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Abstract

The notion of b-regular sequences was generalized to abstract numeration systems
by Maes and Rigo in 2002. Their definition is based on a notion of S-kernel that ex-
tends that of b-kernel. However, this definition does not allow us to generalize all of the
many characterizations of b-regular sequences. In this paper, we present an alterna-
tive definition of S-kernel, and hence an alternative definition of S-regular sequences,
which enables us to use recognizable formal series in order to generalize most (if not
all) known characterizations of b-regular sequences to abstract numeration systems.
We then give two characterizations of S-automatic sequences as particular S-regular
sequences. Next, we present a general method to obtain various families of S-regular
sequences by enumerating S-recognizable properties of S-automatic sequences. As an
example of the many possible applications of this method, we show that, provided
that addition is S-recognizable, the factor complexity of an S-automatic sequence de-
fines an S-regular sequence. In the last part of the paper, we study S-synchronized
sequences. Along the way, we prove that the formal series obtained as the composition
of a synchronized relation and a recognizable series is recognizable. As a consequence,
the composition of an S-synchronized sequence and a S-regular sequence is shown to
be S-regular. All our results are presented in an arbitrary dimension d and for an
arbitrary semiring K.

2010 Mathematics Subject Classification: 68Q45, 11B85, 11A67, 13F25.
Keywords: abstract numeration systems, regular sequences, automatic sequences, synchro-
nized sequences, recognizable formal series, enumeration, first-order logic, weighted au-
tomata, synchronized relations

1 Introduction

Automatic sequences form a family of infinite words over finite alphabets that is widely
studied in combinatorics on words since the pioneer work of Cobham [17, 18]. A sequence
f is said to be automatic if it is generated by a deterministic finite automaton with output
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(DFAO) as follows: the nth term f(n) is the output of the DFAO when the input is the
representation of n in a suitable numeration system. For integer base b numeration sys-
tems, we talk about b-automatic sequences. The most famous example is the Thue-Morse
sequence, which is 2-automatic. See the handbook [3] for an comprehensive presentation
of the subject.

A well-known characterization of b-automatic sequences is given through the notion of
b-kernel: a sequence f is b-automatic if and only if its b-kernel, which is the set of sequences
{n 7→ f(ben+r) | e ∈ N, r ∈ [[0, be−1]]}, is finite. With the aim of generalizing b-automatic
sequences to sequences taking infinitely many values, Allouche and Shallit [2] introduced
the notion of (b,K)-regular sequences over a Nœtherian ring K. They define a sequence
to be (b,K)-regular if the K-module spanned by its b-kernel is finitely generated. Then, it
can be shown that a sequence f : N → K is b-automatic if and only if it is (b,K)-regular
and takes only finitely many values.

Regularity can be defined in numeration systems generalizing integer bases. See for
instance [1, 10, 11, 15, 23, 27] for work on the matter. The most general setting in this
area is given by the so-called abstract numeration systems [22]. An abstract numeration
system S is a triple (L,A,<) where L is an infinite regular language over a totally ordered
alphabet (A,<). The numeration language L is ordered thanks to the radix (or genealogi-
cal) order induced by <. Any non-negative integer n is then represented by the n-th word
of the language. This family of numeration systems includes the usual integer bases and
more generally, any positional numeration system having a regular numeration language.
Maes and Rigo [27] extended (b,K)-regular sequences to abstract numeration systems S
by generalizing the notion of b-kernel to that of S-kernel. However, this definition is not
satisfying for it does not allow us to generalize most characterizations of (b,K)-regular
sequences.

In this paper, we present an alternative definition of regular sequences in abstract nu-
meration systems. Following the lead of Berstel and Reutenauer [4], we define a sequence f
over an arbitrary semiring K to be (S,K)-regular if the formal series

∑

w∈A∗ f(valS(w))w is
K-recognizable. Next, we introduce an alternative definition of S-kernel. This new frame-
work enables us to generalize most known characterizations of (b,K)-regular sequences to
abstract numeration systems with a prefix-closed numeration language. In doing so, we
unify the formal series and kernel’s points of view.

In a previous work [11], we already used the latter definition of regular sequences in
the context of Pisot numeration systems, i.e., numeration systems based on an increasing
sequence of integers that satisfies a linear recurrence over Z whose characteristic polyno-
mial is the minimal polynomial of a Pisot number. Such systems generalize integer bases
and can be seen as particular abstract numeration systems since it is well known that their
numeration languages are regular [21]. We showed in [11] that the notion of (U,K)-regular
sequences is robust, in the sense that it is independent of the algorithm used in order to
represent the integers, provided that it still gives rise to a regular numeration language.
The obtained characterization generalizes results of both Allouche, Scheicher and Tichy [1,
Section 5] and Berstel and Reutenauer [4, Prop. 5.1.1]. But precisely, this one characteri-
zation of (U,K)-regular sequences cannot be generalized to abstract numeration systems.
Indeed, there is no such notion of robustness in the context of abstract numeration sys-
tems since the algorithm used for representing integers is given by the definition of the
considered abstract numeration system itself.

In a second part of the paper, we study the particular cases of S-automatic sequences
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and S-synchronized sequences in detail. We also generalize the technique initiated in [15]
in order to build various examples of (S,K)-regular sequences by enumerating suitable
properties of S-automatic sequences. We take care of presenting all our results in an
arbitrary dimension d. Along the way, we illustrate most introduced notions and obtained
results through a running example.

The paper is organized as follows. Section 2 is devoted to the necessary background
on abstract numeration systems and formal series. In Section 3, we fix a d-tuple S =
(S1, . . . ,Sd) of abstract numeration systems and we define the notion of (S,K)-regular
sequences in terms of formal series. Then we study their closure properties and growth
rate. In Section 4, we introduce a general working hypothesis. Namely, we ask that the
numeration language L is prefix-closed. This hypothesis will only be needed in Sections 5
and 6 in order to obtain an analogy between the formal series point of view and the se-
quences one. In Section 5, we define the S-kernel of a sequence f : Nd → K. Then we prove
three characterizations of (S,K)-regular sequences, which are given by Theorems 22, 27
and 29. These three characterizations may be seen as analogues of the characterizations
of K-recognizable series given in [4]. Section 6 is concerned with S-automatic sequences.
First, Theorem 35 states that a sequence f : Nd → K is S-automatic if and only if its S-
kernel is finite. Next we establish in Theorem 38 that the family of S-automatic sequences
is included in that of (S,K)-regular sequences. In Section 7 we present a general method
in order to obtain (S,N)-regular sequences by enumerating S-recognizable properties of
S-automatic sequences. In particular, we provide an S-recognizable way to enumerate
elements of Nd. Section 8 is devoted to (S,S ′)-synchronized sequences f : Nd → Nd′ . We
prove that if d′ = 1, the family of (S,S ′)-synchronized sequences lies in between those
of S-automatic sequences and (S ,N)-regular sequences. Then we provide various closure
properties of (S,S ′)-synchronized sequences. In particular, thanks to the general notion
of synchronized relations, we show that the composition of synchronized sequences is syn-
chronized. This property does not hold for regular sequences in general. By relaxing
the hypotheses on one of the sequences, we prove in Section 9 that the composition of
a synchronized sequence and a regular one remains regular. The main tool to prove the
latter result is a composition-like operation between a two-tape automaton and a weighted
automaton, generalizing the operation defined in [11].

2 Preliminaries

An interval of integers {i, . . . , j} is denoted [[i, j]]. We make use of common notions in
formal language theory, such as alphabet, letter, word, length of a word, language and
usual definitions from automata theory [24]. In particular, we denote the empty word by
ε and for a finite word w, |w| is its length and for each j ∈ [[1, |w|]], w[j] is its j-th letter.
We also make use of some classical algebraic structures such as semirings and modules.

2.1 Abstract numeration systems

An abstract numeration system is a triple S = (L,A,<) where L is an infinite regular
language over a totally ordered alphabet (A,<). The words in L are ordered with respect
to the radix (or genealogic) order <rad induced by the order < on A: for u, v ∈ A∗, u <rad v
either if |u| < |v|, or if |u| = |v| and u is lexicographically less than v. The S-representation
function repS : N → L maps any non-negative integer n onto the nth word in L (note that
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we start indexing from 0). The S-value function valS : L → N is the reciprocal function of
repS .

Running Example 1. We start a running example by considering the abstract numeration
system S = (a∗b∗, a < b). Since the radix order on a∗b∗ gives

ε <rad a <rad b <rad aa <rad ab <rad bb <rad aaa <rad aab <rad · · ·

the S-representation of 7 is repS(7) = aab. For instance, valS(aaa) = 6 but the S-value
function is not defined on the word ba. It is easily seen that for all m,n ∈ N, we have
valS(a

mbn) = (m+n)(m+n+1)
2 + n.

In general, for any alphabet A and any symbol $ /∈ A, we let A$ = A ∪ {$} and
τA,$ : A

∗
$ → A∗ be the morphism that erases the letter $ and leaves the other letters

unchanged. If there is no ambiguity on the alphabet A, we simply use the notation τ$. For
a d-tuple

[

w1...
wd

]

in A∗
1 × · · · ×A∗

d where A1, . . . , Ad are any alphabets, we set

[

w1...
wd

]$

=

[

$ℓ−|w1|w1...
$ℓ−|wd|wd

]

where $ is a symbol not belonging to A1 ∪ · · · ∪ Ad and ℓ is the maximum of the lengths
of the words w1, . . . , wd. Thus, we have padded the shortest words with leading symbols
# in order to obtain d words of the same length. Then the obtained d-tuple can be seen
as a word over the d-dimensional alphabet (A1)$ × · · · × (Ad)$, that is, an element of
(

(A1)$ × · · · × (Ad)$
)∗

.
From now on, we fix a dimension d, a d-tuple S = (S1, . . . ,Sd) of abstract numeration

systems S1 = (L1, A1, <1), . . . ,Sd = (Ld, Ad, <d) and a padding symbol #, which does not
belong to A1 ∪ · · · ∪Ad. We set

# =

[

#...
#

]

and
A =

(

(A1)# × · · · × (Ad)#
)

\ {#}.
We also define

L = (L1 × · · · × Ld)
#.

Note that since L1, . . . , Ld are regular languages, so is L. We now extend the definition of
the maps repS and valS as follows:

repS : Nd → L,

[

n1...
nd

]

7→
[

repS1
(n1)...

repSd
(nd)

]#

and

valS : L → Nd,

[

w1...
wd

]

7→
[

valS1
(τ#(w1))...

valSd
(τ#(wd))

]

.

The maps repS and valS are reciprocal bijections between Nd and L. Therefore, L is called
the numeration language of the d-dimensional abstract numeration system S.

4



Running Example 2. Consider the 2-dimensional abstract numeration system S =

(S,S). We have # =
[

#
#

]

and

A =
{

[#a ] ,
[

#
b

]

, [ a# ] , [ aa ] , [
a
b ] ,
[

b
#

]

, [ ba ] ,
[

b
b

]}

.

The numeration language L is the set of words over A whose components both belong to

#∗a∗b∗. For instance, repS [ 49 ] =
[

#ab
bbb

]

=
[

#
b

]

[ ab ]
[

b
b

]

and valS
[

aab
##a

]

=
[

valS(aab)
valS(a)

]

= [ 71 ].

A subset X of Nd is S-recognizable if the language repS(X) is regular. A DFA accepting
repS(X) is said to recognize X (with respect to the abstract numeration system S).

Running Example 3. The subset X = {n(n+1)
2 [ 11 ]+ [ 0n ] : n ∈ N} of N2 is S-recognizable

since repS(X) = [ ab ]
∗.

2.2 Formal series

Let A be a finite alphabet and K be a semiring. A (formal) series is a function S : A∗ → K.
The image under S of a word w over A is denoted (S,w) and is called the coefficient of w
in S. A series S : A∗ → K is also written as S =

∑

w∈A∗(S,w)w. We let K〈〈A〉〉 denote
the set of formal series over A with coefficients in K. For S, T ∈ K〈〈A〉〉 and k ∈ K, we
define

S + T =
∑

w∈A∗

(

(S,w) + (T,w)
)

w and kS =
∑

w∈A∗

k(S,w)w.

These operations provide K〈〈A〉〉 with a structure of K-module. For S ∈ K〈〈A〉〉 and
u ∈ A∗, we define

Su−1 =
∑

w∈A∗

(S,wu)w.

A K-submodule of K〈〈A〉〉 is called stable if for all u ∈ A∗, it is closed under the operation
K〈〈A〉〉 → K〈〈A〉〉, S 7→ Su−1.

A series S : A∗ → K is K-recognizable if there exist r ∈ N≥1, a morphism of monoids
µ : A∗ → Kr×r (with respect to concatenation of words and multiplication of matrices) and
two matrices λ ∈ K1×r and γ ∈ Kr×1 such that for all w ∈ A∗, (S,w) = λµ(w)γ. The
triple (λ, µ, γ) is called a linear representation of S of dimension r.

The following results can be found in the textbook [4]. Note that these authors use the
left operation S 7→ u−1S. Both choices lead to the same notion of K-recognizable series
since the family of K-recognizable series is closed under reversal.

Theorem 4. A series S : A∗ → K is K-recognizable if and only if there exists a stable
finitely generated K-submodule of K〈〈A〉〉 containing S.

Running Example 5. Consider the series S : A∗ → N, [ uv ] 7→ max |Suff(u) ∩ Suff(v)|.
Some coefficients of S are given in Figure 1.

w
[

#ab
aab

] [

aaaab
#aaab

] [

aab
bab

]

[ aaab ]
[

a#a
aba

]

(S,w) 2 4 2 0 1

Figure 1: Some coefficients of the series S : A∗ → N.
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Let T : A∗ → N, w 7→ 1. For all a ∈ A, Ta−1 = T and

Sa−1 =

{

S + T if a ∈
{

[ aa ] ,
[

b
b

]}

0 otherwise.

Therefore, 〈S, T 〉N is a stable finitely generated N-submodule of N〈〈A〉〉 containing S. By
Theorem 4, the series S is N-recognizable. More precisely, following the proof of Theo-
rem 4 given in [4], the N-submodule 〈S, T 〉N gives rise to the following linear representation
(λ, µ, γ) of S:

λ = ( 0 1 ) , γ = ( 10 ) , µ [ aa ] = µ
[

b
b

]

=

(

1 0
1 1

)

,

and for a ∈ A \
{

[ aa ] ,
[

b
b

]}

, µ(a) =

(

0 0
0 1

)

. (1)

Since for all u ∈ A∗, the operation K〈〈A〉〉 → K〈〈A〉〉, S 7→ Su−1 is linear and for all
u, v ∈ A∗, (Su−1)v−1 = S(vu)−1, the smallest stable K-submodule of K〈〈A〉〉 containing
S is 〈{Su−1 : u ∈ A∗}〉K. For an arbitrary semiring K, the fact that a series S is K-
recognizable does not imply that 〈{Su−1 : u ∈ A∗}〉K is finitely generated. The following
result provides us with some special cases where this property holds.

Theorem 6. Suppose that K is finite or is a commutative ring. A series S : A∗ → K is
K-recognizable if and only if the smallest stable K-submodule of K〈〈A〉〉 containing S is
finitely generated.

Theorem 7. Suppose that K is finite or is a commutative ring. If S : A∗ → K is a
K-recognizable series with finite image, then for all k ∈ K, S−1(k) is a regular language.

The Hadamard product of two series S, T ∈ K〈〈A〉〉 is the series

S ⊙ T =
∑

w∈A∗

(

(S,w)(T,w)
)

w.

Note that for all u ∈ A∗, (S⊙T )u−1 = Su−1⊙Tu−1. If L is a language over A, then its char-
acteristic series is the formal series L =

∑

w∈Lw. In particular, S ⊙ L =
∑

w∈L(S,w)w.
Also note that for all u ∈ A∗, Lu−1 = Lu−1.

Proposition 8. If S : A∗ → K is a K-recognizable series and L ⊆ A∗ is a regular language,
then S ⊙ L is K-recognizable.

3 (S,K)-Regular sequences and first properties

From now on, we let K designate an arbitrary semiring.

Definition 9. A sequence f : Nd → K is called (S,K)-regular if the formal series

Sf :=
∑

w∈L

f(valS(w))w

is K-recognizable.
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Running Example 10. Consider the 2-dimensional sequence

f : N2 → N, [mn ] 7→ max |Suff(repS(m)) ∩ Suff(repS(n))|.

We have Sf = S ⊙ L. Since S is an N-recognizable series and L is a regular language, by
Proposition 8, the series Sf is N-recognizable, and hence the sequence f is (S,N)-regular.
An example of unidimensional (S,N)-regular sequence is given by the identity function
N → N, n 7→ n [26].

3.1 Left-right duality

In order to represent vectors of integers, we chose the convention of padding the S-
representations to the left. Therefore, unless we work in dimension 1, the notion of (S,K)-
regular sequences defined above is not left-right symmetric. In fact, the choice of a left
padding will influence all choices that will be made in order to characterize (S,K)-regular
sequences. In what follows, we will take care to emphasize all definitions that depend on
this "left choice" and comment on the consequences.

3.2 First properties

We first present some closure properties of (S,K)-regular sequences.
The Hadamard product of two sequences f : Nd → K and g : Nd → K is the sequence

f ⊙ g : Nd → K, n 7→ f(n)g(n).

Proposition 11. Let f, g : Nd → K be two (S,K)-regular sequences and let k ∈ K. The
sequences f + g, kf and f ⊙ g are (S,K)-regular.

Proof. We have Sf+g = Sf + Sg, Skf = kSf and Sf⊙g = Sf ⊙ Sg, so the statement follows
from closure properties of K-recognizable series [4, Chapter 1].

The family of K-recognizable sequences is closed under finite modifications.

Proposition 12. Let f : Nd → K be a K-recognizable sequence and let g : Nd → K be such
that g(n) = f(n) for all n ∈ Nd except a finite number of them. Then the sequence g is
K-recognizable.

Proof. Let F = repS({n ∈ Nd : g(n) 6= f(n)}). By assumption, F is a finite language.
Therefore, Sg = Sf ⊙A∗ \ F +

∑

w∈F g(valS(w))w is K-recognizable by Proposition 8 and
since polynomials (i.e., series with finite support) are always K-recognizable.

Next we study the growth rate of (S,K)-regular sequences.

Proposition 13. Assume that K is equipped with an absolute value | · |K : K → R≥0 and
that there are a function g : Nd → N and N ∈ N such that for all n ∈ Nd satisfying
min{n1, . . . , nd} ≥ N , we have |repS(n)| ≤ g(n). Then for any (S,K)-regular sequence
f : Nd → K, there exists c ∈ R>0 such that |f(n)|K ∈ O(cg(n)).

Proof. Let f : Nd → K be a (S,K)-regular sequence and let (λ, µ, γ) be a linear rep-
resentation of Sf . Consider any submultiplicative matrix norm || · ||K induced by the
absolute value | · |K on K and let c = max{||λ||K,maxa∈A ||µ(a)||K, ||γ||K}. If n ∈ Nd

is such that all its components are large enough, then |repS(n)| ≤ g(n) and we get
|f(n)|K = |λµ(repS(n))γ|K ≤ cg(n)+2.

7



Running Example 14. Let v : N → N, ℓ 7→ Card{w ∈ a∗b∗ : |w| ≤ ℓ}. Then for all
n, ℓ ∈ N, |repS(n)| = ℓ if and only if n ∈ [[v(ℓ − 1), v(ℓ) − 1]]. It is easily seen that for all
ℓ ∈ N, v(ℓ) = (ℓ+1)(ℓ+2)

2 . Thus, for all n ∈ N, |repS(n)| ≤
√
2n. Applying Proposition 13,

we get that f [mn ] ∈ O(c
√

max{m,n}) for some c ∈ R>0.

Let us now show that the family of regular sequences is closed under projection.
For i ∈ [[1, d]], we let δi(S) denote the (d−1)-dimensional abstract numeration system
(S1, . . . ,Si−1,Si+1, . . . ,Sd), we let δi(#) denote the (d−1)-dimensional letter all whose
components are equal to # and we let δi(A) =

(

(A1)# × · · · × (Ai−1)# × (Ai+1)# × · · · ×
(Ad)#

)

\ {δi(#)} denote the corresponding (d−1)-dimensional alphabet. Similarly, for
a ∈ A, we let δi(a) denote the letter obtained by deleting the i-th component of a.

Proposition 15. Let f : Nd → K be an (S,K)-regular sequence, let i ∈ [[1, d]] and let
k ∈ N. Then the (d−1)-dimensional sequence

δi,k(f) : N
d−1 → K,









n1...
ni−1
ni+1...
nd









7→ f











n1...
ni−1

k
ni+1...
nd











is (δi(S),K)-regular.

Proof. The set Xi,k := {n ∈ Nd : ni = k} is S-recognizable. By Proposition 8, the series
Sf ⊙repS(Xi,k) is K-recognizable. Let (λ, µ, γ) be a linear representation, say of dimension

r, of the latter series. Define a morphism µ′ :
(

δi(A)
)∗ → Kr×r by setting, for each b ∈

δi(A),
µ′(b) =

∑

a∈A
δi(a)=b

µ(a).

Then for all y ∈ (δi(A))∗ such that |y| ≥ |repSi
(k)|, we have λµ′(y)γ = (Sδi,k(f),y).

Therefore, the series Sδi,k(f) is a finite modification of a K-recognizable series, hence it is
K-recognizable.

4 Working hypothesis

In what follows, we sometimes impose as an extra condition on the abstract numeration
system S that the numeration language L is prefix-closed, that is,

∀u,v ∈ A∗, uv ∈ L =⇒ u ∈ L. (WH)

This amounts to asking that all languages L1, . . . , Ld are prefix-closed.
We note that this working hypothesis is satisfied by most of the usual numeration

systems. For example, it is true for integer base numeration systems, the Zeckendorf
numeration system, and more generally for all Bertrand numeration systems [5, 7], as
well as for substitutive numeration systems [19]. This hypothesis is also crucial in order to
generalize various properties of integer bases to abstract numeration systems. In particular,
it is used in order to be able to represent real numbers [14] or to study the carry propagation
of the successor function [6]. Finally, we note that from the proof of the fact that an infinite

8



word is S-automatic for some abstract numeration S if and only if it is morphic, it can be
deduced that an infinite word is S-automatic for some abstract numeration S if and only
if it is S ′-automatic for some abstract numeration S ′ having a prefix-closed numeration
language. See [27], and also [12] for a multidimensional version of this result.

In the present work, the fact that L is prefix-closed is used in order to obtain the three
characterizations of (S,K)-regular sequences in terms of the S-kernel given in Section 5. It
also has repercussions on some results of Section 6. Every result that requires this working
hypothesis is marked by (WH).

5 S-kernel of a sequence

The following considerations generalize those of [4, Chapter 5].

Definition 16. For f : Nd → K and w ∈ A∗, we define a sequence f ◦w : Nd → K by

(f ◦w)(n) =

{

f(valS(repS(n)w)) if repS(n)w ∈ L

0 otherwise

for all n ∈ Nd. A K-submodule of KNd
is called stable if it is closed under all operations

f 7→ f ◦w for all w ∈ A∗. The S-kernel of a sequence f : Nd → K, denoted kerS(f), is
the set of all sequences of the form f ◦w:

kerS(f) = {f ◦w : w ∈ A∗}.

Running Example 17. For all w ∈ A+ \ (A∗ [ aa ] ∪A∗
[

b
b

]

), we have f ◦w = 0. For all
u ∈ a∗b∗, we have ub ∈ a∗b∗ so we get

f ◦
[

b
b

]

= f + 1. (2)

Moreover, for all n ∈ N2,

(f ◦ [ aa ])(n) =
{

f(n) + 1 if n ∈ valS(a
∗)× valS(a

∗)

0 else.

Some values of the function f ◦
[

ab
ab

]

are given in Figure 2.

n [ 01 ] [ 12 ] [ 32 ] [ 63 ]

repS(n) [#a ] [ ab ] [ aa#b ] [ aaa#aa ]

repS(n)
[

ab
ab

] [

#ab
aab

] [

aab
bab

] [

aaab
#bab

] [

aaaab
#aaab

]

valS(repS(n)
[

ab
ab

]

) [ 47 ] ∄ ∄ [ 1611 ]

(f ◦
[

ab
ab

]

)(n) 2 0 0 4

Figure 2: Some values of the function f ◦
[

ab
ab

]

.

Let us establish a link between sequences and series, i.e., between the K-module KNd

equipped with the operations f 7→ f ◦ w for all w ∈ A∗, and the K-module K〈〈A〉〉
equipped with the operations S 7→ Sw−1 for all w ∈ A∗. Let

Z = {S ∈ K〈〈A〉〉 : for all w ∈ A∗ \L, (S,w) = 0}

9



and let
h : KNd → Z, f 7→ Sf .

Clearly, Z is a K-submodule of K〈〈A〉〉.

Lemma 18. The map h is an isomorphism of K-modules.

Proof. Let us first show that h is injective. Let f1, f2 : N
d → K such that Sf1 = Sf2 . For

all n ∈ Nd, f1(n) = (Sf1 , repS(n)) = (Sf2 , repS(n)) = f2(n). Therefore f1 = f2. The
map h is surjective since for all S ∈ Z, the sequence f : Nd → K, n 7→ (S, repS(n)) is
such that S = Sf . Finally, for all f1, f2 : Nd → K and k1, k2 ∈ K, we have Sk1f1+k2f2 =
k1Sf1 + k2Sf2 .

Lemma 19. (WH) The K-submodule Z of K〈〈A〉〉 is stable.

Proof. Let w ∈ A∗ and S ∈ Z. Since L is prefix-closed, for all u ∈ A∗ \L, uw /∈ L, hence
(Sw−1,u) = (S,uw) = 0. Therefore, Sw−1 ∈ Z.

Lemma 20. (WH) For all w ∈ A∗ and f : Nd → K, Sf◦w = Sfw
−1.

Proof. Let w,u ∈ A∗ and f : Nd → K. By using that L is prefix-closed, we obtain

(Sf◦w,u) =

{

(f ◦w)(valS(u)) if u ∈ L

0 otherwise

=

{

f(valS(uw)) if u ∈ L and uw ∈ L

0 otherwise

=

{

f(valS(uw)) if uw ∈ L

0 otherwise

= (Sf ,uw)

= (Sfw
−1,u).

Remark 21. The notion of S-kernel of a sequence is not left-right symmetric. The S-
kernel defined above may be seen as the right S-kernel. The left S-kernel of a sequence
f : Nd → K would then be the set of sequences {w ◦ f : w ∈ A∗} where for every w ∈ A∗,
w ◦ f : Nd → K is the sequence defined by

(w ◦ f)(n) =
{

f(valS(w repS(n))) if w repS(n) ∈ L

0 otherwise

for all n ∈ Nd. In this case, we need to adapt the conventions used so far: we pad
representations of vectors of integers with #’s on the right, we ask the numeration language
L to be suffix-closed and we say that a K-submodule of KNd

is left stable if it is closed
under all operations f 7→ w ◦ f for all w ∈ A∗. Provided that these conventions are taken,
all the results of this work can be adapted to the left version of the S-kernel.

In this paper, we chose the right version of the operation ◦ to stick to the usual definition
of the kernel in integer bases. This also justifies the choice of the operation S 7→ Sw−1 in
Section 2.2. Indeed, the left version of Lemma 20 is to say that Sw◦f = w−1Sf .
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Theorem 22. (WH) A sequence f : Nd → K is (S,K)-regular if and only if there exists a

stable finitely generated K-submodule of KNd
containing f .

Proof. Suppose that such a K-submodule M exists. We have to show that Sf is K-
recognizable. To this aim, we prove that h(M) is a stable finitely generated K-submodule
of K〈〈A〉〉 containing Sf , and we conclude by Theorem 4. First, h(M) is a finitely gener-
ated K-submodule of Z by Lemma 18, and hence also of K〈〈A〉〉. Next, Sf ∈ h(M) since
f ∈ M . Finally, let us show that h(M) is stable. Let g ∈ M and w ∈ A∗. By Lemma 20,
Sgw

−1 = Sg◦w. Since M is stable, g ◦w ∈ M , yielding Sgw
−1 ∈ h(M).

Conversely, let f : Nd → K be a (S,K)-regular sequence. By definition, the series Sf is
K-recognizable. By Theorem 4, there exists a stable finitely generated K-submodule N of
K〈〈A〉〉 containing Sf . Let G1, . . . , Gn ∈ K〈〈A〉〉 be such that N = 〈G1, . . . , Gn〉K. Since
L is a regular language, there exist words w1, . . . , wℓ ∈ A∗ such that

{Lw−1 : w ∈ A∗} = {Lw−1
1 , . . . ,Lw−1

ℓ }.

Without loss of generality, we may assume that Lw−1
1 = L. Define

N ′ =
〈

{Gi ⊙ (Lw−1
j ) : i ∈ [[1, n]], j ∈ [[1, ℓ]]}

〉

K
.

Clearly, N ′ is a finitely generated K-submodule of K〈〈A〉〉. Let us prove that N ′ contains
Sf , is stable and is a subset of Z.

First, since Sf ∈ N , there exist α1, . . . , αn ∈ K such that Sf =
∑n

i=1 αiGi. Then

Sf = Sf ⊙L =
n
∑

i=1

αi(Gi ⊙L) =
n
∑

i=1

αi(Gi ⊙ (Lw−1
1 )) ∈ N ′.

Second, we show that N ′ is stable. The operations K〈〈A〉〉 → K〈〈A〉〉, S 7→ Sw−1 being
linear for all w ∈ A∗ and since (Su−1)v−1 = S(vu)−1 for all S ∈ K〈〈A〉〉 and u,v ∈ A∗, it
is enough to show that N ′ contains the series Sa−1 for all series S that generate N ′ and all
a ∈ A. Let thus i ∈ [[1, n]], j ∈ [[1, ℓ]] and a ∈ A. Since N is stable, Gia

−1 =
∑n

t=1 βi,a,tGt

for some βi,a,1, . . . , βi,a,n ∈ K. Moreover, L(awj)
−1 = Lw−1

kj,a
for some kj,a ∈ [[1, ℓ]]. We

get
(

Gi ⊙ (Lw−1
j )
)

a−1 = Gia
−1 ⊙ (Lw−1

j )a−1

= Gia
−1 ⊙L(awj)

−1

=
n
∑

t=1

βi,a,t(Gt ⊙Lw−1
kj,a

)

which shows that indeed
(

Gi⊙ (Lw−1
j )
)

a−1 belongs to N ′. Third, in order to get N ′ ⊆ Z,

it suffices to see that for all j ∈ [[1, ℓ]] and w ∈ A∗ \L, (Lw−1
j ,w) = 0, which follows from

the fact that L is prefix-closed.
By Lemmas 18 and 20, M = h−1(N ′) is a stable finitely generated K-submodule of

KNd

containing f , as desired.

Remark 23. The proof of Theorem 4 is constructive in the sense that any linear repre-
sentation of a series S ∈ K〈〈A〉〉 gives rise to a set of generators of a finitely generated
stable K-submodule of K〈〈A〉〉 containing S, and conversely, any set of generators of such
a K-submodule provides a linear representation for S.
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Provided that DFAs accepting the numeration languages L1, . . . , Ld are known, this
implies that the proof of Theorem 22 is constructive as well: any linear representation
of Sf gives rise to a set of generators of a stable finitely generated K-submodule of KNd

containing f , and conversely, any set of generators of such a K-submodule provides a linear
representation for Sf .

Now, we prove two properties that are crucial for the proofs of Theorems 27 and 29.
First, for all w ∈ A, the operation f 7→ f ◦w is linear.

Lemma 24. For all w ∈ A∗, f1, f2 : N
d → K and k1, k2 ∈ K, (k1f1 + k2f2) ◦ w =

k1(f1 ◦w) + k2(f2 ◦w).

Proof. This is a straightforward verification.

The second property of ◦ that we establish cannot be obtained from the notion of
S-kernel used in [27].

Lemma 25. (WH) For all u,v ∈ A∗ and f : Nd → K, (f ◦ v) ◦ u = f ◦ uv.

Proof. This is a consequence of Lemmas 18 and 20 and the property that for all u,v ∈ A∗

and S ∈ K〈〈A〉〉, (Sv−1)u−1 = S(uv)−1.

Running Example 26. We illustrate the previous lemma by computing
(

(f◦
[

b
b

]

)◦[ aa ]
)

(n)
for n ∈ {[ 01 ] , [ 12 ] , [ 32 ] , [ 63 ]}. Since repS [ 13 ] = [#a

aa ] and repS [ 106 ] = [ aaaa#aaa ], we get f [ 13 ] = 1
and f [ 106 ] = 3. Then by using (2), we obtain the array of Figure 3. Observe that the last

n [ 01 ] [ 12 ] [ 32 ] [ 63 ]

repS(n) [#a ] [ ab ] [ aa#b ] [ aaa#aa ]

repS(n) [
a
a ] [#a

aa ] [ aaba ] [ aaa#ba ] [ aaaa#aaa ]

valS(repS(n) [
a
a ]) [ 13 ] ∄ ∄ [ 106 ]

((f ◦
[

b
b

]

) ◦ [ aa ])(n) 2 0 0 4

Figure 3: Some values of the function (f ◦
[

b
b

]

) ◦ [ aa ].

row coincides with that of Figure 2.

We obtain the following practical criterion for (S,K)-regularity.

Theorem 27. (WH) A sequence f : Nd → K is (S,K)-regular if and only if there exist
r ∈ N≥1 and f1, f2, . . . , fr : N

d → K such that f = f1 and for all a ∈ A and all i ∈ [[1, r]],
there exist ka,i,1, . . . , ka,i,r ∈ K such that

fi ◦ a =

r
∑

j=1

ka,i,jfj.

Proof. The necessary condition follows from Theorem 22. Conversely, suppose that such
sequences f1, f2, . . . , fr exist. By induction on the length of w and by using Lemmas 24
and 25, we obtain that for all w ∈ A∗, fi ◦w is a K-linear combination of f1, f2, . . . , fr.
Therefore, 〈f1, . . . , fr〉K is a stable finitely generated K-submodule that contains f . By
Theorem 22, f is (S,K)-regular.
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Running Example 28. We prove the (S,N)-regularity of the sequence f by using The-
orem 27. Define the sequence

g : N2 → N, n 7→
{

f(n) if n ∈ valS(a
∗)× valS(a

∗)

0 otherwise.

We show that the ten functions f , g, χ{0}×valS(a∗), χ{0}×N, χvalS(a∗)×{0}, χvalS(a∗)×valS(a∗),
χvalS(a∗)×N, χN×{0}, χN×valS(a∗) and 1 satisfy Theorem 27. Let a ∈ A. First, we have

f ◦ a =











g + χvalS(a∗)×valS(a∗) if a = [ aa ]

f + 1 if a =
[

b
b

]

0 otherwise

and

g ◦ a =

{

g + χvalS(a∗)×valS(a∗) if a = [ aa ]

0 otherwise.

Next, take X1,X2 ∈ {{0}, valS(a∗),N} such that not both X1,X2 are equal to {0}. Note
that χN×N = 1. We have χX1×X2 ◦ a = χY1×Y2 where for each i ∈ {1, 2},

Yi =























{0} if ai = #

valS(a
∗) if ai = a and Xi ∈ {valS(a∗),N}

N if ai = b and Xi = N

∅ otherwise.

Following the proof of Theorem 22, the ten series Sf , Sg, Sχ{0}×valS (a∗)
, Sχ{0}×N

, SχvalS (a∗)×{0}
,

SχvalS (a∗)×valS (a∗)
, SχvalS (a∗)×N

, SχN×{0}
, SχN×valS (a∗)

and S1 generate a stable N-submodule
of N〈〈A〉〉 containing Sf .

It follows from Lemmas 24 and 25 that 〈kerS(f)〉K is the smallest stable K-submodule
of KNd

containing f . For an arbitrary semiring K, the fact that f is an (S,K)-regular
sequence does not imply that 〈kerS(f)〉K is finitely generated. The following theorem
provides us with some cases where 〈kerS(f)〉K is indeed finitely generated.

Theorem 29. (WH) Let f : Nd → K. If 〈kerS(f)〉K is finitely generated then f is (S ,K)-
regular. If f is (S,K)-regular and if moreover K is finite or is a commutative ring, then
〈kerS(f)〉K is finitely generated.

Proof. Since 〈kerS(f)〉K is a stable K-submodule of KNd

containing f , the first part of the
statement follows from Theorem 22. Second, suppose that f is (S,K)-regular and that K is
finite or is a commutative ring. Then the series Sf is K-recognizable and by Theorem 6, the
K-submodule M := 〈{Sfw

−1 : w ∈ A∗}〉K of K〈〈A〉〉 is finitely generated. By Lemma 20,
for all w ∈ A∗, we have h(f ◦ w) = Sf◦w = Sfw

−1. Therefore, 〈kerS(f)〉K = h−1(M),
and the conclusion follows from Lemma 18.

Running Example 30. For w ∈ A∗ \ [ aa ]∗
[

b
b

]∗
, we have f ◦w = 0, for k ∈ N, we have

f ◦
[

b
b

]k
= f + k and for k, k′ ∈ N with k ≥ 1, we have

(

f ◦ [ aa ]k
[

b
b

]k′
)

(n) =

{

f(n) + k + k′ if n ∈ valS(a
∗)× valS(a

∗)

0 otherwise.
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Therefore, 〈kerS(f)〉N is not finitely generated. However, 〈kerS(f)〉Z is finitely generated
by Theorem 29. Indeed, it is easily seen that 〈kerS(f)〉Z = 〈f, f ◦ [ aa ] , f ◦

[

b
b

]

, f ◦ [ aaaa ]〉Z.

Remark 31. As mentioned earlier, Theorem 29 can be reformulated in terms of the left
S-kernel. The notion of left (resp. right) kernel then corresponds to that of left (resp.
right) (S,K)-regular sequence, which is obtained by using a right (resp. left) padding. In
the unidimensional case, the families of left (S,K)-regular sequences and of right (S,K)-
regular sequences obviously coincide since no padding is necessary. Therefore, for any
sequence f : N → K where K is finite or is a commutative ring, even though the left
and right S-kernels of f may be different sets, they generate K-submodules of KN that
are simultaneously finitely generated. However, there is no such nice analogy in higher
dimensions since it might be that a left (S,K)-regular sequence is not a right (S,K)-
regular sequence, or vice-versa.

6 S-Automatic sequences

Automatic sequences for abstract numeration systems were originally defined in [25] and
were further studied in [12, 27].

Definition 32. A sequence f : Nd → K is called S-automatic if there exists a deterministic
finite automaton with output (DFAO) A = (Q, q0, δ,A, τ,∆), where the output alphabet
∆ is a subset of K, such that for all n ∈ Nd, f(n) = τ(δ(q0, repS(n))). We say that such
a DFAO generates the sequence f .

Lemma 33. If f : Nd → K is an S-automatic sequence then there exists a complete DFAO
A = (Q, i, δ,A, τ,∆) such that for all w ∈ A∗,

τ(δ(i,w)) =

{

f(valS(w)) if w ∈ L

0 else.

Proof. Let A1 = (Q1, i1, δ1,A, τ1,∆) be a complete DFAO generating f and let A2 =
(Q2, i2, δ2,A, F ) be the minimal automaton of L. The following DFAO satisfies the desired
property: B = (Q1 ×Q2, (i1, i2), δ,A, τ,∆ ∪ {0}) where

δ : (Q1 ×Q2)×A → Q1 ×Q2, ((q1, q2),a) 7→ (δ1(q1,a), δ2(q2,a))

and

τ : Q1 ×Q2 → ∆ ∪ {0}, (q1, q2) 7→
{

τ1(q1) if q2 ∈ F

0 else.

In the proof of Theorem 35 below, we work with reverse representations repS(n)
R. A

sequence f : Nd → K is reversal-S-automatic if there exists a DFAO A = (Q, q0, δ,A, τ,∆),
where ∆ is a finite subset of K, such that for all n ∈ Nd, f(n) = τ(δ(q0, repS(n)

R)).

Lemma 34. A sequence f : Nd → K is S-automatic if and only if it is reversal-S-
automatic.

Proof. This is a straightforward generalization of the proof of [27, Proposition 9] to multi-
dimensional sequences.
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We now characterize S-automatic sequences by means of the S-kernel.

Theorem 35. Let f : Nd → K. If f is S-automatic then kerS(f) is finite. Under WH, if
kerS(f) is finite then f is S-automatic.

Proof. First, suppose that f is an S-automatic sequence. Let A = (Q, i, δ,A, τ,∆) be a
DFAO as in Lemma 33. For all w ∈ A∗, define a DFAO Aw = (Q, i, δ,A, τw,∆) where
for all q ∈ Q, τw(q) = τ(δ(q,w)). Then for all w ∈ A∗, Aw generates the sequence f ◦w.
Since Card(kerS(f)) ≤ Card{τw : w ∈ A∗} ≤ Card(∆)Card(Q), we obtain that kerS(f) is
finite.

Conversely, assume that kerS(f) is finite. Define a DFAO A = (Q, i, δ,A, τ,∆) where
Q = {(Lw−1, f ◦ w) : w ∈ A∗}, i = (L, f) and for all w ∈ A∗, δ((Lw−1, f ◦ w),a) =
(L(aw)−1, f ◦ aw) and τ(Lw−1, f ◦ w) = f(valS(w)) if w ∈ L (the output function τ
can take whatever values on words w /∈ L). Let us prove that for all w ∈ A∗, δ(i,wR) =
(Lw−1, f ◦ w). We proceed by induction on the length of w. The base case is given
by δ(i, ε) = i = (L, f). Now, suppose that the claim holds for some w ∈ A∗. Then,
by Lemma 25, for all a ∈ A, δ(i, (aw)R) = δ(δ(i,wR), a) = δ((Lw−1, f ◦ w),a) =
(L(aw)−1, f ◦ aw). It follows that for all n ∈ Nd, τ(δ(i, repS(n)

R)) = τ(LrepS(n)
−1, f ◦

repS(n)) = f(n). Thus, f is reversal-S-automatic, hence also S-automatic by Lemma 34.

Remark 36. Even though the statement of Theorem 35 (when restricted to unidimensional
sequences) coincide with that of [27, Proposition 7], Theorem 35 is indeed a new result
since we are working with a different notion of S-kernel. As a consequence, we obtain that,
for any given sequence f , both kernels are simultaneously finite. In fact, the cardinality of
the S-kernel defined here is always greater than or equal to the cardinality of the kernel
defined in [27].

We next establish the link between S-automatic sequences and S-regular sequences.

Lemma 37. A sequence f : Nd → K is S-automatic if and only if it takes only finitely
many values and for all k ∈ K, the subsets f−1(k) of Nd are S-recognizable.

Proof. This is a straightforward adaptation of the proof of [25, Theorem 8] to the multidi-
mensional setting.

Theorem 38. Let f : Nd → K.

• If f is S-automatic then it is (S,K)-regular.

• If f is (S ,K)-regular and takes only finitely many values, and if moreover K is
included in a commutative ring, then f is S-automatic.

• If f is (S,K)-regular and if K is finite, then f is S-automatic.

Proof. Let f : Nd → K be an S-automatic sequence and let A = (Q, i, δ,A, τ,∆) be a
DFAO as in Lemma 33. For q ∈ Q, define

λq =

{

1 if q = i

0 else
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and γq = τ(q). Moreover, for a ∈ A and q, q′ ∈ Q, define

(µ(a))q,q′ =

{

1 if δ(q,a) = q′

0 else.

Then (λ, µ, γ) is a linear representation of dimension Card(Q) of the series Sf .
Now, suppose that f is (S,K)-regular and takes only finitely many values, and that K

is finite or is included in a commutative ring. Then Sf is a K-recognizable series with a
finite image. By Theorem 7, for all k ∈ K, the language S−1

f (k) is regular. Since for all

k ∈ K, repS(f
−1(k)) = S−1

f (k) ∩L, it follows from Lemma 37 that f is S-automatic.

Remark 39. Under the working hypothesis, another way to obtain the first item of The-
orem 38 is to use Theorems 29 and 35. Indeed, if kerS(f) is finite then clearly 〈kerS(f)〉K
is finitely generated.

Corollary 40. Let f : Nd → Z be a (S,Z)-regular sequence. For all m ∈ N≥2, the sequences
f mod m : Nd → Z/mZ, n 7→ f(n) mod m are S-automatic.

Proof. Let m ∈ N≥2. Since f is (S,Z)-regular, f mod m is clearly (S,Z/mZ)-regular. The
result then follows from the third item of Theorem 38.

Running Example 41. Since the sequence f is (S,Z)-regular, Corollary 40 implies that
the sequences f mod m : N2 → Z/mZ, n 7→ f(n) mod m are S-automatic for all m ∈ N≥2.
Since 〈kerS(f)〉Z = 〈f, f ◦ [ aa ] , f ◦

[

b
b

]

, f ◦ [ aaaa ]〉Z, we get that 〈kerS(f mod m)〉Z/mZ =
{(

i · f + j · (f ◦ [ aa ]) + k ·
(

f ◦
[

b
b

])

+ ℓ · (f ◦ [ aaaa ])
)

mod m : i, j, k, ℓ ∈ Z/mZ
}

. Since
the numeration language L is prefix-closed, the proof of Theorem 35 provides us with an
effective construction of a DFAO of size 9 ·m4 computing f mod m. By directly using the
definition of f , it can be seen that the DFAO of Figure 4 also computes f mod m. The
size of this DFAO is 2m+ 7.

Remark 42. Under the working hypothesis and assuming that K is finite or is included in
a commutative ring, Theorem 38 combined with Theorem 29 provides us with another proof
of the fact that the finiteness of kerS(f) implies that f is S-automatic. Indeed, let f : Nd →
K and suppose that kerS(f) is finite. Then f is (S,K)-regular by Theorem 29. Now,
suppose towards a contradiction that f takes infinitely many values. Let (ni)i∈N ∈ (Nd)N be
such that for all distinct i, j ∈ N, f(ni) 6= f(nj). Let i, j ∈ N with i 6= j. Since L is prefix-
closed, repS(0) = ε and we have (f ◦ repS(ni))(0) = f(ni) 6= f(nj) = (f ◦ repS(nj))(0).
Since f ◦ repS(ni) and f ◦ repS(nj) both belong to kerS(f), we conclude that kerS(f) is
infinite, a contradiction. Therefore, f has a finite image and we conclude by Theorem 38.

The family of S-automatic sequences is closed under projection.

Corollary 43. Let f : Nd → K be an S-automatic sequence, let i ∈ [[1, d]] and let k ∈ N.
Then the (d−1)-dimensional sequence δi,k(f) : N

d−1 → K (defined as in Proposition 15) is
δi(S)-automatic.

Proof. Since f has a finite image and since there exist finite semirings of all sizes, we may
assume that K is finite. Then the result follows from Proposition 15 and Theorem 38.
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Figure 4: A DFAO generating f mod m for m ∈ N≥2.

7 Enumerating S-recognizable properties of S-automatic se-

quences give rise to (S,N)-regular sequences

In this section, we show how some enumeration properties of S-automatic sequences give
rise to (S,N)-regular sequences. The technique that we use contains three ingredients that
we describe in Subsections 7.1, 7.2 and 7.3. In doing so, we positively answer [10, Problem
3.5.7].

We focus on the semirings N and N∞ = N ∪ {∞}. The sum and product over N are
extended to N∞ as follows: for all n ∈ N∞, ∞ + n = n +∞ = ∞; for all n ∈ N∞ \ {0},
∞ · n = n · ∞ = ∞; and ∞ · 0 = 0 · ∞ = 0.

7.1 First ingredient: S-recognizable enumerations of Nd

We define an enumeration ES : Nd → N recursively as follows. We fix a total order on A

and we consider the induced radix order on A∗. Then we define a total order <S on Nd

by declaring that

∀m,n ∈ Nd, m <S n ⇐⇒ repS(m) <rad repS(n).

For all n ∈ Nd, we define ES(n) = i if n is the i-th element of Nd with respect to this
total order on Nd. Note that we start indexing at i = 0, so ES(0) = 0.

Running Example 44. We fix the following total order on the alphabet A:

1 2 3 4 5 6 7 8

[#a ]
[

#
b

]

[ a# ] [ aa ] [ ab ]
[

b
#

]

[ ba ]
[

b
b

]

.
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This choice induces the following order on the pairs of integers that are represented by a
single letter:

1 2 3 4 5 6 7 8

[ 01 ] [ 02 ] [ 10 ] [ 11 ] [ 12 ] [ 20 ] [ 21 ] [ 22 ] .

Note that in this example, all letters in A actually belong to the numeration language L.
In general, the list of d-tuples of integers represented by a single letter might be shorter
than the size of the alphabet A. The corresponding radix order on the words over A∗ of
length 2 whose components belong to #∗a∗b∗ is given by

9 10 11 12 13 14 15 16 17

[##
aa ]

[

##
ab

]

[#a
aa ]

[

#a
ab

]

[#b
aa ]

[

#b
ab

] [

##
bb

] [

#a
bb

] [

#b
bb

]

18 19 20 21 22 23 24 25 26

[ aa
## ] [ aa#a ] [ aa#b ]

[

ab
##

] [

ab
#a

] [

ab
#b

]

[ aaaa ] [ aaab ] [ abaa ]

27 28 29 30 31 32 33 34 35
[

ab
ab

]

[ aabb ]
[

ab
bb

] [

bb
##

] [

bb
#a

] [

bb
#b

]

[ bbaa ]
[

bb
ab

] [

bb
bb

]

This provides us with the following order on the corresponding pairs of integers:

9 10 11 12 13 14 15 16 17

[ 03 ] [ 04 ] [ 13 ] [ 14 ] [ 23 ] [ 24 ] [ 05 ] [ 15 ] [ 25 ]

18 19 20 21 22 23 24 25 26

[ 30 ] [ 31 ] [ 32 ] [ 40 ] [ 41 ] [ 42 ] [ 33 ] [ 34 ] [ 43 ]

27 28 29 30 31 32 33 34 35

[ 44 ] [ 35 ] [ 45 ] [ 50 ] [ 51 ] [ 52 ] [ 53 ] [ 54 ] [ 55 ]

The first values of the enumeration ES are represented in Figure 5.
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31
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33

34

35

ε a b aa ab bb

ε

a

b

aa

ab

bb

Figure 5: The enumeration E(S,S) for S = (a∗b∗, a < b).
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Example 45. Consider the following order on the alphabet A = {#, 0, 1}2 \ {[ #

# ]}:
[

#
0

]

<
[

#
1

]

<
[

0
#

]

< [ 00 ] < [ 01 ] <
[

1
#

]

< [ 10 ] < [ 11 ] .

Then the corresponding enumerations E(S2,S2) and E(SF ,SF ), where S2 = (1{0, 1}∗∪{ε}, 0 <
1) is the binary numeration system and SF = (1{0, 01}∗ ∪ {ε}, 0 < 1) is the Zeckendorf
numeration system, are illustrated in Figure 6. We can also mix both systems and work
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46

47
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1
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Figure 6: The enumeration E(S2,S2) on the left and the enumeration E(SF ,SF ) on the right.

with the numeration system (S2,SF ). The corresponding mixed enumeration E(S2,SF ) is
depicted in the left part of Figure 7. Similarly, the right part of Figure 7 corresponds to
the mixed enumeration E(S,SF ), where S is the abstract numeration system of the running
example.
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Figure 7: The enumeration E(S2,SF ) on the left and the enumeration E(S,SF ).

Proposition 46. For each ⋄ ∈ {=, >,<}, the set {[mn ] ∈ N2d : ES(m)⋄ES(n)} is (S,S)-
recognizable.

Proof. We extend the total order on A to a total order on A# by declaring the letter # to
be less than all the letters in A. We can then consider the induced radix order on (A#)∗.
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For each ⋄ ∈ {=, >,<}, the language R := {[ uv ] ∈ (A# ×A#)∗ : u ⋄rad v} is regular as a
DFA A⋄ accepting this language is obtained as follows. The set of states is {q=, q>, q<}.
The initial state is q= and the only final state is q⋄. For all a, b ∈ A#, δ(q>, [

a
b ]) = q>,

δ(q<, [
a
b ]) = q< and

δ(q=, [
a
b ]) =











q= if a = b

q> if a > b

q< if a < b.

Since rep(S,S)

(

{[mn ] ∈ N2d : ES(m)⋄ES (n)}
)

= rep(S,S)(N
2d)∩R, the conclusion follows.

Remark 47. If d ≥ 2, then it is easily seen by using the pumping lemma that the sub-
set {

[ n

E(S,...,S)(n)
]

: n ∈ Nd}) of Nd+1 is not ((S, . . . ,S),S)-recognizable for any abstract
numeration system S.

The enumeration ES was defined recursively and depends on the chosen order on A.
In the case of integer base numeration systems, we are able to give a closed formula. Let
b ∈ N≥2, let

Sb = ({1, . . . , b− 1}{0, . . . , b− 1}∗ ∪ {ε}, 0 < · · · < b− 1)

and let Sb,d = (Sb, . . . ,Sb) be the d-dimensional abstract numeration system made of d
copies of Sb. Suppose that # < 0 and consider the total order on the alphabet {#, 0, . . . , b−
1}d \ {#} induced by the lexicographic order on the components, i.e.,

[

a1...
ad

]

<

[

b1...
bd

]

⇐⇒ ∃i ∈ [[1, d]], ai < bi and ∀j ∈ [[1, i− 1]], aj = bj . (3)

Let us introduce some extra notation. First, if for each i ∈ [[1, d]], wi is a word of length
ℓ, then the perfect shuffle of w1, . . . , wd is the word of length ℓd given by

Sh

[

w1...
wd

]

=

ℓ
∏

j=1

(w1[j] · · ·wd[j]).

Example 48. We have Sh
[

ab
cd
ef

]

= acebdf .

We define the function valb as the usual b-value function:

valb : {0, . . . , b− 1}∗ → N, w 7→
|w|
∑

j=1

w[j]b|w|−j .

Note that the functions valb and valSb
coincide on words not starting with the letter 0.

Proposition 49. For all n ∈ Nd, ESb,d
(n) = valb

(

σ#,0(Sh(repSb,d
(n)))

)

where σ#,0 is the
morphism that replaces # by 0 and leaves the other letters unchanged.

In the previous formula, the inserted morphism σ#,0 could be removed if we had taken
the convention to pad the shortest representations with the letter 0 instead of # as is
usually done in integer base numeration systems.
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Proof. First, we prove that for all m,n ∈ Nd, repSb,d
(m) <rad repSb,d

(n) implies that

valb
(

σ#,0(Sh(repSb,d
(m)))

)

< valb
(

σ#,0(Sh(repSb,d
(n)))

)

. (4)

Let m,n ∈ Nd. Observe that the first letters of both repSb,d
(m) and repSb,d

(m) have
at least a component in {1, . . . , b − 1}. Therefore, the first length-d blocks of both
σ#,0(Sh(repSb,d

(m))) and σ#,0(Sh(repSb,d
(m))) differ from 0d.

Suppose that repSb,d
(m) <rad repSb,d

(n), and let k = |repSb,d
(m)| and ℓ = |repSb,d

(n)|.
We get from the previous observation that valb

(

σ#,0(Sh(repSb,d
(m)))

)

belongs to the in-

terval [[b(k−1)d, bkd − 1]] whereas valb
(

σ#,0(Sh(repSb,d
(n)))

)

is in [[b(ℓ−1)d, bℓd − 1]]. This
proves (4) if k < ℓ. Now assume that k = ℓ. Then we have |σ#,0(Sh(repSb,d

(m)))| =
|σ#,0(Sh(repSb,d

(n)))|. By choice of the order (3), we get that

σ#,0(Sh(repSb,d
(m))) <lex σ#,0(Sh(repSb,d

(n))).

It is classical that the function valb respects the lexicographic order on words of the same
length, i.e., for any u, v ∈ {0, . . . , b−1}∗ such that |u| = |v|, we have valb(u) < valb(v) ⇐⇒
u <lex v. Therefore, (4) holds in this case as well.

In order to conclude, it suffices to show that the map

Nd → N, n 7→ valb
(

σ#,0(Sh(repSb,d
(n)))

)

is surjective. Let e ∈ N. Define ℓ ∈ N as the least integer such that ℓd ≥ |repSb
(e)| and

factorize 0ℓd−|repSb
(e)|repSb

(e) = w1 · · ·wℓ where each factor wj has length d. Then, for all
i ∈ [[1, d]], we define ni = valb(w1[i] · · ·wℓ[i]). By choice of ℓ, there exists i ∈ [[1, d]] such
that w1[i] 6= 0, and hence such that repSb

(ni) = w1[i] · · ·wℓ[i]. We obtain

valb

(

σ#,0

(

Sh
(

repSb,d

[

n1...
nd

]

)))

= valb

(

Sh

[

w1[1]···wℓ[1]...
w1[d]···wℓ[d]

]

)

= valb(w1 · · ·wℓ) = e.

Example 50. We have E(S2,S2) [
1
6 ] = val2

(

σ#,0

(

Sh
[

##1
110

] ))

= val2(σ#,0(#1#110)) =
val2(010110) = 22, which indeed corresponds to the value found in the left part of Figure 6.

7.2 Second ingredient: generating (S,N)-regular sequences from (S,S
′)-

recognizable sets

We first recall the following two results on formal series from [15]; also see [10] for a survey.

Proposition 51. If a series S : A∗ → N is N∞-recognizable, then it is N-recognizable.

Theorem 52. Let S : A∗ → N∞. The following assertions are equivalent.

1. The series S is N∞-recognizable.

2. There exists a regular language L ⊆ (A$ × ∆)∗ (where $ /∈ A and ∆ is a finite
alphabet) such that for all w ∈ A+, (S,w) = Card{z ∈ L : τ$(π1(z)) = w}, where π1
is the projection onto the first component.
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In what follows, we sometimes consider an extra abstract numeration system S
′ of

dimension d′. The notation of Section 2 are extended to this context in a natural manner.
This theorem can be seen as a generalization of [10, Theorem 3.4.15] to abstract numeration
systems. Note that here, we only use the notion of recognizability of sets of vectors of
integers (see Section 2.1), whereas the notion of definability of such sets was used in [10].

Theorem 53. If X is a (S,S ′)-recognizable subset of Nd+d′, then the sequence

f : Nd → N∞, n 7→ Card{n′ ∈ Nd′ : [ nn′ ] ∈ X} (5)

is (S ,N∞)-regular. If moreover f(N) ⊆ N then f is (S,N)-regular.

Proof. Let X be an (S,S ′)-recognizable subset of Nd+d′ and let f : Nd → N∞ be defined
as in (5). Then for all n ∈ Nd,

f(n) = Card{z ∈ rep(S,S′)(X) : π1(z) ∈ #∗repS(n)}

where π1 denotes the projection onto the first d components. Consider the series

S : A∗ → N∞, w 7→ Card{z ∈ rep(S,S′)(X) : π1(z) ∈ #∗w}.

For all n ∈ Nd, we have (S, repS(n)) = f(n). Therefore, Sf = S ⊙ L. Since L is a
regular language, by Proposition 8, in order to obtain that the sequence f is (S,N∞)-
regular, it suffices to show that the series S is N∞-recognizable. For all w ∈ A∗ and
z ∈ rep(S,S′)(X), we have π1(z) ∈ #∗w if and only if τ#(π1(z)) = w. Since rep(S,S′)(X)
is a regular language, we obtain that S is N∞-recognizable by using Theorem 52.

The fact that f is (S,N)-regular if f(N) ⊆ N follows from Proposition 51.

7.3 Third ingredient: building S-recognizable predicates

For any m ∈ N, we let S
m denote the md-dimensional numeration system (S, . . . ,S)

(where S is repeated m times) and we say that a predicate P on Nmd is S-recognizable if
its characteristic set

{

[

n1...
nm

]

∈ Nmd : P (n1, . . . ,nm) is true
}

is S
m-recognizable. We let x = y and x < y denote the 2d-ary predicates (x1 = y1) ∧

· · · ∧ (xd = yd) and (x1 < y1) ∧ · · · ∧ (xd < yd) respectively. These predicates are always
S-recognizable since the languages

rep(S,S){[ nn ] : n ∈ Nd} = {[ww ] : w ∈ L}

and

rep(S,S){[mn ] ∈ N2d : m < n} = {[ uv ]# : u,v ∈ L, u1 <rad v1, . . . , ud <rad vd}

are both regular. On the other side, addition, which corresponds to the 3d-ary predicate
x+ y = z is not S-recognizable in general [16, 22]. Note that addition is S-recognizable
if and only if it is Si-recognizable for every i ∈ [[1, d]].

Proposition 54. If f is an S-automatic d-dimensional sequence, then the 2d-ary predicate
f(x) = f(y) is S-recognizable.
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Proof. In order to get a DFA accepting repS({[mn ] ∈ N2d : f(m) = f(n)}) from a DFAO
A computing f , we compute the product A×A reading 2d-tuples and we declare a state
(q, q′) to be final if the outputs of q and q′ in A coincide, and then we intersect the obtained
DFA with a DFA accepting (L ×L)#.

For a d-ary predicate P (x1, . . . , xd), we use the notation ∀xP (x) and ∃xP (x) as short-
cuts for ∀x1 · · · ∀xd P (x1, . . . , xd) and ∃x1 · · · ∃xd P (x1, . . . , xd) respectively.

Theorem 55. Any predicate on Nmd (with m ∈ N) that is defined recursively from S-
recognizable predicates by only using the logical connectives ∧,∨,¬, =⇒ , ⇐⇒ and the
quantifiers ∀ and ∃ on variables describing elements of Nd, is S-recognizable.

Proof. This is a straightforward generalization of the forward direction of the proof of [8,
Theorem 6.1]. The only difference is when we take the negation of a md-ary predicate P ,
we do not simply complement the corresponding language of Sm-representations but we
need to intersect with the numeration language on each component afterwards:

repSm

{

[

n1...
nm

]

∈ Nmd : ¬P (n1, . . . ,nm) is true
}

= (Lm)# \ repSm

{

[

n1...
nm

]

∈ Nmd : P (n1, . . . ,nm) is true
}

.

Since the numeration language L is regular, when starting with an S-recognizable predicate
P , the resulting language is regular, i.e., the predicate ¬P is S-recognizable.

Corollary 56. For any predicate P on Nd that is defined recursively from S-recognizable
predicates by only using the logical connectives ∧,∨,¬, =⇒ , ⇐⇒ and the quantifiers ∀
and ∃ on variables describing elements of Nd, the closed predicates ∀xP (x), ∃xP (x) and
∃∞xP (x) are decidable.

7.4 Application to factor complexity, and other enumeration properties,

of S-automatic sequences

We show how to apply the results of the previous three sections in order to obtain various
families of S-regular sequences.

For a sequence f : Nd → K and p, s ∈ Nd, we let f [p, s] denote the factor of size s

occurring at position p in f . Formally, f [p, s] : [[0, s1−1]]×· · ·×[[0, sd−1]] → K, i 7→ f(p+i).
The factor complexity of a sequence f : Nd → K is the function ρf : N

d 7→ N∞ that maps
each s ∈ Nd to the number of factors of size s occurring in f . Note that if f has a finite
image (as is the case for automatic sequences) then for all s ∈ Nd, ρf (s) ∈ N.

Theorem 57. Suppose that addition is S-recognizable. Then the factor complexity of an
S-automatic sequence is a (S,N)-regular sequence.

Proof. Let f be an S-automatic d-dimensional sequence. First, we note that for all s ∈ Nd,

ρf (s) = Card{p ∈ Nd : ∀p′ ∈ Nd
(

ES(p
′) < ES(p) =⇒ f [p′, s] 6= f [p, s]

)

}.

By Theorem 53, it suffices to prove that the set

X := {(s,p) ∈ N2d : ∀p′ ∈ Nd
(

ES(p
′) < ES(p) =⇒ f [p′, s] 6= f [p, s]

)

}
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is (S,S)-recognizable. The notation f [p′, s] 6= f [p, s] is equivalent to ∃i < s, f(p′ + i) 6=
f(p + i). By Proposition 54 and Theorem 55, since f is S-automatic and addition is
S-recognizable, the predicate f [p′, s] 6= f [p, s] is S-recognizable. By Proposition 46, the
predicate ES(p

′) < ES(p) is S-recognizable as well. It then follows from Theorem 55 that
X is (S,S)-recognizable as desired.

In particular, Theorem 57 is valid for all d-dimensional Pisot numeration systems since
addition is recognizable in such systems [7, 21]. This observation solves [10, Probem 3.4.1].

In a similar manner, we obtain that a great amount of measures of S-automatic se-
quences gives rise to (S ,N∞)-regular sequences. In particular, this holds true for all the
measures mentioned in [15]. Let us illustrate our words in the case of the (d-dimensional)
recurrence function Rf . For a sequence f : Nd → K, we let Rf : N

d → N∞ be the function
that maps every s ∈ Nd to the infimum of the nonnegative integers ℓ such that every factor
of f of size (ℓ, . . . , ℓ) contains all factors of f of size s.

Proposition 58. Suppose that addition is S-recognizable. If f : Nd → K is S-automatic,
then the recurrence function Rf : N

d → N∞ is (S,N∞)-regular.

Proof. For all s ∈ Nd,

Rf (s) = Card{ℓ ∈ N : Rf (s) > ℓ}
= Card{ℓ ∈ N : ∃p,p′ ∈ Nd, f [p, (ℓ, . . . , ℓ)] contains no occurrence of f [p′, s]}
= Card{ℓ ∈ N : ∃p,p′ ∈ Nd, ∀k ≤ (ℓ, . . . , ℓ)− s, f [p+ k, s] 6= f [p′, s]}

Applying the same arguments than in the proof of Theorem 57, the result follows.

8 (S,S
′)-Synchronized sequences

A well-known family of (b,K)-regular sequences is that of b-synchronized sequences [9]. In
this section, we generalize this notion to multidimensional abstract numeration systems.

Definition 59. A sequence f : Nd → Nd′ is (S,S ′)-synchronized if its graph

Gf = {
[

n

f(n)

]

: n ∈ Nd}

is an (S,S ′)-recognizable subset of Nd+d′ .

Running Example 60. The sequence f is not (S ,S)-synchronized. Proceed by contradic-
tion and assume that there exists a DFA A, say with k states, recognizing rep(S,S)(Gf ). For

all ℓ ∈ N, repS(v(ℓ)) = aℓ+1 and hence,
[

b
v(ℓ)

b
v(ℓ)

a
ℓ+1

]#
∈ rep(S,S)(Gf ). Now suppose that ℓ+1 ≥ k.

By the pumping lemma, there exists m ∈ N≥1 such that the word
[

b
v(ℓ)+m

b
v(ℓ)+m

a
ℓ+1+m

]

is accepted by

A as well. This is impossible since v(ℓ)+m 6= v(ℓ+m) and hence repS(v(ℓ)+m) 6= aℓ+1+m.
However, the sequence f is (S,Sc)-synchronized where Sc is the unary abstract numer-

ation system (c∗, c). A DFA recognizing the language rep(S,Sc)(Gf ) is depicted in Figure 8.

First, let us provide some examples of (S,S ′)-synchronized sequences. One obtains the
following lemma by adapting the proof of [13, Lemma 2.10] to left padding symbols. This
involves adapting [20, Section 2.6.3] to this framework as well.
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Figure 8: A DFA recognizing rep(S,Sc)(Gf ) where Sc = (c∗, c).

Lemma 61. For all k ∈ N and all abstract numeration systems S, the sequence N →
N, n 7→ n+ k is (S,S)-synchronized.

Proposition 62. For all k ∈ Nd, the sequence Nd → Nd, n 7→ n + k is (S,S)-
synchronized.

Proof. By Lemma 61, the d graphs {[ n
n+ki ] : n ∈ N} are (Si,Si)-recognizable, for i ∈ [[1, d]].

We deduce that the graph {[ n
n+k ] : n ∈ Nd} is (S,S)-recognizable since it is equal to

⋂d
i=1 {[ nn′ ] : n′

j = nj for j 6= i, n′
i = ni + ki}.

We prove that if d′ = 1 then for any choice of abstract numeration system S ′ := S ′
1, the

family of (S ,S ′)-synchronized sequences lies in between those of S-automatic sequences
and (S,N)-regular sequences. Note that the hypothesis d′ = 1 is used in Proposition 64
only.

Proposition 63. A sequence f : Nd → Nd′ is S-automatic if and only if it is (S,S ′)-
synchronized and takes only finitely many values.

Proof. Let f : Nd → Nd′ be an S-automatic sequence. By Lemma 37, for all n′ ∈ Nd′ , the
sets f−1(n′) are S-recognizable. Then Gf is (S,S ′)-recognizable since it is equal to the
finite union ∪n′∈f(Nd)

(

f−1(n′)× {n′}
)

.

Conversely, let f : Nd → Nd′ be an (S,S ′)-synchronized sequence with finite image.

Then for all n′ ∈ Nd′ , repS
(

f−1(n′)
)

= {w ∈ L :
[ w

rep
S′ (n′)

]# ∈ rep(S,S′)(Gf} is regular.
We conclude by using Lemma 37.

Proposition 64. Any (S,S ′)-synchronized sequence f : Nd → N is (S,N)-regular.

25



Proof. Let f : Nd → N be an (S ,S ′)-synchronized sequence. Then the set

X = {[ nℓ ] ∈ Nd+1 : ℓ < f(n)}
is (S,S ′)-recognizable since it is equal to

{[ nℓ ] ∈ Nd+1 : ∃m, [ nm ] ∈ Gf ∧ ℓ < m}.
Since for all n ∈ Nd, f(n) = Card{ℓ ∈ N : [nℓ ] ∈ X}, the result follows from Theorem 53.

Remark 65. Even though both families of S-automatic sequences and (S,N)-regular
sequences are closed under sum, product and product by a constant, it is no longer the
case of the family of (S,S ′)-synchronized sequences. For instance, the sequence N →
N, n 7→ n is (S,S)-synchronized for any abstract numeration system S. However, the
sequence N → N, n 7→ 2n is not (S,S)-synchronized in general. For example, it is not for
the unary system S = (c∗, c).

Let us show that, similarly to the families of multidimensional automatic and regular
sequences, the family of multidimensional synchronized sequences is closed under projec-
tion.

Proposition 66. Let f : Nd → Nd′ be an (S,S ′)-synchronized sequence, let i ∈ [[1, d]] and
let k ∈ N. Then the sequence δi,k(f) : N

d−1 → Nd′ (defined as in Proposition 15 where K
is replaced by Nd′) is (δi(S),S ′)-synchronized.

Proof. By definition, the graph Gf is an (S,S ′)-recognizable subset of Nd+d′ . Thus, so is

Gf ∩
{

[ nn′ ] ∈ Nd+d′ : πi(n) = k
}

.

We have
δi
(

Gf ∩
{

[ nn′ ] ∈ Nd+d′ : πi(n) = k
})

= Gδi,k(f)

where for X ⊆ Nd+d′ , δi(X) deletes the i-th component of all elements in X. Since no
(S,S ′)-representation contains the letter

[

#

#′

]

, we can build a DFA accepting the language
[

#

#′

]∗
rep(S,S′)

(

Gf ∩
{

[ nn′ ] ∈ Nd+d′ : πi(n) = k
})

by adding a loop labeled by
[

#

#′

]

on the initial state. By deleting the i-th component of
every label in this DFA, we obtain an NFA accepting a language K such that

rep(δi(S),S′)(Gδi,k(f)) = τ[ δi(#)

#′

](K).

The image of a regular language under a morphism remaining regular, we obtain that
δi,k(f) is (δi(S),S ′)-synchronized.

In order to obtain more properties on (S,S ′)-synchronized sequences, we give a char-
acterization of these sequences in terms of synchronized relations. We consider relations
R : A∗ → B∗ where A and B are arbitrary alphabets. The graph of such a relation is the
subset

GR = {[ uv ] ∈ A∗ ×B∗ : uRv}
of A∗ ×B∗. Note that a relation is completely determined by its graph. We let $ /∈ A ∪B
and we let (GR)

$ = {[ uv ]$ : [ uv ] ∈ GR} designate the corresponding language over the
alphabet

(

A$ ×B$

)

\ {
[

$

$

]

}. A relation R : A∗ → B∗ is synchronized if the language (GR)
$

is regular.
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Running Example 67. Consider the relation R : A∗ → A∗ whose graph is GR = {[ uv ] ∈
A∗ × A∗ :

∣

∣|u| − |v|
∣

∣ ≤ 1}. This relation is synchronized since the language (GR)
$ is

recognized by the DFA depicted in Figure 9.

1 2

[ ab ] , a, b ∈ A

[

$
a

]

, [ a$ ] , [
a
b ] , a, b ∈ A

Figure 9: A DFA accepting (GR)
$ where GR = {[ uv ] ∈ A∗ ×A∗ :

∣

∣|u| − |v|
∣

∣ ≤ 1}.

For a sequence f : Nd → Nd′ , we define a relation Rf,S,S′ : A∗ → (A′)∗ by

GRf,S,S′ = {[ ww′ ] ∈ L×L′ : f(valS(w)) = valS′(w′)}.

Note that the letter # already appears in the alphabet A if d > 1 (resp. in the alphabet
A′ if d′ > 1), so it is convenient to use a symbol $ different from # in order to pad
elements of the graph GRf,S,S′ . In this way, there is no ambiguity between the #-padding
of representations in a multidimensional abstract numeration system and the $-padding of
elements in the graph of a relation.

Proposition 68. A sequence f : Nd → Nd′ is (S ,S ′)-synchronized if and only if the relation
Rf,S,S′ is synchronized.

Proof. Let σ :
(

(A$ ×A′
$) \ {

[

$
$

]

}
)∗ →

(

(A# ×A′
#′) \ {[ #

#′ ]}
)∗

be the morphism defined
by

σ [ a$ ] =
[

a

#′

]

, σ
[

$
a′

]

=
[

#

a′

]

, σ [ aa′ ] = [ aa′ ]

for a ∈ A and a′ ∈ A′. Here #′ is the d′-dimensional letter all whose components are
equal to #. Then

rep(S,S′)({
[

n

f(n)

]

: n ∈ Nd}) = σ((GRf,S,S′ )
$).

The conclusion follows from the injectivity of σ and the fact that the family of regular
languages is closed under both image and inverse image under a morphism.

The family of regular sequences is not closed under composition [2, p. 169, (iii)]. Thanks
to Proposition 68, we show that the composition of synchronized sequences is synchronized.
To do so, in the following proposition, we consider an extra multidimensional abstract
numeration system S

′′, of dimension d′′.

Proposition 69. Let f : Nd → Nd′ be an (S ,S ′)-synchronized sequence and let g : Nd′ →
Nd′′ be an (S ′,S ′′)-synchronized sequence. Then their composition g ◦ f : Nd → Nd′′ is
(S,S ′′)-synchronized.

Proof. By Proposition 68, the relations Rf,S,S′ and Rg,S′,S′′ are synchronized. From [20,
Theorem 2.6.6], the composition Rg,S′,S′′◦Rf,S,S′ is synchronized. Since Rg,S′,S′′◦Rf,S,S′ =
Rg◦f,S,S′′ , we conclude by using Proposition 68 again.

27



Corollary 70. If f : Nd → Nd′ is an (S,S ′)-synchronized sequence, then for all k ∈ Nd,
the sequences Nd → Nd′ , n 7→ f(n+ k) are (S,S ′)-synchronized.

Proof. This is a consequence of Propositions 62 and 69.

Corollary 71. Let f : Nd → Nd′ and g : Nd′ → Nd′′ .

• If f is S-automatic and g is (S ′,S ′′)-synchronized, then g ◦ f is S-automatic.

• If f is (S,S ′)-synchronized and g is S
′-automatic, then g ◦ f is S-automatic.

Proof. This is a consequence of Propositions 63 and 69.

9 Mixing regular sequences and synchronized sequences

Even though the family of regular sequences is not closed under composition in general, in
this section we prove that the composition of a regular sequence and a synchronized one is
regular. This result can be seen as a generalization of Proposition 69.

In order to do so, we will first show a general result concerning the composition of rec-
ognizable series and synchronized relations. Our proof of this result is based on automata.
Indeed, automata are intrinsincally present in the notion of synchronized relations. More-
over, it is classical that recognizable series may be defined through an automata point
of view. To make this link precise, we first present the notion of weighted automaton in
Section 9.1. Next, we shall turn to the composition of recognizable series and synchronized
relations in Section 9.2, and finally we will prove the announced result on the composition
of regular and synchronized sequences in Section 9.3.

9.1 Weighted automata

A weighted (finite) automaton A = (Q, I, T,A,E) with weights in a semiring K, or simply
a K-automaton, is composed of a (finite) set Q of states, a (finite) alphabet A and of three
mappings I : Q → K, T : Q → K and E : Q × A × Q → K. We call a state q initial if
I(q) 6= 0 and final if T (q) 6= 0. A triple (p, a, q) ∈ Q × A ×Q is called a transition. The
label of a transition (p, a, q) is the letter a and its weight is E(p, a, q). A path in A is a
sequence

c = (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn)

of transitions, which will sometimes be shortened as

c = cA(q0q1 · · · qn, a1a2 · · · an). (6)

The weight of the path c is the product

E(c) = E(q0, a1, q1)E(q1, a2, q2) · · ·E(qn−1, an, qn)

of the weights of its transitions. Its label is the word a1a2 · · · an. We let ic and tc denote
the first and last states of c respectively. A path c is initial if ic is initial and final if tc is
final. A state q ∈ Q is co-accessible if there exists a non-zero weight final path starting in
q. For w ∈ A∗, we let CA(w) denote the set of paths in A of label w that are both initial
and final. The weight of w in A is the quantity

∑

c∈CA(w)

I(ic)E(c)T (tc).
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A K-automaton can be represented by a graph where the states are the vertices and
each transition (p, a, q) is an arrow from p to q of label a|E(p, a, q). In practice, we omit to
represent the zero weight transitions. Every initial state q has an incoming arrow labeled
by I(q) and every final state has an outgoing arrow labeled by T (q).

Running Example 72. Considering the N-automaton A over the alphabet A depicted
in Figure 10. Since all represented weights are equal to 1, the weight of a word w ∈ A∗ is
equal to the number of represented paths labeled by w that are both initial and final. For
instance, the weights of the words

[

#ab
aab

]

,
[

aaaab
#aaab

]

,
[

aab
bab

]

, [ aaab ] and
[

a#a
aba

]

are respectively
equal to 2, 4, 2, 0 and 1. Those values correspond to those given in Figure 1.

T S
11

[ aa ] |1,
[

b
b

]

|1

[ aa ] |1,
[

b
b

]

|1
a|1,a ∈ A

Figure 10: An N-automaton over A =
{

[#a ] ,
[

#
b

]

, [ a# ] , [ aa ] , [
a
b ] ,
[

b
#

]

, [ ba ] ,
[

b
b

]}

.

In what follows, it will be convenient to also use some of the previous definitions for
a DFA A (in an obvious adapted manner). For instance, for a DFA A with a (partial)
transition function δ, the notation (6) designates the path in A labeled by a1a2 · · · an and
visiting the states q0, . . . , qn, i.e., for each i ∈ [[1, n]], we have δ(qi−1, ai) = qi. Similarly,
for a DFA A, we let CA denote the set of accepting paths in A, and moreover, we let LA

denote the set of labels of the paths in CA, i.e., LA is the language accepted by A.
Formal series and K-automata can be linked. The series recognized by a K-automaton

A = (Q, I, T,A,E) is the series S whose coefficients are the weights of the words over A
in A.

Proposition 73. A series is recognized by a K-automaton if and only if it is K-recognizable.

The proof of the previous proposition is constructive. Roughly, the linear representation
encodes the weights in the K-automaton.

Running Example 74. The N-automaton of Figure 10 recognizes the series S. It cor-
responds to the linear representation given in (1). An N-automaton recognizing the series
Sf is depicted in Figure 11. The latter N-automaton corresponds to the N-submodule
generated by the ten series Sf , Sg, Sχ{0}×valS (a∗)

, Sχ{0}×N
, SχvalS (a∗)×{0}

, SχvalS(a∗)×valS(a∗)
,

SχvalS (a∗)×N
, SχN×{0}

, SχN×valS(a∗)
and S1: the states are numbered according the previous

list of generators and the arrows are colored depending on their labels. The only final state
corresponds to the series Sf . A state j is initial if the coefficient of the empty word in the
j-th generator is non-zero. In fact, all states are initial except those corresponding to the
series Sf and Sg. Indeed, we have (Sg, ε) = (Sf , ε) = 0 since g(0) = f(0) = 0.

9.2 Composing synchronized relations and K-recognizable series

As a first step, we consider the composition of a synchronized relation and a K-recognizable
series. For a relation R : A∗ → B∗ and a series S : B∗ → K such that for all u ∈ A∗, the
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1

2

3

4

5

6

7

8

9

10

1

1

1

1

1

1

1

1

1

� [#a ] | 1 � [ ab ] | 1

�
[

#
b

]

| 1 �
[

b
#

]

| 1

� [ a# ] | 1 � [ ba ] | 1

� [ aa ] | 1 �
[

b
b

]

| 1

Figure 11: An N-automaton recognizing the series Sf corresponding to the (S,N)-regular
sequence f : N2 → N, [mn ] 7→ max |Suff(repS(m)) ∩ Suff(repS(n))|.

language {v ∈ B∗ : uRv} is finite, we define the composition of R and S as the series

S ◦R : A∗ → K, u 7→
∑

v∈B∗

uRv

(S, v).

Running Example 75. For all u ∈ A∗, we have

(S ◦R,u) =
∑

v∈A∗

|v|∈{|u|−1,|u|,|u|+1}

(S,v).

By counting, for each n ∈ [[1, |u| + 1]], the number of words v in A∗ of length in {|u| −
1, |u|, |u|+ 1} having a coefficient (S,v) equal to n, we get the closed formula

(S ◦R,u) =

{

2 if u = ε
2|u|−1

3 (73 · 4|u|−1 − 7) otherwise.
(7)

Theorem 76. Let R : A∗ → B∗ be a synchronized relation, let S : B∗ → K be a K-
recognizable series, and suppose that for all u ∈ A∗, the language {v ∈ B∗ : uRv} is finite.
Then S ◦R is a K-recognizable series.

In order to prove this result, we define a composition-like operation between a 2-tape
automaton (i.e., a DFA reading pairs of letters) and a K-automaton.

Definition 77. Consider two finite alphabets A and B and a symbol $ /∈ A ∪ B. Let
A = (QA, iA, TA, A$×B$, δA) be a DFA and let B = (QB, IB, TB, B$, EB) be a K-automaton
having only one initial state, denoted by iB. With such automata A and B, we associate a
new K-automaton B ◦ A = (Q, I, T,A$, E) as follows.
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1. Q = (QA ×QB) ∪ {α}.

2. I : Q → K is defined by

• I(iA, iB) = IB(iB)

• For (q, q′) ∈ (QA ×QB) \ {(iA, iB)}, I(q, q′) = 0

• I(α) = 1.

3. T : Q → K is defined by

• For (q, q′) ∈ TA ×QB, T (q, q′) = TB(q
′)

• For (q, q′) ∈ (QA \ TA)×QB, T (q, q′) = 0

• T (α) = 0.

4. E : Q×A$ ×Q → K is defined by

• For (q1, q
′
1), (q2, q

′
2) ∈ QA ×QB and a ∈ A$,

E((q1, q
′
1), a, (q2, q

′
2)) =

∑

b∈B$

δA(q1,[ ab ])=q2

EB(q
′
1, b, q

′
2)

• For a ∈ A$, E(α, a, α) = 0

• For (q, q′) ∈ QA ×QB and a ∈ A$, E((q, q′), a, α) = 0

• For (q, q′) ∈ QA ×QB and a ∈ A$,

E(α, a, (q, q′)) =











I(iA, iB)
∑

ℓ≥1

∑

c∈Cq,q′,a,ℓ

E(c) if (q, q′) is co-accessible

0 else

where Cq,q′,a,ℓ denotes the set of non-zero weight paths from (iA, iB) to (q, q′)
labeled by $ℓa. In the case where there exist a co-accessible state (q, q′) ∈
QA × QB, a letter a ∈ A$ and infinitely many ℓ ≥ 1 such that Cq,q′,a,ℓ is
nonempty, we take the convention that the K-automaton B ◦ A is not defined.

We first prove three technical lemmas to get a better understanding of paths in B ◦A.
For these results, we consider a DFA A and a K-automaton B such that the K-automaton
B ◦ A is well defined. For all w ∈ (A$)

∗ and all paths c = cB◦A((q0, q
′
0) · · · (q|w|, q

′
|w|), w)

such that (q0, q
′
0) = (iA, iB), we define the set

CB,c = {cB(q′0 · · · q′|w|, w
′) : w′ ∈ (B$)

∗, cA
(

q0 · · · q|w|, [
w
w′ ]
)

∈ CA}.

Lemma 78. Let w ∈ (A$)
∗ and let c ∈ CB◦A(w) such that ic = (iA, iB). Then

E(c)T (tc) =
∑

c′∈CB,c

EB(c
′)TB(tc′).
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Proof. Write c = cB◦A
(

(q0, q
′
0) · · · (q|w|, q

′
|w|), w

)

. Since c belongs to CB◦A(w), it is a final
path of B ◦ A, and hence T (q|w|, q

′
|w|) = TB(q

′
|w|). Then by definition of the K-automaton

B ◦ A, we obtain

E(c)T (tc) =

( |w|
∏

j=1

E
(

(qj−1, q
′
j−1), w[j], (qj , q

′
j)
)

)

T (q|w|, q
′
|w|)

=















|w|
∏

j=1

∑

b∈B$

δA

(

qj−1,
[

w[j]
b

])

=qj

EB(q
′
j−1, b, q

′
j)















TB(q
′
|w|)

=
∑

w′∈(B$)
∗

cA

(

q0···q|w|,[
w
w′ ]
)

∈CA

( |w|
∏

j=1

EB(q
′
j−1, w

′[j], q′j)

)

TB(q
′
|w|)

=
∑

c′∈CB,c

EB(c
′)TB(tc′).

Lemma 79. Let w ∈ (A$)
∗. Then {CB,c : c ∈ CB◦A(w), ic = (iA, iB)} is a partition of the

set
⋃

w′∈(B$)
∗

[ ww′ ]∈LA

CB(w
′).

Proof. First, we show that the sets CB,c are pairwise disjoint. Consider distinct paths
c1 = cB◦A

(

(q1,0, q
′
1,0) · · · (q1,|w|, q

′
1,|w|), w

)

and c2 = cB◦A
(

(q2,0, q
′
2,0) · · · (q2,|w|, q

′
2,|w|), w

)

of
CB◦A(w) such that (q1,0, q

′
1,0) = (q2,0, q

′
2,0) = (iA, iB). Proceed by contradiction and sup-

pose that CB,c1 ∩CB,c2 6= ∅. This means that there exists some word w′ ∈ (B$)
∗ such that

on the one hand, cB(q′1,0 · · · q′1,|w|, w
′) = cB(q

′
2,0 · · · q′2,|w|, w

′) and on the other hand, both

cA
(

q1,0 · · · q1,|w|, [
w
w′ ]
)

and cA
(

q2,0 · · · q2,|w|, [
w
w′ ]
)

are accepting paths in A. The first con-
dition implies that q′1,0 = q′2,0, . . . , q′1,|w| = q′2,|w|. Since A is a DFA and q1,0 = q2,0 = iA,
the second condition implies that q1,1 = q2,1, . . . , q1,|w| = q2,|w|. But then c1 = c2, a
contradiction.

Second, we show that
⋃

c∈CB◦A(w)
ic=(iA,iB)

CB,c =
⋃

w′∈(B$)
∗

[ ww′ ]∈LA

CB(w
′).

Let c ∈ CB◦A(w) such that ic = (iA, iB) and let c′ ∈ CB,c. Let w′ be the label of c′.
By definition of CB,c, the word [ ww′ ] is accepted by A and c′ ∈ CB(w

′). Conversely, let
w′ ∈ (B$)

∗ such that [ ww′ ] is accepted by A and let c′ ∈ CB(w
′). Consider the path c =

cB◦A
(

(q0, q
′
0) · · · (q|w|, q

′
|w|), w

)

where q0, . . . , q|w| are the states visited along the (unique)

accepting path labeled by [ ww′ ] in A and q′0, . . . , q
′
|w| are the states of B visited along the

path c′. Then c′ ∈ CB,c. Moreover, (q0, q
′
0) = (iA, iB) and (q|w|, q

′
|w|) is a final state of

B ◦ A, hence c ∈ CB◦A(w).
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Lemma 80. Let w ∈ (A$)
∗ and let S be the series recognized by B. We have

IB(iB)
∑

c∈CB◦A(w)
ic=(iA,iB)

E(c)T (tc) =
∑

w′∈(B$)
∗

[ ww′ ]∈LA

(S,w′).

Proof. By first using Lemma 78 and then Lemma 79, we have

IB(iB)
∑

c∈CB◦A(w)
ic=(iA,iB)

E(c)T (tc) = IB(iB)
∑

c∈CB◦A(w)
ic=(iA,iB)

∑

c′∈CB,c

EB(c
′)TB(tc′)

=
∑

w′∈(B$)
∗

[ ww′ ]∈LA

∑

c′∈CB(w′)

IB(iB)EB(c
′)TB(tc′)

=
∑

w′∈(B$)
∗

[ ww′ ]∈LA

(S,w′).

We now prove Theorem 76.

Proof of Theorem 76. Let A = (QA, iA, TA, (A$×B$)\{
[

$
$

]

}, δA) be a DFA recognizing G$
R

such that the initial state iA has no incoming transition. Next, consider a K-automaton
recognizing the series S having only one initial state, with no incoming transition. We
modify the latter automaton to read words over B$ by adding a loop on the unique initial
state of label $ and of weight 1 and by setting the weight of all other transitions labeled by
$ to 0. We obtain a new K-automaton that we denote by B = (QB, IB, TB, B$, EB). The
unique initial state of B is denoted by iB.

We consider the K-automaton B ◦ A from Definition 77. Let us argue that this K-
automaton is indeed well defined. Otherwise, there exist a co-accessible state (q, q′) ∈
QA ×QB, a letter a ∈ A$ and infinitely many ℓ ≥ 1 such that the set Cq,q′,a,ℓ of non-zero
weight paths from (iA, iB) to (q, q′) labeled by $ℓa is nonempty. By co-accessibility of
(q, q′), there exists at least one non-zero weight final path starting in (q, q′). Let u denote
the label of such a path. For all ℓ ≥ 1 such that Cq,q′,a,ℓ is nonempty, there exists vℓ ∈ B∗

$

such that
[

$ℓau
vℓ

]

is accepted by the DFA A, and hence vℓ ∈ B∗. But this means that the

language {v ∈ B∗ : τ$(au)Rv} is infinite, contradicting the assumption.
We let T denote the series recognized by B ◦ A. In order to get that S ◦ R is K-

recognizable, it suffices to show that for all u ∈ A+, (T, u) = (S ◦R,u). Therefore, we fix
u ∈ A+ and we prove that

(T, u) =
∑

v∈B∗

uRv

(S, v). (8)

Since the initial states of B ◦ A are (iA, iB) and α, we have

(T, u) = IB(iB)
∑

c∈CB◦A(u)
ic=(iA,iB)

E(c)T (tc) +
∑

c∈CB◦A(u)
ic=α

E(c)T (tc).
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To get Equality (8), it suffices to prove

IB(iB)
∑

c∈CB◦A(u)
ic=(iA,iB)

E(c)T (tc) =
∑

v∈B∗

uRv, |v|≤|u|

(S, v) (9)

∑

c∈CB◦A(u)
ic=α

E(c)T (tc) =
∑

v∈B∗

uRv, |v|>|u|

(S, v). (10)

We first show Equality (9). We have {w′ ∈ (B$)
∗ : [ u

w′ ] ∈ LA} = {$|u|−|v|v : v ∈
B∗, uRv, |v| ≤ |u|}. Moreover, by definition of the K-automaton B, for all v ∈ B∗ and
d ∈ N, the weight of $dv in B equals (S, v). We conclude by Lemma 80.

Now, let us prove Equality (10). Write u = au2 with a ∈ A and u2 ∈ A∗. Any path
in CB◦A(u) starting in α has the form (α, a, (q, q′))c2 where (q, q′) ∈ QA ×QB and c2 is a
path labeled by u2 from (q, q′) to a final state. We let Cq,q′ denote the set of those paths.
Then

∑

c∈CB◦A(u)
ic=α

E(c)T (tc) =
∑

(q,q′)∈QA×QB

E(α, a, (q, q′))
∑

c2∈Cq,q′

E(c2)T (tc2)

=
∑

(q,q′)∈QA×QB



I(iA, iB)
∑

ℓ≥1

∑

c1∈Cq,q′,a,ℓ

E(c1)





∑

c2∈Cq,q′

E(c2)T (tc2)

=
∑

ℓ≥1

I(iA, iB)
∑

(q,q′)∈QA×QB
c1∈Cq,q′,a,ℓ

c2∈Cq,q′

E(c1c2)T (tc2)

=
∑

ℓ≥1

IB(iB)
∑

c3∈CB◦A($ℓu)
ic3=(iA,iB)

E(c3)T (tc3).

For all ℓ ≥ 1, we have {w′ ∈ (B$)
∗ :
[

$ℓu
w′

]

∈ LA} = {v ∈ B∗ : uRv, |v| = ℓ + |u|}. By

definition of the K-automaton B, the weight of a word v ∈ B∗ in B is equal to (S, v).
Hence, by Lemma 80, we obtain

∑

c∈CB◦A(u)
ic=α

E(c)T (tc) =
∑

ℓ≥1

∑

v∈B∗

uRv, |v|=ℓ+|u|

(S, v) =
∑

v∈B∗

uRv, |v|>|u|

(S, v).

This concludes the proof.

Remark 81. In the previous proof, we may modify the automaton B ◦ A so that Equal-
ity (8) also holds for the empty word. To do so, we change the final weight of (iA, iB) in

B ◦ A from TB(iB) to 1
IB(iB)

(

∑

v∈B∗

εRv
(S, v)

)

. Therefore, the equality (T, ε) = (S ◦ R, ε) is

satisfied by construction. Note that this modification only affects the weight of the empty
word since the state (iA, iB) has no incoming transition: considering a word u ∈ A+, any
path of label u never ends in (iA, iB).

Running Example 82. The N-automaton of Figure 10 can be modified in order to have
a unique initial state i with no incoming transition, while keeping the same recognized
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$|1 [ aa ] |1,
[

b
b

]

|1

[ aa ] |1,
[

b
b

]

|1
a|1,a ∈ A

[ aa ] |1,
[

b
b

]

|1

a|1,a ∈ A

Figure 12: The modification of the N-automaton of Figure 10 described in the proof of
Theorem 76.

series S. Moreover, following the construction of the proof of Theorem 76, we add a loop
on i of label $ and of weight 1. This new N-automaton is depicted in Figure 12. Let A
and B denote the DFA of Figure 9 and the N-automation of Figure 12 respectively. The
accessible part of the N-automaton B ◦ A, where the final weight of the state (1, i) has
been modified as in Remark 81, is depicted in Figure 13. For the sake of conciseness, every
transition labeled by a corresponds to 8 labels, one for each letter a ∈ A. The projection

(1, i) (2, i)

(2, T )

(2, S)

α
1 1

1

2

a|1

a|8

a|2

$|8,a|8

$|2,a|2

a|2

a|64

a|20

a|8

a|2

Figure 13: The N-automaton B ◦ A. Removing the transitions of label $, we obtain an
N-automaton recognizing the series S ◦R.

of this N-automaton onto the alphabet A (i.e., where all transitions of label $ have been
removed) recognizes the series S ◦R. It can be checked that the weights of the words over
A of length 1, 2 and 3 are equal to 22, 190 and 1548 respectively. Those values indeed
correspond to those obtained thanks to the closed formula (7).

Remark 83. In a previous work [11], we used a composition of a DFA and a K-automaton
similar to that of Definition 77. The two compositions differ for two reasons. First, since
we were concerned with Pisot numeration systems U , we used the letter 0 as our padding
symbol as is usual in this context. This involves some technicalities since the padding
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symbol may belong to the numeration alphabets. Second, and more importantly, in the
present work we have dealt with an arbitrary relation R : A∗ → B∗. From that point of
view, the situation of [11] is simpler because the DFA involved in the composition accepts
the (padded) graph of a function. More precisely, this DFA is the normalizer NU ,A, which
recognizes the graph of the normalization function νU ,A : A∗ → A∗

U mapping a word w

over A to the canonical U -representation of valU (w), where A is an arbitrary alphabet
included in Zd and AU is the canonical alphabet of the numeration system U .

9.3 Composing (S,S
′)-synchronized and (S,K)-regular sequences

We are now ready to prove the announced result of this section.

Theorem 84. If f : Nd → Nd′ is an (S,S ′)-synchronized sequence and g : Nd′ → K is an
(S ′,K)-regular sequence, then the sequence g ◦ f : Nd → K is (S,K)-regular.

Proof. By Proposition 68, the relation Rf,S,S′ is synchronized. We have Sg◦Rf,S,S′ = Sg◦f .
Then by Theorem 76, Sg◦f is K-recognizable, i.e., g ◦ f is (S,K)-regular.

Corollary 85. If f : Nd → K is a (S,K)-regular sequence, then for all k ∈ Nd, the sequence
Nd → K, n 7→ f(n+ k) is (S ,K)-regular.

Proof. This is a consequence of Proposition 62 and Theorem 84.
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