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Abstract

In this paper, we attach several new invariants to connected strongly

regular graphs (excepting conference graphs on non-square number of ver-

tices) : one invariant called the discriminant, and a p-adic invariant cor-

responding to each prime number p. We prove parametric restrictions on

quasi-symmetric 2-designs with a given connected block graph G and a

given defect (absolute difference of the two intersection numbers) solely

in terms of the defect and the parameters of G, including these new in-

variants. This is a natural analogue of Schutzenberger’s Theorem and the

Shrikhande-Chowla-Ryser theorem. This theorem is effective when these

graph invariants can be explicitly computed. We do this for complete

multipartite graphs, co-triangular graphs, symplectic non-orthogonality

graphs (over the field of order 2) and the Steiner graphs, yielding explicit

restrictions on the parameters of quasi-symmetric 2-designs whose block

graphs belong to any of these four classes.
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1 Introduction

An incidence system is a pair (P,B) where P is a set whose elements are

called the points, and B is a collection of subsets of P , called blocks.

Recall that a 2-design with parameters v, k, λ (in short a 2−(v, k, λ) design)

is an incidence system with v points in total and with k points in each block

such that any two distinct points are together in exactly λ blocks. We shall

sometimes refer to the parameter λ as the balance parameter of the design.

An easy counting argument shows that a 2-design has ancillary parameters b, r

such that the number of blocks is b and each point is in exactly r blocks. These

ancillary parameters are determined by the main parameters by the formulae

bk = rv, r(k − 1) = λ(v − 1). (1)

We say that b, v, r, k, λ are feasible parameters for a 2-design if these are

positive integers satisfying (1) (even if the design may not exist). A 2-design is

non-trivial if v > k, equivalently, if r > λ. The number r−λ is called the order

of the 2-design.

A well known theorem of Fisher says that the parameters of a non-trivial

2-design satisfy b ≥ v, equivalently r ≥ k. A 2-design with b = v, r = k is

called a symmetric 2-design. Evidently, a 2− (v, k, λ) design is symmetric if

and only if λ(v − 1) = k(k − 1). The statistician’s terminology for a 2-design is

‘balanced incomplete block design’ (BIBD) and a symmetric 2-design is called

a ‘symmetrical balanced incomplete block design’ (SBIBD) in the Statistics

literature. A good source on Design Theory is the monograph [10].

An intersection number in a design is a number x such that some pair

of distinct blocks have exactly x points in common. A 2-design is symmetric if

and only if it has exactly one intersection number (in which case the intersection

number necessarily equals the balance parameter). In view of this result, it is

natural to define a quasi-symmetric 2-design to be a design with exactly

two intersection numbers. Thus, according to the definition adopted here, the

symmetric 2-designs are not quasi-symmetric. A fairly comprehensive source on

quasi-symmetric designs is the book [26].

We denote the intersection numbers of a quasi-symmetric 2-design by λ1 <

λ2. The defect of such a design is the difference λ2−λ1. The block graph of a

quasi-symmetric 2-design is the graph whose vertices are the blocks of the design,

two blocks are adjacent if and only if they have λ2 points in common. Some

authors define adjacency in the block graph in terms of the smaller intersection

number. This is not a serious difference since it only replaces the block graph
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by its complement. The definition adopted here is consonant with the usual

definition of the line graphs of partial linear spaces and graphs. It is also the

definition used in [10] (but not in [26]).

The graphs considered here are simple graphs. That is, they are loopless,

undirected and without multiple edges. A graph is said to be regular of degree

a if each vertex has exactly a neighbours. A regular graph is said to be strongly

regular (s.r.g.) if there are constants c, d such that any two distinct vertices

have exactly c or d common neighbours, according as these two vertices are

themselves adjacent or not. A famous theorem of Goethals and Seidel ([14]) says

that the block graph of any quasi-symmetric 2-design is a strongly regular graph.

It is easy to see that the only quasi-symmetric 2-designs with disconnected block

graphs are the multiples of symmetric 2-designs, obtained by repeating each

block a constant number of times. We exclude these designs from consideration.

Thus, for us, all the block graphs are connected.

For any graph G, its complement is defined as the graph G∗ such that (i)

G∗ has the same vertices as G, and (ii) two distinct vertices are adjacent in G∗

if and only if they are non-adjacent in G. If G is strongly regular, then so is G∗.

The methods used in the next section (Section 2) of this paper are elemen-

tary. The organization (in terms of the spectrum of a potential block graph and

the defect of a putative quasi-symmetric 2-design) of the results here may have

its uses in furthering the subject. Recall that the complement D of an incidence

system D is the incidence system whose blocks are the complements (relative

to the point set) of the blocks of D. It is easy to see that the complement

of a 2-design is a 2-design with the same order. Further, the complement of

a quasi-symmetric 2-design with block graph G and defect µ is again a quasi-

symmetric 2-design with block graph G and defect µ. (More precisely, the two

block graphs are isomorphic, and an isomorphism between them is given by

complementation.) In the first result (Theorem 2.1) of Section 2, we observe

that, up to complementation, the parameters of a quasi-symmetric 2-design (in-

cluding the two intersection numbers) are determined by the defect of the design

and the parameters of the block graph. Therefore, it is natural to formulate the

parametric restrictions on quasi-symmetric 2-designs in terms of the graph pa-

rameters and the defect. We point out that it is not true (as has sometimes

been stated) that the graph parameters alone determine the design parameters.

Even aside from the ambiguity due to complementation, a famous construction

due to Shrikhande and Raghavarao [30] provides non-trivial counter examples.

See Theorem 4.4 below for a convenient reformulation of the result of [30].

As an easy consequence of Theorem 2.1, we present Theorem 2.3, which
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gives elementary parametric restrictions on quasi-symmetric 2-designs. Given

an s.r.g. G and a positive integer µ, Theorem 2.3 gives necessary and sufficient

conditions on the parameters of G for the design parameters given by Theorem

2.1 to be feasible for a quasi-symmetric 2-design of defect µ. (This, of course,

does not guarantee that the design exists! See Definition 2.2 for the precise

meaning of feasibility in this context.) The corollaries to Theorem 2.3 assert

the finiteness of certain families of quasi-symmetric 2-designs of a given defect

µ ≥ 2. Corollary 2.4 is a complete classification of the feasible parameters of

quasi-symmetric 2-designs with complete multipartite block graphs. This result

may look complicated, but it lends itself to a fast computation of tables of

feasible parameters of such designs, even by hand. For instance, this result has

the surprising consequence that, given n ≥ 2, µ ≥ 1, there is at most one value

of m ≥ 2 for which a quasi-symmetric 2-design of defect µ and block graph

Km×n is feasible. Namely, if n = 2 then m = 4µ− 1. If n > 2 then, writing µ

(uniquely) as µ = (n − 1)t + α (t ≥ 0, 0 ≤ α < n − 1), we get that if α > 0,

(n−2α)2−4α(α−1) is a perfect square and α divides n2t then m = n2t
α +n+1

(otherwise there is no such m).

In the context of Section 2, we should recall that, in [19], Pawale classified

the feasible parameters of quasi-symmetric 2-designs of defect µ = 1. Up to

complementation, these are the Steiner 2-designs, and the residuals of biplanes.

In [20] and [18], the feasible parameters for q.s. 2-designs with µ = 2, 3 are

classified. The recent non-existence results in [21] and [22] are consequences

of feasibility; as such, they do not rule out any feasible parameters. Likewise,

Section 2 handles the question of feasibility only. In contrast, the main result

in Section 4 rules out infinitely many feasible parameters.

A central concern of design theory is the following hard question : given

parameters v, k, λ satisfying the necessary condition k(k − 1) = λ(v − 1), when

does a (symmetric) 2− (v, k, λ) design exist? In [24], Schutzenberger proved :

Theorem 1.1

If v is an even number then, for the existence of a symmetric 2-design of

order ν on v points, ν must be a perfect square.

In [27] and [12], Shrikhande and Chowla-Ryser generalized a previous result

of Bruck and Ryser ([6], the case λ = 1) to prove :

Theorem 1.2

If v is an odd number, then for the existence of a symmetric 2-design on v

points with balance λ and order ν, the diophantine equation νx2+(−1)(v−1)/2λy2 =
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z2 must have a solution (x, y, z) 6= (0, 0, 0) in integers.

Apart from an isolated computer-assisted non-existence result (the case

v = 111, k = 11, λ = 1), these are the only known parametric restrictions on

symmetric 2-designs. The object of this paper is to find analogous answers to

the following question : given a strongly regular graph G and a positive integer

µ, when does a quasi-symmetric 2-design with block graph G and defect µ exist?

The proof of Theorem 1.2 due to Shrikhande uses p-adic Hilbert symbols,

p-adic invariants for rational equivalence of non-singular symmetric matrices

over rational numbers, and a little portion of the Hasse-Minkowski local-global

theorem. Following the beautiful little book [25] of Serre, we give a brief ex-

position of this theory in the next section (Section 3). (Another exposition of

this theory is available in Appendix A of [23].) This section continues with a

few computational lemmas. Of these, Lemma 3.8 gives a formula for the p-

adic invariant of a non-singular symmetric matrix A over Q in terms of the

corresponding invariants of a non-singular principal sub-matrix B and of the

Schur complement A/B. This lemma, though easy to prove, is likely to be

of independent interest. Another important result here is Corollary 3.10 which

unearths an unexpected property of rational equivalence. This result may be of

wider importance in design theory.

Section 4 contains the main result and its applications. Let us define an

integral strongly regular graph to be an s.r.g. whose eigenvalues are all

integers. Thus, by Theorem 2.3, the block graph of any quasi-symmetric 2-

design is an integral s.r.g. We introduce, for any connected integral s.r.g. G,

the discriminant δ(G) (taking values in the quotient group Q×/Q�, where Q×

is the multiplicative group of non-zero rational numbers, and Q� is its subgroup

consisting of the squares of non-zero rational numbers) and the p-adic invariant

ǫp(G) (taking values in the multiplicative group {+1,−1}), where p runs over

the prime numbers. This is Definition 4.1. In general, these invariants depend

on the structure of the s.r.g. G, and not merely on its usual parameters. A

series of examples illustrating this point appears towards the end of Section 4.

We continue Section 4 by stating and proving the main result (Theorem

4.2) of this paper. It gives parametric restrictions on quasi-symmetric 2-designs

solely in terms of the defect of the design, the parameters of a potential block

graph G and the invariants δ(G) and ǫp(G) (p prime).Theorem 4.2 (a) is an

analogue of Schutzenberger’s Theorem (Theorem 1.1) for quasi-symmetric 2-

designs. No such analogue appears to have been known in such generality.

Theorem 4.2(b) is an analogue of Shrikhande-Chowla-Ryser Theorem (Theorem
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1.2) for quasi-symmetric 2-designs. Similar looking p-adic restrictions (depend-

ing only on the parameters of the design, inclusive of the intersection numbers)

are available in the literature, see [1],[4], [7], [8], [9] and [31]. In general, these

results can not be compared with Theorem 4.2(b) since the latter involves the

new graph invariants. We explicitly compute these invariants for the complete

multipartite graphs, the co-triangular graphs, the non-orthogonality graphs of

symplectic spaces over the field of order two and the Steiner graphs (block

graphs of 2-designs with λ = 1) hence obtaining new analogues (Corollaries

4.3, 4.5, 4.6 and 4.7) of Theorems 1.1 and 1.2 for quasi-symmetric 2-designs

whose block graphs belong to one of these four classes. We posit a conjecture

on the possible parameters of complete multipartite graphs which may occur

as the block graphs of q.s. 2-designs. We also include a table of small feasible

parameters of quasi-symmetric 2-designs with Steiner block graphs.

As explained in the remarks preceding and following Theorem 4.2, the proof

of this theorem is inspired by Shrikhande’s paper [28] (published in the year

in which this author was busy being born!), and brings its method to a logical

conclusion. Unsurprisingly, Corollary 4.3 of this theorem generalises the main

result of [28], which gives parametric restrictions on affine resolvable 2-designs

(i.e., quasi-symmetric 2-designs with complete multi-partite block graphs and

λ1 = 0).

Acknowledgement. We thank Peter Cameron for several fruitful discus-

sions over e-mail pertaining to his construction of quasi-symmetric 2-designs

with symplectic block graphs (briefly discussed in Section 4) and regarding the

proof of Corollary 2.9 ( which shows that the triangular graphs Tm are never

the block graphs of quasi-symmetric 2-designs of defect µ > 1). We thank B.

Sury for acquainting us with Baker’s Theorem in [2]. A big thank you to Aranya

Bagchi, son of the author, for his help with the latex formatting of this paper.

2 Elementary Restrictions

Let G be a finite graph, say on b vertices. The adjacency matrix of G is the

b × b matrix A, with its rows and columns indexed by the vertices of G, such

that, for vertices x, y, the (x, y)th entry A(x, y) of A is = 1 if x, y are adjacent

in G, and A(x, y) = 0 otherwise. The spectrum spec(A) (i.e., the multi-set of

eigenvalues of A, counting multiplicity) is also called the spectrum of G, and is

denoted spec(G).

If G is a connected strongly regular graph then G has exactly three distinct

eigenvalues, which we shall denote by a > ρ > σ, with corresponding multiplic-
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ities 1, f, g. Here a is the degree of G and f + g + 1 = b, the number of vertices

of G. Since trace(A) = 0, we have a = −fρ − gσ. We shall refer to ρ, σ, f, g

as the spectral parameters of the strongly regular graph. One may write the

usual parameters of a strongly regular graph in terms of its spectral parameters,

and vice versa. Except for the conference graphs (which are the s.r.g.’s with

f = g = (b− 1)/2, eigenvalues 1
2 (−1±

√
b)) on a non-square number of vertices,

the eigenvalues of other s.r.g.’s are integers. We shall refer to the s.r.g.’s with

integral eigenvalues as the integral strongly regular graphs.

If D is an incidence system with v points and b blocks, then the incidence

matrix N of D is the v×bmatrix, with rows indexed by the points and columns

by the blocks of D, such that, for a point x and block B, the (x,B)th entry

N(x,B) of N is = 1 if x ∈ B, and N(x,B) = 0 otherwise. For positive integers

n, In and Jn will denote the n×n identity matrix and the n×n all-one matrix,

respectively.

If N is the incidence matrix of a 2-design D, then NN ′ = νIv + λJv,

where ν, λ are the order and balance of D. Since ν + λv = rk, it follows

that spec(NN ′) = (rk)1(ν)v−1.

If D is a quasi-symmetric 2-design with usual parameters b, v, r, k, λ and

intersection numbers λ1 < λ2, then the complementary 2-design D is also quasi-

symmetric, with corresponding parameters given by

k + k = v = v, r + r = b = b, r − λ = r − λ, k − λi = k − λi (i = 1, 2). (2)

It follows that a complementary pair of quasi-symmetric 2-designs has a com-

mon order (r− λ) and common defect (λ2 − λ1). Up to isomorphism, they also

have the same block graph. The following theorem shows that the parameters

of a quasi-symmetric 2-design are determined, up to complementation, by the

defect µ and the spectral parameters of the block graph G.

Theorem 2.1

Let D be a quasi-symmetric 2-design with a connected block graph G and

defect µ. Then the parameters (including intersection numbers) of D are given

in terms of the defect µ and the spectral parameters of G by the following

formulae :

(a) v = f + 1, b = f + g + 1, r − λ = (ρ− σ)µ, k − λ1 = −σµ,

(b) λ2 = λ1 + µ, λ1 = 1
f+g+1 ((f + 1)(λ+ ρµ) + gσµ), where λ is one of the two
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roots of the quadratic equation

x2 − (f + g + 1− 2(ρ− σ)µ)x + (ρ− σ)µ

(

(ρ− σ)µ− f + g + 1

f + 1

)

= 0. (3)

(c) Using the second root of this quadratic equation as the value of λ in the

first two parts of this theorem yields the parameters of the complementary

design D.

Proof : Let A and N be the adjacency matrix of G, and the incidence

matrix of D, respectively. We see that N ′N = kIb + λ2A + λ1(Jb − Ib − A) =

µA+(k−λ1)Ib +λ1Jb. Since spec(A) = (−fρ− gσ)1(ρ)f (σ)g and A commutes

with Jb, it follows that spec(N ′N) = (k + λ1(b − 1) − (fρ + gσ)µ)1(k − λ1 +

ρµ)f (k − λ1 + σµ)g . But spec(NN ′) = (rk)1(r − λ)v−1 and b > v (Fisher’s

inequality) imply that spec(N ′N) = (rk)1(r − λ)v−1(0)b−v. Comparing these

two formulae for the spectrum of N ′N , we get Part (a). Clearly λ2 = λ1 + µ.

Substituting f+g+1, f+1, λ+(ρ−σ)µ, λ1−σµ for b, v, r, k (respectively), in the

formula bk = rv we get the formula for λ1 in Part (b). Using Equation (1) and

Equation (2), one sees that λ+λ = b−2(r−λ) = f+g+1−2(ρ−σ)µ (which is

the negative of the coefficient of x in Equation (3)) and λλ = (r−λ)(r−λ−b/v),

which is the constant term of Equation (3). Thus, λ and λ are the two roots of

Equation (3). This completes the proof of Part (b). Applying Parts (a) and (b)

of this theorem to D in place of D, we see that using λ in place of λ in Parts

(a), (b) yields the parameters of D. This proves Part (c). �

We note that Theorem 2.1 places strong restrictions on the possible values

of the defect µ of quasi-symmetric 2-designs with a given block graph. Let us

introduce:

Definition 2.2 Let G be a connected strongly regular graph, and µ be a

positive integer. We shall say that the pair (G,µ) is feasible (for a quasi-

symmetric design with block graph G and defect µ) if the (complementary pair

of) design parameters (inclusive of the intersection numbers) given by Theorem

2.1 are non-negative integers satisfying the feasibility condition Equation (1).

(In that case, it is easy to see that, with the possible exception of λ1, λ1, all

these parameters are positive.)

Theorem 2.3

LetG be a connected strongly regular graph with spectral parameters ρ, σ, f, g,

and let µ be a positive integer. The pair (G,µ) is feasible for a quasi-symmetric

2-design if and only if the following conditions hold :
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(a) ρ and σ are integers (i.e., G is an integral s.r.g.),

(b) − f+1
f+g+1 · fρ+(g+1)σ

σ2 ≤ µ ≤ − f+1
2σ ,

(c) f + 1 divides g(ρ− σ)µ,

(d) f + g + 1 divides fg(ρ− σ)µ, and

(e) the quantity ∆ := (f + g + 1)(f + g + 1− 4f(ρ−σ)µ
f+1 ) is a perfect square.

(Note that (c) implies that ∆ is an integer.)

Proof : Since the characteristic polynomial of any adjacency matrix is a

monic integral polynomial, the eigenvalues of any graph are algebraic integers.

Thus, (a) holds if and only if ρ and σ are rational numbers. But Theorem

2.1(a) shows that rationality of ρ, σ is necessary for the feasibility of (G,µ).

Note that ∆ is the discriminant of the polynomial in Equation (3). Thus, for

λ, λ to be rational, it is necessary and sufficient that ∆ is a rational squared.

So, once (c) is established, it will follow that (e) also holds. In the rest of the

proof, we may assume that ρ, σ are integers. Now, the proof of Theorem 2.1

shows that the parameters given there satisfy Equation (1). Also, the formulae

given there show that, (assuming (a)) for all the parameters to be non-negative

integers, it is enough to have that λ, λ are integers and λ1, λ1 are non-negative

integers, where over-line denotes (as before) the corresponding complementary

parameters.

So, to complete the proof, it suffices to show that (c) is the necessary and suf-

ficient condition for λ, λ to be integers, (d) is the necessary and sufficient condi-

tion for λ1, λ1 to be integers, and (b) is the necessary and sufficient condition for

λ1, λ1 to be non-negative. Note that, by Theorem 2.1, λ = γλ1+δ, λ = γλ1+δ,

and λ, λ are the two roots of the quadratic polynomial (i) X2 −αX + β, where,

α = f + g + 1− 2(ρ− σ)µ, β = (ρ− σ)µ((ρ − σ)µ− f + g + 1

f + 1
),

γ =
f + g + 1

f + 1
, δ = − µ

f + 1
((f + 1)ρ+ gσ).

(Note that (f + 1)ρ + gσ = ρ − a < 0, where a is the largest eigenvalue

(degree) of G. So we have γ > 0, δ > 0. This is why the non-negativity of

λ1, λ1 implies positivity of λ, λ.) Therefore, substituting X = γY + δ in the

polynomial (i), we see that λ1, λ1 are the two roots of the quadratic polynomial

(ii) Y 2 − α1Y + β1, where

α1 = f + 1 + 2σµ, β1 = σ2µ2 +
f + 1

f + g + 1
(fρ+ (g + 1)σ)µ.

9



Now observe that, given a monic polynomial of degree two with rational

roots, the roots are both integers if and only if all the coefficients are integers,

and both the roots are non-negative if and only if the coefficient of its degree

one term is ≤ 0 and the constant term is ≥ 0. Applying this observation to the

polynomials (i) and (ii) completes the proof. �

Example 0 : Conference graphs. A conference graph is a strongly

regular graph with spectral parameters f = g = q−1
2 , ρ = 1

2 (−1 +
√
q), σ =

1
2 (−1−√

q), where q ≡ 1 (mod 4) is the number of vertices. Applying Theorem

2.3 to such a graph, part (a) shows q must be a perfect square, while part (c)

shows that q+1
2 divides µ, so that µ ≥ q+1

2 . But part (b) shows that we must

have µ ≤ 1
2 (
√
q− 1), contradiction. Thus, conference graphs can never occur as

block graphs of quasi-symmetric 2-designs. This was originally observed in [21]

Example 1 : Complete multi-partite graphs. The complete multipar-

tite graph Km×n (m ≥ 2, n ≥ 2) has mn vertices partitioned into m parts of

size n each, where two vertices are adjacent if and only if they are in different

parts. In other words, Km×n is the complement of mKn (the disjoint union of

m copies of the n-vertex complete graph Kn). The quasi-symmetric 2-designs

with complete multi-partite block graphs are known as the strongly resolv-

able 2-designs. Recall that, for n ≥ 2, the 2− (n2, n, 1) designs are known as

the affine planes of order n. These are strongly resolvable designs of defect 1

with block graph Kn+1×n.

Corollary 2.4.

The feasible parameters of strongly resolvable 2-designs are in bijection with

the ordered quadruples (α, l, l∗, t) of non-negative integers such that α > 0, ll∗ =

α(α− 1) and α divides (l+ l∗)2t. The feasible parameters corresponding to the

quadruple (α, l, l∗, t) are given by

n = l + l∗ + 2α, m = t
αn

2 + n+ 1, µ = (n− 1)t+ α,

b = mn, v = n2((n− 1) t
α + 1), r = m(α+ ℓ), k = n((n− 1) t

α + 1)(α+ ℓ),

λ = ( t
αn+ 1)(α+ ℓ)2 + ℓ, λ1 = n((n− 1) t

α + 1)ℓ, λ2 = ((n− 1) t
α + 1)(α+ ℓ)2.

(It easily follows from this result that the only feasible parameters of strongly

resolvable 2-designs of defect 1 are those of the affine planes and their comple-

ments; further, for each µ > 1, there are only finitely many feasible parameters

of defect µ.)
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Proof : Let the block graph be G = Km×n (m ≥ 2, n ≥ 2). Its spectral

parameters are

f = m(n− 1), g = m− 1, ρ = 0, σ = −n.

Therefore, in this case, the feasibility conditions of Theorem 2.3 reduce to :

(b) mn−m+ 1 ≤ n2µ,

(c) mn−m+ 1 divides (m− n− 1)µ, and

(e) ∆0 := (mn−m+ 1)(mn−m+ 1− 4(n− 1)µ) is a perfect square.

(Parts (a) and (d) of Theorem 2.3 are automatic. To see that (c) of Theorem

2.3 reduces to (c) above, note that (m−1)n ≡ m−n−1 (mod mn−m+1). The

lower bound in part (b) of this theorem follows from part (e) in this case. Indeed,

part (e) above implies that 4(n − 1)µ ≤ (n − 1)m + 1 and hence m ≥ 4µ − 1,

with equality only for n = 2.)

If m = 4µ − 1, then n = 2. Clearly, in this case, the parameters are as in

the statement, with α = 1, l = l∗ = 0, t = µ − 1. (These are the parameters of

Hadamard 3-designs.) Therefore, in what follows, we may assume that m ≥ 4µ.

Let (n − 1)t be the multiple of n − 1 which is nearest to µ. In case µ is

equidistant between two multiples of n − 1, we take (n− 1)t to be the smaller

of them (in which case we have µ > (n− 1)t, of course.)

Suppose, if possible, that µ < (n − 1)t. Then t ≥ 1 and µ = (n − 1)t − α,

where 1 ≤ α < n−1
2 . Hence n ≥ 4. Since (n− 1)m+ 1 divides (m − n− 1)µ =

(m−n−1)((n−1)t−α) = ((n−1)m+1)t−(αm+n2t−(n+1)α), it follows that

(n− 1)m+1 divides αm+ n2t− (n+1)α. But, as t ≥ 1 and α < n−1
2 , we have

αm+n2t− (n+1)α > 0. Therefore (n− 1)m+1 ≤ αm+n2t− (n+1)α. Hence
n−1
2 m < (n− α− 1)m < n2t− (n+ 1)α < 2(n− 1)((n− 1)t− α) = 2(n− 1)µ.

(Here, the last inequality holds since t ≥ 1, α < n−1
2 and n ≥ 4.) Thus m < 4µ,

a contradiction. Therefore µ ≥ (n − 1)t, and hence µ = (n − 1)t + α, where

0 ≤ α ≤ n−1
2 .

Since (n − 1)m + 1 divides (m − n − 1)µ = (m − n − 1)((n − 1)t + α) =

((n− 1)m+ 1)t+ (αm− n2t− (n+ 1)α), it follows that

(n− 1)m+ 1 divides αm− n2t− (n+ 1)α. (4)

If αm < n2t+(n+1)α, then (4) implies that (n−1)m+1 ≤ n2t+(n+1)α−αm,

i.e., (n+α− 1)m < n2t+(n+1)α ≤ 4(n+α− 1)((n− 1)t+α) = 4(n+α− 1)µ.

Hence, m < 4µ, a contradiction. Thus, αm ≥ n2t+ (n+ 1)α.

If αm > n2t+(n+1)α, then (4) implies that (n−1)m+1 ≤ αm−(n2t+(n+

1)α) ≤ αm, which is absurd since α < n− 1. Therefore, αm = n2t+ (n+ 1)α.

11



If α = 0 then this implies α = t = 0 and hence µ = 0, contradiction. So we have

α > 0, t ≥ 0, µ = (n− 1)t+ α, m =
n2t

α
+ n+ 1. (5)

Hence we get ∆0 = (nα )
2((n − 1)t + α)2(n2 − 4(n − 1)α). Since ∆0 is a

square by (e), it follows that n2 − 4(n − 1)α = y2 for some integer y. Thus,

α(α−1) =
(

n−2α+y
2

) (

n−2α−y
2

)

. Since n−2α±y are integers of the same parity

and their product is even, it follows that l := n−2α+y
2 and l∗ := n−2α−y

2 are

integers. They satisfy ll∗ = α(α − 1) ≥ 0, l + l∗ = n− 2α ≥ 0, so that l, l∗ are

non-negative integers. Since m = n2t
α + n+ 1, we have n2t ≡ 0 (mod α). Since

n ≡ l + l∗ (mod α), it follows that (l + l∗)2t ≡ 0 (mod α). Thus we have

l, l∗ ≥ 0, (l + l∗)2t ≡ 0 (mod α), ll∗ = α(α − 1), n = l + l∗ + 2α. (6)

The formulae (5) and (6) show that n,m, µ are given in terms of the quadru-

ple (α, l, l∗, t) as in the statement. Conversely, if n,m, µ are thus given, with

α > 0, α(α − 1) = ll∗, (l + l∗)2t ≡ 0 (mod α), then it is easy to see that

m,n, µ satisfy (b),(c) and (e), so that the pair (Km×n, µ) is feasible. Since

∆0 = (n((n − 1) t
α + 1)(l − l∗))2 by the above computation, it follows from

Theorem 2.1 that the design parameters are as given. Since, in turn, m,n, µ

determine α, t and l + l∗, ll∗ (and hence also l, l∗ up to a transposition) by the

formulae (5) and (6), it follows that these formulae give a bijection between the

ordered quadruples (α, l, l∗, t) as above and the feasible parameters of strongly

resolvable 2-designs (and, retaining the values of α, t while interchanging l, l∗

yields the complementary parameters). �

Example 2: Co-triangular graphs. For any graph G, let l(G) denote

the line graph of G. Thus, the vertices of l(G) are the edges of G, two edges of

G are adjacent in l(G) if and only if they meet in one vertex. The line graphs

Tn := l(Kn) (n ≥ 5) of the complete graphs Kn are known as the triangular

graphs. The co-triangular graph T ∗
n is the complement of Tn. Thus, T

∗
n may be

described as the graph whose vertices are the
(

n
2

)

edges of Kn; two edges of Kn

are adjacent in T ∗
n if and only if they are disjoint. We define a Co-triangular

2-design to be any quasi-symmetric 2-design with a co-triangular block graph.

If B is a block of a symmetric 2-design D, then the 2-design DB whose

blocks are the sets C \B, where C runs over the blocks C 6= B of D, is known

as the residual of D at the block B. If D is a biplane (i.e., a symmet-

ric 2-design with λ = 2) with block size n, then its residual (at any fixed

block) is a 2 − (
(

n−1
2

)

, n − 2, 2) co-triangular 2-design with intersection num-

bers λ1 = 1, λ2 = 2. In [13], Hall and Connor proved that, conversely, any

12



2− (
(

n−1
2

)

, n− 2, 2) design is a residual of a uniquely determined biplane.

Corollary 2.5 :

(1) The only co-triangular 2-designs of defect µ = 1 are the residuals of

biplanes and their complements,

(2) For each fixed integer µ ≥ 2, there are only finitely many co-triangular

2-designs of defect µ.

(3) The feasible pairs (T ∗
n , µ) are in bijection with the pairs (ℓ, ℓ∗) of non-

negative integers. The bijection is given by the formula ℓℓ∗ = 4µ(µ − 1), n =

4µ+ 1 + ℓ+ ℓ∗.

Proof : Let the block graph be T ∗
n . The spectral parameters of T ∗

n are

f =
n(n− 3)

2
, g = n− 1, ρ = 1, σ = −(n− 3).

Therefore, Theorem 2.1 implies that, up to complementation, the co-Steiner

designs of defect 1 are 2 − (
(

n−1
2

)

, n − 2, 2) designs. By the Hall-Connor theo-

rem, these are just the residuals of biplanes. This proves part (1). Part (2) is

immediate from part (3) since, given µ ≥ 2, the fixed positive integer 4µ(µ− 1)

has only finitely many factors. So it suffices to prove part (3).

Theorem 2.3 shows that the only feasibility condition is the existence of

an integer x such that (n − 4µ − 1)2 − 16µ(µ − 1) = x2. (This is Condition

(e) of Theorem 2.3 in this case. This condition implies the upper bound on

µ in part (b) of that theorem. The remaining parts are trivial here.) Hence,

(n−4µ−1+x
2 )(n−4µ−1−x

2 ) = 4µ(µ− 1). As in the proof of Corollary 2.4, the num-

bers n−4µ−1±x
2 are integers. Letting ℓ, ℓ∗ denote these two numbers, we get the

result. �

Example 3 : Symplectic graphs. Let d ≥ 2 and let q be a prime power.

Take a (2d)-dimensional vector space V over the field of order q equipped with

a non-degenerate symplectic bilinear form < ·, · > (such a form is unique up to

linear isomorphisms). Let P (V ) = PG(2d−1, q) be the corresponding projective

space. For non-zero vectors x ∈ V , let [x] denote the point in P (V ) with

homogeneous co-ordinates x. The symplectic graph Sp(2d, q) has the points of

PG(2d − 1, q) as its vertices. Two points [x], [y] are adjacent in Sp(2d, q) if

< x, y > 6= 0. In short, Sp(2d, q) is the non-orthogonality graph of a symplectic

space.
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Corollary 2.6

Let q > 2 be a prime power and let d ≥ 2 be an integer. Then, a quasi-

symmetric 2-design of defect µ with block graph Sp(2d, q) is parametrically

feasible if and only if q(qd−1 − 1) ≡ 6 (mod 8), µ = (qd − q+2)/8, and the pair

(q, d) satisfies
(

qd − 1

q − 1

)2

− qd
(

qd−1 − 1

q − 1

)

= x2

for some integer x.

Proof : The spectral parameters of Sp(2d, q) are

ρ = qd−1, σ = −qd−1, f =
q
2 (q

d−1 − 1)(qd + 1)

q − 1
, g =

q
2 (q

d−1 + 1)(qd − 1)

q − 1
.

Thus, f +1 = 1
2 (q

d − q+2) q
d−1
q−1 , f + g+1 = q2d−1

q−1 . Therefore, in this case,

Condition (c) of Theorem 2.3 simplifies to : qd−q+2|4qd−1(q−1). Since q > 2,

the greatest common divisor between qd− q+2 and qd−1 (respectively, between

qd− q+2 and q− 1) is 1 or 2 (respectively 2 or 1) according as q is odd or even.

Therefore qd − q+2 divides 8µ, say 8µ = (qd − q+2)t (t ≥ 1). Then Condition

(e) of Theorem 2.3 simplifies to :

(

qd − 1

q − 1

)2

− tqd
(

qd−1 − 1

q − 1

)

= x2

for some integer x. Therefore,

t ≤ (qd − 1)2

qd(q − 1)(qd−1 − 1)
< 2.

Thus t = 1, µ = (qd − q + 2)/8 (so that q(qd−1 − 1) ≡ 6 (mod 8)), and

the last but one display amounts to the diophantine equation of the statement.

Since the remaining conditions of Theorem 2.3 are automatic (with this value

of µ), the proof is complete. �

Corollary 2.7 : For each fixed integer d ≥ 2, there are at most finitely many

prime powers q for which Sp(2d, q) is the block graph of a quasi-symmetric 2-

design.

Proof : First suppose d = 2. Then Corollary 2.6 yields 2q + 1 = x2 for

some integer x. So, x is odd, say x = 2y + 1. Then q = 2y(y + 1). Thus q is

(even, and therefore) a power of 2. Hence both y and y + 1 are powers of 2,
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so that y = 1. Hence q = 4. But the pair (d, q) = (2, 4) fails the congruence

condition of Corollary 2.6. Thus, there is no prime power q for which SP (4, q)

is the block graph of a q.s. 2-design.

Next, let d ≥ 3. A theorem of Alan Baker from [2] says that if f is a single

variable polynomial over integers which has at least three distinct simple roots,

then there can only be finitely many integers q such that f(q) is a perfect square.

Consider the polynomial fd(X) := (X
d−1

X−1 )2 − Xd(X
d−1−1
X−1 ). It may be shown

that, for d ≥ 3, fd satisfies Baker’s hypothesis. Therefore, for d ≥ 3, this result

follows from Baker’s theorem and Corollary 2.6. �

It also seems likely that for each fixed prime power q ≥ 3, the graph Sp(2d, q)

is a block graph for at most finitely many values of d. Probably this can be

deduced from (Corollary 2.6 and) the ABC conjecture.

Example 4 : Steiner graphs. Recall that a Steiner 2-design is a 2-

design with balance λ = 1. Note that any Steiner 2-design is automatically

quasi-symmetric of defect 1. For integers m > n ≥ 2 such that n divides

m(m − 1), we define the Steiner graph Sn(m) to be the block graph of a

Steiner 2-design with parameters

b =
m

n
(mn−m+ 1), v = mn−m+ 1, r = m, k = n, λ = 1.

Note that, when the parameters m,n are large, there usually are many non-

isomorphic Steiner graphs, all of them designated Sn(m). We define a multi-

Steiner 2-design to be any quasi-symmetric 2-design with a Steiner block

graph.

Corollary 2.8

(1) The only multi-Steiner 2-designs of defect µ = 1 are the Steiner 2-designs

and their complements,

(2) For each fixed pair of integers µ ≥ 2, n ≥ 2, there are only finitely many

multi-Steiner 2-designs of defect µ with block graph Sn(·).

Proof : (1) is immediate from the definition of Sn(m) and Theorem 2.1.

By Theorem 2.1, the spectral parameters of Sn(m) are :

f = m(n− 1), g = m(m− n+ 1)− 1− m(m− 1)

n
, ρ = m− n− 1, σ = −n.

Note that, by Theorem 2.3, the only feasibility requirement for the existence

of a quasi-symmetric 2-design of defect µ with block graph Sn(m) is (apart

from n|m(m− 1)) that there is an integer x such that (mn−m+ 1 − 2nµ)2 −
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4n2µ(µ − 1) = x2. (In this case, the upper bound in (b) of Theorem 3.2 fol-

lows from this requirement, and the remaining parts are trivial.) We have

(mn−m+1−2nµ+x
2 )(mn−m+1−2nµ−x

2 ) = n2µ(µ − 1). As in the proof of Corol-

lary 2.4, the numbers mn−m+1−2nµ±x
2 are integers. Thus, for fixed values of

n ≥ 2, µ ≥ 2, mn−m+1−2nµ±x
2 are among the finitely many factors of the fixed

positive integer n2µ(µ− 1), so that there are only finitely many feasible values

of m. This proves part (2). �

Note that the symplectic graph Sp(2d, 2) has the same parameters as a

Steiner graph Sn(m) with n = 2d−1, m = 2d+1. Thus, Corollary 2.8 applies to

these graphs as well. (More generally, it applies to all pseudo-Steiner graphs

: s.r.g.’s having the same parameters as Steiner graphs.) This is why we left

out the case q = 2 in Corollary 2.6.

A t − (v, k, λ) design is an incidence system with v points, k points per

block, and λ blocks containing any t distinct points. Any t-design is an s-design

for each s in the range 0 ≤ s ≤ t. Ray- Chaudhuri and Wilson generalized

([17]) Fisher’s inequality to prove that the parameters of any (2s)-design with

v ≥ k + s satisfy b ≥
(

v
s

)

. The (2s)-designs attaining this bound are known as

the tight (2s)-designs. This generalizes the notion of symmetric 2-designs (the

case s = 1). Ito in [16] and Bremner in [5] proved that, up to complementation,

the only tight 4-design with 4 ≤ k ≤ v − 4 is the famous 4 − (23, 7, 1) design

of Witt. Its block graph is a sporadic strongly regular graph with spectral pa-

rameters f = 22, g = 230, ρ = 25, σ = −3. On the other hand, Cameron has

proved ([11]) that any quasi-symmetric 2-design with a connected block graph

satisfy b ≤
(

v
2

)

, and equality holds only for 4-designs. The following Theorem is

an immediate consequence of these result.

Corollary 2.9:

There is no quasi-symmetric 2-design of defect µ ≥ 2 whose block graph is

a triangular graph Tm := S2(m− 1) (m ≥ 5).

Proof : Tm has spectral parameters

ρ = m− 4, σ = −2, f = m− 1, g =

(

m− 1

2

)

− 1.

Therefore, by Theorem 2.1, any such design would satisfy b =
(

v
2

)

, 4 ≤ k ≤ v−4.

Therefore, by Cameron’s Theorem, the design would be a non-trivial tight 4-

design with block graph Tm. But by the classification of Ito and Bremner, there

is no such design. �
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Note that this theorem rules out infinitely many feasible parameters which

survive Corollary 4.7 below. Cameron has pointed out that the upper and lower

bounds on b (for quasi-symmetric 2-designs and non-trivial 4-designs, respec-

tively) mentioned above are very special cases of Theorem 5.21 in Delsarte’s

Thesis.

3 Hilbert symbols and rational equivalence

Q× will denote the multiplicative group of non-zero elements in the field Q

of rational numbers. We denote by Q� the subgroup of Q× consisting of the

squares of non-zero rationals. For x, y ∈ Q×, we write x ≡ y (mod Q�) if

xy−1 ∈ Q�. Also, for α ∈ Q×/Q� and x ∈ Q× we sometimes write α = x

(mod Q�) to indicate that α is the image of x under the quotient map Q× →
Q×/Q�.

Through out this section, p is a prime number, fixed but arbitrary. An

element u of Q× is said to be a p-adic unit if p does not divide the numerator

and denominator of u in its reduced form. The p-adic valuation vp(x) of x ∈ Q×

is the unique integer m such that p−mx is a p-adic unit. The p-adic norm of x

is defined by ‖x‖p = p−vp(x). This is extended to Q by setting ‖0‖p = 0. It is

easy to see that ‖ · ‖p is a field norm on Q. The field Qp of p-adic numbers is

defined to be the completion of Q under this norm. Thus, Q is a subfield of Qp.

The p-adic Hilbert symbol is the function from Q× × Q× to {+1,−1}
defined as follows. For a, b ∈ Q×, (a, b)p = +1 if the equation ax2+by2 = z2 has

a solution (x, y, z) 6= (0, 0, 0) in Qp, and (a, b)p = −1 otherwise. This symbol

has the following important properties (see [25], Chapter III) :-

(H1) Q�-invariance : For a, a′, b, b′ ∈ Q×, if a′ ≡ a (mod Q�) and b′ ≡ b

(mod Q�) then (a′, b′)p = (a, b)p.

(H2) Symmetry : For a, b ∈ Q×, (b, a)p = (a, b)p.

(H3) Bilinearity : For a, b, c ∈ Q×,

(ab, c)p = (a, c)p(b, c)p, (a, bc)p = (a, b)p(a, c)p.

(H4) Special identities : For a, b ∈ Q× with b 6= 1,

(a,−a)p = 1 = (−a, a)p, (b, 1− b)p = 1 = (1− b, b)p.

(H5) Formulae : For p-adic units u, v ∈ Q×, we have,

(u, p)p =







(−1)ω(u) if p = 2,

(up ) if p 6= 2.
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(u, v)p =







(−1)ǫ(u)ǫ(v) if p = 2,

1 if p 6= 2.

Here, for odd p, ( ·
p ) is the Legendre symbol : for p-adic units u, (up ) = +1

if u is a square modulo p, and = −1 otherwise. For 2-adic units u, ω(u) = 0 if

u ≡ ±1 (mod 8) and ω(u) = 1 if u ≡ ±3 (mod 8); ǫ(u) = 0 if u ≡ +1 (mod 4)

and ǫ(u) = 1 if u ≡ −1 (mod 4).

Remark on terminology. The use of the word ‘bilinearity’ to describe (H3)

requires an explanation. Note that the target {+1,−1} of the Hilbert symbols

is a field with ordinary multiplication as field addition; the field multiplication

is determined by the requirement that +1 is the additive identity and −1 the

multiplicative identity in this field. Since the quotient group Q×/Q� is a mul-

tiplicative elementary abelian 2-group, it may be viewed as a vector space over

this field. The properties (H1)–H(3) say that the p-adic Hilbert symbol de-

scends to a well defined symmetric bilinear form on this vector space. Another

important property of this symbol is the non-degeneracy of this bilinear form.

That is, an element x of Q× satisfies (x, y)p = 1 for all y ∈ Q× (if and) only if

x ∈ Q�. Non-degeneracy will not be of importance to us.

Since Q× is generated by the p-adic units together with p, the value of (x, y)p

may be calculated using the properties (H) for any given elements x, y of Q×.

Through the rest of this article, we shall use (H) without further mention.

We shall say that a solution of a homogeneous quadratic equation (in several

variables) is non-trivial if at least one of the co-ordinates of the solution is non-

zero. The following result (Corollary 1 in [25], Chapter IV) is a baby version of

the Hasse-Minkowski local-global theorem.

Lemma 3.1

For a, b ∈ Q×, the following two conditions are equivalent : (1) The equation

ax2 + by2 = z2 has a non trivial solution in rationals (equivalently, in integers),

(2) (a, b)p = 1 for all primes p.

In other words, the equation in (1) has a non-trivial solution in rationals if

and only if it has a non-trivial solution in every Qp. (It is usual to add here

the requirement that the equation is solvable in reals as well. But, the Hilbert

product formula (Theorem 3 in [25], Chapter III) shows that if (a, b)p = 1 for

all primes p then this equation is automatically solvable in reals; i.e., in that

case, both of a, b can not be negative.)

Combining standard arguments from elementary number theory with the

case b = −1 of Lemma 3.1, we get :
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Corollary 3.2

Let n be a positive integer. Then n is a sum of (at most) two perfect squares

if and only if (−1, n)p = 1 for all primes p.

Now we recall that two n × n symmetric matrices A,B over Q are said to

be rationally equivalent (in symbols A ∼ B) if there is a non-singular n× n

matrix X over Q such that B = X ′AX . (Here X ′ is the transpose of X .)

Clearly, rational equivalence is an equivalence relation on the space of all n× n

symmetric matrices over Q. Note that, if A ∼ B and A is non-singular then so

is B.

Let D = diag(d1, · · · , dn) be a non-singular diagonal matrix over Q. Then

the p-adic invariant ǫp(D) of D is defined by

ǫp(D) :=
∏

1≤i<j≤n

(di, dj)p.

The next lemma is essentially Theorem 5 in [25], Chapter IV.

Lemma 3.3

Let D1 and D2 be two non-singular diagonal matrices over Q. If D1 ∼ D2

then ǫp(D1) = ǫp(D2).

Another basic observation is :

Lemma 3.4

Every non-singular symmetric matrix over Q is rationally equivalent to a

(nonsingular) diagonal matrix over Q.

Proof : Let A be an n × n non-singular symmetric matrix over Q. Define

the non-degenerate symmetric bilinear form (·, ·) on Qn by (x, y) = x′Ay. Using

the usual Gram-Schmidt algorithm, any given basis of Qn can be orthogonalised

(not orthonormalised : the normalisation is generally impossible over Q) with

respect to this bilinear form. This process yields a basis {x1, . . . , xn} such that

x′
iAxj = 0 for all i 6= j (1 ≤ i, j ≤ n). Let di = x′

iAxi, 1 ≤ i ≤ n. Let

D = diag(d1, . . . , dn). Let X be the n× n (non-singular) matrix over Q whose

columns are the vectors x1, . . . , xn. Then D = X ′AX . �

Now, for any n × n non-singular symmetric matrix A over Q, the p-adic

Hasse invariant of A is defined by

ǫp(A) := ǫp(D),

whereD is any ( non-singular) diagonal matrix over Q such thatD ∼ A. Lemma

3.3 and 3.4 show that this is well defined : such a matrix D exists and ǫp(A) is

19



independent of the choice of D. Lemma 3.3 also shows that it is indeed an in-

variant for rational equivalence.The Hasse invariants were introduced by Hasse

in 1923, building on previous work of Minkowski.

Theorem 3.5

Let A1, A2 be two n×n non-singular symmetric matrices over Q. If A1 and

A2 are rationally equivalent, then det(A1) ≡ det(A2) (mod Q�) and ǫp(A1) =

ǫp(A2).

This completes our mini-survey of rational equivalence and the p-adic invari-

ant. For more on this topic, [25] is a perfect source. The next few results in this

section may be new. We have failed to locate them in the available literature.

Lemma 3.6

Let a, b ∈ Q be such that a 6= 0 and a+ bn 6= 0. Then,

ǫp(aIn + bJn) = (−1, a)
(n−1

2 )
p (a, a+ bn)n−1

p (a(a+ bn), n)p.

Proof : Note that our hypotheses on a, b are necessary for the matrix aIn+

bJn to be non-singular. Let Xn be the n× n matrix given by

Xn(i, j) =



























1 if j = 1, 1 ≤ i ≤ n,

−1 if 1 ≤ i < j ≤ n,

j − 1 if 1 < i = j ≤ n,

0 if 1 < j < i ≤ n.

A calculation yields X ′
nXn = D1, X

′
nJnXn = D2, where D1 = diag(n, j(j−

1) : 1 < j ≤ n) and D2 = diag(n2, 0, 0, . . . , 0). Therefore X ′
n(aIn+ bJn)Xn = D

where D = aD1 + bD2. Since D1 is clearly non-singular, it follows that Xn is

non-singular and aIn+ bJn ∼ D. Hence ǫp(aIn+ bJn) = ǫp(D) by Theorem 3.5.

We now compute

ǫp(D) =
∏

1<j≤n(n(a+ bn), aj(j − 1))p ·
∏

1<i<j≤n(ai(i − 1), aj(j − 1))p.

But,
∏

1<j≤n(n(a+ bn), aj(j−1))p = (n(a+ bn), a)n−1
p

∏

1<j≤n(n(a+ bn), j(j−1))p.

And, as (a, a)p = (−1, a)p(−a, a)p = (−1, a)p,

∏

1<i<j≤n(ai(i − 1), aj(j − 1))p =

(−1, a)
(n−1

2 )
p

∏

1<j≤n(a, j(j − 1))n−2
p

∏

1<i<j≤n(i(i − 1), j(j − 1))p.
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Also,

∏

1<j≤n

(n(a+ bn), j(j − 1))p =
∏

1<j≤n

(n(a+ bn), j)p(n(a+ bn), j − 1)p

= (n(a+ bn), n)p = (−(a+ bn), n)p,

since this last product is telescoping (remember : the Hilbert symbol is ±1-

valued). Similarly,

∏

1<j≤n

(a, j(j − 1))p = (a, n)p.

Thus we get

ǫp(aIn + bJn) = (n(a+ bn), a)n−1
p (−1, a)

(n−1

2 )
p (a, n)np (−(a+ bn), n)pen

= (a+ bn, a)n−1
p (−1, a)

(n−1

2 )
p (−a(a+ bn), n)pen,

where en =
∏

1<i<j≤n(i(i− 1), j(j − 1))p. Therefore, to complete the proof,

it suffices to show that en = (−1, n)p for all n. Vacuously, e1 = 1 = (−1, 1)p.

Also,

enen+1 =
∏

1<i≤n

(i(i− 1), n(n+ 1))p = (n, n(n+ 1))p.

But, (n, n(n+ 1))p = (−1, n(n+ 1))p(−n, n)p(−n, 1− (−n))p = (−1, n(n+

1))p. Thus, e1 = (−1, 1)p, enen+1 = (−1, n)p(−1, n+ 1)p. Hence, by induction

on n, we get en = (−1, n)p. �

Lemma 3.7

Let A,B be non-singular symmetric matrices over Q, not necessarily of the

same order. Then,

ǫp(A⊕B) = ǫp(A)ǫp(B)(det(A), det(B))p.

Proof : In view of the definition of ǫp(·), we may assume without loss

of generality that both A and B are diagonal matrices, so that A ⊕ B is also

diagonal. In this case, the result follows from the definition of ǫp(·) for diagonals
and the bilinearity of Hilbert symbols. �

Let A be a symmetric matrix over Q and let B be a non-singular principal sub-

matrix of A. Then the Schur complement A/B of B in A is defined as
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follows.

Without loss of generality, we may assume that

A =

(

B C

C′ D

)

, where D is also symmetric.

Then, A/B := D − C′B−1C.

The first part of the following lemma is one among several little gems due

to I. Schur, each of which is known as Schur’s Lemma. The second part may be

new.

Lemma 3.8

Let A be a symmetric matrix over Q and let B be a non-singular principal

sub-matrix of A. Then,

(a) det(A/B) = det(A)/ det(B) and hence A is non-singular

if and only if A/B is non-singular.

(b) If, further, A/B is non-singular, then

ǫp(A) = ǫp(B)ǫp(A/B)(det(B), det(A/B))p.

Proof : Let A be given by the 2× 2 block matrix in the definition of Schur

complement. Let

X :=

(

I −B−1C

0 I

)

.

Since X is a block triangular matrix with identities as diagonal blocks, we

have det(X) = 1, and hence X is non-singular. A computation shows that

X ′AX = B ⊕ (A/B).

Since det(X) = 1, this proves Part (a) and shows that A ∼ B ⊕ (A/B).

Hence by Theorem 3.5, if A/B is also non-singular, then ǫp(A) = ǫp(B⊕(A/B)).

Therefore Lemma 3.7 completes the proof of Part (b). �

In the next lemma, for any matrix A over Q, C(A) will denote the column

space of A over Q. It is the Q-vector space spanned by the columns of A.
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Lemma 3.9

Let E1, E2 be two m×n matrices of rank n over Q. Suppose C(E1) = C(E2).

Then E′
1E1 and E′

2E2 are rationally equivalent.

Proof : Let C(E1) = V = C(E2). Let {x1, . . . , xn} and {y1, . . . , yn} be the

set of columns of E1 and of E2, respectively. These two sets are two bases of the

Q-vector space V . Let A = ((aij))1≤i,j≤n be the transition matrix between these

two bases. That is, aij ∈ Q are determined by the equations
∑n

i=1 aijxi = yj for

1 ≤ j ≤ n. Thus, A is a non-singular matrix over Q, and E2 = E1A. Therefore

E′
2E2 = A′(E′

1E1)A. Hence E′
2E2 ∼ E′

1E1. �

Corollary 3.10

Let E be an m×n matrix of rank g over Q. Then all the g× g non-singular

principal sub-matrices of E′E are rationally equivalent.

Proof : Let B1, B2 be two g×g non-singular principal sub-matrices of E′E.

So there are rank g sub-matrices E1, E2 of E, both of order m × g, such that

Bi = E′
iEi (i = 1, 2). We have C(E1) = C(E) = C(E2). Hence Lemma 3.9

implies B1 ∼ B2. �

4 The main result and applications.

If N is the v × v incidence matrix of a symmetric 2-design on v points with

balance λ and order ν, then k2νv−1 = det(NN ′) = (detN)2 implies N is non-

singular and νv−1 ≡ 1 (mod Q�), proving Theorem 1.1. Also, NN ′ = νIv+λJv

implies that νIv + λJv ∼ Iv, and hence, by Theorem 3.5, ǫp(νIv + λJv) = 1.

But, since ν + λv = k2 ≡ 1 (mod Q�), Lemma 3.6 yields that, when v is

odd (so that
(

v−1
2

)

≡ v−1
2 (mod 2)), ǫp(νIv + λJv) = (ν, (−1)(v−1)/2v)p. But

(ν, λv)p = (ν, k2 − ν)p = ( ν
k2 , 1 − ν

k2 )p = 1 and hence (ν, v)p = (ν, λ)p. Thus,

when v is odd, we must have (ν, (−1)(v−1)/2λ)p = ǫp(νIv + λJv) = 1 ∀p for the

existence of a symmetric 2-design with these parameters. In view of Lemma

3.1, this proves Theorem 1.2. (It may be instructive to compare this short proof

with the proof given in Chapter 12 of [23].)

Clearly these arguments work since the incidence matrix of a symmetric

2-design is a non-singular matrix. The main idea of [28] in extending such

arguments to a class of quasi-symmetric 2-designs was to use a construction of

Connor to embed the v × b incidence matrix as a sub-matrix of a suitable non-

singular b× b matrix M over Q, and then apply the Hasse-Minkowski theory to
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MM ′.

In Theorem 4.2 below, we show that the technique of [28] works in the gen-

erality of all quasi-symmetric 2-designs without any need for Connor’s special

construction. Indeed, M may be taken to be an arbitrary non-singular b × b

matrix over Q containing the incidence matrix as a sub-matrix (see the remark

after Theorem 4.2). To state and prove our result, we need the following defi-

nition.

Definition 4.1: Let G be a connected integral strongly regular graph. Let

E be the orthogonal projection onto the negative eigenspace of G (i.e., the

eigenspace corresponding to the negative eigenvalue σ of G). In other words,

E is the minimal idempotent of rank g in the Bose-Mesner algebra of G. Since

G is an integral s.r.g., it follows that E is a matrix over Q. We define the

discriminant δ(G) ∈ Q×/Q� and the p-adic invariant ǫp(G) = ±1 (p any prime

number) of G as follows :

δ(G) = det(E0) (mod Q�), ǫp(G) = ǫp(E0)

where E0 is any g × g non-singular principal sub-matrix of E. Since E is of

rank g and E′E = E, Corollary 3.10 implies that this definition is independent

of the choice of E0.

The next theorem is the main result of this paper. In view of Theorem 2.1,

it is natural to present it in terms of the block graph and the defect µ of the

design, or equivalently (since ν = (ρ − σ)µ by Theorem 2.1), in terms of the

graph parameters and the order ν of the design. This result looks neater in

terms of the order.

Theorem 4.2

Let G be a connected integral strongly regular graph with spectral param-

eters ρ, σ, f, g, and let ν be a positive integer. Then, for the existence of a

quasi-symmetric 2-design of order ν with block graph G, the following condi-

tions are necessary :

(a) νf ≡ (f + 1)(f + g + 1)δ(G) (mod Q�),

and, for all prime numbers p,

(b) (−1, ν)
(f2)
p (ν, f +1)p = (f + g+1,−f − 1)p(−(f +1)(f + g+1), δ(G))pǫp(G).

Proof : Let E0 be as in Definition 4.1. Without loss of generality, we may

assume that E0 is the g×g principal sub-matrix of E in its top left corner. That
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is, the rows (and columns) of E0 correspond to the first g rows (respectively

columns) of E. Let N be the v × b incidence matrix of a quasi-symmetric

2-design of order ν with block graph G. Consider the b× b matrix M given by

M =

(

N

X

)

,where X =
(

Ig, 0g×v

)

.

(Recall : g = b − v by Theorem 2.1.) Note that NN ′ = νIv + λJv is

non-singular, and we have

MM ′ =

(

NN ′ NX ′

XN ′ XX ′

)

Hence the Schur complement of NN ′ in MM ′ is MM ′/NN ′ = X(Ib −
N ′(NN ′)−1N)X ′. But Ib−N ′(NN ′)−1N is the orthogonal projection onto the

kernel of N ′N . (This is true of any matrix N such that NN ′ is non-singular.)

Also, the proof of Theorem 2.1 shows that the kernel of N ′N is precisely the

negative eigen-space of G. Thus, Ib − N ′(NN ′)−1N = E, the minimal idem-

potent of rank g in the Bose-Mesner algebra of G. Thus MM ′/NN ′ = XEX ′.

Also, since E0 is the g × g sub-matrix in the top left corner of E, our choice of

X implies that XEX ′ = E0. Therefore, MM ′/NN ′ = E0.

Since both E0 and NN ′ are non-singular, Lemma 3.8 implies that MM ′

(and hence also M) is non-singular, so det(MM ′) = (detM)2 ≡ 1 (mod Q�),

and MM ′ ∼ Ib. Thus by Theorem 3.5, ǫp(MM ′) = 1. Since r/k = b/v, so that

rk ≡ bv (mod Q�), we get det(NN ′) = rkνv−1 ≡ bvνv−1 (mod Q�). Also,

det(E0) ≡ δ(G) (mod Q�) by Definition 4.1. Hence Lemma 3.8(a) implies that

νv−1bvδ(G) ≡ det(MM ′) ≡ 1 (mod Q�). Thus, νv−1 ≡ bvδ(G) (mod Q�).

Since v = f + 1, b = f + g + 1 by Theorem 2.1, this proves the first part.

Since ν+λv ≡ bv (mod Q�) and νv−1 ≡ bvδ(G) (mod Q�), Lemma 3.6 implies

ǫp(NN ′) = (−1, ν)
(v−1

2 )
p (−bν, v)p(bv, ν

v−1)p

= (−1, ν)
(v−1

2 )
p (−bν, v)p(bv,−δ(G))p.

Also,ǫp(E0) = ǫp(G) by Definition 4.1. Therefore, Lemma 3.8 (b) implies :

1 = ǫp(MM ′) = ǫp(NN ′)(−1, det(E0))pǫp(E0)

= (−1, ν)
(v−1

2 )
p (−bν, v)p(bv,−δ(G))p(−1, δ(G))pǫp(G).

Therefore,

(−1, ν)
(v−1

2 )
p (ν, v)p = (−b, v)p(bv,−δ(G))p(−1, δ(G))pǫp(G)

= (b,−v)p(−bv, δ(G))pǫp(G).
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Since v = f + 1, b = f + g + 1, this proves the second part.�

Remark. More generally, in the proof of Theorem 4.2, we might have argued

with the most general symmetric non-singular matrix M over Q containing the

incidence matrix N as a sub-matrix. That is, we could take

M =

(

N

X

)

,

where X is any g × b matrix over Q for which M is non-singular. Then, as

in the above proof, we get MM ′/NN ′ = XEX ′, where E is as in Definition

4.1. Since M (and hence MM ′) is to be non-singular, it follows from Lemma

3.8 that XEX ′ must be non-singular. Let X1, X2 be two such choices for X ,

and let M1,M2 be the corresponding choices for M . Since (EX ′
i)

′(EX ′
i) =

Xi(E
′E)X ′

i = XiEX ′
i is non-singular, it follows that, for i = 1, 2, Ei := EX ′

i

is a b × g matrix of rank g = rank(E). Therefore, C(E1) = C(E) = C(E2).

Hence, Lemma 3.9 implies that X1EX ′
1 = E′

1E1 ∼ E′
2E2 = X2EX ′

2. That

is, M1M
′
1/NN ′ ∼ M2M

′
2/NN ′. Hence, by Theorem 3.5, det(M1M

′
1/NN ′) ≡

det(M2M
′
2/NN ′) (mod Q�), and ǫp(M1M

′
1/NN ′) = ǫp(M2M

′
2/NN ′). Thus

det(MM ′/NN ′) (mod Q�) and ǫp(MM ′/NN ′) are independent of the choice

of M . Hence, nothing is to be gained by the apparently most general choice

of M , and we may as well take the simplest choice, as we have done in the proof.

Application 1 : Strongly resolvable 2-designs. A strongly resolvable

2-design may be defined as a quasi-symmetric 2-design with block graph Km×n,

where m ≥ 2, n ≥ 2. The minimal idempotent of rank g is given in this case by

: E = 1
nJn⊗ (Im− 1

mJm). Therefore we may choose the matrix E0 of Definition

3.2 to be E0 = 1
n (Im−1 − 1

mJm−1). Hence, det(E0) = 1/(mnm−1) and (by

Lemma 2.6) ǫp(E0) = (−1, n)
(m−1

2 )
p (m,n)mp (−1,m)p. So we see :

δ(Km×n) = mnm−1 (mod Q�), ǫp(Km×n) = (−1, n)
(m−1

2 )
p (m,n)mp (−1,m)p.

The following corollary is essentially Theorem 4.1 of [29] (applied to the dual

design).

Corollary 4.3 : Let m ≥ 2, n ≥ 2, and let µ be positive. Then, for the

existence of a strongly resolvable 2-design of defect µ with block graph Km×n,

the following conditions are necessary :
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(a1) If m is even, then mn−m+ 1 is a perfect square.

(a2) If m is odd and n is even, then (mn−m+ 1)µ is a perfect square.

(a3) If m and n are both odd, then n(mn−m+ 1) is a perfect square.

(b1) If m ≡ 2 (mod 4) then n is a sum of two squares.

(b2) If m ≡ 3 (mod 4), n ≡ 2 (mod 4), then n is a sum of two squares.

(b3) If m ≡ 3 (mod 4), n ≡ 0 (mod 4), then mn−m+ 1 is a sum of two

squares.

(b4) If m ≡ 1 (mod 4), n ≡ 2 (mod 4), then n(mn−m+ 1) is a sum of two

squares.

(b5) If m,n are both odd, and m 6≡ n (mod 4), then the equation

µx2 + (−1)
n−1

2 ny2 = z2 has a non-trivial solution in integers.

(b6) If m ≡ n ≡ 1 (mod 4) then the equation nx2 − µy2 = z2 has a non-trivial

solution in integers.

(b7) If m ≡ n ≡ 3 (mod 4), then, for all prime numbers p,

(−µ,−n)p =







−1 if p = 2,

1 if p 6= 2.

Proof : Using the parameters of Km×n as given in the proof of Corollary

2.4, and the new invariants given above, and noting that, by Theorem 2.1, the

order ν of the design is given by ν = nµ, the conclusion of Theorem 4.2 reduces

to

(a) µm(n−1) ≡ (mn−m+ 1)nmn (mod Q�), and

(b) (−1, µ)
(mn−m

2 )
p (µ,mn−m+1)p = (−1, n)

(mn−m
2 )+(m−1

2 )−1
p (n,mn−m+1)m−1

p ,

for all primes p. Clearly, (a) is equivalent to (a1),(a2) and (a3). When m is even,

mn−m+ 1 is an odd square, and hence m(n− 1) ≡ 0 (mod 4). Therefore, in

this case, (b) simplifies to (−1, n)
m/2
p = 1. But Corollary 3.2 shows that this is

just (b1). If m is odd and n is even, we have µ ≡ mn−m+1 (mod Q�). In this

case, (b) simplifies to (−1,mn−m+ 1)
(mn−m+1)/2
p = (−1, n)

n/2
p . By Corollary

3.2, this is equivalent to (b2), (b3) and (b4). If m and n are both odd, then

mn−m+1 ≡ n (mod Q�). In this case, (b) simplifies to ((−1)(n−1)/2n, µ)p =

((−1, n)
(m+n)/2
p . In view of Theorem 3.1, this amounts to (b5) and (b6) ex-

cept in the case m ≡ n ≡ 3 (mod 4). When m ≡ n ≡ 3 (mod 4), we get

(−n, µ)p(−1, n)p = 1, i.e., (−µ,−n)p = (−1,−1)p But, by the formula (H5) of

Section 3, (−1,−1)p = 1 except when p = 2; (−1,−1)2 = −1. This proves (b7).

�.
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Notice that six of the conclusions of Corollary 4.3 rule out certain complete

multipartite graphs as possible block graphs. Only (a2), (b5), (b6) and (b7)

involve the defect of the design. The conclusion of (b7) can’t be rephrased

as the solvability of a diophantine equation. By Corollary 2.4, any Strongly

resolvable 2-design of defect µ = 1 has m = n+ 1, and is either an affine plane

of order n or its complement. In this case, Corollary 4.3 says that if n ≡ 1 or 2

(mod 4) then n must be a sum of two squares. Since affine planes of order n are

co-extensive with projective planes (symmetric 2-designs with λ = 1) of order

n, this is just the Bruck-Ryser Theorem of [6], i.e., the case λ = 1 of Theorem

1.2. It is also easy to see that Part (a) of Corollary 4.3 is equivalent to the

corresponding results of Beker in [3].

Let us say that a quadruple (α, l, l∗, t) of non-negative integers is admissible

if α > 0, α(α− 1) = ll∗ and α divides (l+ l∗)2t. Recall that Corollary 2.4 gives

an explicit bijection between admissible quadruples and the feasible parameters

of strongly resolvable 2-designs. Note that, for given values of α, ℓ, ℓ∗ with

α > 0, ℓℓ∗ = α(α − 1), the admissible values of t vary over the non-negative

multiples of α
d , where d is the greatest common divisor of α and (l + l∗)2.

Corollary 4.4 rules out infinitely many of these values of t, but infinitely many

other values survive.

An affine resolvable 2-design is by definition, a strongly resolvable 2-

design with smaller intersection number λ1 = 0. It is immediate from Corollary

2.4 that these have the parameters corresponding to the admissible quadruples

(α, l, l∗, t) = (1, 0, n− 2, t), where n ≥ 2, t ≥ 0. Thus, they have m = n2t+ n+

1, µ = (n− 1)t+1. Affine resolvable 2-designs with these parameters have been

denoted by AD(n, t) in the literature.

The only known examples of strongly resolvable 2-designs are those obtained

in the following construction of Shrikhande and Raghavarao [30] :

Theorem 4.4:

Suppose there is an affine resolvable 2-designD1 of order ν1 with block graph

Km×n and a symmetric 2-design D2 of order ν2 on n points. Then there is a

strongly resolvable 2-design D1[D2] of order ν1ν2 with block graph Km×n.

Proof : For 1 ≤ i ≤ n, 1 ≤ j ≤ m, let Bij be the ith block of D1 in its jth

parallel class (in some order). Without loss of generality, we may assume that

the point set of D2 is {1, 2, . . . , n}. Let D1[D2] be the incidence system whose

blocks are the sets ∪i∈CBij , where 1 ≤ j ≤ m, and C varies over the blocks of

D2. It is easy to verify that this has the required properties. �
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Notice that in this construction, D1[D2] = D1[D2], so that the class of

designs constructed here is closed under complementation. Moreover, when D2

is the 2 − (n, 1, 0) design, we get D1[D2] = D1, so that this class contains the

affine resolvable 2-designs as degenerate cases. Also note that if (α divides t and)

there is an affine resolvable 2-design D1 = AD(l+ l∗ + 2α, t
α ) and a symmetric

2-designD2 of order α and balance ℓ, then the designD1[D2] has the parameters

(given by Corollary 2.4) corresponding to the admissible quadruple (α, l, l∗, t).

When q is a prime power, the design of points versus hyper-planes in the

d-dimensional affine space EG(d, q) (d ≥ 2) over the field of order q is an affine

resolvable design AD(n, t) with n = q, t = qd−2−1
q−1 . Another series of affine

resolvable designs are the AD(2, t) (t ≥ 1). It is easy to see that these are

precisely the 3− (4t+ 4, 2t+ 2, t) designs (known as the Hadamard 3-designs).

These are co-extensive with Hadamard matrices of order 4t+4, and are expected

to exist for all values of t.

The only known affine resolvable 2-designs are (a) the Hadamard 3-designs,

(b) the affine spaces over finite fields, and (c) other designs having the same

parameters as those in (b) and derived from the designs in (b) by algebraic

perturbations. Since all known strongly resolvable 2-designs are obtained from

these designs via Theorem 4.4, they all have n prime power and m ≡ n + 1

(mod n2). Nobody has bothered to conjecture that n must be a prime power

for strongly resolvable 2-designs, since this would include the famous prime

power conjecture for projective planes as a very special case. But the following

conjecture may be more tractable :

Conjecture: For the existence of a quasi-symmetric 2-design with block

graph Km×n, we must have m ≡ n+1 (mod n2). In other words, we conjecture

that the parameters of any strongly resolvable 2-design corresponding to the

quadruple (α, l, l∗, t) can exist only if α divides t.

The smallest feasible parameters of strongly resolvable 2-designs failing this

conjecture correspond to the admissible quadruple (α, l, l∗, t) = (4, 2, 6, 1). These

parameters are n = 16,m = 81, µ = 19,b = 1296, v = 1216, r = 486, k =

456, λ = 182, and λ1 = 152, λ2 = 171. Is there a design with these parameters?

Application 2: Co-triangular 2-designs. These are the quasi-symmetric

2-designs with block graph T ∗
n (n ≥ 5). The minimal idempotent of rank g in

the Bose-Mesner algebra of T ∗
n is :

E =
2

n− 2
I(n2)

− 4

n(n− 2)
J(n2)

+
1

n− 2
L(Kn),
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where L(Kn) denotes the adjacency matrix of l(Kn) = Tn. Therefore, the

matrix E0 of Definition 4.1 is any non-singular matrix of the form

E0 =
2

n− 2
In−1 −

4

n(n− 2)
Jn−1 +

1

n− 2
L(H),

where L(H) is the adjacency matrix of the line graph l(H) of a graph H with

n vertices and n − 1 edges. For simplicity, we may choose H = K1,n−1 (the

complete bipartite graph on 1 + (n− 1) vertices), so that L(H) = Jn−1 − In−1.

With this choice, we have :

E0 =
1

n− 2
(In−1 +

n− 4

n
Jn−1).

Thus we get det(E0) = 1
n(n−2)n−3 , and (by Lemma 3.6) ǫp(E0) = (−1, n −

2)
(n−1

2 )
p (n− 2, n)np (−1, n)p. Therefore, by Definition 4.1, we get ;

δ(T ∗
n) ≡ n(n− 2)n−1 (mod Q�), ǫp(T

∗
n) = (−1, n− 2)

(n−1

2 )
p (n− 2, n)np (−1, n)p.

By Corollary 2.5, for any given µ ≥ 1, the feasible pairs (T ∗
n , µ) are in

bijection with the pairs (ℓ, ℓ∗) of non-negative integers such that ℓℓ∗ = 4µ(µ−1).

The correspondence is given by n = 4µ+ 1 + ℓ + ℓ∗ . One may compute using

Theorem 2.1 that the parameters corresponding to the pair (ℓ, ℓ∗) are as follows

:

n = 4µ+ 1 + ℓ+ ℓ∗, b =

(

n

2

)

, v =

(

n− 1

2

)

,

r =
n

2
(ℓ + 2µ), k = (

n

2
− 1)(ℓ+ 2µ), λ =

n

2
ℓ+ 2µ,

λ1 = (
n

2
− 1)ℓ+ µ, λ2 = (

n

2
− 1)ℓ+ 2µ.

The next corollary is essentially Theorem 5.1 of [29] (applied to the dual

design).

Corollary 4.5:

Let µ ≥ 1, n ≥ 5 be integers. For the existence of a co-triangular 2-design

of defect µ with block graph T ∗
n , the following conditions are necessary :

(a1) If n ≡ 1 (mod 4) then µ is a perfect square,

(a2) If n ≡ 2 (mod 4) then (n− 2)µ is a perfect square,

(a3) If n ≡ 3 (mod 4) then n− 2 is a perfect square,

(b1) If n ≡ 0 (mod 4) then (µ, (−1)n/4
(

n−1
2

)

)p = (n− 2, (−1)n/42)p

for all primes p,

(b2) If n ≡ 1 (mod 4) then the equation (n − 2)x2 + (−1)(n−1)/42y2 = z2

has a non-trivial solution in integers,
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(b3) If n ≡ 2 (mod 4) then n− 1 is a sum of two squares,

(b4) If n ≡ 3 (mod 4) then the equation µx2+(−1)(n−3)/4
(

n−1
2

)

y2 = z2 has

a non-trivial solution in integers.

Proof

If ν is the order of such a design, then Theorem 2.1 gives ν = (n−2)µ. There-

fore, using the spectral parameters of T ∗
n given in the proof of Corollary 2.5, and

the new invariants displayed above, we see that, in this case, the conclusions of

Theorem 4.2 become :

(a) µ(
n+1

2 ) ≡ (n− 2)(
n
2) (mod Q�),

(b) (−1, µ)
((

n−1
2 )
2

)
p

(

µ,

(

n− 1

2

))

p

= (−1, n− 2)
((

n−1
2 )+1

2
)+n−1

p (2, n− 2)p

for all primes p. (To verify that Part (b) of Theorem 4.2 reduces to (b) above,

we need the following formula : (n, n− 2)p(−2, n)p = (2, n− 2)p. Proof of this

formula : (n, n− 2)p = (2, 2)p(2, n/2)p(2, n/2− 1)p = (−2, n/2)p(2, n/2− 1)p =

(−2, n)p(2, n− 2)p since (2, 2)p = (2,−2)p(1− (−1),−1)p = 1.)

Now, (a) is clearly equivalent to (a1), (a2) and (a3). When n ≡ 0 (mod 4),

we have
((n−1

2 )
2

)

≡ n
4 (mod 2) and

((n−1

2 )+1

2

)

≡ n
4 − 1 (mod 2). Hence, (b)

reduces to (b1) in this case.

When n ≡ 1 (mod 4), we have µ ≡ 1 (mod Q�) and
((n−1

2 )+1

2

)

≡ n−1
4

(mod 2), so that (b) reduces to (n− 2, (−1)
n−1

4 2)p = 1 for all primes p. When

n ≡ 2 (mod 4), we have µ ≡ n−2 (mod Q�) and
((n−1

2 )
2

)

≡
((n−1

2 )+1

2

)

(mod 2).

Hence (b) reduces to (−1, n− 1)p = 1 for all primes p When n ≡ 3 (mod 4), we

have n− 2 ≡ 1 (mod Q�) and
((n−1

2 )
2

)

≡ n−3
4 (mod 2). Therefore, in this case,

(b) reduces to (µ, (−1)
n−3

4

(

n−1
2

)

)p = 1 for all primes p. In view of Lemma 3.1

and Corollary 3.2, these observations complete the proof. �

By Corollary 2.5 (1), the co-triangular designs of defect 1 with block graph

T ∗
n are co-extensive with biplanes of order n − 2. In this case, Corollary 4.5

reduces to the case λ = 2 of Theorems 1.1, 1.2. (Notice that when n − 2 is a

square, n − 1 is trivially a sum of two squares.) We can verify that Corollary

4.5(a) is equivalent to the result in [15]. No co-triangular designs of defect µ > 1

are known.

Application 3 : The symplectic designs. These are the quasi-symmetric

2-designs with block graph Sp(2d, 2) (d ≥ 3), the non-orthogonality graph of a

(2d)-dimensional symplectic space over the field of order 2. In view of Corollary
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2.7 and the remark following it, we ignore the case q > 2. Following the discus-

sion in [10], p. 75, two series of quasi- symmetric 2-designs may be obtained by

dualizing the contraction at a point of the remarkable symmetric 2-designs (or

their complements) described in Example 5.17 of [10], p. 76. The designs in the

first series have block graph Sp(2d, 2), and may be described directly as follows

(the second series, with block graph Sp(2d, 2)∗, has a similar description with

the elliptic quadrics replaced by hyperbolic quadrics).

A construction of quasi-symmetric 2-designswith block graph Sp(2d, 2).

Fix d ≥ 3. The blocks of the design are the points of the projective space

PG(2d − 1, 2). The points are all the elliptic quadrics (irreducible quadrics of

Witt index d − 1 ) in PG(2d − 1, 2) whose defining quadratic forms polarise

to a given non-degenerate symplectic bilinear form on the underlying vector

space. The incidence is reverse containment. These designs have the following

parameters :

b = 22d − 1, v = 2d−1(2d − 1), r = (2d + 1)(2d−1 − 1), k = 2d−1(2d−1 − 1),

λ = 22d−2 − 2d−1 − 1, λ1 = 2d−1(2d−2 − 1), λ2 = 2d−2(2d−1 − 1).

Applying Theorem 4.2 to these designs, we deduce that

δ(Sp(2d, 2)) = 2d−1(2d + 1) (mod Q�), ǫp(Sp(2d, 2)) = (2, 22d − 1)dp.

(To deduce this compact formula for ǫp(·), we need to observe that, for

any rational number x 6= ±1, (1 − x, 1 + x)p = (2, 1 − x2)p. Proof : we have

1 = (12 (1− x), 1
2 (1 + x))p = (1− x, 1 + x)p(2, 1− x2)p.)

Corollary 4.6

For the existence of a quasi-symmetric 2-design of order ν with block graph

Sp(2d, 2), ν must be a perfect square.

Proof :

The spectral parameters of Sp(2d, 2) are

ρ = 2d−1, σ = −2d−1, f = (2d + 1)(2d−1 − 1), g = (2d − 1)(2d−1 + 1).

Combining these parameters with the formulae for the discriminant and the

p-adic invariants of Sp(2d, 2) given above, we see that, in this case, the first

part of Theorem 4.2 reduces to ν ≡ 1 (mod Q�). (In this case, the second part

of Theorem 4.2 follows from the first part.) �
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Application 4 : The multi-Steiner designs. These are the quasi-

symmetric 2-designs with block graph Sn(m) ( 2 ≤ n < m,n|m(m−1)). Apply-

ing Theorem 4.2 to the Steiner 2-design (µ = 1) whose block graph is Sn(m),

we may easily deduce the formulae for the discriminant and p-adic invariant of

the Steiner graphs :

δ(Sn(m)) = (m− 1)m(n−1) (mod Q�),

ǫp(Sn(m)) = (−1,m−1)
(mn−m

2 )−1
p (−mn,m−1)mn−m

p (mn(m−1),−(mn−m+1))p.

Corollary 4.7 : Let m > n ≥ 2 be integers such that n divides m(m− 1).

Let µ be a positive integer. Then, for the existence of a multi-Steiner 2-design

of defect µ and block graph Sn(m), the following conditions are necessary :

(a) If m is odd and n is even, then µ must be a perfect square,

(b) The diophantine equation µx2 + (−1)(
mn−m

2 )(mn−m+ 1)y2 = z2 must

have a non-trivial solution in integers x, y, z.

Proof :

In view of the spectral parameters (as given in the proof of Corollary 2.8),

and the discriminant and p-adic invariants of Sn(m) given above, the conditions

in Theorem 4.2 reduce in this case to :

(a) µm(n−1) ≡ 1 (mod Q�), (b) (µ, (−1)(
mn−m

2 )(mn−m+ 1))p = 1.

By Lemma 3.1, this is just the conclusion of this Corollary. �

Remark : Let d ≥ 3, Γd = Sp(2d, 2) and let Λd be the block graph of

a 2 − (2d−1(2d − 1), 2d−1, 1) design (that is, Λd = Sn(m) where n = 2d−1,

m = 2d + 1). (Such designs, and hence graphs, exist for all values of d. An

example is the incidence system whose points are the lines of PG(2, 2d) disjoint

from a given hyper-oval in the projective plane, blocks are the points of the

plane outside the hyper-oval, and incidence is reverse containment.) Observe

that Γd and Λd have the same parameters, but

δ(Γd) = 2d−1(2d + 1) (mod Q�), δ(Λd) = 2(2d + 1) (mod Q�),

ǫp(Γd) = (2, 22d − 1)dp, ǫp(Λd) = 1.
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Thus, when d is an odd number, δ(Γd) 6= δ(Λd). Also, if d is odd and

p ≡ ±3 (mod 8) is a prime number dividing the square-free part of 22d−1, then

ǫp(Γd) 6= ǫp(Λd). For example, whenever d ≡ ±1 (mod 6), we get ǫ3(Γ) 6= ǫ3(Λ).

So the usual parameters of an s.r.g. do not determine its new invariants.

Since isomorphic graphs clearly have the same invariants, and since δ(Γd) 6=
δ(Λd) for odd d, it follows that Γd and Λd are non-isomorphic for all odd d.

Since this holds for any Steiner graph Λd with the parameters of Γd, we have :

Corollary 4.8 :

The symplectic graphs Sp(2d, 2) are not geometrizable for odd numbers d ≥
3. That is, these graphs are not block graphs of Steiner 2-designs.

However, Sp(4, 2) = T6 is geometrizable : it is the block graph of the

2− (6, 2, 1) design.

Question : For what (even) values of d is the graph Sp(2d, 2) geometrizable ?

The Steiner 2-designs and their complements are the only multi-Steiner de-

signs with µ = 1. The only known examples of non-trivial multi-Steiner designs

are the designs PGd−2(d, q) (d ≥ 4, q prime power) whose points and blocks are

the points and (d − 2)-dimensional flats in the d-dimensional projective space

PG(d, q) over the field of order q. The block graph of this design is isomorphic

to that of the Steiner 2-design PG1(d, q) (the design of points versus lines in

PG(d, q).) Any duality of the projective space induces an isomorphism between

these two graphs.

In lieu of a convenient description of the feasible parameters of multi-Steiner

2-designs, we present below a table of small parameters. Only the smaller of

a pair of complementary parameters is given. An entry ”no” in the ”exists ?”

column means that it is ruled out by Corollary 4.7. (Note that this corollary

does not rule out designs with a pseudo-Steiner block graph! For instance, a

design with the parameter of item number 10 in Table 1 does exist, but with

block graph Sp(6, 2).) An ”yes” entry here means that the parameters are in

the series given in the previous paragraph (the only construction we know!).

It is conceivable that item number 12 of Table 1 exists with the block graph

of EG1(3, 4). But our preliminary investigation makes it look unlikely. A much

more promising candidate is the block graph of the classical unital with auto-

morphism group U(3, 5) as the block graph for item 24 of this table.
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Table 1: Small feasible parameters of q.s. designs with block graph Sn(m)

Number n m v k λ λ1 λ2 exists?

1 3 10 21 9 12 3 5 no

2 3 15 31 7 7 1 3 yes

3 3 16 33 15 35 6 9 ?

4 3 19 39 12 22 3 6 ?

5 3 22 45 21 70 9 13 ?

6 3 27 55 16 40 4 8 ?

7 3 31 63 15 35 3 7 yes

8 3 36 73 10 15 1 4 ?

9 3 66 133 13 26 1 5 ?

10 4 9 28 12 11 4 6 No

11 4 17 52 16 20 4 7 No

12 4 21 64 24 46 8 12 ?

13 4 40 121 13 13 1 4 yes

14 5 16 65 20 19 4 7 No

15 5 26 105 25 30 5 9 ?

16 5 45 181 16 12 1 4 ?

17 5 85 341 21 21 1 5 ?

18 6 9 46 16 8 4 6 No

19 6 10 51 15 7 3 5 No

20 6 13 66 30 29 12 15 No

21 6 18 91 40 52 16 20 ?

22 6 19 96 36 42 12 16 ?

23 6 22 111 21 14 3 6 ?

24 6 25 126 30 29 6 10 ?

25 6 96 481 25 20 1 5 ?
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