a map from Sn
n to S1

n.

To prove that ρ is a bijection, we give the inverse map of ρ. Given a
permutation τ ∈ S1

n, let τ = pnq1. Both of p and q can be empty. If there
exists, assume that τl is the largest element of p. Let τs is the rightmost
element of q that is larger than τl, if there exists. Suppose that τt = n

where t < n. We decompose τ into six blocks by setting τ = efngh1, where
e = τ1 · · · τl, f = τl+1 · · · τt−1, g = τt+1 · · · τs and h = τs+1 · · · τn−1. Define
χ(τ) to be the permutation τ ′ where τ ′ = hrer1fgrn. It can be easily checked
that χ is the inverse map of ρ. Hence, ρ is a bijection.

Next, we proceed to prove relations (3.3) and (3.4). It is not hard to
check that the following relations.

rlm(π) = the number of LR-maxima of br,

lrmax(π)− 1 = the number of LR-maxima of aπid,

rlm(π′) = the number of LR-maxima of adn,

lrmax(π′)− 1 = the number of LR-maxima of br.

Notice that the number of LR-maxima of aπid equals to the number of LR-
maxima of adn. Hence relations (3.3) and (3.4) follows, as desired.

Based on Lemma 3.2, we are now ready to give the involution φ on Sn.

Proof of Theorem 3.1. Firstly, we give the description of φ. For a permutation
π ∈ Sn, there are two cases to consider.

Case 1: 1 is to the left of n. Assume that π = unv and (e, S) = st(un). Then
φ is defined by letting φ(π) = st−1(ρ(e), S)v.
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Case 2: 1 is to the right of n. Assume that π = p1q and (o, T ) = st(p1). Then
φ is defined by letting φ(π) = st−1(ρ−1(o), T )q.

From the construction of φ, it is easily seen that φ is an involution on Sn.
In the following, we proceed to prove relations (3.1) and (3.2).

By Lemma 3.2, lrmax(e) − 1 = rlm(ρ(e)) and rlm(e) = lrmax(ρ(e)) − 1.
By order-isomorphic, we deduce that lrmax(un) − 1 = rlm(st−1(ρ(e), S))
and rlm(un) = lrmax(st−1(ρ(e), S)) − 1. Notice that in case 1, there is no
element z in subword v such that z ∈ Rlm(π) nor z ∈ Lrmax(π). Thus,
lrmax(π)−1 = rlm(φ(π)) and rlm(π) = lrmax(φ(π))−1 hold for case 1. The
fact that (3.1) and (3.2) hold for case 2 can be proved similarly and we omit
it here. We complete the proof.

We end this section by giving examples of bijections ρ and φ.

Example 3.3. Let π = 3 7 2 5 1 4 8 6 9, then

a = 3, b = 7 2 5, c = 4, d = 8 6.

Hence, ρ(π) = 5 2 7 4 9 6 8 3 1. Let σ = 3 8 2 5 1 4 9 6 10 7, then

st(3 8 2 5 1 4 9 6 10) = (3 7 2 5 1 4 8 6 9, {1, 2, 3, 4, 5, 6, 8, 9, 10})

and hence φ(σ) = 5 2 8 4 10 6 9 3 1 7.

4 A bijective proof of Theorem 1.5

In this section, we first prove Lemma 4.1 by giving an involution γ over the
set of inversion sequences of length n. This allows us to construct a bijection
α on Sn implying Lemma 4.2. Based on Lemma 4.2, another bijection β over
Sn is given, which proves Theorem 1.5.

Lemma 4.1. Statistics (dist, zero,max, rlmin) and (dist, zero, rlmin,max)
are equally distributed over In. Particularly, there is an involution γ over
In such that for each e ∈ In we have

(dist, zero,max, rlmin)e = (dist, zero, rlmin,max)γ(e). (4.1)

Lemma 4.2. Statistics (asc, rlmax, lrmax, rlmin) and (asc, rlmax, rlmin, lrmax)
are equally distributed over Sn. Particularly, there is an involution α over
Sn such that for each π ∈ Sn we have

(asc, rlmax, lrmax, rlmin)π = (asc, rlmax, rlmin, lrmax)α(π). (4.2)
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To prove Lemma 4.1, we construct γ over In by induction. Let γ(0) = 0.
For e = e1e2 · · · en−1en ∈ In, assume that r′ = γ(e1e2 · · · en−1). Then, r =
γ(e) is obtained by inserting en to the en + 1-th position of r′.

Example 4.3. Let e = 00113213, then γ(e) can be obtained as follows

0→ 00→ 010→ 0110→ 01130→ 012130→ 0112130→ 01132130.

And γ2(e) = γ(01132130) can be obtained as follows

0→ 01→ 011→ 0113→ 01213→ 011213→ 0113213→ 00113213.

Clearly, γ is well-defined and we can easily verify the following proposi-
tions.

Proposition 4.4. Let e = e1e2 · · · en ∈ In and r = r1r2 · · · rn = γ(e). Then

(1) en + 1 is the largest element in Max(r).

(2) Assume that j is the largest element in Max(e), then

r = γ(e1 · · · ej−1ej+1 · · · en)ej .

Proof of Lemma 4.1. It suffices to show that γ is an involution over In and
satisfies (4.1).

We proceed to prove that γ is an involution by induction. When n = 1,
γ2(0) = 0. Suppose that γ2(t) = t for each t ∈ In−1 with n ≥ 2. We
claim that γ2(e) = e for each e ∈ In. By Proposition 4.4, we have en +
1 is the largest in Max(γ(e1e2 · · · en)) and hence en is the last element of
γ2(e1e2 · · · en). Combining the construction of γ and (2) in Proposition 4.4,
we deduce that

γ2(e1e2 · · · en) = γ2(e1e2 · · · en−1)en

= e1e2 · · · en−1en.

The claim is verified. Hence, γ is an involution.

Now, we shall prove relation (4.1). It is easy to check that (dist, zero)e =
(dist, zero)γ(e). It is left to show that

(max, rlmin)e = (rlmin,max)γ(e) (4.3)

Obviously, it holds for n = 1. Suppose that (4.3) holds for n − 1, where
n ≥ 2, we claim that it also holds for n. There are two cases to consider. If
en = n− 1, then γ(e1e2 · · · en) = γ(e1e2 · · · en−1)(n− 1). Thus,

max(e1e2 · · · en) = max(e1e2 · · · en−1) + 1, (4.4)

rlmin(γ(e1e2 · · · en)) = rlmin(γ(e1e2 · · · en−1)) + 1. (4.5)
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Combining (4.4) (4.5) and the hypothesis that max(e1e2 · · · en−1) = rlmin(γ(e1
e2 · · · en−1)), we deduce that max(e) = rlmin(γ(e)). Then rlmin(e) = max(γ(e))
follows from the fact that γ is an involution.

If en < n−1, by Proposition 4.4, en+1 is the largest element of Max(γ(e)).
It follows that en is not an RL-minimum of γ(e). Thus, we have

max(e1e2 · · · en) = max(e1e2 · · · en−1), (4.6)

rlmin(γ(e1e2 · · · en)) = rlmin(γ(e1e2 · · · en−1)). (4.7)

Similarly, in view of (4.6) (4.7) and the hypothesis, we have (max, rlmin)e =
(rlmin,max)γ(e) in this case. This completes the proof.

To prove Lemma 4.2, we need the permutation code b, namely, a bijection
between permutations and inversion sequences, given by Baril and Vajnovszki
[1]. We give a brief review of the code b first.

An interval [m,n] with m < n is the set {x ∈ N : m ≤ x ≤ n}, where
N = {0, 1, · · · }. A labeled interval is a pair (I, l), where I is an interval and l

is an integer. Given π = π1π2 · · ·πn ∈ Sn and an integer i with 0 ≤ i < n, let
the i-th slice of π, Ui(π), to be a sequence of labelled intervals constructed
recursively by the following process. Set U0(π) = ([0, n], 0). For i ≥ 1,
assume that Ui−1(π) = (I1, l1), (I2, l2), · · · , (Ik, lk) is the (i− 1)-th slide of π
and v is the index such that πi ∈ Iv, then Ui(π) is constructed as follows.

• If min(Iv) < πi = max(Iv), then Ui(π) equals

(I1, l1), · · · , (Iv−1, lv−1), (J, lv+1), (Iv+1, lv+2), · · · , (Ik−1, lk), (Ik, lk + 1),

where J = [min(Iv), πi − 1].

• If min(Iv) < πi < max(Iv), then Ui(π) equals

(I1, l1), · · · , (Iv−1, lv−1)(H, lv), (J, lv+1), (Iv+1, lv+2), · · · , (Ik−1, lk), (Ik, lk+1),

where H = [πi + 1,max(Iv)] and J = [min(Iv), πi − 1].

• If min(Iv) = πi < max(Iv), then Ui(π) equals

(I1, l1), · · · , (Iv−1, lv−1)(H, lv), (Iv+1, lv+1), · · · , (Ik−1, lk−1), (Ik, lk + 1),

where H = [πi + 1,max(Iv)].

• If min(Iv) = πi = max(Iv), then Ui(π) equals

(I1, l1), · · · , (Iv−1, lv−1), (Iv+1, lv+1), · · · , (Ik−1, lk−1), (Ik, lk + 1).

Let b(π) = b1b2 · · · bn ∈ In, where bi = lv such that (Iv, lv) is a labelled
interval in the (i− 1)-th slice of π with πi ∈ Iv.
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Example 4.5. For π = 24135 and σ = 14352, we have b(π) = 00210 and
b(σ) = 00102 with

U0(π) = ([0, 5], 0), U0(σ) = ([0, 5], 0),

U1(π) = ([3, 5], 0)([0, 1], 1), U1(σ) = ([2, 5], 0)([0, 0], 1),

U2(π) = ([5, 5], 0)([3, 3], 1)([0, 1], 2), U2(σ) = ([5, 5], 0)([2, 3], 1)([0, 0], 2),

U3(π) = ([5, 5], 0)([3, 3], 1)([0, 0], 3), U3(σ) = ([5, 5], 0)([2, 2], 2)([0, 0], 3),

U4(π) = ([5, 5], 0)([0, 0], 4), U4(σ) = ([2, 2], 2)([0, 0], 4).

Baril and Vajnovszki also proved a set-valued equidistribution as follows.

Lemma 4.6. For any π ∈ Sn,

(Des, Ides,Lrmax,Lrmin,Rlmax) π = (Asc,Dist,Zero,Max,Rlmin) b(π),

and so statistics (Des, Ides,Lrmax,Lrmin,Rlmax) on Sn has the same dis-
tribution as (Asc,Dist,Zero,Max,Rlmin) on In.

Let α = c ◦ i ◦b−1◦γ◦b◦i ◦ c, then it is easy to check that α is an involution
on Sn. Now, we are ready to give the proof of Lemma 4.2.

Proof of Lemma 4.2. Given π ∈ Sn, it is enough to show that

(asc, rlmax, lrmax, rlmin) π = (asc, rlmax, rlmin, lrmax)α(π) (4.8)

Notice that asc(π) = des(c(π)) and des(π) = ides(i(π)). Combining with
Lemma 4.1 and Lemma 4.6, we see that asc(π) = asc(α(π)).

Furthermore, the following properties are easy to check.

1) πi is an RL-maximum of π if and only if i is an RL-maximum of π−1.

2) πi is a LR-minimum of π if and only if i is a LR-minimum of π−1.

3) πi is a LR-maximum of π if and only if i is a RL-minimum of π−1.

4) πi is an RL-minimum of π if and only if i is an LR-maximum of π−1.

It follows that

(rlmax, lrmin, lrmax, rlmin)π = (rlmax, lrmin, rlmin, lrmax)π−1. (4.9)

Also, we have

(rlmax, lrmin, lrmax, rlmin)π = (rlmin, lrmax, lrmin, rlmax)πc. (4.10)
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Based on equations (4.9), (4.10), Lemma 4.1 and Lemma 4.6, we deduce
that

(rlmax, lrmax, rlmin) π = (rlmax, rlmin, lrmax)α(π),

as desired. This completes the proof.

For a set X , let n − X be the set obtained by n minus each element in
X . We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. In view of Theorem 1.3, (rlm,wm, asc) is equally
distributed with (rlm, rlmin, asc) on Sn. It is enough to construct a bijection
β over Sn such that

(rlm,wm, asc)π = (rlmax−1, rlmin, asc)β(π) (4.11)

for each π = π1π2 · · ·πn ∈ Sn.

Assume that π = x1y, where x and y can be empty. Let st(x) = (x,X)
and st(y) = (y, Y ). Then set β(π) = σ, where σ = y′nx′, x′ = st−1(α(x), n+
1−X) and y′ = st−1(yrc, n+ 1− Y ).

To show that β is a bijection, it suffices to construct its inverse. Given
σ = wnv ∈ Sn, where w and v can be empty. Let st(w) = (w,W ) and
st(v) = (v, V ). Then set δ(σ) = π, where π = v′1w′, v′ = st−1(α(v), n+1−V )
and w′ = st−1(wrc, n+1−W ). Notice that α is an involution, δ is the inverse
of β. Hence, β is a bijection.

In the following, we proceed to prove (4.11). Notice that rlm(π) =
rlmax(x) and rlmax(σ) = rlmax(x′) + 1. By (4.8), we have rlmax(x) =
rlmax(x′). It follows that rlm(π) = rlmax(σ)− 1.

To prove wm(π) = rlmin(σ), it is enough to show that lrmax(π) =
rlmin(σ) in view of Lemma 2.1. Let lrmax>s(u) be the number of LR-maxima
of the word u which are larger than s, and rlmin<s(u) be the number of RL-
minima of the word u which are smaller than s. We consider the following
two cases.

• x is empty. Thus π = 1y. It follows that lrmax(π) = 1 + lrmax(y) and
rlmin(σ) = 1 + rlmin(y′). Clearly, lrmax(y) = rlmin(y′). Hence, we
have lrmax(π) = rlmin(σ).

• x is not empty. By the block decomposition, we have lrmax(π) =
lrmax(x)+lrmax>max(X)(y) and rlmin(σ) = rlmin(x′)+rlmin<min(n+1−X)(y

′).
Since lrmax(x) = rlmin(x′) and lrmax>max(X)(y) = rlmin<min(n+1−X)(y

′),
then lrmax(π) = rlmin(σ) follows.

Finally, we notice that asc(π) = asc(x)+1+asc(y) and asc(σ) = asc(x′)+
1 + asc(y′). Since asc(x) = asc(x′) and asc(y) = asc(y′), we deduce that
asc(π) = asc(σ). This completes the proof.
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Example 4.7. Let π = 593721684, then n = 9, x = 59372 and y =
684. (x̄, X) = st−1(x) = (35241, {2, 3, 5, 7, 9}) and (ȳ, Y ) = st−1(y) =
(231, {4, 6, 8}). α(x̄) = 51342 can be obtained as follows

35241
c
−→ 31425

i
−→ 24135

b
−→ 00210

γ
−→ 00102

b−1

−−→ 14352
i
−→ 15324

c
−→ 51342.

Then, x′ = st−1(51342, {1, 3, 5, 7, 8}) = 81573, y′ = st−1(312, {2, 4, 6}) = 624
and σ = β(π) = 624981573. It is easy to check that rlm(π) = rlmax(σ)−1 =
3, wm(π) = rlmin(σ) = 2 and asc(π) = asc(σ) = 4.
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