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Abstract

Penttila and Williford constructed a 4−class association scheme from a
generalized quadrangle with a doubly subtended subquadrangle. We show
that an association scheme with appropriate parameters and satisfying some
assumption about maximal cliques must be the Penttila-Williford scheme.

1 Introduction

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P ,B, I) where
P and B are disjoint (nonempty) sets of objects called points and lines, respec-
tively, and for which I ⊆ (P ,B)× (B,P) is a symmetric point-line incidence relation
satisfying the following axioms:

(i) Each point is incident with t + 1 lines, and two distinct points are incident
with at most one line.

(ii) Each line is incident with s+ 1 points, and two distinct lines are incident with
at most one point.

(iii) If x is a point and L is a line not incident with x, then there is a unique pair
(y,M) ∈ P × B such that x IM I y IL.
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The integers s and t are the parameters of the GQ, and S is said to have order (s, t).
If S has order (s, t), then it follows that |P| = (s+1)(st+1) and |B| = (t+1)(st+1).
For more details on generalized quadrangles, the reader is referred to [14].

It is known that the points of a generalized quadrangle under the relation of
collinearity form a strongly regular graph, that is a 2−class association scheme. By
using the geometry of generalized quadrangles which satisfy prescribed properties,
it is possible to construct association schemes with more than two classes.
Payne in [13] constructed a 3−class association scheme starting from a generalized
quadrangle with a quasi-regular point. Subsequently, Hobart and Payne in [8] proved
that an association scheme having the same parameters and satisfying an assumption
about maximal cliques must be the above 3−class scheme. In [6], Ghinelli and Löwe
defined a 4−class association scheme on the points of a generalized quadrangle with a
regular point, and they characterized the scheme by its parameters. The techniques
used in the above papers are mostly eigenvalue techniques, and [10] is a general
reference for these.

Penttila and Williford [12] constructed an infinite family of 4−class association
schemes starting from a generalized quadrangle of order (r, r2) with a doubly sub-
tended subquadrangle of order (r, r). These schemes areQ−bipartite, notQ−antipodal,
neither P−polynomial nor the dual of a P−polynomial scheme. In the spirit of [6, 8],
we characterize these schemes by their parameters under certain assumptions.
The principal references on association schemes are [1, 2].

The paper is structured as follows. Section 2 contains background information
on generalized quadrangles with a doubly subtended subquadrangle as well as the
parameters of the Penttila-Williford 4−class scheme (X , {Ri}i=0,...,4) arising from
this geometry. The data of the scheme suggest that the relation R3 can be viewed as
the collinearity between points in the GQ not in the subGQ. In Section 3 properties
of maximal {0, 3}-cliques of the scheme are explored. In particular, by considering
triple intersection numbers, we prove that for any pair in R3 there exists a unique
maximal {0, 3}-clique (of size r) containing it (Lemma 3.2). For any such a clique C,
the set TC of all vertices which are 2−related to C is taken into account. In Section
4, by assuming two particular hypotheses, one on the set of all cliques through any
vertex and one on the sets of type TC , we can prove that any set TC is disjoint union
of maximal {0, 3}-cliques (Proposition 4.3), and finally we are able to reconstruct
the GQ of order (r, r2) with a doubly subtended subGQ of order (r, r) (Theorem
4.7).

We would like to give a few remarks on the reasons why we need to introduce
the two hypotheses. In order to prove Proposition 4.3, our first attempt was to use
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eigenvalue techniques in the footsteps of [8, 3]. Unfortunately, this method did not
produce the wanted result. Hence, we approached the problem according to the idea
from [9]. Although also this method did not fully work, it provided the inspiration
for the formulation of the first hypothesis. The second hypothesis underlies the
definition of the lines of the subtended subGQ which is completely missing from
the scheme. The main difference between our problem and those faced in [8, 3, 9]
is that, there, a few lines must be reconstructed from the scheme. More technical
details are given in the Appendix A.

2 Preliminaries

Let S be a GQ of order (r, r2) with a subGQ S ′ of order (r, r), and x a point of S
not in S ′. Then, the set of points of S ′ which are collinear with x form an ovoid of
S ′. Following Brown [4], this ovoid is said to be subtended by the point x, and it will
be denoted by Ox. An ovoid of S ′ is said to be doubly subtended provided that it is
subtended by exactly two points of S \ S ′. The subGQ S ′ is doubly subtended in S
provided that every subtended ovoid of S ′ is doubly subtended. In this case, x′ will
denote the other point subtending Ox, and we refer to x and x′ as antipodes. Lemma
2.3 in [4] states that S ′ is doubly subtended in S if and only if S has an involutorial
automorphism which fixes S ′ pointwise. This automorphism simply interchanges
antipodes while leaving the points of S ′ fixed.

It is known [4, Corollary 2.2] that the size of the intersection of two subtended
ovoids Ox and Oy is either 1, r + 1 or r2 + 1 depending only on whether x and y
subtend different ovoids and y is collinear with either x or x′, or x and y subtend
different ovoids and y is collinear with neither x nor x′, or x and y subtend the same
ovoid.

For the convenience of the reader, we recall here the relations of the Penttila-
Williford 4−class scheme X = (X, {Ri}4i=0). Let S = (P ,L, I) be a GQ of order
(r, r2), r > 2, with a doubly subtended subGQ S ′ = (P ′,L′, I′) of order (r, r). On the
set X of points of S \ S ′, consider the following relations together with the identity
relation R0:

R1: (x, y) ∈ R1 if and only if x and y are not collinear in S and |Ox ∩ Oy| = 1.

R2: (x, y) ∈ R2 if and only if x and y are not collinear in S and |Ox ∩Oy| = r+ 1.

R3: (x, y) ∈ R3 if and only if x and y are collinear in S.
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R4: (x, y) ∈ R4 if and only if Ox = Oy.

Note that (x, y) ∈ R1 implies that y is collinear with x′, and (x, y) ∈ R2 implies
that y is not collinear with x′.

Our idea is to reconstruct the quadrangle S with the doubly subtended subGQ S ′
from the parameters of the scheme, which we report below.

As usual, ni denotes the valency of Ri, p
k
ij are the intersection numbers of the

scheme. Precisely,

n1 = (r − 1)(r2 + 1), n2 = (r2 − 2r)(r2 + 1), n3 = (r − 1)(r2 + 1), n4 = 1,

and the intersection numbers pkij are collected in the following tables whose entries
are indexed by (i, j):

p1i,j 1 2 3 4

1 r2 r2(r − 2) r − 2 0

2 r2(r − 2) r4 − 4r3 + 5r2 − 2r r2(r − 2) 0

3 r − 2 r2(r − 2) r2 1

4 0 0 1 0

p2i,j 1 2 3 4

1 r(r − 1) (r − 1)3 r(r − 1) 0

2 (r − 1)3 r4 − 4r3 + 7r2 − 8r (r − 1)3 1

3 r(r − 1) (r − 1)3 r(r − 1) 0

4 0 1 0 0
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p3i,j 1 2 3 4

1 r − 2 r2(r − 2) r2 1

2 r2(r − 2) r4 − 4r3 + 5r2 − 2r r2(r − 2) 0

3 r2 r2(r − 2) r − 2 0

4 1 0 0 0

p4i,j 1 2 3 4

1 0 0 (r − 1)(r2 + 1) 0

2 0 r(r − 1)(r2 + 1) 0 0

3 (r − 1)(r2 + 1) 0 0 0

4 0 0 0 0

The first and second eigenmatrices of the scheme are:

P =


1 (r − 1)(r2 + 1) r(r − 2)(r2 + 1) (r − 1)(r2 + 1) 1

1 r2 + 1 0 −(r2 + 1) −1

1 r − 1 −2r r − 1 1

1 −r + 1 0 r − 1 −1

1 −(r − 1)2 2r(r − 2) −(r − 1)2 1



Q =



1 r(r−1)2
2

(r−2)(r+1)(r2+1)
2

r(r−1)(r2+1)
2

r(r2+1)
2

1 r(r−1)
2

(r−2)(r+1)
2

−r(r−1)
2

−r(r−1)
2

1 0 −(r + 1) 0 r

1 −r(r−1)
2

(r−2)(r+1)
2

r(r−1)
2

−r(r−1)
2

1 −r(r−1)2
2

(r−2)(r+1)(r2+1)
2

−r(r−1)(r2+1)
2

r(r2+1)
2


.

3 Some properties of maximal {0, 3}-cliques of X

A {0, 3}-clique of the association scheme X is a subset Y of the vertex set X such
that (x, y) ∈ R0 ∪ R3, for all x, y ∈ Y ; a {0, 3}-clique is said to be maximal if it is
not contained in a larger {0, 3}-clique.
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Let xyu be a (ordered) triple of elements in X, and l,m, n ∈ {0, . . . , d}. The triple
intersection number [ x y u

l m n ] (or [ l m n ] for short) denotes the number of vertices
z ∈ X such that

(x, z) ∈ Rl, (y, z) ∈ Rm, (u, z) ∈ Rn.

Note that this symbol is invariant under permutations of its columns. Let (x, y) ∈
RA, (y, u) ∈ RB, (u, x) ∈ RC , for some A,B,C ∈ {0, . . . , d}. The following identities
hold:

[ 0 m n ] + [ 1 m n ] + . . . + [ d m n ] = pBmn,

[ l 0 n ] + [ l 1 n ] + . . . + [ l d n ] = pCln,

[ l m 0 ] + [ l m 1 ] + . . . + [ l m d ] = pAlm,

(1)

for all l,m, n ∈ {0, . . . , d}. Since

[ 0 m n ] = δmAδnC , [ l 0 n ] = δl AδnB, [ l m 0 ] = δl CδmB, (2)

the identities (1) reduce to

d∑
r=1

[ r m n ] = pBmn − δmAδnC ,

d∑
r=1

[ l r n ] = pCln − δlAδnB,

d∑
r=1

[ l m r ] = pAlm − δlCδmB,

(3)

for all l,m, n ∈ {1, . . . , d}. Identities (3) can be interpreted as a system of equations
in the (d)3 non-negative unknowns [ l m n ], and we refer to it as the system of
equations associated to the triplet ABC. We point out the reader [5] for more details
on triple intersection numbers in an association scheme.

Note that the system is uniquely determined by its constant terms array, which
will be denoted by

(
pBmn − δmAδnC ; pCln − δlAδnB; pAln − δlCδmB

)
l,m,n∈{0,...,d}. Instead

of the (ordered) triple xyu, consider the triple yxu. Then, the system of linear
equations associated to A′B′C ′ = ACB is defined by the following constant terms
array (

pCmn − δmAδnB; pBln − δlAδnC ; pAln − δlBδmC

)
. (4)

The unknown [ i j k ] in (3), that represents
[ x y u
i j k

]
, corresponds to the unknown

[ j i k ]′ in the system defined by (4), representing
[ y x u
j i k

]
. Note that if B = C, the

two systems coincide, so that [ i j k ] = [ j i k ]′ = [ j i k ], for all i, j ∈ {0, . . . , d}.
This yields more useful conditions on unknowns in (3).
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Lemma 3.1. For x, y, u ∈ X with (x, y), (y, u), (u, x) ∈ R3, [ i 3 3 ] = 0, for i = 1, 2.

Proof. As X is a Q−polynomial Q−bipartite scheme with qkij = 0, for (i j k) =
(1 1 1), (1 3 1), (1 4 1), (1 2 2), (1 4 2), (1 3 3), (1 4 4) and their permutations, by [5, The-
orem 3] we have

4∑
l,m,n=1

QlrQmsQnt[ l m n ] = −Q0rQAsQCt −QArQ0sQBt −QCrQBsQ0t, (5)

for (r s t) = (1 1 1), (1 3 1), (1 4 1), (1 2 2), (1 4 2), (1 3 3), (1 4 4) and their permuta-
tions. The identities (5) can be interpreted as a system of equations in the 43 = 64
non-negative unknowns [ l m n ].

For A = B = C = 3, we widen the system (3) with the identities [ l m n ] =
[σ(l) σ(m) σ(n) ], for any permutation σ on symbols l,m, n, and equations (5).
Handing the above equations to the computer algebra system Mathematica [15],
we obtain their space of solutions, depending just on [ 1 3 1 ] = 0. This implies
[ 1 3 3 ] = [ 1 3 1 ] = 0 and [ 2 3 3 ] = −2[ 1 3 1 ] = 0.

Lemma 3.2. Let x, y ∈ X with (x, y) ∈ R3. Then, there exists a unique maximal

{0, 3}-clique (of size r) in X containing x and y, and this is the set {x, y} ∪ P(x,y)
3,3 ,

with P(x,y)
3,3 = {z ∈ X : (x, z) ∈ R3, (y, z) ∈ R3}.

Proof. Clearly, |P(x,y)
3,3 | = p33,3 = r−2. Assume there exists a pair of distinct elements

z, z′ ∈ P(x,y)
3,3 , with (z, z′) ∈ Ri, i ∈ {1, 2, 4}. Since p433 = 0, we have i ∈ {1, 2}. Then,

xyzz′ is a 4−tuple such that x, y, z are pairwise 3−related and

(z′, x) ∈ R3, (z′, y) ∈ R3, (z′, z) ∈ Ri.

This yields that the number [ i 3 3 ] should be nonzero, but this contradicts Lemma

3.1. Then, {x, y} ∪ P(x,y)
3,3 is the unique maximal {0, 3}-clique of size r containing x

and y.

From now on, “clique” will stand for “maximal {0, 3}-clique”.

For any x ∈ X, we denote by x′ the unique (as p044 = 1) element which is 4−related
to x. We call x′ the antipode of x and {x, x′} an antipodal pair.

Since p413 = n1 = n3, (x, y) ∈ R1 if and only if (x, y′) ∈ R3; as p422 = n2, (x, y) ∈ R2

if and only if (x, y′) ∈ R2.

Lemma 3.3. For any clique C in X , C ′ = {x′ : x ∈ C} is a clique of X .
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Proof. The result follows from the chain (x, y) ∈ R3 if and only if (x, y′) ∈ R1 if and
only if (x′, y′) ∈ R3.

We will refer to the cliques C and C ′ in Lemma 3.3 as antipodal cliques. Let Y
be a subset of X. We say that z ∈ X is i−related to Y , if there is x ∈ Y such that
(x, z) ∈ Ri.

Lemma 3.4. Let C be a clique and z /∈ C be 3−related to C. Then, z is 3−related
to precisely one point in C and one point in C ′. In addition, the set of points z /∈ C
which are 3−related to C has size r3(r − 1).

Proof. The uniqueness of the point in C that is 3−related to z follows from Lemma
3.2. Let u ∈ C such that (z, u) ∈ R3. Because of the previous results, u lies on r2

cliques, C included, different from the one containing {u, z}. To prove that there
exists exactly one point in C ′ that is 3−related to z means to prove that there exists
exactly one point in C that is 1−related to z. Suppose there exist two distinct
points in C that are 1−related to z, then there would be two distinct points in C ′

that are 3−related to z, and this cannot happen. So there is at most one point in C
that is 1−related to z. As p331 = r2, there exists exactly one point v ∈ C such that
(z, v) ∈ R1.

Now we count the points z /∈ C which are 3−related to C. Any point in C is
3−related to n3− (r− 1) = r2(r− 1) points not in C. As a z /∈ C that is 3−related
to C is 3−related to exactly one point on C, the set of all these points z has size
r(n3 − (r − 1)) = r3(r − 1).

Remark 3.5. From the proof of the previous result we note that if z /∈ C is 3−related
to C, then there are precisely two points x, y ∈ C such that (x, z) ∈ R3 and (y, z) ∈
R1.

Proposition 3.6. Let C be a clique in X and ∆C the set

∆C = {z : (z, x) ∈ R2, for all x ∈ C}.

Then, TC = ∆C ∪C ∪C ′ is a set of r3 − r2 points. Furthermore, for every z ∈ ∆C,
|R1(z) ∩∆C | = |R3(z) ∩∆C | = r − 1 and z′ ∈ ∆C.

Proof. By Lemma 3.4, ∆C has size |X| − r3(r− 1)− 2r, thus TC consists of r3 − r2
points.

Fix z ∈ ∆C . Since for any given y /∈ TC there is exactly one point in C which is
3−related to y, C provides a partition of the points not in TC which are 3−related
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to z in r sets of size p233 = r2 − r. Therefore, the points of ∆C which are 3−related
to z are n3− rp233 = r− 1. Similar arguments show that the points of ∆C which are
1−related to z are n1 − rp211 = r − 1. As (z, x) ∈ R2 if and only if (z′, x) ∈ R2, it
follows z′ ∈ ∆C .

4 Reconstructing the generalized quadrangle from

the scheme

The aim is to prove that the set (TC , R3) is the graph (r2 − r)Kr.

Lemma 4.1. [9] Let x ∈ X, and Q(x) denote the set of the cliques through x. For
y ∈ R2(x), let λ(y) be the set of cliques D ∈ Q(x) such that y is 3−related to D,
and µ(y) be the set of cliques D ∈ Q(x) such that D ⊂ R2(y). Then:

- |λ(y)| = p233 = r(r − 1), |µ(y)| = r2 + 1− p233 = r + 1;

- for u, v ∈ R2(x),
|µ(u) ∩ µ(v)| = m− r2 + 2r + 1,

where m = m(x;u, v) = |λ(u) ∩ λ(v)|;

- for (u, v) ∈ R3,

n = n(x;u, v) = |R3(x) ∩R3(u) ∩R3(v)| ≤ 1.

Proof. By Lemma 3.4, R3(x)∩R3(y) contains no pairs of points which are 3−related.
Therefore, |λ(y)| = p233 = r(r − 1) and |µ(y)| = r2 + 1− p233 = r + 1.

Let u, v ∈ R2(x) and let m = |λ(u) ∩ λ(v)|. By the parameters of X there are
p233 −m = r2 − r −m cliques in Q(x) which are 3−related to exactly one point in
{u, v}. Therefore,

|µ(u) ∩ µ(v)| = r2 + 1− 2(r2 − r −m) +m = m− r2 + 2r + 1. (6)

Let y ∈ R3(x) be a point that is 3−related to both u and v. If (u, v) ∈ R3, then y
belongs to the unique clique defined by u and v. Since in the graph induced by R3

on X the set R3(x) is a disjoint union of cliques of size r, such a point y is unique.
In other words, n = |R3(x) ∩R3(u) ∩R3(v)| ≤ 1.

Hypothesis 1. For u, v ∈ R2(x) with (u, v) ∈ R3, m+ n = r2 − 2r.
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Henceforth, we assume Hypothesis 1 in all subsequent results.

Lemma 4.2. Let Q be a set of size r2 + 1 covered by a family {Ui|i = 1, . . . , r} of
r subsets of Q, each of size r + 1, and pairwise intersecting exactly in one element.
Then, all the sets Ui intersect in the same unique element.

Proof. Let I = {1, ..., r} and d(x) = |{i ∈ I : x ∈ Ui}|. Let d = max
x∈Q

d(x). By the

definition of Ui, we have 1 < d ≤ r. It suffices to show that d = r in order to achieve
the statement. Suppose d < r. Let x ∈ Q such that d(x) = d. Without loss of

generality, we may assume x ∈ Ui, for i = 1, ..., d. We have | ∪di=1Ui| = rd+ 1. Since
|Uk ∩ Ul| = 1, for k 6= l, every subset Uj, with j > d, shares precisely d elements

with ∪di=1Ui. This yields

r2 + 1− (rd+ 1) ≤
r∑

j=d+1

|Uj \ ∪d
i=1Ui| = (r + 1− d)(r − d).

It follows that (r − d)(1− d) ≥ 0, i.e. d ≤ 1; but this is impossible as d > 1.

Proposition 4.3. For any clique C, the set ∆C is disjoint union of r2−r−2 cliques
and it contains no other pair in R3.

Proof. For x ∈ ∆C we shall prove that in Q(x) there is exactly one clique which
lies in ∆C and that any other clique in Q(x) intersects ∆C exactly in x. If a clique
D ∈ Q(x) belongs to all the sets λ(v), v ∈ C, then each point of C is 3−related to
some point in D \ {x}. As |C| > |D \ {x}|, at least one point of D is 3−related
to two points of C. This is impossible because of Lemma 3.4. So the sets µ(v),
v ∈ C, cover Q(x). On the other hand, for distinct points u, v ∈ C, we have
n = |R3(x) ∩ R3(u) ∩ R3(v)| = 0 as x ∈ ∆C . By Hypothesis 1, m = r2 − 2r which
yields |µ(u) ∩ µ(v)| = 1 from (6). So we have a set Q(x) of size r2 + 1 covered by
a family {µ(v)|v ∈ C} of r subsets, each of size r + 1, such that any two of them
intersect in exactly one element of Q(x). Thus, by Lemma 4.2, all the sets µ(v),
v ∈ C, have a clique D in common, and so D is entirely contained in ∆C . Finally,
the second part of the statement follows from the regularity of ∆C with respect to
R3 (see Proposition 3.6).

A clique D is said to be congruent to a clique C if either D = C or (D×C)∩R3 = ∅.
By Proposition 4.3 the congruency is an equivalence relation. Let T be the set of all
equivalence classes. This clearly means that every T ∈ T is defined by any clique C
contained in it, so T = TC . The techniques used in the following results are mostly
eigenvalue techniques, and [10] is a general reference for these.
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Proposition 4.4. Let T ∈ T and x /∈ T . Then, x is 3−related to r2 − r points of
T .

Proof. Order X so that the matrix A1 is partitioned as follows:

A1 =

(
A1T M
M t A1X\T

)
,

where A1T and A1X\T are the adjacency matrices of R1 restricted to T and X \ T ,
respectively. Let B1 be the matrix of average row sums for this partition. Then,

B1 =

(
r − 1 r3 − r2
r2 − r (r − 1)(r2 − r + 1)

)
,

which has eigenvalues (r−1)(r2 + 1) and −(r−1)2. Since these tightly interlace the
eigenvalues of A1, the row sums are constant. It follows that for every x /∈ T there
are r2 − r points of T that are 1−related to x.

Similarly write

A2 =

(
A2T M
M t A2X\T

)
.

By using the regularity of T (with respect to R1 and R3), the matrix B2 of average
row sums for this partition is

B2 =

(
r(r2 − r − 2) r2(r2 − 3r + 2)

r(r2 − 3r + 2) r(r3 − 3r2 + 4r − 4)

)
,

whose eigenvalues are r(r − 2)(r2 + 1) and 2r(r − 2). Since these tightly interlace
the eigenvalues of A2, the row sums are constant. This implies that for every x /∈ T
there are r(r − 1)(r − 2) points of T which are 2−related to x.

In conclusion, the number of points of T that are 3−related to a fixed x ∈ X \ T
are |T | − (r2 − r)− r(r − 1)(r − 2) = r2 − r.

Lemma 4.5. Let T1, T2 ∈ T , T1 6= T2, such that T1 ∩ T2 6= ∅. Then, any clique in
T1 intersects exactly one clique in T2, and |T1 ∩ T2| = r2 − r.

Proof. Let z ∈ C1 ∩ C2 with Ci a clique in Ti, i = 1, 2. Suppose D to be a clique
in T1, D ∩ T2 = ∅. By the construction of T ∈ T , for each x ∈ D there is a unique
y ∈ C2 such that (x, y) ∈ R3. As |D| = |C2|, z would be 3−related to D, but this
is a contradiction. So D ∩ T2 6= ∅, for each clique D in T1. If |D ∩ T2| > 1, then D
is contained in T2 by Proposition 4.3, i.e. T1 = T2 that is impossible. Hence, the
result follows.
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Proposition 4.6. Let T ∈ T and x /∈ T . Then, there are r + 1 cliques through x
disjoint from T . For any such a clique D, TD ∩ T = ∅.

Proof. By Propositions 4.3 and 4.4, x is 3−related to r2 − r points of T lying on
different cliques in T . As x is on r2 + 1 cliques of X by Lemma 3.2, then there are
exactly r2 + 1 − (r2 − r) = r + 1 cliques through x that are disjoint from T . Let
D be such a clique. Then D′ ∩ T = ∅, where D′ is the antipodal clique of D. Each
point of D is 3−related to r2−r points of T . Note that, for y, z ∈ D, y 6= z, the two
corresponding subsets of 3−related points in T are disjoint by Lemma 3.2. So, each
point of T is 3−related to exactly one point of D. This yields TD = ∆D ∪D ∪D′ is
disjoint from T .

Let T1, T2 ∈ T with T1 ∩ T2 = ∅. For any x /∈ T1 ∪ T2 we define θi(x) to be the
number of cliques C around x such that C ∩ (T1 ∪ T2) = i, for i = 0, 1, 2. Clearly,
θ0(x) + θ1(x) + θ2(x) = r2 + 1. By Proposition 4.4, also θ1(x) + 2θ2(x) = 2(r2 − r)
holds.

Proposition 4.3 yields that the set C of all cliques with one vertex in T1 and one in
T2 has size r(r2 − r)2. By double counting the pairs (x,C) with x /∈ T1 ∪ T2, C ∈ C
with x ∈ C, we get ∑

x/∈T1∪T2

θ2(x) = r(r − 2)(r2 − r)2. (7)

By plugging the above equations into Eq. (7), we find∑
x/∈T1∪T2

θ0(x) = (r2 − r)2 = |X \ (T1 ∪ T2)|.

Hypothesis 2. For all x /∈ T1 ∪ T2, θ0(x) ≥ 1.

From now on, we assume Hypothesis 2, together with Hypothesis 1, in all subse-
quent results.

By Hypothesis 2, for T1, T2 ∈ T with T1∩T2 = ∅, there exists a unique clique that
is disjoint from T1 ∪ T2 through any x /∈ T1 ∪ T2. This means that every such a pair
T1, T2 determines a unique partition of X in elements of T . This can be viewed in
the following way.

For a fixed x /∈ T1 ∪ T2, let C be the unique clique on x disjoint from T1 ∪ T2,
and T3 = TC . Let y /∈ T1 ∪ T2 ∪ T3, and D be the unique clique through y disjoint
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from T1 ∪ T2. If there was z ∈ D ∩ T3, then there would be two distinct cliques on z
disjoint from T1∪T2 since T3 is partitioned in cliques; but this gives a contradiction.

Let Π be the set of such partitions. Note that every partition has size r + 1.

Theorem 4.7. Consider the following incidence structure S:
Points: (i) elements of X

(ii) elements of T

Lines: (a) C ∪ {TC}, where C is a clique in X

(b) elements of Π

Incidences: (i),(a) a point x of type (i) is incident with a line C ∪ {TC}
of type (a) if and only if x ∈ C

(i),(b) none

(ii),(a) a point T of type (ii) is incident with a line C ∪ {TC}
of type (a) if and only if T = TC

(ii),(b) a point T of type (ii) is incident with a line π of type (b)
if and only if T ∈ π.

Then, S is a GQ of order (r, r2). Furthermore, the points of type (ii) together with
the lines of type (b) give rise to a doubly subtended subGQ S ′ of order (r, r) of S.

Proof. By Lemma 3.2, every point of X lies on r2 + 1 cliques. Proposition 4.3 says
that any element T ∈ T contains r2−r cliques, and T is contained in r+1 elements
of Π by Proposition 4.6. Hence, every point of S is on r2 + 1 lines.

It is easy to check that each line contains r + 1 points.

Let x ∈ X and consider C ∪ {TC} such that x /∈ C. If x ∈ TC , there exists a
unique clique through x, say Cx, in TC by Proposition 4.3. Thus,

x I (Cx ∪ {TC}) I TC I (C ∪ {TC}).

If x /∈ TC , there exists a unique point y ∈ C such that (x, y) ∈ R3. Let D be the
clique containing {x, y}. Then,

x I (D ∪ {TD}) I y I (C ∪ {TC}).

Let x ∈ X and π ∈ Π. Then, there exists a unique T ∈ π such that x ∈ T . By
Proposition 4.3, there exists a unique clique C in T containing x. Therefore,

x I (C ∪ {T}) I T I π.
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Let T ∈ T and C ∪ {TC} with TC 6= T .

Assume T ∩ TC 6= ∅. By Lemma 4.5 there is a unique clique D in T such that
D ∩ C = {z}, so T = TD; from which

T I (D ∪ {T}) I z I (C ∪ {TC}).

Now assume T ∩ TC = ∅ so that T, TC define a unique partition π ∈ Π of X, giving

T I π I TC I (C ∪ {TC}).

Let T ∈ T and π ∈ Π with T /∈ π. Since π is a partition of X, by Lemma 4.5 there
are precisely r elements in π intersecting T in r2− r points. Thus, there is a unique
T ′ ∈ π disjoint from T . Let π′ denote the partition defined by T and T ′. Then, the
following chain of incidences holds:

T I π′ I T ′ I π.

Therefore, S is a GQ of order (r, r2), and the points of type (ii) together with the
lines of type (b) give rise to a subGQ S ′ of order (r, r) of S.

Consider the involutorial automorphism φ : x ∈ X 7→ x′ ∈ X of X . By using
Proposition 3.6, it is easy to check that φ induces an involutorial automorphism of
S which fixes S ′ pointwise. According to [4, Lemma 2.3], S ′ is a doubly subtended
subGQ of S.

A Comments on Hypothesis 1 and 2

A.1 Hypothesis 1

In order to reconstruct the points of the subtended subGQ as well as the lines of
the GQ through these points, we need to prove that the set (TC , R3) is the graph
(r2 − r)Kr, for each clique C. This is equivalent to showing that the matrix A3|TC

has eigenvalue r − 1 with multiplicity at least r2 − r.
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The adjacency matrices Ai have eigenvalues and multiplicities as collected in the
following table

A1 A2 A3 A4 multiplicity

V0 (r − 1)(r2 + 1) r(r − 2)(r2 + 1) (r − 1)(r2 + 1) 1 1

V1 r2 + 1 0 −(r2 + 1) −1 r(r−1)2
2

V2 r − 1 −2r r − 1 1 (r−2)(r+1)(r2+1)
2

V3 −r + 1 0 r − 1 −1 r(r−1)(r2+1)
2

V4 −(r − 1)2 2r(r − 2) −(r − 1)2 1 r(r2+1)
2

By following Hobart and Payne [8], the hope is to find a matrix E (involving the
matrix A3 and the all-ones matrix J , and possibly some other adjacency matrix)
with only two eigenvalues so that Theorem 1.3.3 in [7] can be applied. From the table
above we see that we do not get only two eigenvalues if we use a linear combination
of A3 and J . Anyway, also by taking one further adjacency matrix the problem
persists. The best we can do is to find a matrix E with three distinct eigenvalues,
but Theorem 1.3.2 from [7] does not give useful information.

The arguments in Section 4 underlying Hypothesis 1 are inspired by [9]. It follows
from the parameters of X that X can be considered as a set of vectors {x∗ =
|X|1/2Ẽx : x ∈ X} in the eigenspace V1 +V4 of dimension n3 + 1; here, Ẽ = E1 +E4

with Ei the projector over the i-th eigenspace, and x ∈ X is identified with its
characteristic vector in R|X|. If (x, y) ∈ Ri then 〈x∗, y∗〉 = q1(i) + q4(i). For a fixed
x ∈ X, we consider {y∗ : y ∈ R3(x)} ∪ {x∗}. The hope is that these vectors form
a basis for V1 + V4, and using this fact to evaluate m + n via the inner products
〈v∗, w∗〉, for v, w ∈ R2(x). This product mainly depends on the number of certain
configurations whose evaluation involves triple intersection numbers which seems
to be not constant according to the computations implemented with Mathematica.
In our opinion, this approach appears to be the most fruitful, but more ideas are
needed.

A.2 Hypothesis 2

The last step toward the characterization of the Penttila-Williford scheme in terms
of its parameters is the definition of the lines of the subtended subGQ. Recall that
the points of the subGQ are the sets T ∈ T , and through each of them r + 1 lines
of the subGQ must be defined. A hint for the construction of these lines is given by
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Proposition 4.6, a result similar to Lemma 2.7 in [9] and to a Proposition in [8]: for
T ∈ T and x /∈ T there exists precisely one clique through x which is disjoint from
T .
In this context, it is natural to consider partitions of X into disjoint unions of
elements of T as the missing lines. In order that two disjoint elements in T define
a unique line in the subGQ, we need that through a point not in the union of the
sets there is precisely one clique that is disjoint from them. From here Hypothesis
2 arose.
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