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Abstract

Properly colored cycles in edge-colored graphs are closely related to directed cycles in
oriented graphs. As an analogy of the well-known Caccetta-Häggkvist Conjecture, we
study the existence of properly colored cycles of bounded length in an edge-colored
graph. We first prove that for all integers s and t with t ≥ s ≥ 2, every edge-colored
graph G with no properly colored Ks,t contains a spanning subgraph H which admits
an orientation D such that every directed cycle in D is a properly colored cycle in
G. Using this result, we show that for r ≥ 4, if the Caccetta-Häggkvist Conjecture
holds , then every edge-colored graph of order n with minimum color degree at least
n/r + 2

√
n + 1 contains a properly colored cycle of length at most r. In addition,

we also obtain an asymptotically tight total color degree condition which ensures a
properly colored (or rainbow) Ks,t.

Keywords: Color degree; Properly colored Ks,t; Caccetta-Häggkvist Conjecture

1 Introduction

In this paper, all graphs considered are simple graphs. All the terminology and notation

used but not defined can be found in [4]. An edge-colored graph is a graph with each edge

assigned a color. Given an edge-colored graph G, we say G is a properly colored graph if any

two adjacent edges receive different colors, and G is a rainbow graph if all the edges receive

pairwise different colors. For every vertex v ∈ V (G), the color degree of v, denoted by

∗
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dcG(v), is the number of distinct colors appearing on the incident edges of v. The minimum

color degree of G, denoted by δc(G), is the minimum dcG(v) over all vertices v ∈ V (G). By

∆mon(v), we denote the maximum number of incident edges of v with the same color, and

∆mon(G) is the maximum ∆mon(v) over all vertices v ∈ V (G).

The study on the existence of properly colored cycles in edge-colored graphs has a long

history. Grossman and Häggkvist [9] provided a sufficient condition on the existence of

properly colored cycles in edge-colored graphs with two colors. Later, Yeo [29] extended

the result to edge-colored graphs with any number of colors. During the past decades,

establishing sufficient conditions forcing properly colored (rainbow) cycles of certain lengths

has received considerable attention [1, 3, 8, 13, 14, 16, 18]. In many classical problems the

host graph G is complete. For instance, Bollobás and Erdős [3] conjectured that every edge-

colored Kn with ∆mon(Kn) ≤ ⌊n/2⌋−1 contains a properly colored Hamilton cycle and this

conjecture was asymptotically resolved by Lo [19]. Later, Lo [17] considered the existence

of properly colored Hamilton cycles under color degree conditions. Using the absorbing

technique and stability method, Lo [18] recently proved that for sufficiently large n, every

edge-colored graph G on n vertices with δc(G) ≥ 2n/3 contains a properly colored Hamilton

cycle.

The study of properly colored cycles is closely related to directed cycles in oriented

graphs. On the one hand, oriented graphs are often used as auxiliary tools to find properly

colored cycles. More details can be found in [7, 13, 14, 17]. On the other hand, finding

directed cycles can be formulated as a special case of finding properly colored cycles. To see

this, we have the following construction which was first introduced by Li [13]. Let D be an

orientation of a simple graph G with V (G) = {v1, v2, . . . , vn}. For every vertex v ∈ V (G),

we write d+D(v) and d−D(v) for its outdegree and indegree in D, respectively. Define an edge

coloring τ of G by coloring the edge vivj with j for all arcs (vi, vj) in D. The resulting

edge-colored graph, denoted by (D, τ), is called the signature of D. Then the following

three properties hold.

(1) For every vertex v ∈ V (G), dc(D,τ)(v) = d+D(v) if d−D(v) = 0, otherwise dc(D,τ)(v) =

d+D(v) + 1.

(2) A cycle in G is a directed cycle in D if and only if it is a properly colored cycle in

(D, τ).

(3) (D, τ) contains no properly colored Ks,t for all integers s ≥ 2 and t ≥ 3.

Properties (1) and (2) can be easily observed. To see (3), any properly colored Ks,t in (D, τ)

corresponds to an oriented Ks,t in which each vertex has at most one in-neighbor. It follows

that st ≤ s + t, which is impossible when s ≥ 2, t ≥ 3.
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A fundamental question in digraph theory is to establish outdegree conditions ensuring

that a digraph contains certain structures. For all positive integers n and r, let f(n, r)

be the least integer such that every digraph D of order n with δ+(D) ≥ f(n, r) contains

a directed cycle of length at most r. Recall the following well-known Caccetta-Häggkvist

Conjecture [5].

Conjecture 1 ([5]). For all positive integers n, r with n ≥ r, f(n, r) = ⌈n/r⌉.

Conjecture 1 is trivial when r ≤ 2. The case r = 3 remains open and there are numerous

partial results, see [10, 11, 22, 24, 25]. The best known bound is provided by Hladký, Král’

and Norin [11] stating that f(n, 3) ≤ 0.3465n. For more results, we refer the reader to a

survey of Sullivan [26].

Analogously, we can consider the following problem in edge-colored graphs.

Problem 2. For all positive integers n, r with n ≥ r ≥ 3, what is the least integer fc(n, r)

such that every edge-colored graph G on n vertices with δc(G) ≥ fc(n, r) contains a properly

colored cycle of length at most r?

By the signatures of oriented graphs, it clearly holds that fc(n, r) ≥ f(n, r)+1 for r ≥ 3.

Moreover, in the case r = 3, fc(n, 3) > n/2. So there is a fundamental difference between

fc(n, 3) and f(n, 3). In [13], Li proved that fc(n, 3) = ⌈(n + 1)/2⌉. Here we determine an

asymptotically tight upper bound for fc(n, r) when r ≥ 4.

Theorem 3. For all integers r ≥ 4, fc(n, r) ≤ f(n, r) + 2
√
n+ 1.

Remark 1. In Section 5, one can see that the term 2
√
n in Theorem 3 can not be replaced

by any (sufficiently large) absolute constant when r = Θ(n).

Very recently, Seymour and Spirkl [23] considered a bipartite version of Caccetta-Häggkvist

Conjecture and proposed the following conjecture in which g(n, r) denotes the least inte-

ger such that every bipartite digraph D with n vertices in each part and δ+(D) ≥ g(n, r)

contains a directed cycle of length at most 2r.

Conjecture 4 ([23]). For all positive integers n, r with n ≥ r, g(n, r) = ⌊n/(r + 1)⌋+ 1.

In the same paper [23], the authors proved Conjecture 4 when r = 1, 2, 3, 4, 6 or r ≥
224539. Similarly, let gc(n, r) be the least integer such that every edge-colored bipartite

graph G with n vertices in each part and δc(G) ≥ gc(n, r) contains a properly colored cycle

of length at most 2r. We also obtain the following theorem.

Theorem 5. For all integers r ≥ 2, g(n, r) + 1 ≤ gc(n, r) ≤ g(n, r) + 2
√
n + 1.
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We now provide a unified approach for Theorems 3 and 5. Recall the definition of (D, τ)

and its properties, we attempt to reduce the problem on properly colored cycles to the

problem on directed cycles in oriented graphs. From this point, a natural but ambitious

question is what condition would guarantee an orientation D of an edge-colored graph G

that preserves properties (1) and (2). Inspired by property (3), we answer this question in

a weaker sense as follows.

Theorem 6. For all positive integers n, s and t with 2 ≤ s ≤ t < n, every edge-colored

graph G of order n with no properly colored Ks,t contains a spanning subgraph H of G which

admits an orientation D satisfying the following.

(i) For each v ∈ V (G), d+D(v) > dcG(v)−
(

(t−1)
(s−1)!

)1/s

sn1−1/s − s.

(ii) Every directed cycle in D is a properly colored cycle in H.

Remark 2. From the proof of Theorem 6, we can also derive that for every edge-colored

bipartite graph G = (V1, V2, E) with |Vi| = ni for each i ∈ {1, 2}, the above statement still

holds when we replace (i) with the following assertion.

For each v ∈ Vi with i ∈ {1, 2}, d+D(v) > dcG(v)−
(

(t−1)
(s−1)!

)1/s

sn
1−1/s
3−i − s.

Using Theorem 6, we now provide a short proof of Theorem 3. Since the proof of

Theorem 5 is very similar to that of Theorem 3, we omit it here.

Proof of Theorem 3. Let G be an edge-colored graph with δc(G) ≥ f(n, r)+2
√
n+1. We

may assume that G contains no properly colored K2,2. Applying Theorem 6 with s = t = 2,

we obtain a subgraph H and an orientation D with δ+(D) ≥ f(n, r) such that any directed

cycle in D corresponds to a properly colored cycle in H . Therefore Theorem 3 easily follows

from the definition of f(n, r).

The rest of the paper is organized as follows. In order to prove Theorem 6, we provide

a crucial lemma (Lemma 7) in which we partially describe the typical structure of an edge-

colored graph with no properly colored Ks,t for any given integers s, t with t ≥ s ≥ 2. The

proofs of Lemma 7 and Theorem 6 are presented in Section 3. In Section 4, we give more

applications of Theorem 6 and Lemma 7. Particularly, for all integers s, t with t ≥ s ≥ 2, we

obtain asymptotically tight color degree conditions forcing a properly colored (or rainbow)

Ks,t. Finally, some comments and open problems are proposed in Section 5.
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2 Basic Notation

Given an edge-colored graph G, for every edge uv ∈ E(G), let cG(uv) be the color of uv.

For each vertex v ∈ V (G), denote by CG(v) the set of colors appearing on the incident edges

of v. For any two disjoint vertex sets U and V , let G[U, V ] be the subgraph induced by all

the edges between U and V . Let CG(U, V ) be the set of all colors appearing on the edges

between U and V . If G is an edge-colored bipartite graph with two parts V1, V2 and all the

incident edges of each v ∈ V1 have pairwise distinct colors, then we say G is V1-proper. We

say that G is pseudo V1-canonical if all edges incident to each v ∈ V1 have the same color.

If the graph G is clear from the context, then the subscripts are usually omitted.

The dual graph Ĝ = (V1, V2; Ê) of G is defined as follows. (i) Let V1 = {v(1) | v ∈ V (G)}
and V2 = {v(2) | v ∈ V (G)}, respectively; (ii) For all edges uv ∈ E(G), add two edges

u(1)v(2), v(1)u(2) in Ĝ and assign u(1)v(2), v(1)u(2) the same color cG(uv). It is easy to see that

dc(v) = dc(v(1)) = dc(v(2)) for all vertices v ∈ V (G). In particular, we observe the following

simple but subtle fact.

Fact 1. For all positive integers s and t, the dual graph Ĝ contains a properly colored (or

rainbow) Ks,t if and only if G contains a properly colored (or rainbow) Ks,t.

Given an oriented graph D and a positive integer k, the k-blow-up of D is an oriented

graph obtained from D by replacing each vertex vi ∈ V (D) with an independent vertex set

Vi of size k and adding all possible arcs from Vi to Vj for every arc (vi, vj) in D.

3 Proof of Theorem 6

For all integers t ≥ s ≥ 2, let σs,t = s
(

t−1
(s−1)!

)1/s

. We start our proof with the following

lemma.

Lemma 7. Let 2 ≤ s ≤ t be positive integers and G = (V1, V2;E) be a bipartite graph with

|V1| = n1 and |V2| = n2. If G contains no properly colored Ks,t, then G contains a spanning

subgraph H with dcH(u) ≥ dcG(u) − σs,tn
1−1/s
2 for each u ∈ V1 and dcH(v) ≤ s − 1 for each

v ∈ V2. In particular, if s = 2, then H is a pseudo V2-canonical graph.

Proof. At the beginning, we extract a V1-proper subgraph G0 from G such that dG0(v) =

dcG(v) for each v ∈ V1. Then in the rest of the proof, we only consider G0.

Given a subset A ⊆ V1, a vertex v ∈ V2 is saturated by A if |C(v, A)| ≥ s − 1, and let

S(A) = {v ∈ V2 | v is saturated by A}. Let Ul = {v1, v2, . . . , vl} ⊆ V1 be a maximal set such

that for each i ∈ [l], vi has at least x neighbors v with v /∈ S(Ui−1) and c(vvi) /∈ C(v, Ui−1),
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where U0 = ∅, Ui−1 = {v1, v2, . . . , vi−1} for 2 ≤ i ≤ l and x is an integer to be determined

later. In addition, for each v ∈ S(Ul), let Uv = Ui if v ∈ S(Ui) \S(Ui−1) for some i ∈ [l] and

Uv = Ul if v ∈ V2\S(Ul). Therefore |C(v, Uv)| = s−1 for any v ∈ S(Ul) and |C(v, Uv)| ≤ s−2

for any v ∈ V2 \ S(Ul). Let H be the subgraph of G0 obtained as follows. For each u ∈ V1,

we delete all incident edges uv with c(uv) /∈ C(v, Uv). Next, we show that H is the desired

subgraph.

For all v ∈ V2, we know that dcH(v) = |C(v, Uv)| ≤ s − 1. Hence, it remains to prove

that dcH(u) ≥ dcG(u) − σs,tn
1−1/s
2 for every u ∈ V1. Now we bound the number of incident

edges of each u ∈ V1 which are deleted as described above.

Claim 7.1. For each u ∈ V1, we deleted at most (t− 1)
(

l
s−1

)
+ x incident edges.

Proof. By the maximality of Ul, we know that each u ∈ V1 \ Ul has less than x neighbors

v outside S(Ul) with c(uv) /∈ C(v, Uv). So it suffices to prove that each u ∈ V1 has at most

(t−1)
(

l
s−1

)
neighbors v inside S(Ul) with c(uv) /∈ C(v, Uv). In this case, for such a neighbor

v, there exists a subset T ⊂ Uv of size s − 1 such that T ∪ {u, v} induces a rainbow star

centered at v. Since G contains no properly colored Ks,t, T ∪ {u} has at most t − 1 such

common neighbors as v. Therefore, by double counting, each u has at most (t − 1)
(|Ul|
s−1

)

neighbors v inside S(Ul) with c(uv) /∈ C(v, Uv).

Next, we obtain an upper bound on l.

Claim 7.2. l ≤ (s−1)n2

x
.

Proof. We construct a bipartite digraph D between Ul and V2 as follows. For each vi ∈ Ul

and v ∈ V2, we add an arc from vi to v if and only if v ∈ N(vi) \ S(Ui−1) and c(vvi) /∈
C(v, Ui−1). By the definition of Ul, we know that d+(vi) ≥ x for each vi ∈ Ul. Since

|C(v, Ul)| ≤ s− 2 for each v ∈ V2 \S(Ul) and |C(v, Ui)| = s− 1 for each v ∈ S(Ui) \S(Ui−1)

(i ∈ [l]), we obtain that d−(v) = s − 1 for v ∈ S(Ul) and d−(v) ≤ s − 2 for v ∈ V2 \ S(Ul).

Therefore,

lx ≤ |E(D)| ≤ (s− 1)|S(Ul)|+ (s− 2)(n2 − |S(Ul)|),

which implies that l ≤ (s−1)n2

x
.

By the two claims above, it holds that for each u ∈ V1,

dcH(u) ≥ dcG(u)− (t− 1)

( (s−1)n2

x

s− 1

)
− x

≥ dcG(u)−
t− 1

(s− 1)!

(
(s− 1)n2

x

)s−1

− x.
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Let x = (s−1)
(

t−1
(s−1)!

)1/s

n
1−1/s
2 , and it follows that dcH(u) ≥ dcG(u)−

(
t−1

(s−1)!

)1/s

sn
1−1/s
2 for

each u ∈ V1. This completes the proof of Lemma 7.

With Lemma 7, we are ready to prove Theorem 6.

Proof of Theorem 6. Let G be an edge-colored graph of order n with no properly colored

Ks,t. By Fact 1, the dual graph Ĝ = (V1, V2; Ê) also contains no properly colored Ks,t.

Therefore, by Lemma 7, there exists a V1-proper subgraph H0 ⊆ Ĝ such that dcH0
(u) ≥

dcG(u) − σs,tn
1−1/s for each u ∈ V1 and dcH0

(v) ≤ s − 1 for each v ∈ V2. Let H ′ be the

subgraph of H0 obtained by deleting all edges e incident to v(1) with c(e) ∈ CH0(v
(2)) for

each v ∈ V (G) in order. Recall that for each edge uv ∈ E(G), c(u(1)v(2)) = c(v(1)u(2)) in

Ĝ. Hence, at most one of u(1)v(2), v(1)u(2) is included in the graph H ′. Since dcH0
(v) ≤ s− 1

for each v ∈ V2, we have dcH′(u) ≥ dcG(u)− σs,tn
1−1/s − (s− 1) for each u ∈ V1. Let H be a

spanning subgraph of G with E(H) = {uv ∈ E(G) | u(1)v(2) ∈ E(H ′)}.
Now we show that the orientation D, defined on H by orienting uv ∈ E(H) from u to

v if u(1)v(2) ∈ E(H ′), is as desired. First of all, one can observe that any two consecutive

edges of a directed path in D have different colors. Otherwise there are three vertices

u, v, w ∈ V (H) such that both u(1)v(2) and v(1)w(2) belong to E(H ′) while c(u(1)v(2)) =

c(v(1)w(2)) ∈ CH0(v
(2)). It follows that v(1)w(2) is deleted from H0, which is a contradiction.

Therefore property (ii) holds. For each vertex v ∈ V (H), we know that d+D(v) = dcH′(v(1)) ≥
dcG(v)− σs,tn

1−1/s − (s− 1) and d−D(v) = dH′(v(2)), so property (i) holds.

4 More Applications of Theorem 6 and Lemma 7

4.1 Vertex-disjoint Cycles

For any positive integer k, let f(k) be the smallest integer so that every digraph of minimum

out-degree at least f(k) contains k vertex disjoint directed cycles. The well-known Bermond-

Thomassen Conjecture [2] states that f(k) = 2k− 1 for all k ≥ 1, and it is true when k ≤ 3

[21, 27]. Motivated by Bermond-Thomassen Conjecture, Lichiardopol [15] proposed the

following conjecture regarding vertex disjoint directed cycles of different lengths.

Conjecture 8. [15] For every integer k ≥ 2, there is an integer g(k) such that any digraph

with minimum out-degree at least g(k) contains k vertex disjoint cycles of different lengths.

Using Theorem 6, we obtain the following result on vertex disjoint properly colored

cycles. Denote by C4(G) a maximum set of vertex disjoint properly colored C4’s in the

edge-colored graph G.
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Theorem 9. For all positive integers n, k, let G be an edge-colored graph on n vertices.

Then the following hold.

(i) If δc(G) ≥ f(k − |C4(G)|) + 4|C4(G)| + 2
√
n + 1, then G contains k vertex disjoint

properly colored cycles. In particular, if the Bermond-Thomassen Conjecture is true,

then δc(G) ≥ 4k + 2
√
n+ 1 suffices.

(ii) If Conjecture 8 is true, then δc(G) ≥ g(k) + (k+ 1)(k+ n1−1/(k+1)) suffices to ensure k

vertex disjoint properly colored cycles of different lengths.

Proof. Let G′ be the resulting subgraph of G by deleting all C4’s in C4(G). So G′ contains no

properly colored C4’s. By Theorem 6, there exists a subgraph H ⊂ G′ and an orientation D

of H such that d+D(v) ≥ f(k−|C4(G)|) and any directed cycle in D corresponds to a properly

colored cycle in G′. Therefore, there are k − |C4(G)| vertex disjoint properly colored cycles

in G′, which together with C4’s in C4(G) form k vertex disjoint properly colored cycles in

G. This completes the proof of (i).

We proceed the proof of (ii) by finding a maximal collection F of vertex disjoint subsets

A1, A2, . . . , Al in G such that each G[Ai] contains a properly colored C2i+2 for i ∈ [l]. We

may assume that |Ai| = 2i+ 2 for all i ∈ [l] and assume l < k, otherwise k vertex disjoint

properly colored cycles of different lengths would be found. By the maximality of F , we know

that G′′ = G −
l⋃

i=1

Ai contains no properly colored Kl+2,l+2 and δc(G′′) ≥ δc(G) −
l∑

i=1

|Ai|.
Applying Theorem 6 with s = t = l + 2, we obtain a subgraph H ⊂ G′′ and an orientation

D of H such that δ+(D) ≥ δc(G′′) −
(
1
l!

)1/(l+2)
(l + 2)n1−1/(l+2) − l − 1 > g(k). By the

definition of g(k), there are k vertex disjoint directed cycles of different lengths in D, which

are actually k vertex disjoint properly colored cycles of different lengths in G.

4.2 Properly Colored Complete Bipartite Graphs

Recall that the signature of any oriented graph contains no properly colored Ks,t for all

integers s ≥ 2 and t ≥ 3. Let T be a transitive tournament. Then there is no properly

colored Ks,t in the signature (T, τ) and
∑

v∈V (T,τ) d
c(v) = n(n+1)/2−1. In this part, using

Theorem 6, we give the following asymptotically tight total color degree condition forcing

a properly colored Ks,t.

Theorem 10. For all positive integers n, s and t with n ≥ t ≥ s ≥ 2, every edge-colored

graph G on n vertices with
∑

v∈V (G) d
c(v) > n2/2+σs,tn

2−1/s+sn contains a properly colored

Ks,t.

Indeed, Theorem 10 is easily derived from the following theorem by Fact 1.
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Theorem 11. Let G = (V1, V2;E) be an edge-colored bipartite graph with |V1| = n1, |V2| =
n2. For all positive integers t ≥ s ≥ 2, if

∑
v∈V (G) d

c(v) > n1n2+σs,t(n1n
1−1/s
2 +n2n

1−1/s
1 )+

s(n1 + n2), then G contains a properly colored Ks,t.

Proof. Suppose that G contains no properly colored Ks,t. By Remark 2, there exists a

subgraph H ⊂ G and an orientation D of H such that d+D(u) > dcG(u)−σs,tn
1−1/s
3−i −s for each

u ∈ Vi (i = 1, 2). Therefore, |E(D)| = ∑
v∈V (G) d

+
D(v) > n1n2, which is a contradiction.

Note that the signatures of a transitive tournament and a bipartite tournament with

all arcs from one part to the other part imply the asymptotical sharpness of color degree

conditions in Theorems 10 and 11. Indeed, if t ≥ 3 and s ≥ 2, then the signature of every

tournament (or bipartite tournament) shows that the bound in Theorem 10 (or Theorem

11) is asymptotically tight. Hence, it is interesting to know the exact estimate on the low

order term n2−1/s. Here we provide a lower bound as follows.

Theorem 12. For all integers s, t with st > 2(s + t), there exists a constant γ = γ(s, t)

such that for every sufficiently large integer n, there exists an edge-colored complete graph

Kc
n with no properly colored Ks,t and δc(Kc

n) > n/2 + γn1− s+t
st−s−t .

Proof. Let T be a tournament with vertex set {v1, v2, . . . , vn} and min{δ+(T ), δ−(T )} ≥
⌊n−1

2
⌋. Clearly, (T, τ) does not contain any copy of a properly colored Ks,t and δc(T, τ) ≥

n/2. Next we show that we can slightly improve the color degree of each v ∈ (T, τ) while

no properly colored Ks,t arises. In the following, we always choose n to be sufficiently large

whenever it is needed.

Let G = G(n, p) be the random graph on vertex set {v1, v2, . . . , vn} with p to be deter-

mined later. For any S ∈
(
V (G)
s+t

)
, denote by FS(s, t) the set consisting of all the distinct

subgraphs of G(n, p) on S and with at least st− s− t edges, then we have

P(|FS(s, t)| ≥ 1) ≤
( (

s+t
2

)

st− s− t

)
pst−s−t.

Thus, letting X =
∑

S∈(V (G)
s+t )

|FS(s, t)| and using the union bound, we obtain

P(X ≥ 1) ≤
(

n

s+ t

)( (
s+t
2

)

st− s− t

)
pst−s−t.

In paticular, there exists a constant γ = γ(s, t) such that P(X ≥ 1) < 1/2 holds for

p = 8γn− s+t
st−s−t .

For all i ∈ [n], denote by Ai the set of in-neighbors of vi in T . Let B be the event that

|NG(vj) ∩ Aj| ≤ γn1− s+t
st−s−t for some j ∈ [n]. Since Yi = |NG(vi) ∩ Ai| has the binomial
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distribution B(|Ai|, p) for each i ∈ [n], by Chernoff’s bound [12], we have

P(|NG(vi) ∩ Ai| ≤ γn1− s+t
st−s−t ) <P(|NG(vi) ∩Ai| ≤

3γ

2
n1− s+t

st−s−t )

<P(Yi ≤
E[Yi]

2
) ≤ e−

E[Yi]

8 .

Thus,

P(B) <
∑

i∈[n]
P(Yi ≤

E[Yi]

2
) < ne−

γ
3
n
1− s+t

st−s−t
<

1

2
.

By the union bound, it follows that with positive probability, B does not occur and

X = 0. So there exists a subgraph G of (T, τ) such that |NG(vi) ∩ Ai| > γn1− s+t
st−s−t for all

i ∈ [n] and every subgraph of G on s+ t vertices has less than st− s− t edges.

Now we construct a new coloring of (T, τ) by recoloring each uv ∈ E(G) differently

with a new color not appearing in τ and denote the resulting edge-colored complete graph

by Kc
n. So it holds that δc(Kc

n) > n/2 + γn1− s+t
st−s−t . Now we show that Kc

n contains no

properly colored Ks,t. Recall that every properly colored subgraph in (T, τ) corresponds to

an oriented graph in which each vertex has at most one in-neighbor. Hence, any properly

colored subgraph of (T, τ) on s+ t vertices has at most s+ t edges. Since no subgraph of G

on s+ t vertices has at least st− s− t edges, we know that no properly colored Ks,t exists

in Kc
n when st > s + t.

By the following proposition, one can extend Theorems 10 and 11 to rainbow versions.

Proposition 13. For all positive integers s, t, every properly colored Ks,t+s(t−1)(s−1) on a

bipartition (A,B) contains a rainbow Ks,t on a bipartition (A,B′) for some B′ ⊆ B.

Proof. We proceed the proof by induction on t. We may assume s ≥ 2 and t ≥ 2. Hence,

every properly colored Ks,t+s(t−1)(s−1) with a bipartition (A,B) contains a rainbow Ks,t−1

with a bipartition (A,B∗), where |A| = s, |B∗| = t− 1. For each u ∈ A, define Fu ⊂ B\B∗

by declaring v ∈ Fu if only c(uv) ∈ C(A,B∗). Since |Fu| ≤ (s − 1)(t − 1), we have

|B| > |⋃u∈A Fu|+ |B∗|, i.e., there exists a vertex u′ ∈ B\B∗ such that A∪B∗∪{u′} induces

a rainbow Ks,t.

4.3 Rainbow C4

From Theorem 5 and the correctness of Conjecture 4 when r = 2 [23], one can immediately

obtain that every edge-colored bipartite graph G with n vertices in each part and δc(G) >

n/3 + 2
√
n + 1 contains a properly colored C4. It is easy to see that the minimum color

degree condition is asymptotically tight by considering the signature of the n/3-blow-up of

a directed C6.
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Compared to properly colored cycles, finding rainbow cycles seems much more difficult

(see [8, 17]). For rainbow C4, the first result comes from Li [13], which asserts that every

bipartite graph G with n vertices in each part and δc(G) > 3n/5 + 1 contains a rainbow

C4. By Proposition 13 and Theorem 11, the minimum color degree condition can be easily

improved to δc(G) > n/2 + 2
√
3n+ 2. In this part, we resolve this problem asymptotically

by proving the following stronger result using Lemma 7.

Theorem 14. Let G = (V1, V2;E) be an edge-colored bipartite graph with |Vi| = ni, δci =

minv∈Vi
dc(v) for i ∈ {1, 2}. If δc1δ

c
2 > n1n2/9+8n1

√
n2+8n2

√
n1, then G contains a rainbow

C4. Therefore, if δc1 > n2/3+24
√
n2 and δc2 > n1/3+24

√
n1, then G contains a rainbow C4.

Moreover, this is asymptotically best possible by considering the signature of the n/3-blow-up

of a directed C6.

Proof. Let G, n1, n2, δ
c
1, δ

c
2 be given as in Theorem 14, and suppose G contains no rainbow

C4’s. We may assume that G is edge-critical, that is, every edge deletion would lead to a

decrease in dc(v) for some vertex v ∈ V (G). Therefore, every monochromatic subgraph of G

is a union of vertex-disjoint stars. Let ∆1 = maxu∈V1 ∆
mon(u) and ∆2 = maxu∈V2 ∆

mon(u).

Choose a vertex v0 ∈ V1 with ∆mon(v0) = ∆1. Let V m
2 , V c

2 , V
′
2 be a partition of V2 such that

• V m
2 ⊆ N(v0), |V m

2 | = ∆1 and G[v0, V
m
2 ] is a monochromatic star;

• V c
2 ⊆ N(v0) \ V m

2 , |V c
2 | = δc1 − 1 and G[v0, V

c
2 ] is a properly colored star;

• V ′
2 = V2 \ (V c

2 ∪ V m
2 ).

Let c1 be the color on the edges in G[v0, V
m
2 ]. For every vertex u ∈ V c

2 , let N c(u) be a

maximal subset of N(u) such that G[u,N c(u)] is a properly colored star with no colors c1

and c(uv0). Note that |N c(u)| ≥ δc2 − 2 for every vertex u ∈ V c
2 . Let U =

⋃
u∈V c

2
N c(u).

Claim 14.1. For every v ∈ U , |C(v, V m
2 )| ≤ 2.

Proof. Suppose that v ∈ N c(w) for some vertex w ∈ V c
2 , it is easy to see that c(wv), c(v0w)

and c1 are pairwise distinct. The case when |V m
2 | ≤ 2 is trivial, so it suffices to consider

the case |V m
2 | > 2. Since G is edge-critical, we have that c1 /∈ C(v, V m

2 ). Therefore, if

|C(v, V m
2 )| > 2, then we can find a color c′ ∈ C(v, V m

2 ) and a corresponding vertex v′ ∈ V m
2

such that c(vv′) = c′ and c(wv), c(vv′), c(v′v0), c(v0w) are pairwise distinct. So we find a

rainbow C4, which is a contradiction.

Let G′ ⊆ G be a maximum pseudo V ′
2-canonical subgraph between U and V ′

2 . Next we

give a lower bound on the number of edges in G′.

Claim 14.2. |E(G′)| ≥ δc1δ
c
2 − 4n1

√
n2 − 4n2

√
n1.

11



Proof. Let G1 ⊆ G be a maximal V c
2 -proper subgraph between V c

2 and U . Clearly, |E(G1)| ≥
(δc1 − 1)(δc2 − 2). By Proposition 13, G also contains no properly colored K2,4. Applying

Lemma 7 to G1 with s = 2 and t = 4, there is a pseudo U -canonical subgraph H1 ⊆ G1 of

size at least |E(G1)| − 4|V c
2 |
√

|U |. Since |C(v, V m
2 )| ≤ 2 for each vertex v ∈ U , there is a

U -proper subgraph G2 of G between U and V ′
2 such that

|E(G2)| ≥ δc1|U | − 2|U | − (|U ||V c
2 | − |E(H1)|+ |U |).

Applying Lemma 7 to G2 with s = 2 and t = 4, we obtain a pseudo V ′
2-canonical subgraph

H2 such that |E(H2)| ≥ |E(G2)| − 4|U |
√
|V ′

2 |. Hence,

|E(G′)| ≥ |E(H2)| ≥ |E(G2)| − 4|U |
√
|V ′

2 |
≥ δc1|U | − 2|U | − (|U ||V c

2 | − |E(H1)|+ |U |)− 4|U |
√
|V ′

2 |
≥ |E(H1)| − 2|U | − 4|U |

√
|V ′

2 |
≥ δc1δ

c
2 − 4n1

√
n2 − 4n2

√
n1.

Since G′ is pseudo V ′
2-canonical, we have |V ′

2 |∆2 ≥ |E(G′)| ≥ δc1δ
c
2 − 4n1

√
n2 − 4n2

√
n1,

which implies ∆2 ≥ n1/9. Hence,

n2 = |V ′
2 |+ |V c

2 |+ |V m
2 |

≥ δc1δ
c
2 − 4n1

√
n2 − 4n2

√
n1

∆2
+∆1 + δc1 − 1

≥ δc1δ
c
2

∆2
+∆1 + δc1 − 36

√
n2 −

36n2√
n1

.

By symmetry, we also have n1 ≥ δc1δ
c
2

∆1
+∆2 + δc2 − 36

√
n1 − 36n1√

n2
. Therefore,

n1n2 ≥ 3δc1δ
c
2 + f(δc1δ

c
2,∆1∆2) + δc2f(δ

c
1,∆1) + δc1f(δ

c
2,∆2)− 72(n1

√
n2 + n2

√
n1),

where f(a, b) = b+ a2/b. Since f(a, b) ≥ 2a for any positive numbers a, b, it follows that

n1n2 ≥ 9δc1δ
c
2 − 72(n1

√
n2 + n2

√
n1) > n1n2,

which is a contradiction. This completes the proof of Theorem 14.

By Fact 1, the following result can be easily derived from Theorem 14.

Corollary 15. Let G be an edge-colored graph on n vertices. Then the following hold.

(i) If δc(G) > n/3 + 2
√
n+ 1, then G contains a properly colored C4.
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(ii) If δc(G) > n/3 + 24
√
n, then G contains a rainbow C4.

If the host graph G is an edge-colored triangle-free graph on n vertices, then δc(G) >

n/3 + 1 forces a rainbow C4 by a result of Čada et al. [6]. Here, we also asymptotically

resolve this problem using Lemma 7.

Theorem 16. Let G be an edge-colored triangle-free graph on n vertices. If δc(G) > n/5 +

3
√
n, then G contains a rainbow C4, and this is asymptotically best possible by considering

the signature of the n/5-blow-up of a directed C5.

Proof. Let G be an edge-colored triangle-free graph with no rainbow C4 and δc(G) = δc >

n/5 + 3
√
n. Then by triangle-freeness, we have that n/5 + 3

√
n < n/2, and thus n > 100.

We also assume that G is edge-critical, and proceed in our proof with the following claim.

Claim 16.1. There exists an edge uv in G such that ∆mon(u) + ∆mon(v) ≥ 2δc − 8
√
n.

Proof. Let G′ be a maximum V1-proper subgraph of the dual graph Ĝ = (V1, V2;E
′) of G.

By Proposition 13, G′ contains no properly colored K2,4. Applying Lemma 7 to G′ with

s = 2 and t = 4, we obtain a pseudo V2-canonical graph H ⊆ Ĝ such that for each vertex

v(1) ∈ V1, dcH(v
(1)) ≥ δc − 4

√
n. Therefore,

∑

v(1)u(2)∈E(H)

(
dH(v

(2)) + dH(u
(2))

)
=

∑

v(1)∈V1

(
dH(v

(1)) + dH(v
(2))

)
dH(v

(2))

≥(δc − 4
√
n)|E(H)|+ |E(H)|2/n

≥2(δc − 4
√
n)|E(H)|,

where the second inequality is derived from the Cauchy-Schwartz inequality that

∑

v(1)∈V1

(
dH(v

(2))
)2 ≥


 ∑

v(1)∈V1

dH(v
(2))




2

/n = |E(H)|2/n.

By the pigeonhole principle, there exists an edge uv ∈ E(G) such that ∆mon(u)+∆mon(v) ≥
2δc − 8

√
n.

Let uv ∈ E(G) be an edge with ∆mon(u)+∆mon(v) ≥ 2δc−8
√
n, and choose A1 ⊆ N(u)

and A2 ⊆ N(v) such that G[u,A1] and G[v, A2] are monochromatic stars and |A1|+ |A2| ≥
2δc − 8

√
n. Let c1 and c2 be the colors on the edges in G[u,A1] and G[v, A2] respectively.

Since G is edge-critical, we may assume that c(uv) 6= c2. Let B1 be a maximal subset of

N(u) \A1 such that G[u,B1] is a properly colored star with no colors c(uv) and c2. Let B2

be a subset of N(v) \ A2 such that G[v, B2] is a properly colored star of size δc − 3. Then

by triangle-freeness, A1, A2, B1, B2 are pairwise disjoint and |B1| ≥ |B2|.

13



Claim 16.2. For every vertex w ∈ B1, |C(w,A2)| ≤ 2.

Proof. Suppose there exists a vertex w ∈ B1 such that there are at least three colors

appearing between w and A2, then we can greedily find a vertex r ∈ A2 such that c(wr) /∈
{c2, c(uv), c(uw)}. Hence, uvrwu is a rainbow C4, which is a contradiction.

For each vertex w ∈ B1, let Sw be the maximal subset of N(w) ∩B2 such that G[w, Sw]

is a properly colored star with no colors c1 and c(uw).

Claim 16.3. For every w ∈ B1, we have |Sw| > 4
√
n.

Proof. If some w ∈ B1 satisfies that |Sw| ≤ 4
√
n, then by Claim 16.2 and triangle-freeness,

w has at least δc − 4
√
n− 4 neighbors outside A1 ∪A2 ∪B1 ∪B2. Hence, n ≥ |A1|+ |A2|+

|B1|+ |B2|+ δc − 4
√
n− 4 ≥ 5δc − 15

√
n (the second inequality follows from n > 100), i.e.,

δc ≤ n/5 + 3
√
n, which is a contradiction.

Let B′
2 =

⋃
w∈B1

Sw. Then we have the following claim similar to Claim 16.2, and a

simple proof is included for completeness.

Claim 16.4. For each vertex w′ ∈ B′
2, |C(w′, A1)| ≤ 2.

Proof. Suppose that there is a vertex w′ ∈ B′
2 such that there are at least three colors

between w′ and A1. By the definition of B′
2, w

′ ∈ Sw for some vertex w ∈ B1. In this case,

we can greedily find a neighbor of w′ in A1, say r, such that c(rw′) /∈ {c(ww′), c(wu), c1},
which implies that uww′ru is a rainbow C4, which is a contradiction.

Let G′ be a maximum B1-proper subgraph of G[B1, B
′
2]. Applying Lemma 7 to G′

with s = 2 and t = 4, we obtain a pseudo B′
2-canonical subgraph H ′ ⊆ G′ such that

dH′(w) ≥ |Sw| − 4
√
n ≥ 1 for each vertex w ∈ B1. Since B′

2 ⊆ B2 and

∑

xy∈E(H′),x∈B1,y∈B′

2

(
1

dH′(x)
− 1

dH′(y)

)
= |B1| − |B′

2| ≥ |B1| − |B2| ≥ 0,

there is an edge u′v′ ∈ E(H ′) with u′ ∈ B1, v′ ∈ B′
2 and dH′(u′) ≤ dH′(v′). Hence, we can

find a set S ⊆ NG(u
′) \ (A1 ∪ A2 ∪ B1 ∪ B2) of size at least δc − dH′(v′) − 4

√
n − 4 and a

set T ⊆ NG(v
′) \ (A1 ∪A2 ∪B1 ∪B2) of size at least dH′(v′)− 1. Since G is triangle-free, S

and T are disjoint. As n > 100, it follows that

n ≥|A1|+ |A2|+ |B1|+ |B2|+ |S|+ |T |
≥2δc − 8

√
n+ 2δc − 6 + δc − 4

√
n− 5

≥5δc − 15
√
n,

i.e., δc ≤ n/5 + 3
√
n, which is a contradiction.
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5 Concluding Remarks

In this paper we mainly study color degree conditions forcing properly colored cycles of

length at most r or properly colored complete bipartite graphs. As a crucial tool, Theo-

rem 6 reveals a close relationship between edge-colored graphs and oriented graphs. Using

Theorem 6, we have reduced some problems on properly colored cycles to the problems on

directed cycles in oriented graphs.

It is worth noting that f(n, r) ≤ n/(r − 73) for all r > 73 by a result of Shen [24].

Based on this result, we claim that the term 2
√
n in Theorem 3 can not be replaced by any

absolute constant when n is sufficiently large and r = cn for some fixed constant c. Indeed,

suppose in the case r = cn, the term 2
√
n in Theorem 3 can be replaced by an absolute

constant, say C. Then by Theorem 3, f c(n, cn) ≤ C+f(n, cn) ≤ C+2/c, which contradicts

a conclusion of Li and Wang [28] which asserts that for every positive integer l, there exists

an edge-colored graph G with δc(G) ≥ l and no properly colored cycle. Recently, Fujita, Li

and Zhang [8] obtained a tight bound.

Theorem 17. [8] For all positive integers n, d with d!
d∑

i=1

1/i! > n, every edge-colored graph

G on n vertices with δc(G) ≥ d contains a properly colored cycle.

So an interesting problem is to know the exact estimate on the term 2
√
n in Theorem

3. Hence, the first open case is r = 4.

Theorem 10 establishes the color degree condition forcing a properly colored Ks,t. It

would be interesting to know whether there exists a construction indicating that the order

of magnitude n2−1/s in Theorem 10 is tight up to the constant σs,t.

In [13], Li proved that every edge-colored graph G on n vertices with δc(G) ≥ (n+ 1)/2

contains a rainbow triangle. As an extension, one can consider the minimum color degree

conditions for larger rainbow cliques. In addition, it would be also interesting to determine

the minimum color degree condition forcing a rainbow cycle of length at most r for r ≥ 4.
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