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Abstract

The Turán number of hypergraphs has been studied extensively. Here
we deal with a recent direction, the linear Turán number, and restrict
ourselves to linear triple systems, a collection of triples on a set of points
in which any two triples intersect in at most one point. For a fixed lin-
ear triple system F , the linear Turán number exL(n, F ) is the maximum
number of triples in a linear triple system with n points that does not
contain F as a subsystem.

We initiate the study of the linear Turán number for an acyclic F . In
this case exL(n, F ) is linear in n and we aim for good bounds. Since the
case of trees is already difficult for graphs (Erdős - Sós conjecture), we
concentrate on matchings, paths and small trees.

In case of matchings, where Mk is the set of k pairwise disjoint triples,
we prove that for fixed k and large enough n, exL(n,Mk) = f(n, k) where
f(n, k) is the maximum number of triples that can meet k − 1 points in
a linear triple system on n points. This is an analogue of an old result of
Erdős on hypergraph matchings. For the k-edge linear path Pk we show
(extending some standard path increasing methods used for graphs) that
exL(n, Pk) ≤ 1.5kn which is probably far from best possible.

Finding exL(n, F ) relates to difficult problems on Steiner triple sys-
tems and interesting even for small trees. For example, for P4, the path
with four triples, exL(n, P4) ≤ 4n

3
with equality only for disjoint union of

affine planes of order 3. On the other hand, for E4, the tree having three
pairwise disjoint triples and a fourth one meeting all of them, we have
bounds only: 6bn−3

4
c ≤ exL(n,E4) ≤ 2n.

1 Introduction, results

The Turán number of hypergraphs has been studied extensively, see for example
surveys [9], [12], [16], and the book [13]. Here we concentrate on a recent

∗Alfréd Rényi Institute of Mathematics, Budapest, P.O. Box 127, Budapest, Hungary,
H-1364. gyarfas.andras@renyi.hu, sarkozy.gabor@renyi.hu, ruszinko.miklos@renyi.hu
†Research supported in part by NKFIH Grant No. K116769.
‡Faculty of Information Technology and Bionics, Pázmány Péter Catholic University
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direction, the linear Turán number and we restrict ourselves to the 3-uniform
case. A linear triple system H is defined as a set of triples E(H) on a set of
points V (H) with the property that any two triples intersect in at most one
point.

For a fixed linear triple system F , the linear Turán number exL(n, F ) is the
maximum number of triples in a linear triple system on n points that does not
contain F as a subsystem. This notion and notation is due to Collier-Cartaino,
Graber, and Jiangin [2] 2018, although the famous result of Ruzsa and Szemerédi
[18] 1976, can be also phrased as

n2/eO(
√
logn) < exL(n,C) = o(n2),

where C is the (linear) triangle. The o(n2) upper bound was extended recently
to a wider family by two of the authors [14]. In [2] the order of magnitude of
exL(n, F ) was determined when F is a (linear) cycle of length at least four. A
special case of a result of Füredi and Gyárfás [11] is that exL(n, F ) ≤ n2/9 (with
equality when n is divisible by 3), where F , the fan, has 3 triples intersecting
in a point v and an additional triple intersecting all of them in a point different
from v.

In this paper we initiate studying exL(n, F ) for an acyclic F . A linear triple
system is acyclic if it can be built starting from one triple then at each step
adding a new triple that intersects the union of the points of the previous triples
in at most one point. If the new triple intersects the union of the points of the
previous triples in exactly one point then we get the definition of a tree. A tree
with k edges is denoted by Tk. Note that Tk has 2k+1 points. Two special trees
are Sk, Pk, the star and the path. The star Sk has k triples intersecting in the
same point, the center. The path Pk has points p1, p2, . . . , p2k+1 and has triples
{p2i−1, p2i, p2i+1} for i = 1, . . . , k. Among disconnected acyclic triple systems
the most important is Mk, the matching of size k, which has k pairwise disjoint
triples.

An upper bound on exL(n, Tk) can be derived easily by adopting the well-
known argument for graph trees.

Proposition 1.1. Let Tk be a fixed tree with k > 1 edges. Then exL(n, Tk) ≤
(2k − 3)n.

Proof. In a minimal counterexample each point has degree at least 2k − 2
(otherwise we find a smaller counterexample by deleting a point with a smaller
degree). Then we can build Tk with the greedy algorithm, adding in each step
a triple that intersects the previous subtree in the required point. �

Proposition 1.1 is a factor of 6 larger than the natural lower bound discussed
later in Subsection 1.1. Since the case of trees is already notoriously difficult
even for graphs (Erdős - Sós conjecture, [7] 1963), we concentrate on matchings,
paths and small trees.

The Turán number of matchings and paths in graphs were determined by
Erdős and Gallai [5], 1959. In the case of the matching, the extension of the
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Turán problem to hypergraphs is also due to Erdős [4], 1965, who proved that
for large enough n, the maximum number of edges in a uniform hypergraph
without Mk occurs if all edges intersect a fixed set of k − 1 vertices (see also
Theorem 9.2 in [8]). It is worth noting that in the graph case ex(Mk, n) was
determined for every n in [5] using tools of matching theory. These tools are not
available for hypergraphs, that is the reason why Erdős’ result is stated only for
large enough n. We prove the following analogue of Erdős’ result.

Theorem 1.2. For n > 16(k − 1)2 + 1, exL(n,Mk) = f(n, k), where f(n, k) is
the maximum number of triples that can intersect a fixed (k− 1)-element set of
points in a linear triple system with n points.

Note that (as in Erdős theorem) Theorem 1.2 holds only for large enough n.
For example f(n, 2) = bn−12 c < exL(n,M2) for n < 15 as the Fano plane shows.
In fact n ≥ 15 is the sharp threshold in Theorem 1.2 when k = 2, because in
a linear triple system pairwise intersecting triples either form a star or form a
subsystem of the Fano plane. As noted by a referee, the coefficient 16 can be
improved if k is not too small.

In fact f(n, k) can be determined exactly, but to avoid a complicated formula
(depending on the value of k (mod 6)), we just give a lower bound in Lemma
2.1 needed for the proof of Theorem 1.2 and provide a close upper bound in
Lemma 2.2.

In the case of the path, the extension of the Turán problem to hypergraphs
was studied for several different notions of paths. For loose paths Mubayi and
Verstraëte [17], 2007, for linear paths Füredi, Jiang and Seiver [10], 2014, and
for Berge paths Győri, Katona and Lemons [15], 2016, determined exactly (at
least for large n and fixed k) the Turán number. It does not seem easy to
find the asymptotic of exL(n, Pk). We slightly improve the general bound of
Proposition 1.1, adopting the classical arguments of Dirac [3] and Erdős-Gallai
[5].

Theorem 1.3. For every k, n ≥ 1, exL(n, Pk) ≤ 1.5kn.

1.1 Lower bound for trees, Steiner systems

Lower bounds for linear Turán numbers of trees relate to analogues of complete
graphs. The role of complete graphs in linear triple systems is played by Steiner
triple systems.

A Steiner triple system STS(m) is a linear triple system on m points whose
triples cover all pairs of points exactly once. They exist if and only if m ≡
1, 3 (mod 6), STS(7) is called the Fano plane, STS(9) is called the affine plane
of order three. The notion can be extended to other values of m, a maximal
partial triple system, MPTS(m), is a linear triple system on m points whose
triples cover the maximum number of pairs of points. It is known that for
m ≡ 0, 2 (mod 6) any MPTS(m) is obtained from a STS(m + 1) by deleting
one point; for m ≡ 5 (mod 6) an MPTS(m) is a linear triple system whose
triples cover all pairs of m points except four pairs which form a four-cycle; for
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m ≡ 4 (mod 6) an MPTS(m) is a linear triple system whose triples cover all
pairs of m points except three pairs which form a star. For more details see [1].

A natural lower bound for exL(n, Tk) is the maximum number of triples in a
decomposition of n points into disjoint parts so that each part is an MPTS(m)
with m ≤ 2k. In particular, we get a natural lower bound of exL(n, Tk) when
we can use Steiner systems STS(2k − 1) as components.

Proposition 1.4. If n is divisible by 2k − 1 and 2k ≡ 2, 4 (mod 6) then

exL(n, Tk) ≥ n(k−1)
3 . This is sharp when Tk is the star Sk.

However, the best construction is not always provided by taking the max-
imum number of parts with 2k points. For example, if n ≡ 6 (mod 10) and
k = 5 then it is better to finish a chain of MPTS(10) with an MPTS(9) and an
MPTS(7) than with an MPTS(10) and an MPTS(6). A more serious difficulty
is that it is hard to decide whether all STS(2k + 1) contain a given tree Tk or
not. This difficulty is shown convincingly by Elliott and Rödl [6], 2019, where
they conjectured that for any ν > 0 there exists k ≥ k0(ν) such that any STS(n)
with n ≥ ν(2k + 1) contains every Tk (and gave affirmative answer for certain
trees).

1.2 Results for small trees

It is obvious that exL(n, P2) = bn3 c. The case of P3 is easy but worth mentioning.

Proposition 1.5. exL(n, P3) ≤ n with equality if and only if H is the union of
disjoint Fano planes.

There are three trees with four triples apart from the star S4 (treated in
Proposition 1.4). We have sharp estimate for their linear Turán number in two
cases. Let B4 denote the tree obtained from S3 by appending a triple at a point
of degree one. It is easy to see that STS(9) does not contain B4 or P4 (see
Figure 1, where straight lines with 3 points indicate triples).

Theorem 1.6. Let F ∈ {B4, P4}. Then exL(n, F ) ≤ 4n
3 . Equality holds if and

only if the triple system is the union of disjoint affine planes of order 3.

The fourth tree with four triples is E4 (see Figure 2). It is obtained from
three pairwise disjoint triples by adding one triple that intersects all of them.
We construct an E4-free triple system as follows. Consider a one-factorization of
the graph mK4 (m disjoint copies of K4). Then extend each of the three factors
into 2m triples with three distinct new points. This construction has 6m triples
on 4m + 3 points, and has no E4. Adjusting this construction according to
divisibility, let ε = 0 if n − 3 ≡ 0, 1 (mod 4), ε = 1 if n − 3 ≡ 2 (mod 4), ε = 3
if n− 3 ≡ 3 (mod 4) we get the lower bound of Theorem 1.7.

Theorem 1.7. 6bn−34 c+ ε ≤ exL(n,E4) ≤ 2n.

Our proof of the upper bound in Theorem 1.7 is involved and suggests that
determining the asymptotic of exL(n, F ) is difficult even for small trees.
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Figure 1: Configurations B4 and P4

1

Figure 2: Configuration E4

2 Matchings - Proof of Theorem 1.2

For the proof of Theorem 1.2 we need a lower bound on f(n, k) for large enough
n.

Lemma 2.1. f(n, k) ≥ (k − 1)b (n−k+1)
2 c+

(k−1
2 )
3 − 4

3 −
k−1
6 if n ≥ 2k − 2.

Proof. Let A be a fixed (k − 1)-element subset of n points. Place on A an
MPTS(k − 1). This leaves 0, 3, 4 or k−1

2 pairs of A uncovered (see Subsection
1.1). Then extend the points of A into triples using k − 1 disjoint perfect or
near perfect matchings of the complete graph on the n − k + 1 points outside
A. This can be done since n− k + 1 ≥ k − 1. Thus we have at least

(k − 1)

⌊
(n− k + 1)

2

⌋
+

(
k−1
2

)
−max{0, 3, 4, k−12 }

3

triples, proving the lemma. �
Although we do not need it for the proof of Theorem 1.2, we give a simple

upper bound of f(n, k) as well.
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Lemma 2.2. f(n, k) ≤ (k − 1) (n−k+1)
2 +

(k−1
2 )
3 .

Proof. Let A be a fixed (k − 1)-element subset of points in a linear triple
system H on n points where all triples of H intersects A. For j = 1, 2, 3 let ej
denote the number of edges intersecting A in j points. The triples intersecting
A in two points define a graph GA with vertex set A and degree sequence di
(i = 1, . . . , k−1). Using the linearity assumption we can easily get the following
estimates for ej .

• e1 ≤
∑k−1

i=1
n−k+1−di

2

• e2 =
∑k−1

i=1
di

2

• e3 ≤
(k−1

2 )−e2
3

which gives

e1 + e2 + e3 ≤ (k − 1)
(n− k + 1)

2
+

(
k−1
2

)
− e2

3
,

proving the lemma. �
We prove Theorem 1.2 by induction on k, it trivially holds for k = 1 and as

we noted before, it also holds for k = 2.
To reach a contradiction, suppose that k ≥ 3 and we have a linear triple sys-

temH on n points withoutMk such that |E(H)| > f(n, k) and n > 16(k−1)2+1.
By the inductive hypothesisH containsMk−1 with triplesXi = {ai, bi, ci} where
i = 1, . . . , k − 1. Let E2 denote the set of triples of H intersecting V (Mk−1) in

at least two points. Clearly |E2| ≤
(
3(k−1)

2

)
. Since we have no Mk in H, the set

E1 of triples of H not in E2 intersect V (Mk−1) in one point.
A triple {ai, bi, ci} is called good if one of its points, say ai has degree larger

than 3(k−1) in E1, otherwise the triple is called bad. W.l.o.g. assume we have j
good triples (for some j, 0 ≤ j ≤ k−1), X1, X2, . . . , Xj with points a1, a2, . . . , aj
of degree larger than 3(k − 1) in E1.

Observe that if a point in Xi (1 ≤ i ≤ k− 1) has degree at least three in E1

then the other two points of Xi have degree zero in E1 - otherwise we have an
Mk because the triple Xi in Mk−1 can be replaced by two disjoint triples of E1.
This implies that the number triples of E1 incident to a good triple Xi is the
degree of ai in E1 and the number triples of E1 incident to a bad triple Xi is at
most 3(k − 1) (using that k ≥ 3). From this we get the following upper bound
on the number of triples in H:

|E2|+ |E1| ≤
(

3(k − 1)

2

)
+ j

⌊
n− 3(k − 1)

2

⌋
+ (k − 1− j)3(k − 1). (1)

We claim that this contradicts the assumption |E(H)| > f(n, k) if j < k−1.
It is enough to check that the RHS of (1) is smaller than the lower bound of
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Lemma 2.1. Rewriting the second term of (1) as j
⌊
n−k+1

2

⌋
− j(k − 1) and

rearranging we need that(
3(k − 1)

2

)
−k

2 − 4k − 5

6
−j(k−1)+(k−1−j)3(k−1) < (k−1−j)

⌊
n− k + 1

2

⌋
.

Replacing
⌊
n−k+1

2

⌋
by the smaller n−k−1

2 , rearranging and multiplying by 2 we
arrive to

9(k−1)2−3(k−1)−k
2 − 4k − 5

3
−2j(k−1)+(k−1−j)(6(k−1)+k+1) < (k−1−j)n.

The last term on the left hand side is largest for j = 0 thus it is enough to show
that

9(k − 1)2 − (k − 1)− k2 − 4k − 5

3
− 2j(k − 1) + 7(k − 1)2 < (k − 1− j)n,

and, since the sum of the three terms with a negative sign is less than one for
k ≥ 3, we arrive to

16(k − 1)2 + 1 < (k − 1− j)n,

which is true by the assumption n > 16(k − 1)2+1, unless j = k − 1.
However, j = k − 1 means that all triples Xi are good. We claim that the

set A = {a1, a2, . . . , ak−1} meets all triples of H. Indeed, otherwise there exists
a triple B such that B ∩ A = ∅. Using that the degrees of the points ai are
larger than 3(k−1), we can find by the greedy algorithm k−1 pairwise disjoint
triples that are disjoint from B as well. This is a contradiction.

We conclude that A intersects all triples of H implying that we have at most
f(n, k) triples, contradicting |E(H)| > f(n, k). �

3 Paths - Proof of Theorem 1.3

Starting with standard preparations, let H be a counterexample, a linear triple
system on n points with more than 1.5kn triples containing no Pk. We may
assume that H is a minimal counterexample (neither k nor n can be decreased).
Clearly n > 3 and k ≥ 5, since for k = 2, 3, 4 we have sharp results (with
bounds smaller than 1.5kn, see Proposition 1.5 and Theorem 1.6). From the
choice of k, H contains a path P = Pk−1 with triples ei = {x2i−1, x2i, x2i+1}
for i = 1, 2, . . . , k−1. Also, every point of H has degree at least 1.5k, otherwise
deleting a point with a smaller degree we would get a smaller counterexample.

The points x1, x2 are the left endpoints, the points x2k−2, x2k−1 are the right
endpoints, and the other points of P are the interior points of P . The points of
H not on P are called exterior points.

Let A1(x1), A1(x2) denote the set of triples in H containing the left end-
point x1, x2, respectively, one interior point, and one exterior point. Similarly,
B1(x2k−1), B1(x2k−2) is the set of triples in H containing the right endpoint
x2k−1, x2k−2, respectively, one interior point, and one exterior point. Since a
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left endpoint and x3 (a right endpoint and x2k−3) cannot be in a triple of A1

(B1) by the linearity of H, we have

|A1(x1)|, |A1(x2)|, |B1(x2k−1)|, |B1(x2k−2)| ≤ 2(k − 3). (2)

Set
A1 = A1(x1) ∪A1(x2), B1 = B1(x2k−1) ∪B1(x2k−2).

We use four claims to capture the maximality of the path P to decrease the
trivial bound in (2) for a suitable pair of a left endpoint and a right endpoint.
The first claim is obvious.

Claim 3.1. If e ∈ E(H) intersects an endpoint of P then |e ∩ P | ≥ 2.

A touching pair is a pair of triples f1, f2 ∈ E(H) such that f1 ∈ A1, f2 ∈ B1

and their interior points are the same x2i.

Claim 3.2. There are no touching pairs in E(H).

Proof. Let w.l.o.g. f1 = {x1, p, x2i}, f2 = {x2k−1, q, x2i} be a touching pair
and note that p 6= q. Thus the path

ei+1, . . . , ek−1, f2, f1, e1, . . . , ei−1

has k triples, leading to a contradiction. �
Two triples f1, f2 ∈ E(H) are crossing over two consecutive interior points

xi, xi+1 if f1 ∈ A1, f2 ∈ B1 and xi+1 ∈ f1, xi ∈ f2.

Claim 3.3. If f1, f2 ∈ E(H) are crossing then their exterior points are the
same.

Proof. Suppose w.l.o.g. that f1 = {x1, p, xi+1} and f2 = {x2k−1, q, xi} are
crossing and p 6= q. If i is even, then

f2, ek−1, ek−2, . . . , e i
2+1, f1, e1, . . . , e i

2−1,

and if i is odd, then

f1, e1, e2, . . . , . . . , e i−1
2
, f2, ek−1, . . . , e i+3

2

defines a path with k triples, a contradiction. �
For a left endpoint xj (right endpoint xm) we denote by xj (xm) the other

left endpoint (other right endpoint).

Claim 3.4. Assume that f1, f2 ∈ E(H) are crossing over the interior points
xi, xi+1 and xj is the left endpoint of f1, xm is the right endpoint of f2. Then
{xj , xi+1} is not covered by any triple of A1 and {xm, xi} is not covered by any
triple of B1.

Proof. From Claim 3.3 we know that f1 = {xj , p, xi+1}, f2 = {xm, p, xi}. If
{xj , xi+1} is covered by a triple g = {xj , s, xi+1} ∈ A1 then from the linearity of
H, s 6= p. Now g, f2 is a crossing pair over xi, xi+1 with different exterior points,
contradicting Claim 3.3. The proof of the second statement is similar. �
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Lemma 3.5. For a suitable choice of xj ∈ {x1, x2}, and xm ∈ {x2k−2, x2k−1},
we have

|A1(xj)|+ |B1(xm)| ≤ 2(k − 3.)

Proof. From (2), |A1| + |B1| ≤ 8(k − 3). We will give a lower bound
for the number of “missing triples” from A1 ∪ B1 as follows. For every fixed
i ∈ [2, k − 2] we consider two cases.

Case 1. No triple of A1 ∪ B1 contains x2i. This means that for any endpoint
v the pair (x2i, v) is not covered by any triple of A1 ∪B1 thus we have exactly
four missing triples. (See Figure 3, where dashed lines indicate “missing pairs”,
i.e. pairs which are not covered by any triple of A1 ∪B1.)

x1 x2 x2i x2k−2 x2k−1

1

Figure 3: Case 1: No triple of A1 ∪B1 contains x2i.

Case 2. There exists a triple e ∈ A1 ∪ B1 containing x2i. The mate x∗ of x2i
is x2i−1 if e ∈ A1 and it is x2i+1 if e ∈ B1. Note that x∗ is always an interior
point.

Subcase 2.1. There exists e′ ∈ A1 ∪ B1 such that e, e′ is a crossing pair
over x2i, x

∗. By Claim 3.3 e, e′ have a common exterior point p. W.l.o.g.
e = (xj , p, x2i) ∈ A1, e′ = (xm, p, x

∗) ∈ B1. By Claim 3.4, applied to the
interior points x∗, x2i, the pair {xj , x2i} is not covered by any triple of A1 and
the pair {xm, x∗} is not covered by any triple of B1. Moreover, by Claim 3.2,
neither {x2i, xm} nor {x2i, xm} is covered by any triple of B1. Thus we have
at least four missing triples. (See Figure 4, where x∗ = x2i−1, xj = x1, xj =
x2, xm = x2k−1, xm = x2k−2, solid lines indicate covered pairs and dashed lines
indicate “missing pairs”.)

Subcase 2.2. There is no e′ ∈ A1 ∪ B1 such that e, e′ is a crossing pair over
x2i, x

∗. W.l.o.g. e = (xj , p, x2i) ∈ A1 and (from the definition of the subcase)
neither {x∗, xm} nor {x∗, xm} is covered by any triple of B1. As in the previous
subcase, neither {x2i, xm} nor {x2i, xm} are covered by any triple of B1. Again,
we have at least four missing triples. (See Figure 5, where x∗ = x2i−1, xj = x1.)

We conclude that in all cases we have at least four missing triples. Missing
triples are not doubly counted, because missing triples on x∗ are in A1 if x∗ =
x2i+1 and in B1 if x∗ = x2i−1. Thus altogether we have at least 4(k − 3)
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x1 x2 x2ix2i−1 x2k−2 x2k−1
p

e e′

1

Figure 4: Subcase 2.1: There is a crossing pair.

x1 x2 x2ix2i−1 x2k−2 x2k−1

e

1

Figure 5: Subcase 2.2.

missing triples in A1 ∪ B1. This implies that we have either at least 2(k − 3)
missing triples with endpoints x1, x2k−1 or at least 2(k− 3) missing triples with
endpoints x2, x2k−2. This proves the lemma. �

W.l.o.g. let x1, x2k−1 be the pair of endpoints ensured by Lemma 3.5. Denote
by A2(x1) the set of triples in H containing x1 and intersecting P − {x1} in
two points. Similarly, B2(x2k−1) is the set of triples in H containing x2k−1 and
intersecting P −{x2k−1} in two points. Since H is linear, 2|A2(x1)|+ |A1(x1)| ≤
2k − 2 and 2|B2(x2k−1)| + |B1(x2k−1)| ≤ 2k − 2. Adding these inequalities to
the inequality |A1(x1)|+ |B1(x2k−1)| ≤ 2(k − 3) (from Lemma 3.5) we obtain

2(|A1(x1)|+ |A2(x1)|+ |B1(x2k−1)|+ |B2(x2k−1)|) ≤ 6k − 10,

from which either dH(x1) = |A1(x1)| + |A2(x1)| ≤ 1.5k − 2.5 or dH(x2k−1) =
|B1(x2k−1)|+ |B2(x2k−1)| ≤ 1.5k− 2.5, contradicting the minimum degree con-
dition in a minimal counterexample. �

4 Proofs for small trees

Proof of Proposition 1.5. First we prove that exL(n, P3) ≤ n. Let H be
a minimal counterexample, a P3-free linear triple system with n points, more
than n triples and n is as small as possible. From the minimality H has just
one connected component. All points of H have degree at least two, otherwise
we find a smaller counterexample by deleting a point with a smaller degree. We
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may also assume that there exists a point p with degree at least 4, otherwise
we have at most n edges in H. Select a star Sk with center p with k ≥ 4.
Then select a point q in Sk different from p. There is a triple e containing q
and not containing p. Then e with two triples of Sk form a P3, leading to a
contradiction, thus exL(n, P3) ≤ n.

The above argument also shows that in case of |E(H)| = n, each connected
component of H is 3-regular. Selecting any A = S3, we can observe that any
triple intersecting it must be completely inside A, otherwise we have a P3 leading
to a contradiction. Thus each connected component of H is 3-regular on seven
points, i.e. an STS(7). �

Proof of Theorem 1.6. Let F ∈ {B4, P4}, first we prove that exL(n, F ) ≤ 4n
3 .

Let H be a minimal counterexample, an F -free linear triple system with n
points, more than 4n

3 triples and n is as small as possible. From the minimality,
H has just one connected component. As in the proof of Proposition 1.5, all
points of H have degree at least two, and there exists a point p with degree
at least 5. Select the largest star Sm in H with center p (clearly m ≥ 5). Let
ei = (p, xi, yi), i = 1, . . . ,m be the triples of Sm.

Case 1: F = B4. Select a point q 6= p in Sm. Clearly, there must be a triple e
through q which does not belong to Sm. Then e and three suitable triples of Sm

define a B4 leading to contradiction. This argument also implies that in case
of |E(H)| = 4n

3 , H is a 4-regular triple system. Selecting any A = S4, we can
observe that any triple intersecting it must be completely inside A otherwise we
have a B4, leading to contradiction. Thus each component of H is an STS(9).

Case 2: F = P4. We first claim that Sm covers all points of H. Indeed, if w is
any point of H not in Sm then the shortest path P from w to V (Sm) has just
one triple, otherwise with two suitable triples of Sm we can extend P to a P4, a
contradiction. Thus, since w has degree at least two in H, we have two triples
f1, f2 containing w such that both of them intersect Sm in points different from
the center of Sm. Since m ≥ 5, we find a triple of Sm (say ei) disjoint from
(f1∩Sm)∪(f2∩Sm). Then with an appropriate triple (say ej) of Sm containing
a point from either f1 ∩ Sm or f2 ∩ Sm, we have the P4 defined by the triples
ei, ej , f1, f2 in this order unless f1 and f2 both intersect the same two triples of
Sm, say e1 and e2. In this case consider an arbitrary point v of ei with i ≥ 3.
This point v also has degree at least two, so there must be a triple containing
v different from ei. This must also intersect both f1 and f2, otherwise we are
done again similarly as above. But there are only two remaining pairs like that
between f1 and f2, but we have at least 6 vertices that may play the role of v,
a contradiction. This proves the claim, i.e. 2m+ 1 = n.

There is a pair f1, f2 of intersecting triples in H not containing the center
of Sm. Indeed, otherwise we have at most n−1

3 + n−1
2 < 4n

3 triples in H,
contradicting the assumption. We have two possibilities for f1 and f2: either
f1 and f2 intersect exactly the same three triples of Sm, say e1, e2 and e3, or
m = 5 and f1 ∪ f2 intersects all triples of S5, otherwise f1 and f2 with two
suitable triples of Sm form a P4, a contradiction again. Then if m > 5, we
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always must have the first possibility; i.e. all triples intersecting f1 intersect
e1, e2 and e3. Then again consider a point v different from p in e4. There is a
triple g containing v different from e4. By the above, g cannot intersect f1, but
then f1 and g with two suitable triples of Sm form a P4.

Thus we may assume that m = 5, n = 11, and |E(H)| ≥ 15. We may also
assume that for any pair of intersecting triples in H not containing the center
of S5 we must have the above two possibilities.

On the other hand, there must be two disjoint triples g, h in H not containing
the center of S5. Indeed, otherwise the at least 10 triples that do not contain
p pairwise intersect thus they form either a star or must be part of a Fano
plane (as noted already before). But within 10 points there is no room for an
S10 and part of a Fano plane cannot have 10 triples either. Thus we have g, h
as required. We get a contradiction again by finding a P4 = g, ei, ej , h where
the triples ei, ej are in S5 - unless g ∪ h covers exactly three triples of S5, say
e1, e2, e3 and g = (x1, x2, x3) and h = (y1, y2, y3). This argument holds for any
two disjoint triples in the role of g, h thus any further triple ` (different from g, h
and triples of S5) must intersect both g and h, so in particular ` must intersect
two of the triples e1, e2 and e3. Applying this to a triple ` containing a point v
different from p of e4, ` must intersect both g and h. However, we cannot have
the first possibility for the intersecting pair g and `, so we must have the second,
however, g ∪ ` now cannot intersect all triples of S5 (since they both intersect
the same two triples of S5, together they may intersect at most 4 triples of S5),
contradicting the assumption. This finishes the proof of exL(n, P4) ≤ 4n

3 .
In case of |E(H)| = 4n

3 we may assume that H is 4-regular, otherwise H has
a point of degree at least 5 and the above argument leads to a contradiction. We
prove that the first claim in Case 2 is still valid, any connected component C of
H containing an S4 must contain only the points of S4. Indeed, otherwise all
the four triples f1, f2, f3, f4 on a point w not on S4 must intersect S4 (in a point
different from the center of S4). However, if any fi intersects S4 in one point then
with fj (j 6= i) the triples fi, fj and two suitable triples of S4 create a P4. Thus
all fi intersect S4 in two points, moreover the union of any two intersections
must either cover all triples of S4 or just two of them. W.l.o.g. we may assume
that the four triples on w are (w, x1, x2), (w, y1, y2), (w, x3, x4), (w, y3, y4). Since
n must be divisible by 3, there exist two further points q, r in C different from
w outside S4. Repeating the argument for q, it is easy to check that the four
triples through q must be (q, x1, y2), (q, x2, y1), (q, x3, y4), (w, x4, y3) otherwise
there would be a triple on w and a triple on q that define a P4 with two suitable
triples of S4. However, there is no room to place any triple on r without creating
a P4. This proves that C is 4-regular on 9 points, thus it is an affine plane of
order 3. �

Proof of Theorem 1.7. Let H be a linear triple system with n points
containing no E4. We prove by induction on n, it is trivial to launch it from
n = 1. If there is a point v with degree d(v) ≤ 2 we are done by induction on n
because removing v we have at most 2 + 2(n − 1) = 2n triples. Thus d(v) ≥ 3
holds for all v ∈ V (H). We define the partition V (H) = Y ∪Z where Z contains
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the points of degree at most four, Y is the set of remaining points (of degree at
least five).

For any triple e = {a, b, c} ∈ E(H) let D(e) denote the vector

(d(a), d(b), d(c)),

where the degrees are in decreasing order. We always assume that the points
a, b, c are ordered the same way as their degrees. We consider these vectors
partially ordered by D(e) ≥ D(f) if at all positions the coordinate of e is larger
than or equal to the coordinate of f . In the proof we consider two cases.

Case I. There is no e ∈ E(H) such that D(e) ≥ (5, 5, 3).
In this case all triples of H intersect Z in at least two points. Therefore∑

v∈Z d(v) is at least a double count of |E(H)| implying

|E(H)| ≤ 1

2

∑
v∈Z

d(v) ≤ 1

2
(4|Z|) ≤ 2n,

finishing the proof of Theorem 1.7 in Case I.

Case II. There exists e = {a, b, c} ∈ E(H) with D(e) ≥ (5, 5, 3). Select e such
that D(e) = (d1, d2, d3) is a minimal element in the up-set of (5, 5, 3). The next
proposition restricts d1.

Proposition 4.1. If d1 > 5 then H contains E4.

Proof. Since d3 > 1, we can select a triple f containing c and different from e,
then by d2 > 3 we can select a triple g containing b and disjoint from f . Finally,
using that d1 > 5 we can select a triple h containing a and disjoint from both
f and g. Thus e, f, g, h form an E4. �

Proposition 4.1 implies that

D(e) ∈ {(5, 5, 5), (5, 5, 4), (5, 5, 3)}. (3)

We show in Claim 2 that the assumption D(e) ≥ (5, 5, 3) is very restrictive.
Let F ⊂ (H \ e) be the triple system spanned by the 4 triples containing a,
the 4 triples containing b and 2 triples containing c. These ten triples can be
denoted as a ∪ αi, b ∪ βj , c ∪ γk where i, j = 1, 2, 3, 4; k = 1, 2. Note that by (3)
there may be at most two more extra triples (not in F ) containing c. We define
the graph G with edge set αi, βj , γk on vertex set V (H) \ {a, b, c}. We ignore
isolated points and consider G with the vertex set spanned by its (ten) edges.

A set of three pairwise disjoint edges of G, αi, βj , γk is called a rainbow
matching. Since a rainbow matching in G together with e form a copy of an E4,
there is no rainbow matching in G.

Two among the many possible graphs G are G1, G2 defined as follows.
Both have two point-disjoint alternating four-cycles with edges α1, β1, α2, β2
and α3, β3, α4, β4. In G1 the edges γ1, γ2 are the diagonals of the first four-
cycle. In G2 the edges γ1, γ2 are diagonals in the first and the second four-cycle,
respectively (see Figures 6 and 7).
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Figure 7: The graph G2

Claim 2. Apart from permutations of the αi’s, βj ’s, γk’s, either G = G1 or
G = G2.

Proof. Clearly, there exist at least two αi’s and two βj ’s, say α3, α4, β3, β4 not
incident to γ1. For any i, j ∈ {3, 4} we have αi ∩ βj 6= ∅ otherwise there is a
rainbow matching together with γ1. Therefore α3, β3, α4, β4 form an alternating
four-cycle with vertex set X2. Note that none of the edges α1, β1, α2, β2 can be
incident to X2 but all of them have to be incident to γ1, otherwise we have a
rainbow matching. Therefore w.l.o.g α1, β1 and α2, β2 are incident to different
endpoints of γ1 and all of them are inside V (G) \X2.

Assume that either α1 ∩ β2 = ∅ or α2 ∩ β1 = ∅, w.l.o.g the first. Then,
to avoid a rainbow matching, γ2 must intersect both of them. However, then
γ2, β1, α3 is a rainbow matching, contradiction. Thus αi∩βj 6= ∅ for i, j ∈ {1, 2}
implying that α1, β1, α2, β2 form an alternating four-cycle with vertex set X1

(with diagonal γ1). Finally, γ2 can be the second diagonal of this four-cycle or
a diagonal in the four-cycle in X2, proving the claim. �

Claim 3. At most four triples of H have nonempty intersection with both
V (F ) and V (H) \ V (F ).
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Proof. Suppose that the claim is not true and consider any f /∈ E(F ) that
intersects both V (F ) and V (H) \ V (F ). From Claim 2 we have two alternating
four-cycles, say α1, β1, α2, β2 and α3, β3, α4, β4 in G with disjoint vertex sets, let
X1, X2 denote these. We look at possibilities for f ∩ V (F ). Observe first that
only at most two extra triples may intersect e = {a, b, c}. Assume that f is not
an extra triple. Then |f ∩ V (G)| 6= 0. We have the following two possibilities:

• 1. |f ∩ V (G)| = 1. Assume w.l.o.g that {x} = f ∩ V (G) ∈ X1 and
x = α1 ∩ β1. Then f, β2 ∪ b, α3 ∪ a are three pairwise disjoint triples and
the triple α1∪a intersects all of them, thus we have an E4, a contradiction.

• 2. |f ∩ V (G)| = 2. Assume {x, y} = f ∩ V (G). If x ∈ X1, y ∈ X2, we may
assume again by symmetry that x = α1 ∩β1. Select αj ∈ {α3, α4} so that
y /∈ αj . Then f, β2 ∪ b, αj ∪ a are three pairwise disjoint triples and the
triple α1 ∪ a intersects all of them, thus we have an E4, a contradiction.
Thus x, y are on the same four-cycle. Therefore, by the linearity of H,
f ∩ V (G) is one of the two missing diagonals of the two four cycles.

We conclude that only the extra triples and the ones from case 2 have nonempty
intersection with both V (F ) and V (H) \ V (F ), proving Claim 3. �

Observe that the total number of triples incident to V (F ) is at most 15: the
eleven triples defined by the vector (5, 5, 3), the at most two extra triples on c,
and the at most two triples that cover the two missing edges in the components
of G1 or G2. Therefore, applying the inductive hypothesis for H[V (H) \V (F )],
|E(H)| ≤ 15+2(n−11) < 2n, finishing the proof of Theorem 1.7 in Case II. �
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[7] P. Erdős, Extremal problems in graph theory, Proc. Sympos. Smolenice,
Publ. House Czech. Acad. Sci. Prague, 1964 (1963), 29-36.

[8] P. Frankl, N. Tokushige, Extremal problems for finite sets, AMS Student
Mathematical Library Vol. 86. Providence, Rhode Island, 2018.
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