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PARTITION AND COHEN–MACAULAY EXTENDERS

JOSEPH DOOLITTLE, BENNET GOECKNER, AND ALEXANDER LAZAR

Abstract. If a pure simplicial complex is partitionable, then its h-vector has a
combinatorial interpretation in terms of any partitioning of the complex. Given
a non-partitionable complex ∆, we construct a complex Γ ⊇ ∆ of the same
dimension such that both Γ and the relative complex (Γ, ∆) are partitionable.
This allows us to rewrite the h-vector of any pure simplicial complex as the
difference of two h-vectors of partitionable complexes, giving an analogous
interpretation of the h-vector of a non-partitionable complex.

By contrast, for a given complex ∆ it is not always possible to find a
complex Γ such that both Γ and (Γ, ∆) are Cohen–Macaulay. We characterize
when this is possible, and we show that the construction of such a Γ in this
case is remarkably straightforward. We end with a note on a similar notion for
shellability and a connection to Simon’s conjecture on extendable shellability
for uniform matroids.

1. Introduction

The h-vector of a simplicial complex contains important and well-studied informa-
tion about the complex and its associated Stanley–Reisner ring. If a pure complex
is partitionable, then the entries of its h-vector are non-negative and have a com-
binatorial interpretation in terms of the partitioning of the face poset. In general,
the h-vector can be described algebraically in terms of the Stanley–Reisner ring
of ∆, but the aforementioned combinatorial interpretation for the h-vector of a
partitionable complex does not apply to non-partitionable complexes.

We introduce a new object of study, which we will use to extend the combinatorial
interpretation for the h-vector.

Definition 1.1. Let ∆ be a pure d-dimensional simplicial complex. A pure d-
dimensional complex Γ is a partition extender for ∆ if

• ∆ ⊆ Γ.
• Γ is partitionable.
• The relative complex (Γ, ∆) is partitionable.

Theorem 1.2 (Theorem 4.1). Every pure simplicial complex has a partition ex-

tender.
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For any relative complex (Γ, ∆) with dim Γ = dim ∆ we can write

h(∆) = h(Γ) − h(Γ, ∆).

When Γ is a partition extender for ∆, then both of the right-hand h-vectors have
combinatorial interpretations. This allows us to view the h-vector of ∆ as an
“error term” between the h-vector of Γ and the h-vector of (∆, Γ). Specifically,
every h-vector of a simplicial complex is the difference between the h-vector of a
partitionable complex and the h-vector of a partitionable relative complex.

Our construction of a partition extender can be generalized to nonpure complexes.
In the nonpure case, partitionability is a more subtle condition than in the pure
case (see [11]). However, we show that our construction satisfies strong enough
properties to yield a combinatorial interpretation of the h-triangle of an arbitrary
nonpure complex.

We further show that if depth k[∆] = dim k[∆] − 1, then for any Cohen–Macaulay
complex Γ of the same dimension that contains ∆, the relative complex (Γ, ∆) is
Cohen–Macaulay. This similarly allows us to write the h-vector of any such complex
as the difference between the h-vector of a Cohen–Macaulay complex and the h-
vector of a relative Cohen–Macaulay complex. We also show that such a Γ does
not exist if the depth of k[∆] is any lower.

While an equivalent notion for shellability is straightforward to define, it is unclear
when shellable extenders exist. They certainly cannot exist whenever depth k[∆] <
dimk[∆] − 1, since relative shellability implies relative Cohen–Macaulayness. We
conclude with a connection to Simon’s conjecture on shellability of uniform matroids
[16, Conjecture 4.2.1].

In Section 2, we review standard definitions and background material. In Section 3,
we give explicit constructions which have the required properties to make our proofs
work. In Section 4, we provide our main result on partition extenders for pure com-
plexes. In Section 5, we consider the case of nonpure partitionability. In Section 6,
we prove parallel results with the Cohen–Macaulay property in place of partition-
able. In Section 7, we survey the current state of the problem with the shellable
property. In Section 8, we discuss possible future directions of investigation.

2. Preliminaries

A simplicial complex ∆ is a collection of sets such that if σ ∈ ∆ and τ ⊆ σ, then
τ ∈ ∆. The elements of ∆ are called faces of ∆, and maximal faces are called facets.
If σ is a face of ∆, the dimension of σ is dim(σ) := |σ| − 1. The dimension of ∆ is
defined to be the maximum of the dimensions of the faces of ∆. We say that ∆ is
pure if all its facets have the same dimension. Let ∆ be a d-dimensional simplicial
complex. The f-vector of ∆ is the vector

f(∆) = (f−1(∆), f0(∆), f1(∆), . . . , fd(∆)),

where fi(∆) is the number of i-dimensional faces of ∆. Note that f−1(∆) = 1
unless ∆ is the empty complex ∆ = ∅.
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The h-vector of ∆ is the vector h(∆) = (h0(∆), h1(∆), . . . , hd+1(∆)) , whose entries
are defined by the relation

(1)

d+1
∑

i=0

fi−1(∆)(x − 1)d−i+1 =

d+1
∑

i=0

hi(∆)xd−i+1.

The face poset P (∆) of a simplicial complex ∆ is the set of all faces of ∆, partially-
ordered by inclusion. An interval I in a poset P , denoted I = [σ, τ ], is the set of
elements e of P such that σ ≤ e ≤ τ . When this interval I is itself a Boolean poset
(i.e., I ∼= 2[k] for some k ∈ Z≥0), we say it is a Boolean interval.

Let Γ be a simplicial complex and ∆ be a subcomplex of Γ. The relative complex

(Γ, ∆) consists of the faces of Γ not contained in ∆. A relative complex is pure if
all its maximal faces have the same dimension. If (Γ, ∆) is a relative complex, we
can define f(Γ, ∆) = (f−1(Γ, ∆), . . . , fd(Γ, ∆)) by fj(Γ, ∆) = fj(Γ) − fj(∆) for all
j. We can further define h(Γ, ∆) via (1) above.

A poset P is said to be partitionable if P can be written as a disjoint union of
intervals I1 ⊔ · · · ⊔ Ik such that each Ij is a Boolean interval and the maximum
element of each Ij is a maximal element of P . A (relative) complex is said to be
partitionable if its face poset is partitionable.

Proposition 2.1. [18, Page 118] If a pure relative complex is partitionable, then

hi(Γ, ∆) is the number of Boolean intervals in any partitioning of the face poset of

(Γ, ∆) whose minimal element is an (i − 1)-dimensional face of (Γ, ∆).

We note that for any simplicial complex Γ that (Γ,∅) = Γ, so Proposition 2.1
holds for simplicial complexes as well. There is no previously known combinatorial
interpretation of the h-vectors for non-partitionable complexes.

The notation [n] indicates the set of integers {1, 2, . . . , n}. We take as a convention
that [0] = ∅. Throughout the rest of this paper, we assume that all simplicial
complexes are collections of subsets of [n].

If σ is a face of ∆, the link of σ in ∆ is the simplicial complex

lk∆(σ) = {τ ∈ ∆ | σ ∪ τ ∈ ∆, σ ∩ τ = ∅}.

A simplicial complex ∆ is said to be Cohen–Macaulay (over k) if, for all faces σ ∈ ∆,

H̃i(lk∆(σ), k) =

{

kβσ , i = dim(∆) − dim(σ) − 1

0, otherwise

where H̃i(X, k) is the ith reduced homology group of X with coefficients in k and
βσ ∈ N is the top Betti number of the link. By a result of Reisner [15], this definition
is equivalent to k[∆] being Cohen–Macaulay, i.e., that depth k[∆] = dim k[∆]. Here
k[∆] is the Stanley–Reisner ring (or face ring) of ∆. For a complex ∆ on n vertices
k[∆] := k[x1, . . . , xn]/I∆ where I∆ is the monomial ideal generated by non-faces of
∆.

Given a face σ ∈ ∆, we distinguish between the face σ and the complex 〈σ〉 whose
only facet is σ. If dim σ = d, we call this latter object a d-simplex.
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3. Intermediate Constructions

Our main goal is to write the h-vector of any pure complex as the difference of h-
vectors of two partitionable (relative) complexes. We will prove that this is always
possible in Section 4. In this section we introduce two intermediate constructions.

Definition 3.1. A (d, k)-partition extender is a pure d-dimensional simplicial com-
plex ∆ with a specified facet F and a k-dimensional face σ in F such that both
(∆, 〈F 〉) and (∆, 〈F 〉) ∪ {σ} are partitionable.

Remark 3.2. It is not true that the object (∆, 〈F 〉) ∪ {σ} in Definition 3.1 is a
relative complex in general, but we can still determine whether its face poset is
partitionable or not.

Example 3.3. An example of a (1, 0)-partition extender is ∆ = 〈12, 23, 34, 24〉 with
F = 12 and σ = 2. The face poset of (∆, 〈F 〉) is pictured below. A partitioning of
this poset is given by the intervals [23, 23], [3, 34], and [4, 24].

23 34 24

3 4

The poset of (∆, 〈F 〉) ∪ {σ}, which has a partitioning into the intervals [2, 23],
[3, 34], and [4, 24], is shown below.

23 34 24

23 4

Definition 3.4. A (d, k)-prepartition extender is a pure d-dimensional simplicial
complex ∆ with a specified facet F , and a face σ in F of dimension k such that
(∆, 〈F 〉) ∪ {σ} is partitionable.

This differs from a (d, k)-partition extender in that we do not require (∆, 〈F 〉) to
be partitionable.

Note that σ is in F , so there are no elements below it in (∆, 〈F 〉) ∪ {σ}. Therefore
in any partitioning of the poset (∆, 〈F 〉) ∪ {σ}, σ must be a bottom element of
some interval in the partitioning.

Proposition 3.5. For all −1 ≤ k ≤ d, there exists a (d, k)-prepartition extender.

Proof. We prove this proposition by directly constructing a (d, k)-prepartition ex-
tender for arbitrary k and d. Consider two d-simplices, D1 and D2 such that
D1 ∩D2 = σ, where σ is a k-face. Label the vertices of D1 not in σ as {1, . . . , d−k},
the vertices of D2 not in σ as {d − k + 1, . . . , 2d − 2k}, and the vertices of σ as
{2d − 2k + 1, . . . , 2d − k + 1}.

Define W1,j = {j + 1, . . . , j + d − k + 1} for all j such that 0 ≤ j ≤ d − k − 1, and
W2,i = σ \ i for all i in σ. Let ∆ be the simplicial complex on 2d − k + 1 vertices



PARTITION AND COHEN–MACAULAY EXTENDERS 5

whose facets are D1, D2, and all sets of the form W1,j ∪ W2,i. We emphasize that
when d = k, there are no valid choices for j, and so ∆ is the complex on d + 1
vertices whose facets are D1 and D2, which are in fact the same facet. We also
emphasize that when k = −1, there are no valid choices for i, so ∆ is the complex
on 2d + 2 vertices whose facets are D1 and D2. For all other choices of d and k,
we see that |W1,j | = d − k + 1 and |W2,i| = k. Therefore, in all cases ∆ is a pure
simplicial complex of dimension d.

The following is a set of Boolean intervals in the face poset of ∆.

I =[σ, D1]

I ′ =[∅, D2]

Ii,j =[{j + 1} ∪ {v ∈ σ : v < i}, W1,j ∪ W2,i] for i ∈ σ and 0 ≤ j ≤ d − k − 1.

We claim that every face of ∆ is in exactly one of these intervals, except for the
face σ which is in both I and I ′.

Note that I ∩ I ′ = σ. Furthermore, I is disjoint from each Ii,j , since every face in
I contains σ, and no face of Ii,j contains σ. Likewise, I ′ is disjoint from each Ii,j ,
since j + 1 is a vertex of D1 that is not contained in σ, and therefore not contained
in D2.

Consider some face τ not in I or I ′, that is, τ is not contained in D2 and τ does
not contain σ. Let j + 1 be the least vertex of τ . Since τ is not in D2, this means
that j + 1 is in [d − k], and so 0 ≤ j ≤ d − k − 1. Since τ ⊆ W1,j′ ∪ W2,i′ for some
j′, i′, the difference between the largest index in τ not in σ and j′ + 1 is at most
d − k. Therefore, τ ∩ [2d − 2k] ⊆ W1,j . Let i be the largest vertex of σ such that
all smaller labeled vertices of σ are in τ . This implies that i is the smallest vertex
of σ not in τ . Since τ + σ, there is some vertex of σ not in τ , and therefore this i
exists. This shows that τ ∩ σ ⊆ W2,i. We conclude that τ is in the interval Ii,j .

Furthermore, we will show that τ is not in any other interval. By assumption, τ is
not in I or I ′.

Let Ii′,j′ be an interval which contains τ . Since τ contains all vertices of σ less
than i, and W2,i′ does not contain i′, then i′ cannot be less than i, since that would
imply that τ both does and does not contain i′. Likewise, i′ cannot be greater than
i, since every face in Ii′,j′ contains the vertices of σ less than i′, and τ does not
contain i, which is one of those vertices. Therefore i′ = i.

Furthermore, we see that j′ cannot be greater than j, since otherwise W1,j′ does
not contain j + 1, and τ does contain j + 1. Similarly, j′ cannot be less than j,
because every face in Ii,j′ contains j′ + 1, but j + 1 was the smallest vertex that τ
contained. Therefore j′ = j.

Therefore the only interval that contains τ is Ii,j .

This means that ∆ is a (d, k)-prepartition extender, with D2 as the specified facet, σ
as the specified face, and the set {I}∪

⋃

i,j{Ii,j} as a partition of (∆, 〈D2〉)∪{σ}. �
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Example 3.6. We describe the facets of (d, k)-prepartition extenders given in
Proposition 3.5 for d − 2 ≤ k ≤ d.

A (d, d)-prepartition extender is a d-simplex.

A (d, d − 1)-prepartition extender has the following set of facets:

D1 = {1, 3, 4, . . . , d + 2}

D2 = {2, 3, . . . , d + 2}

W1,0 ∪ W2,i = {1, 2, . . . , î, . . . , d + 2}, 3 ≤ i ≤ d + 2,

where {1, 2, . . . , î, . . . , d + 2} is the set {1, 2, . . . , d + 2} \ {i}. We therefore see that
a (d, d − 1)-prepartition extender is the boundary of the (d + 1)-simplex on vertex
set [d + 2].

A (d, d − 2)-prepartition extender has the following set of facets:

D1 = {1, 2, 5, 6 . . . , d + 3}

D2 = {3, 4, 5, . . . , d + 3}

W1,0 ∪ W2,i = {1, 2, 3, 5, . . . , î, . . . , d + 3} 5 ≤ i ≤ d + 3

W1,1 ∪ W2,i = {2, 3, 4, 5, . . . , î, . . . , d + 3} 5 ≤ i ≤ d + 3.

Remark 3.7. Let ∆ be a (d, k)-prepartition extender given in Proposition 3.5 with
specified facet F and specified k-face σ ∈ F . Then, if we define hℓ((∆, 〈F 〉) ∪ {σ})
to be the number of Boolean intervals in the partitioning of (∆, 〈F 〉) ∪ {σ} whose
bottom element has size ℓ,

hℓ((∆, 〈F 〉) ∪ {σ}) =











d − k, ℓ < k + 1

d − k + 1, ℓ = k + 1

0, otherwise

.

Proof. For all ℓ < k + 1, there are exactly (d − k) intervals Ii,j in the partitioning
above whose bottom elements have size ℓ. If ℓ = k + 1, there are d − k intervals Ii,j

whose bottom elements have size ℓ, and the interval I = [σ, D1] also has a bottom
element whose size is ℓ. �

Proposition 3.8. For all −1 ≤ k ≤ d, there exists a (d, k)-partition extender.

Proof. Recall from Definition 3.1 that a (d, k)-partition extender consists of a pure
d-dimensional complex ∆, along with a specified facet F and specified k-dimensional
face σ in F . We construct our (d, k)-partition extender inductively, starting with
k = d and decreasing k. First we note that a (d, d)-prepartition extender is in
fact a (d, d)-partition extender. Indeed, in any partitioning of a (d, d)-prepartition
extender, one of the intervals must be [σ, σ], and so removing σ and this interval
gives the required partitioning of (∆, 〈F 〉).

Suppose that (d, h)-partition extenders exist for all h > k. We will construct a
(d, k)-partition extender K with specified facet F , and specified k-face σ. Let K ′

be a (d, k)-prepartition extender with specified facet F and specified k-face σ.
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First, fix a partitioning of (K ′, 〈F 〉) ∪ {σ}. Let F̃ be the top element in the interval
containing σ in this partitioning. Let τ be an h-face of K ′ such that σ ( τ ⊆ F̃ . By
induction, there exists a (d, h)-partition extender Kτ with specified facet Fτ and
specified h-face στ . Attach this (d, h)-partition extender to K ′ by identifying Fτ

with F̃ and identifying στ with τ . We define K to be the complex obtained from
K ′ by attaching Kτ for each τ with σ ( τ ⊆ F̃ .

The complex K with specified facet F and specified k-face σ is a (d, k)-partition
extender. To verify this, we need a partitioning of (K, 〈F 〉)∪{σ} and a partitioning
of (K, 〈F 〉). We note that K consists of a (d, k)-prepartition extender K ′, and many
(d, h)-partition extenders Kτ , for each k < h ≤ d.

First, (K, 〈F 〉) ∪ {σ} admits a partitioning consisting of

(1) the partitioning of (K ′, 〈F 〉) ∪ {σ} arising from its status as a prepartition
extender,

(2) the partitionings of the Kτ such that τ is not included in the partitioned
set.

Furthermore, (K, 〈F 〉) admits a partitioning consisting of

(1) the partitioning of (K ′, 〈F 〉) ∪ {σ} excluding the interval [σ, F̃ ],
(2) the partitionings of the Kτ such that τ is included in the partitioned set.

Since both of these partitionings exist, K is a (d, k)-partition extender, and by
induction, (d, k)-partition extenders exist for all pairs (d, k) with d ≥ k. �

Previously, we had described (d, k)-prepartition extenders. Both (d, d)- and (d, d −
1)-prepartition extenders are in fact partition extenders. To illustrate the full con-
struction of a (d, k)-partition extender, we give a small example in which the par-
tition extender differs from the prepartition extender.

Example 3.9. We give an example of a (3, 1)-partition extender K using the con-
struction in Proposition 3.8. We start with a (3, 1)-prepartition extender: Following
Proposition 3.5, we construct the prepartition extender

K ′ = 〈1256, 3456, 1236, 1235, 2346, 2345〉

with specified facet F = 3456 and specified face σ = 56. This labeling is identical
to the canonical (3, 1)−prepartition extender as constructed in Proposition 3.5.

We observe that K ′ is exactly the canonical (3, 1)-prepartition extender that we
constructed earlier. The following is a partitioning of (K ′, 〈3456〉) ∪ {56} given by
our construction:

(2) [56, 1256] [1, 1236] [2, 2346] [15, 1235] [25, 2345].

We now must create partition extenders for each 56 ( τ ( 1256, i.e., we create
(3, 2)-partition extenders for the faces 156 and 256. Recall that the other intervals
in (2) are fixed and will be part of both partitionings.
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For the face 156, we construct the partition extender

K ′′ = 〈7156, 2156, 7256, 7216, 7215〉

with specified facet F = 2156 and specified face σ = 156. The bijection to our
canonical (3, 2)−prepartion extender is induced by (7, 2, 1, 5, 6) 7→ (1, 2, 3, 4, 5). The
following is a partitioning of (K ′′, 〈2156〉).

(3) [7156, 7156] [7, 7256] [71, 216] [715, 7215]

For the face 256, we construct the partition extender

K ′′′ = 〈8256, 1256, 8156, 8126, 8125〉

with specified facet F = 1256 and specified face σ = 256. The bijection to our
canonical (3, 2)−prepartion extender is induced by (8, 1, 2, 5, 6) 7→ (1, 2, 3, 4, 5). The
following is a partitioning of (K ′′′, 〈1256〉) :

(4) [8256, 8256] [8, 8156] [82, 8126] [825, 8125].

The (3, 1)-partition extender is K = K ′ ∪ K ′′ ∪ K ′′′ with specified facet F = 3456
and specified face σ = 56. Equations (2), (3), and (4) together give a partitioning
of (K, 〈3456〉) ∪ {56}.

For a partitioning of (K, 〈3456〉), we take the partitionings from equations (2), (3),
and (4) and modify only the first interval in each line. We get the following:

[1256,1256] [1,1236] [2,2346] [15,1235] [25,2345]

[156,1567] [7,2567] [17,1267] [157,1257]

[256,2568] [8,1568] [28,1268] [258,1258].

Thus K is a (3, 1)-partition extender.

4. Main Theorem

Now we are prepared to prove our main result.

Theorem 4.1. Every pure simplicial complex has a partition extender.

Proof. Let ∆ be a pure d-dimensional complex. For each k-face σ of ∆, attach a
(d, k)-partition extender to ∆ by identifying σ and a facet containing σ to the spec-
ified faces of the (d, k)-partition extender. Call this complex Γ. By Proposition 3.8,
Γ is a pure partitionable d-dimensional complex, with the partition where each
(d, k)-extender uses the σ it was attached to. Furthermore, (Γ, ∆) is partitionable,
with the partition where each (d, k)-extender is partitioned without the σ it was
attached to. Therefore Γ is a partition extender for ∆. �

We now provide a combinatorial interpretation of the h-vector of a pure simplicial
complex ∆ with a partition extender Γ. We can write the f -vector of ∆ as

fi(∆) = fi(Γ) − fi(Γ, ∆).
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Since the h-vector is a bijective linear transformation of the f -vector, we transform
the above equation into

hi(∆) = hi(Γ) − hi(Γ, ∆).

Since both Γ and (Γ, ∆) are pure and partitionable, we may use the combinatorial
interpretation of these values to give a combinatorial interpretation of hi(∆).

Corollary 4.2. If ∆ is a pure simplicial complex, then

hi(∆) =|{intervals in a partitioning of Γ with bottom element of size i}|

− |{intervals in a partitioning of (Γ, ∆) with bottom element of size i}|

for any partition extender Γ of ∆.

In our construction of the partition extender Γ of ∆, there is significant overlap
between the sets of intervals in the partitioning of Γ and the partitioning of (Γ, ∆).
Keeping track of the heights of the intervals that differ between the partitioning of
(Γ, ∆) and that of Γ yields

hi(Γ) − hi(Γ, ∆) =

i
∑

j=0

(−1)i−j

(

d − j

i − j

)

fj−1(∆),

which is exactly the formula for hi(∆) in terms of the fj(∆). Thus our construction
gives a combinatorial witness to the algebraic transformation between h(∆) and
f(∆).

5. Nonpure Partitionability

Our construction of a partition extender can be applied to nonpure complexes in a
natural way. Suppose that ∆ is a nonpure complex. If σ is a face of ∆, we write

d∆(σ) := max
τ∈∆

{dim(τ) | σ ⊆ τ}.

In [5, Definition 3.1], Björner and Wachs define a two-dimensional array called the
f -triangle f△(∆) that refines the f -vector of ∆, with entries given by

fi,j(∆) = |{σ ∈ ∆ | d∆(σ) = i − 1, dim(σ) = j − 1}|.

Björner and Wachs also define a refinement of the h-vector called the h-triangle
h△(∆) which is a two-dimensional array with entries hi,j(∆) that is obtained from
f△(∆) by applying the f -vector to h-vector transformation on each row of f△(∆).
More precisely,

hi,j(∆) =

j
∑

k=0

(−1)j−k

(

i − k

j − k

)

fi,k.

The f - and h-triangles of a relative complex (Γ, ∆) are defined analogously.1

1Note that if dim(Γ) 6= dim(∆) then the f -triangles of Γ and ∆ will have different dimensions.
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Remark 5.1. If Γ ⊇ ∆ with dim(Γ) = dim(∆) and d∆(σ) = dΓ(σ) for all σ ∈ ∆,
then f△(Γ, ∆) = f△(Γ) − f△(∆). Indeed, suppose that σ ∈ Γ contributes to
fi,j(Γ). Either σ ∈ ∆, in which case by assumption it contributes to fi,j(∆), or
σ ∈ (Γ, ∆), in which case it contributes to fi,j(Γ, ∆). Since the f -triangle to h-
triangle transformation is linear and d∆(σ) = dΓ(σ), we also have h△(Γ, ∆) =
h△(Γ) − h△(∆).

It is natural to assume that the entries hi,j of the h-triangle of a partitionable
nonpure complex have an analogous interpretation to the entries of the h-vector
of a pure partitionable complex. This is false in general. In [11, Example 1],
Hachimori gives an example of a partitionable nonpure complex whose h-triangle
has a negative entry.

However, Hachimori introduces several strictly stronger variants of partitionabil-
ity for nonpure complexes [11]; among these is the existence of an h-compatible

partitioning of ∆, i.e., a partitioning of the face poset of ∆ where hi,j(∆) is the
number of Boolean intervals in the partitioning whose bottom element is a face of
size j and whose top element is a facet of size i. In [11, Theorem 2], Hachimori
shows that h-compatibility is equivalent to a property he calls layer-compatibility:
A partitioning

P (∆) =
⊔

F facet of ∆

[Ψ(F ), F ]

of the face poset of ∆ is layer-compatible if the restriction
⊔

F facet of ∆
dim(F )≥r

[Ψ(F ), F ]

is a partitioning of the face poset of 〈F | F facet of ∆, dim(F ) ≥ r〉 for all 0 ≤ r ≤
dim(∆).

Remark 5.2. While [11, Theorem 2] is stated in terms of absolute complexes, the
same proof works for relative complexes as well.

We can now prove a nonpure analog of Theorem 4.1.

Theorem 5.3. Let ∆ be a nonpure complex. Then there is a complex Γ ⊇ ∆ with

dim(Γ) = dim(∆) such that Γ and (Γ, ∆) are layer-compatibly partitionable.

Proof. Let ∆ be a nonpure complex, and let Γ be the complex obtained by attaching
a (d∆(σ), k)-partition extender to each k-face σ of ∆ for all k. Clearly, d∆(σ) =
dΓ(σ) for all σ ∈ ∆, so we can write the h△(∆) as the difference h△(Γ)−h△(Γ, ∆).

It is easy to check that the partitionings of Γ and (Γ, ∆) we construct in Proposi-
tion 3.8 are both layer-compatible. �

Since layer-compatibility implies h-compatibility, we now have a combinatorial in-
terpretation of the h-triangle of any nonpure complex. We define an (i, j)-interval

of ∆ to be a Boolean interval of P (∆) whose bottom element has size j and whose
top element is a facet of size i.
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Corollary 5.4. For any nonpure complex ∆, we have

hi,j(∆) =|{(i, j)-intervals in an h-compatible partitioning of Γ}|

− |{(i, j)-intervals in an h-compatible partitioning of (Γ, ∆)}|,

where Γ is the partition extender constructed in Theorem 5.3.

6. Cohen–Macaulay Extenders

Given the existence of partition extenders of pure simplicial complexes, it seems
natural to ask if extenders exist for other well-studied combinatorial properties
of simplicial complexes. A relative complex (Γ, ∆) is relative Cohen–Macaulay if
IΓ/I∆ is a Cohen–Macaulay k[x]-module. Equivalently, a relative complex is rela-
tive Cohen–Macaulay if the relative homology H̃i(lkΓ(σ), lk∆(σ)) is trivial except
possibly when |σ| + i = d, where d is the dimension of Γ [18, Theorem III.7.2].

Definition 6.1. Let ∆ be a pure d-dimensional simplicial complex. A d-dimensional
complex Γ is a Cohen–Macaulay extender for ∆ if

• ∆ ⊆ Γ.
• Γ is Cohen–Macaulay.
• The relative complex (Γ, ∆) is relative Cohen–Macaulay.

Unlike the case for partition extenders, there is a large class of pure complexes for
which Cohen–Macaulay extenders do not exist. The depth of a simplicial complex
∆ is defined as depth k[∆], the depth of its Stanley–Reisner ring. By applying
Hochster’s formula [13], it can be shown that depth k[∆] is the largest integer h
such that H̃i(lk∆(σ)) is trivial whenever |σ| + i + 1 < h for all −1 < i < d and
σ ∈ ∆. We recall that for a d-dimensional simplicial complex ∆, dim k[∆] = d + 1.

Proposition 6.2. If ∆ is a simplicial complex such that depth k[∆] < dim k[∆]−1,

then ∆ does not have a Cohen–Macaulay extender.

Proof. Let ∆ be a d-dimensional complex with depth k[∆] < dimk[∆] − 1. By
definition, there is a face σ ∈ ∆ and an index i such that H̃i(lk∆(σ)) is nontrivial
where |σ| + i + 1 = depth k[∆] ≤ d − 1; equivalently, i + 1 ≤ d − |σ| − 1.

Suppose Γ is a d-dimensional complex such that Γ is Cohen–Macaulay and ∆ ⊆ Γ.
We can write the long exact sequence of relative homology for the pair (lkΓ(σ), lk∆(σ)).

0 H̃d−|σ|(lk∆(σ)) H̃d−|σ|(lkΓ(σ)) H̃d−|σ|((lkΓ(σ), lk∆(σ)))

H̃d−|σ|−1(lk∆(σ)) H̃d−|σ|−1(lkΓ(σ)) H̃d−|σ|−1((lkΓ(σ), lk∆(σ)))

H̃d−|σ|−2(lk∆(σ)) H̃d−|σ|−2(lkΓ(σ)) H̃d−|σ|−2((lkΓ(σ), lk∆(σ)))

H̃d−|σ|−3(lk∆(σ)) H̃d−|σ|−3(lkΓ(σ))
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Since Γ is Cohen–Macaulay, we know that H̃j(lkΓ(σ)) is trivial whenever j < d−|σ|.
This observation lets us break up the long exact sequence into the following exact
sequences for each ℓ ≥ 1:

0 H̃d−|σ|−ℓ((lkΓ(σ), lk∆(σ))) H̃d−|σ|−ℓ−1(lk∆(σ)) 0

Each of these middle maps is an isomorphism. Since H̃i(lk∆(σ)) is nontrivial,
H̃i+1((lkΓ(σ), lk∆(σ))) is also nontrivial. Since i + 1 ≤ d − |σ| − 1, the relative
complex (Γ, ∆) is not relative Cohen–Macaulay. Therefore there is no Cohen–
Macaulay extender for ∆. �

Theorem 6.3. Let ∆ be a simplicial complex. Then ∆ has a Cohen–Macaulay

extender if and only if depth k[∆] ≥ dim k[∆] − 1.

Proof. The case that depth k[∆] < dim k[∆] − 1 is covered by Proposition 6.2, so
we assume that depth k[∆] ≥ dim k[∆] − 1.

Let ∆ be a d-dimensional simplicial complex with depth at least d, and let Γ be a
Cohen–Macaulay d-dimensional complex that contains ∆. We begin by writing a
short exact sequence of modules over k[x1, . . . , xn] with I∆ and IΓ as the Stanley–
Reisner ideals associated to ∆ and Γ.

0 → I∆/IΓ → k[Γ] → k[∆] → 0

By the assumptions on ∆ and Γ, we can see that depth k[Γ] = dim k[Γ] and
depth k[∆] ≥ dim k[∆] − 1 = dim k[Γ] − 1. By the Depth Lemma [6, Proposi-
tion 1.2.9], we get that depth(I∆/IΓ) = dim k[Γ] − 1. This is equivalent to saying
that (Γ, ∆) is relative Cohen–Macaulay. Therefore Γ is a Cohen–Macaulay extender
of ∆. �

Theorem 6.3 shows that if depth k[∆] ≥ dim k[∆] − 1, then any Cohen–Macaulay
complex Γ of the same dimension that contains ∆ is a Cohen–Macaulay extender
for ∆. If ∆ is a d-dimensional complex on n + 1 vertices, then perhaps the most
natural Cohen–Macaulay extender to consider is the d-skeleton of the n-simplex

∆
(d)
n , which is

∆(d)
n = {σ ⊆ [n + 1] : |σ| ≤ d + 1}.

In particular, we note that if a Cohen–Macaulay extender exists for a complex, then
we can construct one without introducing new vertices.

Codenotti, Katthän, and Sanyal recently classified the h-vectors of relative Cohen–
Macaulay complexes. In [7, Theorem 5.7], it is shown that (h0, . . . , hd+1) is the
h-vector of a proper Cohen–Macaulay relative complex if and only if h0 = 0 and
hi ≥ 0 for all i, answering a question of Björner in [17]. (Here “proper” means that
the subcomplex in question is not the void complex.) They find more a restrictive
characterization in [7, Theorem 1.3] for Cohen–Macaulay relative complexes on
ground set [n]. Theorem 6.3 is a result in the same vein, with the further constraint
that the total complex be Cohen–Macaulay.
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7. Shelling extenders and Simon’s conjecture

A relative complex (Γ, ∆) is shellable if its facets can be ordered F1, . . . , Fk such
that 〈Fi+1〉 \ 〈F1, . . . , Fi, ∆〉 has a unique minimal face for all i ∈ [k − 1]. Such an
ordering of the facets is a shelling order. If a pure relative complex is shellable,
then it is relative Cohen–Macaulay [18, Page 118]. Therefore, in our search for a
similar notion of an extender for shellability, we limit our search to complexes ∆
such that depth k[∆] ≥ dim k[∆] − 1.

Definition 7.1. Let ∆ be a pure d-dimensional simplicial complex. A d-dimensional
complex Γ is a shelling extender for ∆ if

• ∆ ⊆ Γ.
• Γ is shellable.
• The relative complex (Γ, ∆) is shellable.

Conjecture 7.2. If ∆ is a simplicial complex such that depth k[∆] ≥ dim k[∆] − 1
for all fields k, then ∆ has a shelling extender.

Such shellable extenders may have application to a conjecture of Simon. We first
recall that a pure complex ∆ is extendably shellable if every partial shelling order
F1, . . . , Fj can be extended to a shelling order F1, . . . , Fj , Fj+1, . . . , Fk of ∆.

Conjecture 7.3. [16, Conjecture 4.2.1] If ∆ is the d-skeleton of an n-simplex, then

∆ is extendably shellable.

Some partial results about extendable shellability are known. Simon’s conjecture
is known to be true in certain cases. For d ≤ 1 and d ≥ n − 1, the conjecture is
clearly true. The case d = n − 2 was proved by Bigdeli, Yazdan Pour, and Zaare-
Nahandi in [2] and by Dochtermann in [9] (and was strengthened by Culbertson,
Dochtermann, Guralnik and Stiller in [8]).

The case d = 2 was shown by Björner and Eriksson in [4] as a consequence of
the fact that matroid complexes of rank ≤ 3 are extendably shellable, since the
d-skeleton of the n-simplex is the independence complex of the uniform matroid of
rank d+1 over n+1 elements. On the other hand, in [12, Theorem 2.3.1] Hall shows
that the boundary of the d-crosspolytope is not extendably shellable for d ≥ 12. In
[1], Benedetti and Bolognini found a counterexample to a strengthening of Simon’s
conjecture that had been posed by Bigdeli and Faridi [3], Dochtermann [9], and
Nikseresht [14].

We note the connection between Conjecture 7.2 and Simon’s conjecture.

Question 7.4. If a shelling extender exists for ∆, then is it possible to create a
shelling extender Γ without introducing any new vertices?

Remark 7.5. If Question 7.4 has a positive answer, then this would prove Con-
jecture 7.3.

Theorem 6.3 shows that the d-skeleton of the n-simplex is a Cohen–Macaulay ex-
tender for ∆ whenever such an extender exists. Thus it is reasonable to ask whether
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this construction is possible in the case of shelling extenders. We note that the h-
vector characterizations of shellable relative complexes is the same as in the Cohen–
Macaulay case [7], so there is no direct numerical obstruction to this construction.

8. Questions and Future Directions

One may ask how close a given complex ∆ is to being partitionable by considering
the “smallest” possible partition extender Γ. Our construction produces partition
extenders that are quite large, but it is often possible to find smaller extenders by
hand. The bow-tie pictured below is a standard example of a non-partitionable
complex, with a negative entry in the h-vector.

Example 8.1. Below, the dark complex is the bow-tie with f -vector equal to
(1, 5, 6, 2) and h-vector equal to (1, 2, −1, 0). The entire complex pictured has f -
vector (1, 5, 7, 3) and h-vector (1, 2, 0, 0). The lighter shaded relative complex has
f -vector (0, 0, 1, 1) and h-vector (0, 0, 1, 0). Both the larger complex and relative
complex are partitionable, and the h-vector of the bow-tie is given by the difference
of the two other h-vectors.

The above example of a partition extender is far smaller than those constructed
in the proof of Theorem 4.1. This observation leads naturally to the following
questions:

Question 8.2. Is it possible to construct a minimal partition extender with respect
to the number of faces added? With respect to the size of the h-vector of the relative
complex? With respect to some other measure of size?

Question 8.3. Assuming that a minimal partition extender exists, is it unique?

If, for example, ∆ is a complete graph on four vertices together with two additional
disjoint edges, then h(∆) = (1, 6, 1) but ∆ is not partitionable. This means that
the number and sizes of the negative entries of the h-vector of a complex does not
capture how many faces need to be added to create a partition extender, since there
are non-partitionable complexes whose h-vectors are all positive. In fact, a result of
Duval, Goeckner, Klivans, and Martin [10] shows that that there are even Cohen–
Macaulay complexes (which have much stronger conditions on their h-vectors than
positivity) that are non-partitionable.

Example 8.4. Here we explicitly realize our construction on a pair of edges in
black, with the partition extender drawn in a lighter shade. Our construction
adds 8 vertices and 13 edges, but a minimal partition extender can be created by
introducing a single edge to connect the two edges in black.
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Given a complex ∆, we might ask for an upper bound on how many faces must be
added to create a partition extender Γ via our construction. If g(k) is the number
of faces in a (d, d − k)-partition extender, then g(k) is defined by the recurrence
relation

g(k) = k(2d+1 − 2k) +

k−1
∑

j=0

(

k

j

)

g(j).

Since g is an increasing function, if we ignore the term −2k, we obtain a simple
one-term recurrence relation bound

g(k) ≤ k2d+1 + 2kg(k − 1).

As long as g(k − 1) > 2d+1,

g(k) ≤ 2(2k)g(k − 1).

The starting term is g(0) = 0, and g(1) ≤ 2d+1. Therefore, an upper bound for
g(k) is

g(k) ≤ 22k−1+d.

Thus, given a complex ∆ with f(∆) = (f−1, f0, . . . , fd), our construction will add

∑

−1≤k≤d

fk · g(d − k) ≤
∑

−1≤k≤d

fk · 22d−k−1+d

total faces. This bound is not exact, but we expect it to be of the correct order
of magnitude. As seen in Example 8.1, the number of faces added in a minimal
partition extender can be much lower.

In Section 5 we constructed nonpure partition extenders. Along the same lines,
given some condition on the depths of the pure skeletons of a nonpure complex ∆,
we expect that it should be possible to construct a sequentially Cohen–Macaulay

extender Γ, that is, a Γ ⊇ ∆ such that d∆(σ) = dΓ(σ) for all σ ∈ ∆, and Γ and
(Γ, ∆) are both sequentially Cohen–Macaulay.

Acknowledgments

We thank the referees for their helpful suggestions, especially for those regarding the
subtleties of nonpure partitionability. We also thank Margaret Bayer for her careful
reading of earlier drafts. B. Goeckner was partially supported by an AMS-Simons
travel grant.



16 JOSEPH DOOLITTLE, BENNET GOECKNER, AND ALEXANDER LAZAR

References

1. Bruno Benedetti and Davide Bolognini, Non-ridge-chordal complexes whose clique complex

has shellable Alexander dual, J. Combin. Theory Ser. A 180 (2021), Paper No. 105430, 9.

MR 4208018
2. M. Bigdeli, A.A. Yazdan Pour, and R. Zaare-Nahandi, Decomposable clutters and a general-

ization of Simon’s conjecture, J. Algebra 531 (2019), 102–124. MR 3952142
3. Mina Bigdeli and Sara Faridi, Chordality, d-collapsibility, and componentwise linear ideals,

J. Combin. Theory Ser. A 172 (2020), 105204, 33. MR 4052306
4. A. Björner and K. Eriksson, Extendable shellability for rank 3 matroid complexes, Discrete

Math. 132 (1994), no. 1-3, 373–376. MR 1297393
5. A. Björner and M.L. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math.

Soc. 348 (1996), no. 4, 1299–1327. MR 1333388
6. W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathemat-

ics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
7. G. Codenotti, L. Katthän, and R. Sanyal, On f- and h-vectors of relative simplicial complexes,

Algebr. Comb. 2 (2019), no. 3, 343–353. MR 3968741
8. Jared Culbertson, Anton Dochtermann, Dan P. Guralnik, and Peter F. Stiller, Extendable

shellability for d-dimensional complexes on d + 3 vertices, Electron. J. Combin. 27 (2020),
no. 3, Paper No. 3.46, 8. MR 4245159

9. Anton Dochtermann, Exposed circuits, linear quotients, and chordal clutters, J. Combin.
Theory Ser. A 177 (2021), Paper No. 105327, 22. MR 4147626

10. A.M. Duval, B. Goeckner, C.J. Klivans, and J.L. Martin, A non-partitionable Cohen-Macaulay

simplicial complex, Adv. Math. 299 (2016), 381–395. MR 3519473
11. M. Hachimori, Sequential partitions of nonpure simplicial complexes, Graphs and Combina-

torics (2021), 1–14.
12. H.T. Hall, Counterexamples in discrete geometry, ProQuest LLC, Ann Arbor, MI, 2004,

Thesis (Ph.D.)–University of California, Berkeley. MR 2706995
13. M. Hochster, Cohen–Macaulay rings, combinatorics, and simplicial complexes, Ring theory,

II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), 1977, pp. 171–223. Lecture
Notes in Pure and Appl. Math., Vol. 26. MR 0441987

14. A. Nikseresht, Chordality of clutters with vertex decomposable dual and ascent of clutters, J.
Combin. Theory Ser. A 168 (2019), 318–337. MR 3979275

15. G.A. Reisner, Cohen–Macaulay quotients of polynomial rings, Advances in Math. 21 (1976),
no. 1, 30–49. MR 407036

16. R.S. Simon, Combinatorial properties of “cleanness”, J. Algebra 167 (1994), no. 2, 361–388.
MR 1283293

17. R.P. Stanley, Generalized H-vectors, intersection cohomology of toric varieties, and related re-

sults, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., vol. 11,
North-Holland, Amsterdam, 1987, pp. 187–213. MR 951205

18. , Combinatorics and commutative algebra, second ed., Progress in Mathematics,
vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579

Email address: jdoolittle@tugraz.at

Institute of Geometry, TU Graz, Austria

Email address: goeckner@uw.edu

Department of Mathematics, University of Washington

Email address: alelaz@kth.se

Department of Mathematics, KTH Royal Institute of Technology, Sweden


	1. Introduction
	2. Preliminaries
	3. Intermediate Constructions
	4. Main Theorem
	5. Nonpure Partitionability
	6. Cohen–Macaulay Extenders
	7. Shelling extenders and Simon's conjecture
	8. Questions and Future Directions
	Acknowledgments
	References

