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CHARACTERIZATIONS OF LINE GRAPHS IN SIGNED AND GAIN

GRAPHS

MATTEO CAVALERI, DANIELE D’ANGELI, AND ALFREDO DONNO

Abstract. We generalize three classical characterizations of line graphs to line graphs
of signed and gain graphs: the Krausz’s characterization, the van Rooij and Wilf’s
characterization and the Beineke’s characterization. In particular, we present a list of
forbidden gain subgraphs characterizing the class of gain-line graphs. In the case of a
signed graph whose underlying graph is a line graph, this list consists of exactly four
signed graphs. Under the same hypothesis, we prove that a signed graph is the line graph
of a signed graph if and only if its eigenvalues are either greater than −2, or less than 2,
depending on which particular definition of line graph is adopted.

Mathematics Subject Classification (2010): 05C22, 05C25, 05C50, 05C76.

1. Introduction

This article aims at characterizing those gain graphs that are line graphs of gain graphs.
We do it by providing several equivalent conditions, inspired from the classical theory
[4, 22, 27]: in terms of the existence of a partition of the edge set into (anti)balanced
cliques; in terms of the K1,3-freeness, with some supplementary conditions on the induced
triangles; by giving a list of forbidden induced gain subgraphs. In the particular case of
signed graphs, we are also able to provide a spectral characterization of such graphs.

Signed graphs were introduced in [20]. Roughly speaking, they are graphs whose edges
can be positive or negative, and interest in them goes beyond graph theory, since they can
be a model for a system of interactions that can be positive or negative. A signed graph
is a pair (Γ, σ) where Γ = (VΓ, EΓ) is the underlying graph and σ : EΓ → T2 = {±1} is
the signature. The spectrum of the signed graph (Γ, σ) is, by definition, the spectrum
of its adjacency matrix [40]. There is a natural switching action on the signatures of
a graph [34], inspired from Seidel’s switching [28]: this operation switches the sign of
each edge with exactly one endpoint in a fixed subset of vertices. This operation induces
an equivalence relation, called switching equivalence, on the set of signatures of a given
graph, and it preserves the spectrum. The composition of the switching equivalence with
a graph isomorphism leads to the notion of switching isomorphism.

Key words and phrases. Line graph, Signed graph, Gain graph, Spectrum of a signed graph, Forbidden
subgraph, Switching isomorphism.
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K1,3K3

Figure 1. The graphs K3 and K1,3.

A natural generalization of a signed graph, from the group T2 to any group G, is the
G-gain graph (Γ, ψ), or gain graph over G. Here ψ is a map, called the gain function,
assigning a group element to each orientation of each edge of Γ, in such a way that an
element and its inverse are assigned to two opposite orientations. It is worth mentioning
that gain graphs can be considered as a particular case of biased graphs [36], and they are
also strictly related to voltage graphs, which are a largely investigated topic in topological
graph theory [19]. The reader is referred to [38, 39] for a rich and periodically updated
glossary and bibliography on signed and gain graphs.

Switching equivalence and switching isomorphism are still defined (with the right ad-
justments) for gain functions and gain graphs, respectively. The adjacency matrix and the
spectrum are still well defined when G is a subgroup of T, which is the complex unit group
(see [25]). In the general case, there is no canonical way to define them: one possibility
is to use a represented adjacency matrix and its spectrum [14].

While for (unsigned) graphs there is a scientific consensus on what a line graph is, even
though it appeared also with different names in its nearly century-long history, this is not
the case for the line graph of a signed or a gain graph. In order to narrow the field, we
present some required properties for a generalization of the line graph to signed and gain
graphs.
A first requirement is that the underlying graph of a suitable line graph of a signed (gain)
graph, must be the line graph of the underlying graph of that signed (gain) graph. In
particular, in order to define a line graph of the gain graph (Γ, ψ), one has to construct a
gain function on the (unsigned) line graph of Γ, denoted by L(Γ).
Many crucial problems when dealing with gain graphs involve properties that are invari-
ant under switching isomorphism (e.g., balance, spectral properties, etc.). Therefore, a
second requirement is that switching-isomorphic graphs must have switching-isomorphic
line graphs.
Finally, a fundamental result on line graphs is the Whitney isomorphism theorem [33]:

with the exception of the pair of graphs consisting of the complete graph K3 and of the
complete bipartite graph K1,3 (see Fig. 1), two graphs are isomorphic if and only if their
line graphs are isomorphic. In particular, if a graph is not K3 and it is a line graph, it is
possible to reconstruct, up to isomorphism, the graph for which it is the line graph of. If
one requires the analogous possibility for the line graph of a gain graph, the third require-
ment is that only switching equivalent gain functions induce line graphs with switching
equivalent gain functions.
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Figure 2. The list of nine forbidden subgraphs X .

There exist some definitions of line graphs for signed graphs in the literature (e.g. [1,3]),
which do not satisfy one or more of the aforementioned conditions.

To the best of our knowledge, the first definition with the required properties is given
in [35] for signed graphs. The same definition is considered in [18,40] and it is generalized
in [26] to gain graphs over an Abelian group. Another suitable definition for the line
graph of a signed graph appears in [11], and it is considered also in [9,10] and generalized
to gain graphs over the complex unit group T [2, 5]. These definitions differ only by a
switch of sign (see [12] for remarks on this regard) or, more generally, by a multiplication
of the gain functions by a central involution s of the group G. By introducing two central
involutions s1 and s2 of G as parameters, [15] gives a unifying generalization of the line
graph construction to gain graphs over an arbitrary group G, providing an answer to a
question formulated by N. Reff in [26] about a possible extension of this construction
to the non-Abelian case. All these definitions pass through the choice of a G-phase (G-
incidence phase function in the language of [26]). Actually, the line graph is more properly
defined for switching equivalence classes: in [15] this is implemented by the map L from
the switching equivalence classes of Γ to those of L(Γ) (see Theorem 2.7 of the present
paper).

The interest in gain line graphs goes beyond the issue related to giving a suitable
definition, and it is also focused on their spectral properties. Indeed, it turns out that,
as in the classical setting, the adjacency matrix of a gain graph, the adjacency matrix
of its gain line graph, and the G-phase matrix are closely related [2, 15, 26]. In the very
recent paper [8], a spectral investigation of quaternion unit gain graphs and associated
line graphs has been developed.
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The map L of [15] is proved to be injective, giving a generalization of Whitney isomor-
phism theorem for line graphs of gain graphs (that holds in all of the previous compatible
definitions). The Whitney isomorphism theorem is just the first of a series of results
about line graphs and the aim of this paper is to take further steps in this generalization
from the classical theory to that of gain graphs. Beineke in [4] gives a list X of nine
graphs, that we represent in Fig. 2, called forbidden subgraphs for a line graph, with the
property that a graph Γ is the line graph of a simple graph if and only if none of its
induced subgraphs is isomorphic to one of the graphs in X , briefly, Γ is X -free. This
characterization is particularly useful, also from an algorithmic point of view, since one
can establish whether Γ is a line graph or not just by looking at its induced subgraphs
of at most 6 vertices, which is the upper bound for the number of vertices of the graphs
in X . Analogous characterizations are given for generalized line graphs in [24,31] and for
line graphs of multigraphs [13]. The original path for the proof of Beineke’s character-
ization in [4] passes through Krausz’s characterization [22], that is given in terms of a
partition of the edge set into complete subgraphs, or cliques ; and through van Rooij and
Wilf’s characterization, that is given in terms of the K1,3-freeness and odd triangles (see
Definition 2.3). These characterizations can be summarized in the following theorem (see
also [21]).

Theorem 1.1. A connected graph L = (VL, EL) is the line graph of a simple graph if and
only if it satisfies one of the following equivalent conditions.

Krausz: There exists a partition of the edge set EL = E1 ⊔ E2 ⊔ · · · ⊔ Ek such that every
vertex of L is endpoint of edges from at most two elements of the partition and the
subgraph LEi

of L induced by Ei is complete, for each i = 1, . . . , k.

van Rooij and Wilf: L is K1,3-free and, if T1, T2 are adjacent odd triangles, their vertices induce a
subgraph of L that is complete.

Beineke: L is X -free.

In Theorem 3.2 we give the generalization of Theorem 1.1 to gain graphs, i.e., we
give the analogous necessary and sufficient conditions for a gain graph to be a line graph
of a gain graph. According with the definition of gain line graph given in [15], which
extends those used in [2, 5, 11, 18, 26] for signed and complex unit gain graphs, we will
consider only gain graphs whose underlying graph is simple. Since the underlying graph
of a gain-line graph is a line graph itself, the classical conditions remain necessary, but
our new conditions in the gain graphs setting are stronger. For the analogue of Krausz’s
characterization, we need the further condition that the complete graphs induced by the
edge partition have induced gain functions of a specific form. In the generalized van Rooij
and Wilf condition, the additional requirement concerns the gain of each odd triangle,
together with one more condition that is not trivially satisfied when the underlying graph
is isomorphic to one among the three graphs F1, F2, F3 of Fig. 5. Finally, in the general-
ization of Beineke’s condition, we replace the list of forbidden subgraphs X with a list of
forbidden gain subgraphs Y (see Eq. (3.3)).
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If one restricts the problem to recognize if a gain graph (L(Γ), ζ) is a gain-line graph,
under the assumption that the underlying graph L(Γ) is a line graph, something more
can be said (see Corollary 3.4).

There exist several operations on signed and gain graphs leaving the spectrum un-
changed (see [6, 7]). As we already observed, the switching is one of them [40]. It follows
that the spectrum of a switching equivalence class of signed graphs does not depend on
the particular choice of a representative; therefore, the spectrum of the line graph of a
signed graph is well defined. As a consequence of Theorem 3.2, in the case of signed
graphs, one can recognize which signatures on a line graph induce line graphs of signed
graphs only by means of their spectra. This is shown in Theorem 4.3, together with a
characterization of signed line graphs via 4 forbidden signed subgraphs (Fig. 9 and Fig.
10). In [16, 30, 32] the class of signed graphs represented by D∞ is also characterized in
an analogous way. This class coincides with that of reduced line graphs of simple signed
graphs admitting parallel edges, though only with opposite sign [35, 40]. A comparison
with Theorem 4.3 is given in Remark 4.4.

Finally, we characterize in Corollary 3.6 the connected graphs Γ that, equipped with
every gain function, are gain-line graphs. If the group G is nontrivial, they are exactly
the cycles and the paths. As a consequence, if Γ is not a cycle or a path, the circuit rank
of L(Γ) is strictly greater than that of Γ (see Corollary 4.1). Moreover, the cyclic graphs
and the path graphs are exactly the connected line graphs with all eigenvalues of modulus
at most 2 (see Corollary 4.5).

2. Gain graphs, G-phases and gain-line graphs

Let Γ = (VΓ, EΓ) be a finite, connected, simple, undirected graph, with at least one
edge. The set VΓ is the vertex set, and the set EΓ is the edge set, consisting of unordered
pairs of the type {u, v}, with u, v ∈ VΓ. We write u ∼ v if {u, v} ∈ EΓ, then we say
that u and v are adjacent and that are endpoints of the edge {u, v}. We will use the set
theoretic notation for the edges: for v ∈ VΓ and e ∈ EΓ we write v ∈ e if the edge e is
incident to v, that is, v is one of the endpoints of e. If e1, e2 ∈ EΓ are both incident to a
vertex, we denote that vertex as e1 ∩ e2. We write e1 ∩ e2 = ∅ if e1 and e2 do not share
a common vertex. The line graph L(Γ) is the graph with vertex set EΓ, whose vertices
e1, e2 are adjacent if e1 ∩ e2 6= ∅ in Γ.

Let G be a group and consider a map ψ : {(u, v) ∈ V 2
Γ | u ∼ v} → G such that

ψ(u, v) = ψ(v, u)−1. The pair (Γ, ψ) is a G-gain graph (or equivalently, a gain graph over
G) and ψ is said to be a gain function. The graph Γ is the underlying graph of the gain
graph (Γ, ψ). We denote by G(Γ) the set of all gain functions of Γ over G. The most
studied gain graphs are those over the group T2 = {±1} (more properly called signed
graphs) or over the group T = {z ∈ C | |z| = 1} (more properly called complex unit gain
graphs).
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Let W be a walk of length l in Γ, that is, an ordered sequence of l + 1 vertices of Γ,
say v0, v1, . . . , vl, with vi ∼ vi+1. We will denote by |W | the length of the walk W . The
gain of W is then defined as

ψ(W ) := ψ(v0, v1) · · ·ψ(vl−1, vl).

A closed walk of length l is a walk of length l with v0 = vl.

We denote by 1G the identity element of G and we say that s ∈ G is an involution if
s2 = 1G. An element g ∈ G is said to be central if it commutes with any other element
of G. If s ∈ G is an involution, we denote, in bold, by s the map such that s(u, v) = s
whenever u ∼ v. It is clear that s is a gain function for Γ. The gain graph (Γ, ψ) is said
to be balanced if ψ(W ) = 1G for every closed walk W . For example (Γ, 1G) is trivially
balanced. Notice that, if T is a tree, one has ψ(W ) = 1G for every ψ ∈ G(T ) and any
closed walk W of T , hence a gain tree (T, ψ) is always balanced.

Definition 2.1. Let (Γ, ψ) be a gain graph, with Γ = (VΓ, EΓ). Let A ⊆ VΓ. Then:

• EΓ(A) ⊆ EΓ is the subset of edges whose endpoints are both in A;
• ΓA = (A,EΓ(A)) is the subgraph induced by the subset A of vertices;
• ψΓA

∈ G(ΓA), or simply ψA ∈ G(ΓA), is the gain function on ΓA such that
ψA(u, v) = ψ(u, v) for every u, v ∈ A with u ∼ v.

Let B ⊆ EΓ. Then:

• VΓ(B) ⊆ VΓ is the subset of vertices that are endpoints of edges in B;
• ΓB = (VΓ(B), B) is the edge-induced subgraph by the subset B of edges;
• ψΓB

∈ G(ΓB), or simply ψB ∈ G(ΓB), is the gain function on ΓB such that
ψB(u, v) = ψ(u, v) when {u, v} ∈ B.

Remark 2.2. For B ⊆ EΓ and A := VΓ(B) ⊆ VΓ, the graph ΓB differs from ΓA in general.
This happens, for instance, if Γ is not a tree, and B is a spanning tree of Γ. However,
if B is also equal to EΓ(A), then ΓA = ΓB. This is the case, for example, when ΓB is a
complete graph.

A cycle C in Γ is a subgraph induced by k of its edges that is isomorphic to the cyclic
graph Ck. A cycle involving 3 edges is called triangle. As noticed in the previous remark,
a triangle T can be also seen as a subgraph induced by 3 adjacent vertices v1, v2, v3. Two
distinct triangles T1, T2 of Γ are said to be adjacent if they share an edge.

Definition 2.3. [4] A triangle T of Γ on the vertices v1, v2, v3 is said to be an even triangle
if the number |{v ∈ {v1, v2, v3} | v ∼ w}| is even for every w ∈ VΓ; it is said to be an odd
triangle otherwise.

In other words, a triangle T is odd if there exists at least one vertex w ∈ VΓ which is
adjacent to an odd number of vertices of T .

A fundamental concept in the theory of gain graphs, inherited from the theory of signed
graphs, is the switching equivalence and the switching isomorphism.
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Definition 2.4. Two gain functions ψ1 and ψ2 on the same underlying graph Γ = (VΓ, EΓ)
are switching equivalent, and we write ψ1 ∼ ψ2, if there exists a switching function from
ψ1 to ψ2, that is, f : VΓ → G such that

(2.1) ψ2(u, v) = f(u)−1ψ1(u, v)f(v), ∀u, v ∈ VΓ, u ∼ v.

Two gain graphs (Γ1, ψ1) and (Γ2, ψ2) are switching isomorphic if there is a graph-
isomorphism φ : VΓ1

→ VΓ2
such that ψ1 ∼ (ψ2 ◦ φ), where ψ2 ◦ φ is the gain function on

Γ1 such that (ψ2 ◦ φ)(u, v) = ψ2(φ(u), φ(v)).

When Eq. (2.1) holds we shortly write ψ2 = ψf
1 . We denote by [ψ] the switching

equivalence class of the gain function ψ and by [G(Γ)] the set of all switching equivalence
classes of gain functions on Γ.

As a consequence of Eq. (2.1), if ψ1 ∼ ψ2 and W is a closed walk, then ψ1(W ) and
ψ2(W ) are conjugated elements in G (see [26, Proposition 2.1]). Moreover, a gain graph
(Γ, ψ) is balanced if and only if ψ ∼ 1G (see [36, Lemma 5.3] or [25, Lemma 2.1]). The
next lemma gives a generalization of this result.

Lemma 2.5. Let (Γ, ψ) be a G-gain graph and let s be a central involution of G. Then
ψ ∼ s if and only if, for every closed walk W , one has ψ(W ) = s|W |.

Proof. For every closed walk W we have, by definition of s, that s(W ) = s|W |. Suppose
that ψ ∼ s, then ψ(W ) is conjugated to s|W |. Since s is central, we have ψ(W ) = s|W |.

Vice versa, suppose that ψ(W ) = s|W | for every closed walk W . Choose a subset
B ⊆ EΓ such that the subgraph T := ΓB induced by B is a spanning tree of Γ, so that
VT = VΓ. Since T is a tree, all of its gain functions are balanced and then ψT ∼ 1G,
but also the gain function s restricted on T , is switching equivalent with 1G and then
by transitivity ψT ∼ s. Let f : VΓ → G be the switching function such that ψf

T = s.
Consider now ψ′ ∈ G(Γ) with ψ′ := ψf . By definition of ψ′ we have ψ ∼ ψ′. Then we
are done if we prove that ψ′ = s. By definition of f , we have that if {u, v} ∈ B then

ψ′(u, v) = ψf (u, v) = ψf
T (u, v) = s. If {u, v} /∈ B, as T is a spanning tree, there is a

cycle, and so a closed walk W , containing only edges of B except for {u, v} (suppose, in
the order u, v). As a consequence, we have that ψ′(W ) = s|W |−1ψ′(u, v). Since ψ and ψ′

are switching equivalent and W is closed, then ψ(W ) and ψ′(W ) are conjugated. Since
ψ(W ) = s|W | is central, it follows that ψ′(u, v) = s. The thesis follows since ψ′ = s and
then ψ ∼ s. �

We are going to recall the definition of line graph of a gain graph from [15], which
extends the definition for the Abelian case given in [26]. For a graph Γ with n vertices
and m edges, as a generalization of the incidence matrices, we consider the space HΓ of
the G-phases. A G-phase H ∈ HΓ is a map H : VΓ × EΓ → G ∪ {0} with the property
that, for v ∈ VΓ and e ∈ EΓ, we have v /∈ e if and only if H(v, e) = 0. By fixing an
ordering on VΓ = {v1, . . . , vn} and EΓ = {e1, . . . , em}, we will interpret H as an n × m
matrix whose entry Hi,j is in G if vi ∈ ej , and 0 otherwise. Notice that the positions of the
zeros in H coincide with the position of the zeros in the classical incidence matrix of Γ.
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Formally, these objects are particular cases of group algebra valued matrices Mn×m(CG),
which have been already applied to gain graphs in [14, 15].

In order to construct a line graph consistent with the several definitions in literature
on signed, complex unit, and Abelian gain graphs, we need the freedom to choose two
parameters: two central involutions (possibly trivial) s1 and s2 of G. The involution s1
plays a crucial role in the construction of a gain function on Γ starting from a G-phase
H ; the involution s2 plays a crucial role in the construction of a gain function on L(Γ).

Definition 2.6. Let s1 and s2 be two fixed central involutions of the group G. Let Γ be
a connected graph with VΓ = {v1, . . . , vn} and EΓ = {e1, . . . , em}. We have two maps:

Ψ: HΓ → G(Γ) ΨL : HΓ → G(L(Γ))

Ψ(H)(vi, vj) = s1Hi,k(Hj,k)
−1 ΨL(H)(ep, eq) = s2(Hr,p)

−1Hr,q

where ek = {vi, vj} and vr = ep ∩ eq.

The following theorem is a reformulation of the results of [15, Theorem 4.25, Corollary
4.26].

Theorem 2.7. For every graph Γ there exists an injective map L : [G(Γ)] → [G(L(Γ))]
such that for ψ ∈ G(Γ) and ζ ∈ G(L(Γ)) one has L([ψ]) = [ζ ] if and only if there exists
H ∈ HΓ such that Ψ(H) = ψ and ΨL(H) = ζ.

Definition 2.8. If ψ ∈ G(Γ) and ζ ∈ G(L(Γ)) are such that L([ψ]) = [ζ ], we say that
(L(Γ), ζ) is a line graph of the gain graph (Γ, ψ). A gain graph (L, ζ) is a gain-line graph
if it is a line graph of some gain graph.

According with Definition 2.8, the switching isomorphism class of (L(Γ), ζ) is the line
graph of the switching isomorphism class of (Γ, ψ).

By virtue of Theorem 2.7, one can also state that (L(Γ), ζ) is a gain-line graph if and
only if there exists a graph Γ and H ∈ HΓ such that ΨL(H) = ζ .

Example 2.9. Starting from a gain graph (Γ, ψ) and an ordering {v1, . . . , vn} of VΓ, we
can define a particular G-phase H< ∈ HΓ as

(H<)i,k :=











0 if vi 6∈ ek
ψ(vi, vj) if ek = {vi, vj} and i < j

s1 if ek = {vi, vj} and i > j.

By using Definition 2.6, it is not difficult to check that Ψ(H<) = ψ and that ΨL(H<) = ζ ,
with

(2.2) ζ({vj, vi}, {vi, vk}) :=











s1s2ψ(vi, vk) if j < i, i < k

s2 if j < i, i > k

s2ψ(vi, vj)ψ(vi, vk) if j > i, i < k.

It follows that (L(Γ), ζ) is a line graph of the gain graph (Γ, ψ). For example, in the case
of a signed graph with s1 = s2 = −1 (consistently with [40]) we have that the sign of an
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edge joining {v1, v2} and {v2, v3} is the sign of {v2, v3}; the sign of an edge joining {v2, v3}
and {v3, v1} is negative and finally the sign of an edge joining {v3, v1} and {v1, v2} is the
the opposite of the product of the sign of {v3, v1} and {v1, v2}. Notice that, by Theorem
2.7, changing the ordering does not change the switching equivalence class of ζ .

Remark 2.10. If (L, ζ) is a gain-line graph, then L is a line graph in the classical sense.
On the other hand, a gain graph (L, ζ) with underlying graph that is a line graph is
not necessarily a gain-line graph. In other words, the map L, or equivalently ΨL, is not
surjective in general. By Definition 2.6, the range of ΨL always contains the gain function
s2 as image of the G-phase with entries in {0, 1G}. As a consequence, we have that (L, s2)
is a gain-line graph if and only if L is a line graph. In this sense, the property of being a
gain-line for gain graphs is a generalization of the property of being a line graph in the
classical setting.

The next lemma shows that, for the line graph of a tree the class [s2] is the only
switching equivalence class of gain functions giving a gain-line graph.

Lemma 2.11. Let T be a tree and let L(T ) be its line graph. Then (L(T ), ζ) is a gain-line
if and only if ζ ∼ s2.

Proof. For any graph Γ one can prove, for example by using Eq. (2.2), that (L(Γ), s2) is
a line graph of (Γ, s1). It follows that L([s1]) = [s2]. The thesis follows by noticing that
all gain functions on a tree are balanced and then switching equivalent with each other;
in particular, there exists a unique class in [G(T )]. �

We have already defined induced graphs and induced gain functions in Definition 2.1.
It is then natural to introduce a definition for induced G-phases. In Proposition 2.13 we
will show its consistency with the previous definitions.

Definition 2.12. Let Γ = (VΓ, EΓ) be a graph and let H ∈ HΓ be a G-phase of Γ.

• For any A ⊆ VΓ, we define HA ∈ HΓA
as the submatrix of H with rows indexed

by A and columns indexed by EΓ(A).
• For any B ⊆ EΓ, we define HB ∈ HΓB

as the submatrix of H with rows indexed
by VΓ(B) and columns indexed by B.

When we consider the subgraph ΓA induced by a subset A of VΓ, we can assume,
without loss of generality, that the ordering of VΓ and EΓ are such that A = {v1, . . . , v|A|}
and EΓ(A) = {e1, . . . , e|EΓ(A)|}. In this way, we have (HA)i,k = Hi,k anytime vi ∈ A and
ek ∈ EΓ(A). The analogous assumptions can be made for a subgraph induced by a subset
B of EΓ. Moreover, we always choose the ordering of the vertices of L(Γ) inherited from
the ordering of EΓ. Thanks to these specifications, we are now in position to prove the
next proposition.

Proposition 2.13. Let H ∈ HΓ, Ψ(H) = ψ ∈ G(Γ), ΨL(H) = ζ ∈ G(L(Γ)). Let A ⊆ VΓ
and B ⊆ EΓ, so that also B ⊆ VL(Γ). Then:
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(1) Ψ(HA) = ψA;
(2) Ψ(HB) = ψB;
(3) ΨL(HB) = ζB.

Proof. Combining Definitions 2.1, 2.6, 2.12 we get the following equations.
(1) For vi, vj ∈ A, ek = {vi, vj} ∈ EΓ(A), using the fact that Ψ(H) = ψ, we have:

ψA(vi, vj) = ψ(vi, vj) = s1Hi,k(Hj,k)
−1 = s1(HA)i,k((HA)j,k)

−1 = Ψ(HA)(vi, vj).

(2) For vi, vj ∈ VΓ(B), ek = {vi, vj} ∈ B, using the fact that Ψ(H) = ψ, we have:

ψB(vi, vj) = ψ(vi, vj) = s1Hi,k(Hj,k)
−1 = s1(HB)i,k((HB)j,k)

−1 = Ψ(HB)(vi, vj).

(3) For ep, eq ∈ B, vr = ep ∩ eq ∈ VΓ(B), using the fact that ΨL(H) = ζ , we have:

ζB(ep, eq) = ζ(ep, eq) = s2(Hr,p)
−1Hr,q = s2((HB)r,p)

−1(HB)r,q = ΨL(HB)(ep, eq).

�

Let (Γ, ψ,H) be a triple with ψ ∈ G(Γ), H ∈ HΓ such that Ψ(H) = ψ. Such a triple is
called oriented G-gain graph [15,26], and this notion generalizes the one for signed graphs
[37,40]. Then the triple (ΓA, ψA, HA) for A ⊆ VΓ and the triple (ΓB, ψB, HB) for B ⊆ EΓ

have the same property: Ψ(HA) = ψA and Ψ(HB) = ψB .

Moreover, if (L(Γ), ζ) is a line graph of the gain graph (Γ, ψ), then for every subset
B ⊆ VL(Γ) = EΓ we have that (L(Γ)B, ζB) is a line graph of the gain subgraph (ΓB, ψB).

In light of Theorem 2.7, the problem of recognizing which gain graphs are gain-line
graphs is equivalent to establish the range of the map ΨL. According to Definition 2.6,
this range does not depend on the choice of the central involution s1, but only on the
choice of s2. For this reason, from now on, we can forget about s1 and we use the notation
s2 = s.

Remark 2.14. From the classical theory we know that the complete graph Kn, with
n > 3, is the line graph of the complete bipartite graph K1,n, also known as star graph,
and of no other graph. Notice that a star graph is a particular tree: by Lemma 2.11,
whatever the gain function on K1,n is, the associated gain function on its line graph Kn is
switching equivalent to s. By Proposition 2.13, the same is true for the gain function ψA

induced by a subset A of the vertices of a gain-line graph (L, ψ) when LA is isomorphic to
Kn for some n > 3. This provides many examples of gain graphs which are not gain-line
graphs, even if the underlying graph is a line graph.

The previous remark will be crucial for the generalization of Krausz’s characterization
to gain graphs. However, it is also related to the other characterizations by virtue of the
next lemma.

Lemma 2.15. Let Kn be the complete graph on n vertices, with n ≥ 3. Suppose that
ψ ∈ G(Kn) is such that, for every three distinct vertices v0, v1, v2 ∈ VKn

, we have

ψ(v0, v1)ψ(v1, v2)ψ(v2, v0) = s.
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Then ψ ∼ s. In particular, a gain graph with a complete graph as underlying graph is
balanced if and only if all its gain subgraphs on three vertices are balanced.

Proof. By virtue of Lemma 2.5, it is enough to prove that, for every closed walk W in Γ
of length l ≥ 3, one has:

(2.3) ψ(W ) = sl =

{

1G if l is even

s if l is odd.

We are proving Eq. (2.3) by induction on l. Suppose W is a closed walk of length l = 3
visiting vertices: v0, v1, v2, v0. Clearly v0, v1, v2 must be distinct and then Eq. (2.3) follows
from the hypothesis on ψ.
For a closed walk W of length l visiting vertices v0, v1, v2, v3, . . . , vl−1, v0 we consider two
cases. The first is when v0 = v2. In this case, let us define an associated closed walk
W ′ of length l − 2 visiting vertices v0, v3, . . . vl−1, v0. Clearly ψ(W ) = ψ(W ′) and, for the
inductive hypothesis, Eq. (2.3) holds.
In the second case, when v0 6= v2, consider the associated closed walk W ′ of length l − 1
visiting vertices v0, v2, . . . , vl−1, v0. Notice that v0, v1, v2 are three distinct vertices and
that, by the hypothesis on ψ, we have ψ(v0, v1)ψ(v1, v2) = sψ(v0, v2). Therefore:

ψ(W ) = ψ(v0, v1)ψ(v1, v2)ψ(v2, v3) · · ·ψ(vl−1, v0) = sψ(W ′).

Combining with the inductive hypothesis we have proved Eq. (2.3). �

Observe that, when (Γ, ψ) is a gain graph over an Abelian group G, the gain of a closed
walk W does not depend on its particular starting vertex v0. This allows to define the
gain of an oriented cycle. Moreover, the gain of a given oriented cycle does not depend on
the particular representative of the switching equivalence class of ψ. Actually, it is known
that the switching equivalence classes of gain functions on Γ are completely determined
by their gains on a cycle basis (see also the discussion preceding Corollary 4.1).

This argument does not hold in general if the group G is not Abelian: in this case,
the choice of two distinct starting vertices produces two conjugate gains. Similarly, two
switching equivalent gain functions assign conjugate gains to a given cycle. On the other
hand, since s is a central involution of G, the property of having gain equal to s or different
from s is well defined for a given cycle (regardless its starting vertex and its orientation).
For this reason, with a little abuse of notation, for a given triangle subgraph T of Γ and
a given gain function ψ ∈ G(Γ), we will write ψ(T ) = s or ψ(T ) 6= s. In the same way,
even if G is not Abelian, one can check if ψ ∼ s by only looking at the gains of ψ on
a cycle basis. As a consequence, the statement of Lemma 2.15 can be reformulated by
asking that only the gains of all the triangles of Kn sharing a given vertex v0 are equal to
s.
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3. Characterizations in gain graphs

Beineke’s characterization of line graphs is in term of X -freeness, where X is the list
of nine forbidden subgraphs G1, . . . , G9 depicted in Fig. 2. In order to extend it to gain
graphs, we introduce the concept of forbidden induced gain subgraphs.

Definition 3.1. Let Y be a set of gain graphs. A gain graph (Γ, ψ) is said to be Y-free
if, for any A ⊆ VΓ, the gain subgraph (ΓA, ψA) is not switching isomorphic to any of the
gain graphs in Y . The set Y is called the list of forbidden gain subgraphs.

Now we are going to define a set Y of forbidden gain subgraphs for the class of gain
line graphs. Not surprisingly, this list include all the gain graphs whose underlying graph
is one among G1, . . . , G9 of X (see Fig. 2). We denote it

(3.1) XG := {(Γ, ζ) | Γ ∈ X , ζ ∈ G(Γ)}.

This way, a gain graph (L, ζ) is XG-free if and only if its underlying graph L is X -free,
and so if and only if its underlying graph L is a line graph. On the other hand, it turns
out that this set XG is not big enough in order to characterize, in terms of a list of
forbidden gain subgraphs, the class of gain-line graphs. There exist in fact graphs which
are line graphs in the classical sense, which become gain-line graphs only when endowed
with particular gain functions. For example, it can be easily seen that every gain graph,
whose underlying graph is complete, is XG-free but it is not necessarily a gain-line graph
(see Remark 2.14).

For this reason, we need to introduce some more gain graphs, whose underlying graphs
are the paw graph P , the complete graph K4 an the diamond graph D, depicted in Fig.
3. Notice that the graph D consists of two adjacent triangles, that we denote by T1 and
T2. Consider also the graph TP depicted in Fig. 4. We have

(3.2) L(TP ) = P, L(K1,4) = K4, L(P ) = D.

Notice that by Whitney’s theorem, no other graph has P , K4 or D as its line graph. Put:

(3.3) Y := XG ∪ Fs

where XG is defined in Eq. (3.1), and

(3.4) Fs := {(P, ζ) | ζ ≁ s} ∪ {(K4, ζ) | ζ ≁ s} ∪ {(D, ζ) | ζ(T1) 6= s and ζ(T2) 6= s}.

In words, Y is the list of all graphs of X with every possible gain functions, together with
the graphs P and K4 with every gain function non-switching equivalent to s, together
with the diamond graph D with every gain function inducing gain different from s in
both the triangles of D. Notice that every gain graph in Y has at most 6 vertices, exactly
as it happened for graphs in X . Actually one could consider a narrower list of gain graphs
given by a representative of each switching isomorphism class of gain graphs. For example
when G = T2, the set Fs can be replaced by only four signed graphs (see Remark 4.2).
We can now present the main result of the paper, which is the generalization of Theorem
1.1 to gain graphs.

Theorem 3.2. For a connected gain graph (L, ζ), with L = (VL, EL), the following are
equivalent.
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P K4

T1

T2

D

Figure 3. The Paw graph P , the complete graph K4 and the diamond
graph D.

TP

Figure 4. The graph TP such that L(TP ) = P .

(1) (L, ζ) is a line graph of a gain graph.
(2) There exists a partition EL = E1 ⊔ E2 ⊔ · · · ⊔ Ek such that every vertex of L

is endpoint of edges from at most two elements of the partition and the induced
gain subgraph (LEi

, ζEi
) is a complete graph with ζEi

∼ s in G(LEi
), for each

i = 1, . . . , k.
(3) The following four conditions hold:

(i) L is K1,3-free;
(ii) the gain of every odd triangle T of L is s;
(iii) if T1 and T2 are adjacent odd triangles, then their vertices induce a subgraph

of L that is complete;
(iv) if T1 and T2 are adjacent even triangles, then the gain of at least one triangle

is s.
(4) (L, ζ) is Y-free.
(5) Every gain subgraph of (L, ζ) induced by a subset of at most 6 vertices is a line

graph of a gain graph.

Proof.
(2) =⇒ (1)
Suppose that there exists a partition of the edges EL = E1⊔E2⊔· · ·⊔Ek such that every
vertex of L is endpoint of edges from at most two elements of the partition and that the
induced gain subgraph (LEi

, ζEi
) is a complete graph with ζEi

∼ s, for each i = 1, . . . , k.
Let us denote by U = {u1, . . . , ul} the (possibly empty) subset of vertices of L appearing
as endpoints of edges of only one element of the aforementioned partition.

Following the classical construction (see for instance [21, Theorem 8.4]), we can define
a graph Γ whose line graph is L. The graph Γ is the intersection graph of the family
of subsets {VL(E1), . . . , VL(Ek), {u1}, . . . , {ul}} of VL. Since we need a G-phase H ∈ HΓ

such that ΨL(H) = ζ (see Theorem 2.7), we are going to describe Γ with more details.



14 M. CAVALERI, D. D’ANGELI, AND A. DONNO

We set VΓ = {x1, . . . , xk, w1, . . . , wl}, where the vertices x1, . . . , xk are in a 1-1 correspon-
dence with the parts E1, . . . , Ek of the partition of EL, and the vertices w1, . . . , wl are
in a 1-1 correspondence with the vertices in u1, . . . , ul of U . We put xi ∼ xj in Γ if
VL(Ei) ∩ VL(Ej) 6= ∅, and wq ∼ xi in Γ if uq ∈ VL(Ei). Notice that, when xi ∼ xj , the
nonempty intersection VL(Ei) ∩ VL(Ej) consists exactly of one vertex of L, because LEi

and LEj
are complete and Ei and Ej are disjoint. Moreover, we set that a vertex wi is

not adjacent to any vertex wj .
As stated in [21, Theorem 8.4], we have L(Γ) = L, and EΓ = VL. More specifically

with an edge ep = {xi, xj} ∈ EΓ is associated the aforementioned unique vertex of L in
VL(Ei) ∩ VL(Ej) and with an edge ep = {xi, wj} of Γ is associated the vertex uj of L
appearing as endpoint only of edges in Ei. By the hypothesis, for any i we have ζEi

∼ s.
By Definition 2.4, this means that there exists a switching function fi : VL(Ei) → G such

that ζfiEi
= s. We are now able to define the required H ∈ HΓ such that ΨL(H) = ζ .

We first consider the columns of H associated with edges of Γ connecting vertices of the
type x1, . . . , xk ∈ VΓ. Suppose we have ep = {xi, xj} ∈ EΓ and then ep = VL(Ei)∩ VL(Ej)
as a vertex of L. We set Hi,p := (fi(ep))

−1 and Hj,p := (fj(ep))
−1. We fill the other entries

of the column p with 0’s.
Consider now the columns of H associated with edges of the type ep = {xi, wj} of

Γ. In particular ep is uj ∈ VL(Ei) as a vertex in L. Then we set Hi,p := (fi(ep))
−1 and

Hk+j,p := 1G (or any other group element). We fill the other entries of the column p with
0’s. We can summarize as follows:

(3.5) Hi,p :=











(fi(ep))
−1 if i ≤ k, xi ∈ ep

1G if i > k, wi−k ∈ ep
0 otherwise.

By construction, H ∈ HΓ. Consider two adjacent vertices ep and eq in L. They are also
incident edges of Γ, in particular ep ∩ eq is not empty. Moreover, ep ∩ eq must be a vertex
in {x1, . . . , xk} ⊆ VΓ. In fact, if we had {xi, wc}, {xj , wc} ∈ EΓ, this would imply that in
L the vertex uc is endpoint of edges of Ei and Ej, that is impossible by definition of U .
Therefore, for any two adjacent vertices ep, eq of L there must exist i ∈ {1, . . . , k} such
that ep ∩ eq = xi. Combining Definition 2.6 and Eq. (3.5), we have

ΨL(H)(ep, eq) = s(Hi,p)
−1(Hi,q) = s(fi(ep)

−1)−1(fi(eq))
−1 = fi(ep)sfi(eq)

−1

= s(fi)
−1

(ep, eq) = ζEi
(ep, eq) = ζ(ep, eq).

It follows that ζ = ΨL(H) and (L, ζ) is a gain-line graph.

(1) =⇒ (5)
Suppose that (L, ζ) is the gain-line graph of some gain graph (Γ, ψ), in particular VL = EΓ.
Then for any subset A ⊆ VL (in particular, for any subset A with at most 6 vertices), by
virtue of Proposition 2.13, we have that a gain subgraph (LA, ζA) induced by the subset
A of the vertices of L is the gain-line graph of the gain subgraph (ΓA, ψA) induced by the
subset A of the edges of Γ.
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(5) =⇒ (4)
If we prove that each gain graph in Y (that has at most 6 vertices) is not a gain-line graph,
then a gain graph (Γ, ψ) for which property (5) holds must be Y-free (and so property
(4) will be satisfied). Since the underlying graphs of gain graphs in XG are in X by Eq.
(3.1), the gain graphs in XG are not gain-line graphs. Therefore, it is enough to show
that gain graphs in Fs are not gain-line.

If (P, ζ) is the line graph of a gain graph (Γ, ψ), the graph Γ must be isomorphic to
the tree TP of Fig. 4 (see Eq. (3.2)). By virtue of Lemma 2.11 we have ζ ∼ s. As a
consequence, if ζ ≁ s then (P, ζ) cannot be a gain-line graph.
Similarly, if (K4, ζ) is the gain-line of a graph (Γ, ψ), then Γ must be isomorphic to the
tree K1,4 (see Eq. (3.2)) and we can conclude as before.
Finally, suppose that (D, ζ) is the gain-line of (Γ, ψ), so that Γ is isomorphic to the paw
graph P (see Eq. (3.2)). Consider B ⊆ EΓ such that ΓB is isomorphic to the graph K1,3.
We have that (DB, ζB) is the gain-line of (ΓB, ψB), so that DB is isomorphic to K3 and,
by Lemma 2.11, it must be ζB ∼ s. It follows that, if both the triangles of (D, ζ) have
gains different from s, the graph (DB, ζB) cannot be a subgraph of (D, ζ) and then (D, ζ)
cannot be a gain-line graph.

(4) =⇒ (3)
Observe that, if (L, ζ) is Y-free, then L must be X -free by definition of Y . As a con-
sequence of Beineke’s characterization, there exists a graph Γ such that L = L(Γ). On
the other hand, by van Rooij and Wilf’s characterization, we have that L is K1,3-free
and that, if T1 and T2 are two adjacent odd triangles of L, then their vertices induce a
subgraph of L isomorphic to K4. Then in order to prove (3) we only have to show that
the gain of every odd triangle is s and that when T1 and T2 are adjacent even triangles,
at least one among T1 and T2 has gain s.
We start by proving the first of these two properties. Suppose that a subset A :=
{v1, v2, v3} ⊆ VL induces an odd triangle T in L. This implies that there exists w ∈ VL
such that |{v ∈ A | v ∼ w}| is 1 or 3. Suppose, as a first case, that |{v ∈ A | v ∼ w}| = 1.
This implies that w /∈ A and that the subgraph of L induced by A∪{w} is isomorphic to
the paw graph P . Thanks to conditions (4) we have ζA∪{w} ∼ s and then the gain on the
triangle is s. Suppose now that |{v ∈ A | v ∼ w}| = 3. This implies that w /∈ A and that
the subgraph of L induced by A∪{w} is isomorphic to K4. As before, by using condition
(4), we have that ζA∪{w} ∼ s and then the gain of each triangle of this subgraph, and in
particular the gain of T , is s.
Let us prove now the second property. Suppose that T1 and T2 are adjacent even triangles.
More precisely, suppose that the vertices of T1 are {v1, v2, v3} and the vertices of T2 are
{v1, v2, v4}. Since T1 and T2 are even, then v3 ≁ v4. In particular, the subgraph of Γ
induced by {v1, v2, v3, v4} is isomorphic to the diamond graph D. By using the condition
(4) the gain of at least one of the two triangles must be s.

(3) =⇒ (2)
As in the classical setting, we consider two distinct cases, when L contains adjacent even
triangles and when it does not.
In [4] it is shown that there exist exactly three exceptional graphs containing two adjacent
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F1 F2 F3

Figure 5. The exceptional graphs F1, F2, F3.

even triangles and satisfying conditions (i) and (iii) of (3): they are the graphs F1, F2,
F3, depicted in Fig. 5. The last condition on (L, ζ) in (3) about adjacent even triangles
ensures that, if L is either F1, F2, or F3, we can assume that at least the gains of all
triangles filled in gray are s, or at least the gains of all triangles unfilled, are s. Let us
assume to be in the first case, so that the gain of each gray triangle is s (the second case
can be similarly covered). We define a partition of EL in the following way: the edges
bounding the same gray triangle are in the same part; each of the other parts contains
exactly one of the (possibly) remaining edges. This way, the subgraph induced by each
part is isomorphic to K2 or K3. Moreover, the induced gain function on this subgraph, in
both cases, is switching equivalent to s. In fact, if the subgraph is isomorphic to K3, this
is true because we assumed that the gain of each gray triangle is s; if it is isomorphic to
K2, this is true because K2 is a tree. Finally, from the picture, it is clear that a vertex is
endpoint of edges from at most two parts.

Suppose now that in L there is no pair of adjacent even triangles. Then, according
to the construction in the proof of the main theorem in [4], there exists a partition
EL = E1 ⊔ E2 ⊔ · · · ⊔ Ek such that:

• ΓEi
is complete;

• if |Ei| = 3, then the endpoints of Ei form an odd triangle;
• every vertex v ∈ VL is endpoint of edges from at most two parts.

Then if Ei consists of exactly one edge, clearly ζEi
∼ s. If |Ei| = 3, the associated triangle

is odd and, by hypothesis (3), we have ζEi
∼ s. Finally suppose that ΓEi

is isomorphic
to Kn with n > 3. Notice that every triangle of Kn is odd and then, the gain of each
triangle is s. By Lemma 2.15 we have ζEi

∼ s and we have done. �

Example 3.3. Consider the G-gain graph (L, ξ) depicted in Fig. 6, where G is any group
and a, b, c, d ∈ G.

We will omit the label 1G on each edge whose gain is 1G. At first we observe in Fig. 7
that the underlying graph L admits the following partition of the edge set

EL = E1 ⊔ E2 ⊔ E3 ⊔ E4 ⊔ E5,

such that every vertex in VL is endpoint of edges from at most two elements of the partition
and the subgraph LEi

of L induced by Ei is a complete graph, for each i = 1, . . . , 5.
By Krausz’s characterization in Theorem 1.1, the graph L is the line graph of some
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a

b

ab

c

c
1G

1
G

d

1G

1G

1G
1
G

1G

1G

Figure 6. The G-gain graph (L, ξ) of Example 3.3.

E1

E2

E5

E4

E3

a

b

ab

c

c

d

Figure 7. The partition of the edge-set of (L, ξ) of Example 3.3.

simple graph. Moreover, one can check that the edge-induced gain subgraph (LEi
, ζEi

)
is balanced, that is ζEi

∼ 1G in G(LEi
), for each i = 1, . . . , 5. Hence the condition (2)

of Theorem 3.2 holds for s = 1G, and then (L, ξ) is a gain-line graph. We are going to
explicitly construct the graph Γ such that L(Γ) = L and a G-phase H ∈ HΓ such that
ψL(H) = ξ (see Definition 2.6).

Following the formalism of the proof of Theorem 3.2 (implication (2) =⇒ (1)), we de-
note by u1, u2 the two vertices of L that are endpoints of edges of only one element of the
aforementioned partition, and by v1, . . . , v6 the other vertices. The graph Γ = (VΓ, EΓ) can
be described as the intersection graph of the family of subsets {VL(E1), . . . , VL(E5), {u1}, {u2}}.
More precisely, we set VΓ = {x1, . . . , x5, w1, w2} in such a way that

(1) x1 is associated with VL(E1) = {u1, v1, v2};
(2) x2 is associated with VL(E2) = {v1, v4, v5};
(3) x3 is associated with VL(E3) = {v5, v6};
(4) x4 is associated with VL(E4) = {v3, v4, v6, u2};
(5) x5 is associated with VL(E5) = {v2, v3};
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(6) w1 is associated with the singleton {u1};
(7) w2 is associated with the singleton {u2}.

Moreover, each edge of Γ is associated with the only vertex of L that is in the intersection
of its endpoints. See Fig. 8.

u1

v1

v2 v3

v4

u2

v6

v5

a

b

ab

c

c

d

x1

x2

x5

x4

x3

w1 w2
x1

x2

x4

x5

w1

w2

x3

v 1
v
4

v 3
v
2

u1
u
2

v 6

v5

Figure 8. The family of subsets of vertices of (L, ξ) and its intersection
graph isomorphic to Γ of Example 3.3.

For each i = 1, . . . , 5, let us define a switching function fi on the vertex set VL(Ei) as
follows:

• f1 : VL(E1) → G such that

f1(v1) = 1G, f1(v2) = b−1, f1(u1) = a;

• f2 : VL(E2) → G such that

f2(v1) = 1G, f2(v4) = c−1, f2(v5) = 1G;

• f3 : VL(E3) → G such that

f3(v5) = f3(v6) = 1G;

• f4 : VL(E4) → G such that

f4(v3) = f4(v4) = f4(v6) = f4(u2) = 1G;

• f5 : VL(E5) → G such that

f5(v2) = d, f5(v3) = 1G.

One can directly check that the condition ξfiEi
= 1G is satisfied for each i. We can

summarize the values of these functions in this table:
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v1 v2 v3 v4 v5 v6 u1 u2
f1 1G b−1 � � � � a �

f2 1G � � c−1 1G � � �

f3 � � � � 1G 1G � �

f4 � � 1G 1G � 1G � 1G
f5 � d 1G � � � � �

Finally, according with Eq. (3.5), we obtain the G-phase

H =



















1G b 0 0 0 0 a−1 0
1G 0 0 c 1G 0 0 0
0 0 0 0 1G 1G 0 0
0 0 1G 1G 0 1G 0 1G
0 d−1 1G 0 0 0 0 0
0 0 0 0 0 0 1G 0
0 0 0 0 0 0 0 1G



















.

Notice that the first five rows can be obtained from the previous table by taking the
inverse of the entries of the table, and by replacing the empty spaces with 0 ∈ CG. One
can check that ψL(H) = ξ. For instance, one has:

ψL(H)(u1, v2) = H−1
1,7H1,2 = ab = ξ(u1, v2); ψL(H)(v2, v3) = H−1

5,2H5,3 = d = ξ(v2, v3).

Under the hypothesis that L = L(Γ), that is, L is a line graph as underlying graph,
it is very easy to establish whether a gain graph (L, ζ) is a gain-line or not, as the next
corollary shows.

Corollary 3.4. Suppose (L, ζ) is such that L = L(Γ) and L is not isomorphic to either
F1, F2, or F3 of Fig. 5. Then (L, ζ) is a gain-line if and only if each of its odd triangles
has gain s.

Proof. We are using the characterization (3) of Theorem 3.2. Clearly if (L, ζ) is a gain-
line, then every odd triangle has gain s. Let us prove the converse implication. Since
L = L(Γ), by the van Rooij and Wilf’s characterization, we know that L is K1,3-free
(condition (i) of (3)) and that if T1 and T2 are adjacent odd triangles, then their vertices
induce a subgraph of L that is complete (condition (iii) of (3)). Moreover, since L is not
isomorphic to either F1, F2, or F3, it has no adjacent even triangles [4], and the condition
(iv) of (3) is trivially satisfied. Since the gain of every odd triangle T of L is s by the
hypothesis (condition (ii) of (3)), the proof is completed. �

As a consequence of Corollary 3.4 we have that, if (L, ζ) is a gain graph such that:

• either there is an odd triangle T with gain that is not central,
• or there is an odd triangle T with gain that is not an involution,
• or there are odd triangles T1, T2 with different gains,
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then (L, ζ) cannot be a gain-line, for any choice of s.

Remark 3.5. When s = 1G, if (L, ζ) is a gain-line graph, then all its odd triangles are
balanced. Under the hypothesis that L = L(Γ) and that L is not isomorphic to either
F1, F2 or F3, the condition of balance of all odd triangles of (L, ζ) is also sufficient to say
that (L, ζ) is a gain-line.

When G = T and s = −1, if L is a line graph which is not isomorphic to either F1, F2

or F3, then we have that a T-gain graph (L, ζ) is a gain-line if and only if all odd triangles
are antibalanced (i.e., their gains are equal to −1).

Starting from a line graph L(Γ), and using a G-phase H ∈ HΓ, it is always possible
to define a gain ζ ∈ G(L(Γ)) such that (L(Γ), ζ) is a gain graph (see Remark 2.10). On
the other hand, in many cases there exist gain functions ψ such that (L(Γ), ψ) is not a
gain-line graph (e.g., this happens for the graphs from the family Fs). In this setting,
there are two families of graphs with a special behavior, as the next corollary shows.

Corollary 3.6. Let G be a nontrivial group. Then a connected graph L = (VL, EL) is
such that (L, ζ) is a gain-line for all ζ ∈ G(L) (that is, the map L is surjective) if and
only if L is a path or a cycle.

Proof. If L is a path or a cycle the condition of Corollary 3.4 is trivially satisfied for any
ζ ∈ G(L).

Let us prove the converse implication. First of all, notice that for |VL| ≤ 3 the claim
is trivial. Therefore, we can assume |VL| ≥ 4. By contradiction, suppose that (L, ζ) is a
gain-line for any ζ ∈ G(L) but L is not a path nor a cycle. As a first step we prove that,
under these hypotheses, L contains at least one odd triangle or at least a pair of adjacent
triangles.
The hypothesis that L is not a path nor a cycle implies that there exists a vertex v0 ∈ VL
that is adjacent to three distinct vertices v1, v2, v3. Since (L, ζ) is a gain-line for every ζ ,
then in particular the underlying graph L is a line graph and it is K1,3-free (see Theorem
1.1). As a consequence, at least two among v1, v2, v3 are adjacent. Suppose, without loss
of generality, that v1 ∼ v2. Now, if v3 is adjacent to neither v1 nor to v2, the triangle
v0, v1, v2 is odd, but if v3 is adjacent to at least one among v1 and v2, then there are two
adjacent triangles.
In the first case, L has an odd triangle T . Since G is nontrivial, it is possible to define
a gain function ζ1 such that ζ1(T ) 6= s. By Corollary 3.4, the gain graph (L, ζ1) is not a
gain-line, which is a contradiction. In the second case, if at least one of the two adjacent
triangles is odd, we can argue as in the previous case. However, if both the adjacent
triangles T1 and T2 are even, it is always possible to define a gain function ζ2 such that
ζ2(T1) 6= s and ζ2(T2) 6= s. By Theorem 3.2, the gain graph (L, ζ2) is not a gain-line, a
contradiction again. �
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4. Spectral characterizations in signed graphs

In this section we assume that G = T2 = {±1}. Then a T2-gain graph (Γ, σ) is usually
called a signed graph, the gain function σ is usually known as the signature of Γ, the
gain of a walk is usually called the sign of a walk. Also the cycles can be partitioned into
positive (balanced) cycles and negative (unbalanced) cycles, according to the parity of
the number of negative edges. By fixing an ordering {v1, . . . , vn} of the vertices of Γ, it is
possible to define an adjacency matrix of the signed graph (Γ, σ), denoted with A(Γ,σ), by
setting:

(

A(Γ,σ)

)

i,j
:=

{

σ(vi, vj) if vi ∼ vj
0 otherwise.

By definition, the matrix A(Γ,σ) is real and symmetric. The spectrum Spec(Γ, σ) of the
signed graph is defined as the spectrum of the matrix A(Γ,σ) and it is invariant under
switching isomorphism. Notice that, with any signature σ of Γ, the opposite signature
−σ is associated, and it satisfies Spec(Γ,−σ) = − Spec(Γ, σ).

For a connected graph Γ with n vertices and m edges there exists a spanning tree T
of Γ that is a subgraph induced by n − 1 of its edges. As we have already seen in the
proof of Lemma 2.5, each of the remaining m−n+1 edges of Γ induces exactly one cycle
involving only edges from T and the edge itself. This set of m−n+1 cycles is a cycle basis
(see, for example, [21]), and the number m−n+1 is called circuit rank of Γ. A standard
modification of the argument in the proof of Lemma 2.5 proves that two signatures are
switching equivalent if and only if their signs on a cycle basis coincide. In particular,
the cardinality of the switching equivalence classes of signatures [T2(Γ)] on a connected
graph Γ is 2m−n+1 (see [23, Proposition 3.1]). Since L is an injective map from [T2(Γ)] to
[T2(L(Γ))], the characterization of surjectivity of L in Corollary 3.6 gives information on
the circuit rank of the line graph.

Corollary 4.1. If Γ is neither a path nor a cycle, the circuit rank of L(Γ) is greater than
the circuit rank of Γ.

Now we are going to analyze the line construction in signed graphs in relation with the
two possible choices of s.

Suppose s = 1. As observed in Remark 2.10, the signed graph (Γ,+1) is a line graph
if and only if Γ is a line graph. Notice that the usual way to embed an unsigned graph Γ
into signed graphs, is through the all-positive signature +1:

Γ 7→ (Γ,+1).

As a consequence, a graph that is a line graph, regarded as a signed graph with the all-
positive signature, is still a line graph.

On the other hand, if s = −1, we have that the signed graph (Γ,−1) is a line graph
if and only if Γ is a line graph. As we have shown in Corollary 3.4, if (L, σ) is such that
L = L(Γ) and L is not isomorphic to either F1, F2, or F3, the signed graph (L, σ) is a line
graph with s = 1 if and only if all its odd triangles are balanced; (L, σ) is a line graph
with s = −1 if and only all its odd triangles are unbalanced. In particular, if a signed
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graph has simultaneously balanced and unbalanced odd triangles, it cannot be a signed
line graph, with any choice of s.

In what follows we want to give a spectral characterization of the class of line graphs of
signed graphs. For this reason, we look again at the set of the forbidden signed subgraphs.

Remark 4.2. It is not difficult to check that every signed graph in F1 (defined in Eq.
(3.4)) is switching isomorphic to one among (P,−1), (K4,−1), (K4, σ1), (D,−1), where
(K4, σ1) is a complete signed graph with exactly one negative edge (see Fig. 9). Similarly,
every signed graph in F−1 is switching isomorphic to one among (P, 1), (K4, 1), (K4, σ1),
(D, 1) (see Fig. 10).

(P,−1) (K4,−1) (K4, σ1) (D,−1)

Figure 9. The forbidden signed subgraphs for signed line graphs (with
s = 1) whose underlying graph is a line graph.

(P, 1) (K4, 1) (K4, σ1) (D, 1)

Figure 10. The forbidden signed subgraphs for signed line graphs (with
s = −1) whose underlying graph is a line graph.

From the classical theory we know that, if L is a line graph, then Spec(L) ⊆ [−2,∞).
From [40] we know that if (L, σ) is a signed line graph with the choice s = −1 then
Spec(L, σ) ⊆ (−∞, 2]. On the other hand, if (L, σ) is a signed line graph with the choice
s = 1 then Spec(L, σ) ⊆ [−2,∞) (see [15, 26] for more general results).
Thanks to our characterization given in Theorem 3.2, for a signed graph whose underlying
graph is a line graph, it is possible to characterize the property of being a signed line graph
by just looking at these spectral conditions.

Theorem 4.3. Let L = L(Γ) and let σ be a signature of L. The following are equivalent.

(i) (L, σ) is a signed line graph with the choice s = 1.
(ii) (L, σ) has no signed subgraph, induced by a vertex subset, which is switching isomor-

phic to one among (P,−1), (K4,−1), (K4, σ1), (D,−1).
(iii) Spec(L, σ) ⊆ [−2,∞).
(iv) (L,−σ) is a signed line graph with the choice s = −1.
(v) (L,−σ) has no signed subgraph, induced by a vertex subset, which is switching iso-

morphic to one among (P, 1), (K4, 1), (K4, σ1), (D, 1).
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(vi) Spec(L,−σ) ⊆ (−∞, 2].

Proof. We will prove that conditions (i), (ii), (iii) are equivalent (the equivalence of (iv),
(v), (vi) can be similarly proved). The proof will be concluded by noticing that (iii) is
clearly equivalent to (vi).
(i) =⇒ (iii) It follows from [15, 26].
(ii) =⇒ (i) Suppose that (ii) holds and that (L, σ) is not a signed line graph with s = 1,
so that (L, σ) is not Y-free by Theorem 3.2. On the other hand, as L is a line graph
by the hypothesis, it must be X -free: this implies that (L, σ) is not F1-free and so it
contains a signed subgraph, induced by some subset of VL, which is switching isomorphic,
by Remark 4.2, to one among the graphs (P,−1), (K4,−1), (K4, σ1), (D,−1) of Fig. 9.
A contradiction.
(iii) =⇒ (ii) Suppose Spec(L, σ) ⊆ [−2,∞) and that (L, σ) contains a signed subgraph,
induced by a vertex subset, which is switching isomorphic to one among (P,−1), (K4,−1),
(K4, σ1), (D,−1). An explicit computation shows that each of these 4 signed graphs
has an eigenvalue less than −2. As a consequence of the Interlacing Theorem (see [17,
Theorem 1.3.11]) there is at least an eigenvalue of (L, σ) with the same property, that is
a contradiction. �

Remark 4.4. Theorem 4.3 can be compared with the results of [16], where the class
of signed graphs represented by D∞ is characterized in terms of 49 forbidden signed
subgraphs S1, . . . , S49. Notice that all such signed graphs have all eigenvalues greater
than or equal to −2. The signed graphs in this class whose underlying graph is a line
graph are exactly the signed line graphs with s = 1. Now, one can remove from the
list S1, . . . , S49 those signed graphs whose underlying graph has subgraphs isomorphic to
graphs in X . Those signed graphs in fact, by Beineke’s characterization, never appear as
subgraphs of a signed graph whose underlying graph is a line graph. It is easy to check
that, after this deletion process, only the signed graphs S1, S2, S3, S4 remain: they are
exactly switching-isomorphic copies of the signed graphs of Fig. 9.

As a further consequence of Theorem 4.3 and Corollary 3.6, we can deduce a charac-
terization of (unsigned) line graphs with spectral radius at most 2.

Corollary 4.5. A connected line graph L with spectral radius at most 2 must be a cycle
or a path.

Proof. The maximal eigenvalue of a signed graph (L, σ) must be less than or equal to
that of the underlying graph L. It follows that Spec(L, σ) ⊆ (−∞, 2] for every signature
σ of L. Then, by Theorem 4.3, the signed graph (L, σ) is a signed line graph for every
signature σ of L. By virtue of Corollary 3.6, the graph L must be a cycle or a path. �

Notice that the same result can be deduced from [29], where the graphs with spectral
radius at most 2 are classified.
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