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0-HECKE MODULES FOR YOUNG ROW-STRICT

QUASISYMMETRIC SCHUR FUNCTIONS

JOSHUA BARDWELL AND DOMINIC SEARLES

Abstract. We construct modules of the 0-Hecke algebra whose images under the
quasisymmetric characteristic map are the Young row-strict quasisymmetric Schur
functions. This provides a representation-theoretic interpretation of this basis of
quasisymmetric functions, answering a question of Mason and Niese (2015). Addi-
tionally, we classify when these modules are indecomposable.

1. Introduction

The Schur functions form a basis of the algebra of symmetric functions Sym that
plays an important role in myriad areas of mathematics. Schur functions arise, for ex-
ample, as representatives of Schubert classes in the cohomology of Grassmannian vari-
eties, as characters of irreducible polynomial representations of general linear groups,
and as images of irreducible characters of symmetric groups under the characteris-
tic map. The algebra Sym is a subalgebra of the algebra QSym of quasisymmetric
functions, and it is therefore natural to seek bases of QSym that reflect or extend prop-
erties of the Schur functions. Examples of such bases of QSym include the fundamen-
tal quasisymmetric functions [Ges84], the dual immaculate functions [BBS`14], the
quasisymmetric Schur functions [HLMvW11], the row-strict quasisymmetric Schur
functions [MR14], and the extended Schur functions [AS19].

Quasisymmetric functions have a representation-theoretic interpretation in terms
of 0-Hecke algebras, which are a certain deformation of the group algebra of sym-
metric groups. There is an isomorphism of algebras between the Grothendieck group
of 0-Hecke representations and QSym, known as the quasisymmetric characteristic
[DKLT96]. Analogously to the role Schur functions play for irreducible representa-
tions of symmetric groups, the fundamental quasisymmetric functions are the images
of the irreducible representations of 0-Hecke algebras under the quasisymmetric char-
acteristic map [DKLT96]. This raises the question of interpreting other bases of QSym
as quasisymmetric characteristics of certain families of 0-Hecke modules. Indeed all
the aforementioned bases, save the row-strict quasisymmetric Schur functions, have
been interpreted in this way; such modules were constructed for dual immaculate
functions in [BBS`15], for quasisymmetric Schur functions in [TvW15], and for ex-
tended Schur functions in [Sea20].

Date: December 22, 2020.
2010 Mathematics Subject Classification. Primary 05E05, 20C08, Secondary 05E10.
Key words and phrases. 0-Hecke algebra, Young row-strict quasisymmetric Schur functions, qua-

sisymmetric characteristic.
1

http://arxiv.org/abs/2012.12568v1


2 J. BARDWELL AND D. SEARLES

The row-strict quasisymmetric Schur functions are conjugate to the well-studied
quasisymmetric Schur functions under an extension of the famous ω involution from
Sym to QSym [MR95]. The Schur functions expand positively in the row-strict qua-
sisymmetric Schur basis via an elegant formula [MR14], as they do into the qua-
sisymmetric Schur basis [HLMvW11]. In [MN15], a closely-related variant called the
Young row-strict quasisymmetric Schur functions was introduced and many proper-
ties of this basis discovered, including an analogue of the Littlewood-Richardson rule.
The question of interpreting the Young row-strict quasisymmetric Schur functions in
terms of 0-Hecke modules was raised in [MN15].

Additionally, there has been recent interest in further understanding the structure
of 0-Hecke modules that arise in this context, particularly regarding indecomposabil-
ity. All 0-Hecke modules for dual immaculate quasisymmetric functions and extended
Schur functions are indecomposable ([BBS`15], [Sea20] respectively). The same is
not true for the modules for quasisymmetric Schur functions, however [TvW15] pro-
vided a direct-sum formula for these modules and used this to classify which modules
are indecomposable. Later, [Kön19] showed that all components of this direct sum
decomposition are indecomposable. In [TvW19], 0-Hecke modules for a generaliza-
tion of quasisymmetric Schur functions were constructed, and [CKNO20a] established
several structural results concerning these modules, including classifying indecompos-
ability. Moreover, [CKNO20b] determined the projective covers for the modules for
dual immaculate quasisymmetric functions and extended Schur functions, and for
those modules in [TvW19] that are indecomposable.

In this paper, we answer the question of Mason and Niese [MN15] by constructing
0-Hecke modules whose quasisymmetric characteristics are the Young row-strict qua-
sisymmetric Schur functions. Moreover, we classify when these modules are indecom-
posable. Proving this classification turns out to be more involved than the analogous
arguments for indecomposability of modules for dual immaculate, extended Schur and
quasisymmetric Schur functions. The condition that classifies indecomposability for
modules for Young row-strict quasisymmetric Schur functions in fact agrees with that
for modules for quasisymmetric Schur functions [TvW15], at least up to a reversal
of the compositions indexing the functions; this is due to similarity in the definitions
of the standard tableaux defining each of these bases. However, significant difference
in the descent structure between these families of tableaux leads to different module
structure, necessitating a different approach to the proof.

The paper is organized as follows. In Section 2 we review the necessary background
concerning the fundamental and row-strict Young quasisymmetric Schur bases of
QSym and the 0-Hecke algebra. In Section 3 we define a 0-Hecke action on the
standard Young row-strict tableaux of [MN15] and prove that the quasisymmetric
characteristics of the corresponding 0-Hecke modules are precisely the Young row-
strict quasisymmetric Schur functions. We give a formula for a decomposition of
these modules into a direct sum of nonzero submodules, and prove that each of
these submodules is generated by a single tableau. We also establish precisely when
this direct sum formula has only a single summand. In Section 4 we prove that a
certain submodule is always indecomposable. The indecomposability classification



0-HECKE MODULES FOR YOUNG ROW-STRICT QUASISYMMETRIC SCHUR FUNCTIONS 3

then follows from the fact that when the direct sum formula has only one summand,
this submodule is the entire module.

2. Background

2.1. Quasisymmetric functions. A composition is a finite sequence α “ pα1, . . . , αkq
of positive integers. The parts of α are the integers αi for 1 ď i ď k, and the number
k of parts is the length of α, denoted ℓpαq. When the parts of α sum to n, we write
|α| “ n and say that α is a composition of n, denoted α ( n. We also write maxpαq
to denote maxtα1, . . . , αℓpαqu.

Given a composition α “ pα1, . . . , αkq of n, define a subset Spαq of t1, . . . , n ´ 1u
by Spαq “ tα1, α1 ` α2, . . . , α1 ` α2 ` ¨ ¨ ¨ ` αk´1u. The map α ÞÑ Spαq is a bijection
between compositions of n and subsets of t1, . . . , n´ 1u. Its inverse compn is defined
by compnptx1 ă ¨ ¨ ¨ ă xruq “ px1, x2 ´ x1, . . . , xr ´ xr´1, n ´ xrq. For example,
Sp3, 2, 2q “ t3, 5u Ď t1, . . . , 6u and comp7pt1, 3, 4uq “ p1, 2, 1, 3q ( 7.

Denote by Crrx1, x2, . . .ss the algebra of formal power series of bounded degree in
infinitely many commuting variables. The algebra QSym of quasisymmetric functions
is a subalgebra of Crrx1, x2, . . .ss, and bases of QSym are indexed by compositions.
The monomial quasisymmetric functions tMαu [Ges84], defined by

Mα “
ÿ

i1ăi2ă¨¨¨ăik

xα1

i1
¨ ¨ ¨xαk

ik

form a basis of QSym. Another important basis is the fundamental quasisymmetric
functions tFαu [Ges84], defined by

Fα “
ÿ

β refines α

Mβ,

where β refines α if α can be obtained by summing consecutive parts of β.

Example 2.1. Let α “ p1, 2, 2q. We have

Mp1,2,2q “
ÿ

iăjăk

xix
2
jx

2
k

and
Fp1,2,2q “ Mp1,2,2q ` Mp1,1,1,2q ` Mp1,2,1,1q ` Mp1,1,1,1,1q.

We now introduce a third basis: the Young row-strict quasisymmetric Schur func-
tions, which are defined in terms of certain tableaux of composition shape. The
diagram Dpαq of a composition α is the array of cells having αi left-justified cells in
row i. We use French notation for composition diagrams, i.e., the rows are numbered
from bottom to top. Let pc, rq denote the cell in row r and column c. We say the cell
pc ` 1, rq P Dpαq is right-adjacent to the cell pc, rq, and that pc, rq is left-adjacent to
pc ` 1, rq.

Example 2.2. Let α “ p3, 2, 2q. Then Dpαq “ .
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Let α ( n. A standard Young row-strict composition tableau [MN15] of shape α is a
bijective assignment T of the cells of Dpαq to entries 1, . . . , n satisfying the following
conditions:

(R1) Entries increase from left to right along rows
(R2) Entries increase from bottom to top in the first column
(R3) If cells pc, rq and pc`1, r1q for r1 ă r are inDpαq and T pc, rq ă T pc`1, r1q, then

T pc`1, rq ă T pc`1, r1q, where T pc`1, rq is defined to be 8 if pc`1, rq R Dpαq.

Pictorially, (R3) states that for any three cells arranged as below (which we refer
to as a triple), if a ă c then b ă c.

a b
...

c

We denote the set of all standard Young row-strict composition tableaux of shape
α by SYRTpαq. For T P SYRTpαq, when a cell with entry j is right-adjacent to a cell
with entry i in T , we say j is right-adjacent to i (and i is left-adjacent to j).

Remark 2.3. The term row-strict comes from a semistandard version of these tableaux,
in which an entry i may appear more than once. For semistandard Young row-strict
tableaux, entries may be repeated in columns but are required to strictly increase
along rows; see [MN15]. We will not need the semistandard version in this paper.

Define the descent set DespT q of T P SYRTpαq to be the entries i such that i ` 1
is strictly to the right of i in T .

Example 2.4. Let α “ p3, 2, 2q ( 7. The tableaux in SYRTpαq, along with their
descent sets, are shown below.

6 7

4 5

1 2 3

6 7

3 5

1 2 4

5 6

4 7

1 2 3

4 6

3 7

1 2 5

5 6

3 7

1 2 4

t1, 2, 4, 6u t1, 3, 6u t1, 2, 5u t1, 4u t1, 3, 5u

For α ( n, the Young row-strict quasisymmetric Schur function Rα [MN15] is
defined by

Rα “
ÿ

TPSYRTpαq

FcompnpDespT qq.

Example 2.5. By Example 2.4, we have

Rp3,2,2q “ Fp1,1,2,2,1q ` Fp1,2,3,1q ` Fp1,1,3,2q ` Fp1,3,3q ` Fp1,2,2,2q.



0-HECKE MODULES FOR YOUNG ROW-STRICT QUASISYMMETRIC SCHUR FUNCTIONS 5

2.2. 0-Hecke algebras. The 0-Hecke algebra Hnp0q is the C-algebra with generators
T1, . . . , Tn´1 subject to the relations

T 2
i “ Ti for all 1 ď i ď n ´ 1

TiTj “ TjTi for all i, j such that |i ´ j| ě 2

TiTi`1Ti “ Ti`1TiTi`1 for all 1 ď i ď n ´ 2.

Given a representation X of Hnp0q, let rXs denote its isomorphism class. The
Grothendieck group G0pHnp0qq is the linear span of the isomorphism classes of the
finite-dimensional representations of Hnp0q, modulo the relation rY s “ rXs ` rZs for
each short exact sequence 0 Ñ X Ñ Y Ñ Z Ñ 0 of Hnp0q-representations X, Y, Z.
Define

G “
à

ně0

G0pHnp0qq.

There are 2n´1 irreducible representations of Hnp0q, all of which are one-dimensional
[Nor79]. They may be indexed by the 2n´1 compositions of n; let Fα denote the
irreducible representation corresponding to the composition α. Let tvαu be a basis
of Fα. The following action of the Ti on vα gives the structure of Fα as a Hnp0q-
representation.

Tipvαq “

#

vα if i R Spαq

0 if i P Spαq.
(2.1)

The set trFαsu as α ranges over all compositions forms a basis of G. There is an
algebra isomorphism ch : G Ñ QSym [DKLT96] defined by setting chprFαsq “ Fα. For
any Hnp0q-module X , the quasisymmetric characteristic of X is the quasisymmetric
function chprXsq.

3. Modules for Young row-strict quasisymmetric Schur functions

In this section we construct Hnp0q-modules Rα whose quasisymmetric characteris-
tics are the Young row-strict quasisymmetric Schur functions Rα, answering a ques-
tion of Mason and Niese [MN15]. We then show that each Rα decomposes as a direct
sum of nonzero submodules, each of which is generated by a single SYRT, and char-
acterize the compositions for which this direct sum has only one summand. These
structural results will be needed for the indecomposability classification in Section 4.

3.1. 0-Hecke modules on standard Young row-strict tableaux. Let α be a
composition of n. For each 1 ď i ď n ´ 1 and each T P SYRTpαq, define

πipT q “

$

’

&

’

%

T if i+1 is weakly left of i in T

0 if i+1 is right-adjacent to i in T

sipT q otherwise

where sipT q is the filling of Dpαq obtained by swapping the entries i and i ` 1 in T .
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Example 3.1. Let α “ p3, 2, 2q, and let

T “ 5 6

3 7

1 2 4

P SYRTpαq.

Then π2pT q “ π4pT q “ π6pT q “ T , π1pT q “ π5pT q “ 0 and

π3pT q “ s3pT q “ 5 6

4 7

1 2 3

P SYRTpαq.

Let Rα denote the C-vector space spanned by SYRTpαq.

Lemma 3.2. Let T P SYRTpαq. Then for any 1 ď i ď n ´ 1 we have πipT q P Rα.

Proof. This is immediate in the case where πipT q “ T or πipT q “ 0. Suppose that
πipT q “ sipT q; we need to show sipT q P SYRTpαq. Observe that i and i ` 1 must
be in different rows in T , since if they were in the same row then i ` 1 would be
right-adjacent to i by (R1). Therefore, swapping i and i ` 1 does not change the
relative order of entries in either the row containing i or the row containing i ` 1,
so sipT q satifies (R1). The entries i and i ` 1 are necessarily in different columns
of T , therefore swapping i and i ` 1 does not change the relative order of entries in
any column, so sipT q satisfies (R2). For (R3), observe that for any triple in T that
involves at most one of i and i ` 1, the relative order of entries in that triple is the
same in sipT q as it is in T . Therefore, we only need to consider the case that i and
i ` 1 belong to the same triple in T . But such a triple cannot exist in T : since i ` 1
is strictly right of i in a different row, this would mean i occupies the top-left cell of
the triple and i ` 1 the bottom-right cell. Then the entry right-adjacent to i would
be larger than i ` 1, meaning (R3) is not satisfied for T . �

Theorem 3.3. The operators πi define an Hnp0q-action on Rα.

Proof. Let T P SYRTpαq. Lemma 3.2 establishes that for any i, πipT q P Rα. We
need to confirm that the operators πi satisfy the relations for the generators of the
0-Hecke algebra.

If i ` 1 is weakly left of i in T , then πipT q “ T , so π2
i pT q “ T “ πipT q. If

i ` 1 is right-adjacent to i in T , then πipT q “ 0, so π2
i pT q “ 0 “ πipT q. Otherwise

πipT q “ sipT q, in which case π2
i pT q “ πipsipT qq “ sipT q “ πipT q, where the middle

equality follows from the fact that i ` 1 is left of i in sipT q. Hence π2
i “ πi for all

1 ď i ď n ´ 1.
If |i ´ j| ě 2, then there is no overlap between ti, i ` 1u and tj, j ` 1u. In other

words, πi and πj apply to disjoint pairs of entries in T and therefore it is immediate
that πiπj “ πjπi.

We now show that πiπi`1πipT q “ πi`1πiπi`1pT q via the following cases.

(1) i ` 1 is right-adjacent to i

(2) i ` 1 is weakly left of i
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(a) i ` 2 is right-adjacent to i ` 1
(b) i ` 2 is weakly left of i ` 1
(c) i ` 2 is strictly right of i ` 1 and not right-adjacent to i ` 1

(3) i ` 1 is strictly right of i and not right-adjacent to i

(a) i ` 2 is right-adjacent to i ` 1
(b) i ` 2 is weakly left of i ` 1
(c) i ` 2 is strictly right of i ` 1 and not right-adjacent to i ` 1

(1): Here πipT q “ 0, so πiπi`1πipT q “ 0. If πi`1pT q “ 0 we are done. If πi`1pT q “ T ,
then πi`1πiπi`1pT q “ πi`1πipT q “ 0. If πi`1pT q “ si`1pT q, then i ` 2 is strictly
right of i ` 1 (and also i) and in a different row to i ` 1 (and i). Hence πiπi`1pT q “
sisi`1pT q, and the cells occupied by i ` 1 and i ` 2 in sisi`1pT q are exactly the cells
occupied by i and i ` 1 respectively in T . Since these cells are adjacent, we have
πi`1πiπi`1pT q “ πi`1sisi`1pT q “ 0.
(2)(a): Here πipT q “ T and πi`1pT q “ 0, so πiπi`1πipT q “ πi`1πiπi`1pT q “ 0.
(2)(b): Here πipT q “ T and πi`1pT q “ T , so πiπi`1πipT q “ πi`1πiπi`1pT q “ T .
(2)(c): Here πipT q “ T and πi`1pT q “ si`1pT q. If i ` 2 is right-adjacent to i in
T , then i ` 1 is right-adjacent to i in si`1pT q, so πiπi`1πipT q “ πipsi`1pT qq “ 0 and
πi`1πiπi`1pT q “ πi`1πipsi`1pT qq “ 0. If i`2 is weakly left of i in T , then i`1 is weakly
left of i in si`1pT q, so πipsi`1pT qq “ si`1pT q. Then πiπi`1πipT q “ πipsi`1pT qq “
si`1pT q and πi`1πiπi`1pT q “ πi`1πipsi`1pT qq “ πi`1psi`1pT qq “ si`1pT q. Finally, if
i`2 is strictly right of i in T and not right-adjacent to i, then i`1 is strictly right of i in
si`1pT q (and not right-adjacent to i), so πipsi`1pT qq “ sisi`1pT q. Then πiπi`1πipT q “
πipsi`1pT qq “ sisi`1pT q and πi`1πiπi`1pT q “ πi`1πipsi`1pT qq “ πi`1psisi`1pT qq “
sisi`1pT q, where the last equality is due to the fact that the cells occupied by i ` 1
and i ` 2 in sisi`1pT q are those occupied by i and i ` 1 in T .
(3)(a): Here πi`1pT q “ 0, so πi`1πiπi`1pT q “ 0. We have πipT q “ sipT q, and in sipT q,
i`1 is strictly left of i`2 and not left-adjacent to i`2, so πiπi`1πipT q “ πiπi`1sipT q “
πipsi`1sipT qq. In si`1sipT q, the cells occupied by i and i`1 are exactly those occupied
by i ` 1 and i ` 2 respectively in T , which are adjacent. Hence πipsi`1sipT qq “ 0.
(3)(b): Here πipT q “ sipT q and πi`1pT q “ T . If i ` 2 is right-adjacent to i in T ,
then i ` 2 is right-adjacent to i ` 1 in sipT q, so πiπi`1πipT q “ πiπi`1psipT qq “ 0 and
πi`1πiπi`1pT q “ πi`1πipT q “ πi`1psipT q “ 0. If i ` 2 is weakly left of i in T , then
i ` 1 is weakly left of i ` 2 in sipT q, so πi`1psipT qq “ sipT q. Then πiπi`1πipT q “
πiπi`1psipT qq “ πipsipT qq “ sipT q, and πi`1πiπi`1pT q “ πi`1πipT q “ πi`1psipT qq “
sipT q. Finally, if i` 2 is strictly right of i in T and not right-adjacent to i, then i` 2
is strictly right of i ` 1 in sipT q (and not right-adjacent to i ` 1), so πi`1psipT qq “
si`1sipT q. Then πiπi`1πipT q “ πiπi`1psipT qq “ πipsi`1sipT qq “ si`1sipT q, where the
last equality is due to the fact that the cells occupied by i and i ` 1 in si`1sipT q are
those occupied by i ` 1 and i ` 2 respectively in T . On the other hand, we also have
πi`1πiπi`1pT q “ πi`1πipT q “ πi`1psipT qq “ si`1sipT q.
(3)(c): Here we also have that i ` 2 is necessarily strictly right of i and not right-
adjacent to i in T . As a result, we have πiπi`1πipT q “ sisi`1sipT q and πi`1πiπi`1pT q “
si`1sisi`1pT q. Since sisi`1si “ si`1sisi`1, these are the same tableaux. �
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We now show that the Hnp0q-module Rα has quasisymmetric characteristic Rα.
Define a relation ĺ on SYRTpαq by declaring T ĺ S if S can be obtained from T via
applying a (possibly empty) sequence of the πi operators.

Lemma 3.4. The relation ĺ defines a partial order on SYRTpαq.

Proof. Reflexivity and transitivity of ĺ are immediate from the definition. For anti-
symmetry, given T P SYRTpαq define a tuple dpT q such that for each 1 ď j ď maxpαq,
the jth entry of dpT q is the sum of the entries in the first j columns of T . If
πipT q “ sipT q, then i`1 is strictly right of i in T . Hence for each 1 ď j ď maxpαq we
have dpsipT qqj ě dpT qj, and the inequality is strict in the column in which i appears
in T . Therefore, if S P SYRTpαq is obtained from T by applying a sequence of the
πi, then either S “ T or else dpSqj ą dpT qj for some 1 ď j ď maxpαq. In the latter
case it is not possible to obtain T from S by applying operators πi, as doing so can
never decrease any entry of dpSq. �

We arbitrarily choose a total order ĺ
‹ on SYRTpαq that extends the partial order

ĺ. We may assume the elements of SYRTpαq are ordered Tm ĺ
‹ Tm´1 ĺ

‹ ¨ ¨ ¨ ĺ
‹ T1.

For each 1 ď j ď m, let Rj “ spantT1, . . . , Tju. Then for all 1 ď j ď m, Rj is a
Hnp0q-submodule of Rα, and we have a filtration

0 :“ R0 Ă R1 Ă R2 Ă ¨ ¨ ¨ Ă Rm “ Rα

of Rα. It follows from the definition that each quotient module Rj{Rj´1 is one-
dimensional, with basis tTju.

Lemma 3.5. For each 1 ď i ď n ´ 1 and each 1 ď j ď m, in Rj{Rj´1 we have

πipTjq “

#

Tj if i ` 1 is weakly left of i in Tj

0 otherwise.

Proof. If i ` 1 is weakly left of i in Tj , then πipTjq “ Tj by Theorem 3.3. If i ` 1
is strictly right of i, then πipTjq is equal to either 0 or sipTjq by Theorem 3.3. But
sipTjq “ 0 in Rj{Rj´1, since sipTjq P Rj´1. �

Theorem 3.6. Let α ( n. Then chprRαsq “ Rα.

Proof. Each of the Hnp0q-modules Rj{Rj´1 is one-dimensional, thus irreducible, and
therefore isomorphic to Fβ for some composition β. It follows from Lemma 3.5 that

πipTjq “

#

Tj if i R DespTjq

0 if i P DespTjq.

By (2.1), this implies that Rj{Rj´1 is isomorphic as Hnp0q-modules to FcompnpDespTjqq,
hence rRj{Rj´1s “ rFcompnpDespTjqqs. It follows that

chprRαsq “
m
ÿ

j“1

chprRj{Rj´1sq “
m
ÿ

j“1

chprFcompnpDespTjqqsq “
ÿ

TPSYRTpαq

FcompnpDespT qq “ Rα.

�
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3.2. Direct sum decomposition. A remaining goal is to classify for which α the
Hnp0q-module Rα is indecomposable. Towards this, we decompose Rα into a direct
sum of nonzero submodules, and show that each of these submodules is generated
by a single SYRT. We proceed in a similar manner to the work of [TvW15] that
establishes analogous results for modules for quasisymmetric Schur functions.

Define a relation „ on SYRTpαq by declaring T „ T 1 if for every k such that
1 ď k ď maxpαq, the relative order of the entries in the kth column of T is the same
as the relative order of the entries in the kth column of T 1. It is immediate that „ is
an equivalence relation, hence it gives rise to a partition of SYRTpαq. Suppose that „
decomposes SYRTpαq into equivalence classes E0, E1, . . . , Er, where E0 denotes the
class consisting of all T P SYRTpαq such that entries increase from bottom to top in
every column of T .

Example 3.7. In Example 2.4, the first two SYRTs form the equivalence class E0.
The last three SYRTs together form a different equivalence class: for each of these
SYRTs, the second column has the smallest entry at the bottom, second-smallest
entry at the top, and largest entry in the middle; and in the first and third columns
entries increase from bottom to top.

Proposition 3.8. For any composition α, the equivalence class E0 is nonempty.

Proof. Consider the tableau T of shape α formed by placing the entries 1, 2, . . . , α1

into row 1, the entries α1`1, α1`2, . . . , α2 into row 2, and so on. In Example 2.4, this
is the first tableau. By construction, in each column of T the entries are increasing
from bottom to top. It is straightforward to see that T P SYRTpαq: (R1) and (R2)
are satisfied by construction, and (R3) is satisfied because all entries of T in a higher
row are greater than any entry in a lower row. �

Let R
Ej
α denote the subspace of Rα given by the complex span of Ej .

Proposition 3.9. Let α ( n. Then for each j, the vector space R
Ej
α is an Hnp0q-

submodule of Rα.

Proof. It suffices to show that for any T P Ej and any 1 ď i ď n ´ 1, we have

πipT q P R
Ej
α . This is immediate when πipT q “ T or πipT q “ 0. If πipT q “ sipT q,

then i and i ` 1 are necessarily in different columns of T . Replacing i with i ` 1 in
a column that does not contain i ` 1 does not change the relative order of entries in
that column; likewise for replacing i ` 1 with i. Hence sipT q „ T . �

Consequently, we have

Corollary 3.10. Let α ( n. Then Rα is isomorphic as Hnp0q-modules to
Àr

j“0R
Ej
α .

This implies the following result concerning indecomposability:

Corollary 3.11. Let α ( n. If there exists a T P SYRTpαq whose entries in some
column do not increase from bottom to top, then Rα is decomposable.
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Proof. By Proposition 3.8, the existence of such a T implies there are at least two

nonzero submodules in the expansion
Àr

j“0R
Ej
α . Thus by Corollary 3.10, Rα can be

written as the direct sum of two nonzero submodules. �

This reduces the question of indecomposability to the case where Rα “ RE0
α , i.e.,

for compositions α such that all T P SYRTpαq have entries increasing from bottom
to top in every column. We now show that each equivalence class Ej (and thus in
particular E0) contains a unique T such that every T 1 P Ej can be obtained from

T by applying a sequence of the πi operators. As a result, R
Ej
α is cyclic for each j,

generated by this T .
Following the nomenclature of [TvW15] and [Kön19], we call T P Ej a source

tableau if there is no T 1 P Ej such that T 1 ‰ T and πipT
1q “ T for some i. We can

characterize source tableaux as follows.

Proposition 3.12. Let α ( n and T P SYRTpαq. Then T is a source tableau if and
only if for each entry i ă n such that i R DespT q, the entry i` 1 is either in the same
column as i, or in the column immediately left of the column containing i and in a
row higher than the row containing i.

Proof. Suppose there is an entry i ă n such that i ` 1 is at least two columns to the
left of i, or in the column immediately left of i and below i (in which case it is strictly
below i, by (R1)). Then i and i ` 1 do not share a row or a column, and there is no
triple involving both i and i ` 1. Hence the tableau T 1 obtained by exchanging i and
i ` 1 is an SYRT, and we then have πipT

1q “ T , so T is not a source tableau.
Conversely, suppose that for each entry i ă n such that i R DespT q, the entry

i ` 1 is either in the same column as i, or the column immediately left of the column
containing i and a row higher than the row containing i. If there were an SYRT
T 1 ‰ T such that πipT

1q “ T for some i, then i ` 1 must be strictly left of i in T ,
and T 1 is obtained from T by exchanging i and i ` 1. Then in T , i ` 1 must be in
the column immediately left of the column containing i, and above i. But this means
i ` 1 and i form two cells of a triple in T , and exchanging them violates (R3) since
the entry of the cell right-adjacent to i ` 1, if it exists must be larger than i ` 1 by
(R1), and thus larger than i. Hence there is no T 1 ‰ T such that πipT

1q “ T for some
i, and thus T is a source tableau. �

For example, the second and the fourth SYRTs in Example 2.4 are the source
tableaux of shape p3, 2, 2q. Notice these source tableaux belong to different equiva-
lence classes.

Lemma 3.13. For any composition α, there exists at least one source tableau in each
equivalence class in SYRTpαq.

Proof. Recall from Lemma 3.4 that SYRTpαq is partially ordered by the relation ĺ,
and thus the tableaux in Ej are partially ordered by ĺ. The source tableaux are, by
definition, the minimal elements in Ej under ĺ. Minimal elements must exist since
SYRTpαq, and thus Ej , is a finite set. �
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We now show that each equivalence class Ej contains exactly one source tableau.
Given a composition α, define a cell of Dpαq to be removable if it is the rightmost
cell of the top row, or the rightmost cell in a row of length at least 2 that has no row
above it containing precisely one fewer cell. Given T P SYRTpαq, call a removable
cell of Dpαq a distinguished removable cell of T if this cell contains the largest entry
in its column.

Example 3.14. For α “ p2, 3, 4, 2q, the diagram on the left shows the removable cells
of Dpαq, and the diagram on the right shows an SYRT of shape α with distinguished
removable cells indicated by bolded entries.

‚

‚

‚

9 10

4 5 6 8

2 3 7

1 11

The importance of removable cells stems from the following result.

Lemma 3.15. Let α ( n. Then a cell κ in Dpαq is removable if and only if there
is some T P SYRTpαq with entry n in κ. Moreover, the cell with entry n in any
T P SYRTpαq is a distinguished removable cell.

Proof. Suppose κ is a removable cell in row i of Dpαq. Consider any SYRT of shape
α̂ “ pα1, . . . , αi ´1, . . . , αℓpαqq, and fill the cells of Dpαq with this SYRT filling in cells
other than κ and n in κ. We claim this filling of Dpαq is an SYRT. Certainly (R1)
and (R2) are satisfied. Since κ is removable, it is the lower cell in a triple only if both
upper cells are in Dpαq. This means the upper cells will both have entries smaller
than n, thus (R3) is also satisfied.

Conversely, suppose κ is not removable. If κ is not at the end of a row, then by
(R1) it cannot have entry n in any SYRT. If κ is at the end of row i but there is a
row j above row i exactly one cell shorter than row i, then filling the last cell of row
i with n would cause a violation of (R3) with the entry of the last cell in row j.

Finally, since n is necessarily the largest entry in its column, the removable cell
occupied by n is distinguished. �

Since all T P Ej have the same relative order of entries in each column, they have
the same distinguished removable cells. Therefore, define DRpEjq to be the set of
column indices of SYRTs in Ej that contain a distinguished removable cell. For
example, the SYRT in Example 3.14 has distinguished removable cells in columns 2
and 4, and thus its equivalence class Ej has DRpEjq “ t2, 4u.

Lemma 3.16. Let α ( n, let Ej be an equivalence class for SYRTpαq, and let T P Ej

be a source tableau. If M is the largest element of DRpEjq, then the distinguished
removable cell in column M of T has entry n.

Proof. By Lemma 3.13 there is at least one source tableau in Ej. Moreover by
Lemma 3.15, we know the index of the column of T containing n is an element
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of DRpEjq. Suppose the index of this column is N ă M , and thus we have some
entry i ă n in the distinguished removable cell in column M . We will show that T
cannot be a source tableau. Define a set

S “ tk P N : i ă k ď n and k is in a column strictly left of column Mu.

First suppose i ` 1 P S. Then i ` 1 is strictly left of i in T , and thus in a different
row than i by (R1). If i ` 1 is at least two columns to the left of i, or in the column
immediately left of i and in a row below i, then the tableau T 1 obtained from T by
exchanging i and i ` 1 is in Ej , and we have πipT

1q “ sipT
1q “ T , so T is not a

source tableau. We conclude this case by noting that i ` 1 cannot be in the column
immediately left of i and above i. Suppose it were. Then i ` 1 cannot be the last
entry in its row, as this would contradict i occupying a removable cell. But if i ` 1
is not the last entry in its row, then the entry right-adjacent to i ` 1 is greater than
i ` 1 by (R1) and in the same column as i, contradicting that i is in a distinguished
removable cell.

Now suppose i ` 1 R S. Let δ denote the minimum element of S (note n P S, so S

is nonempty and thus has a minimum element). Notice that since δ ´ 1 ě i ` 1, we
have δ ´ 1 R S, that is, δ ´ 1 is weakly right of i. In fact δ ´ 1 is strictly right of i,
since i ă δ ´ 1 is the largest entry in its column. On the other hand δ is strictly left
of i, so δ is at least two columns left of δ ´ 1. Therefore, by (R1), δ and δ ´ 1 are in
different rows. It follows that the tableau T 1 obtained by swapping δ and δ ´ 1 in T

is in Ej , and then πδ´1pT 1q “ T , so T is not a source tableau. �

Corollary 3.17. Let α ( n. Every equivalence class Ej for SYRTpαq has a unique
source tableau.

Proof. By Lemma 3.13, we know that Ej has at least one source tableau. To prove
it is unique, we proceed by induction on n “ |α|. If n “ 1, then SYRTpαq has only
one element, and thus no more than one source tableau. Now let n ą 1 and suppose
that for every α1 ( n ´ 1 each equivalence class for SYRTpα1q has a unique source
tableau. Suppose further that T, S P Ej Ď SYRTpαq are source tableaux. Then by
Lemma 3.16, n occupies the same cell in T as it does in S.

Let T 1 and S 1 denote the tableaux obtained by deleting the cell with entry n from
T and S. It is clear that T 1 and S 1 are source tableaux for a composition of n ´ 1,
and belong to the same equivalence class. Hence T 1 “ S 1 by the inductive hypothesis,
and therefore T “ S. �

The next result follows immediately from Corollary 3.17

Corollary 3.18. Each submodule R
Ej
α of Rα is cyclic, generated by the unique source

tableau in Ej.

3.3. Simple compositions. Before addressing indecomposability, we characterize
the compositions that give rise to only a single equivalence class of SYRTs. Following
the nomenclature of [TvW15], define a composition α to be simple if whenever αj ě
αi ě 2 for some 1 ď i ă j ď α, there is some k such that i ď k ď j and αk “ αi ´ 1.
In other words, given a pair of rows in Dpαq where the lower row is weakly shorter
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(and of length at least 2), there is another row weakly between this pair of rows that
is one cell shorter than the lower one.

Example 3.19. The compositions p2, 1, 1, 3q and p4, 2, 1, 2q (left) are simple, whereas
p2, 3, 1, 4q and p3, 3, 3, 1q (right) are not.

Remark 3.20. Compositions that give rise to a single equivalence class in the modules
for quasisymmetric Schur functions are classified in [TvW15]. As mentioned in the
introduction, the above condition for simplicity of a composition is the same as that
in [TvW15], up to reversal. This is due to the fact that in both cases the number of
equivalence classes depends only on α and the definitions of the standard tableaux
indexing the fundamental expansion, which are similar. Accordingly, the argument
below that simple compositions characterise existence of only a single equivalence
class proceeds similarly to the analogous argument in [TvW15]. On the other hand,
the descent structure of SYRTs differs from that of the standard composition tableaux
defining quasisymmetric Schur functions, hence the actual proof of indecomposability
in Section 4 differs considerably from that in [TvW15]; see Remark 4.8.

Lemma 3.21. Let α ( n be simple, with Dpαq having a removable cell in row i.
Then α̂ “ pα1, . . . , αi ´ 1, . . . , αℓpαqq is also simple.

Proof. We check that each pair of rows in Dpα̂q satisfies the condition for simplicity.
Clearly this condition is satisfied for any pair of rows that are both above or both
below row i, since these rows and all rows between them are the same as in Dpαq.
For a pair consisting of row i and some lower row, the condition is clearly satisfied
since if row i of Dpα̂q is weakly longer than the lower row, then certainly row i of
Dpαq is also longer than the lower row, and the condition was satisfied for these rows
in Dpαq.

Each row above row i in Dpαq is at least two cells shorter than row i. This is
because there cannot exist a row above row i that is exactly one cell shorter, since
row i has a removable cell; and the existence of a row above row i that was weakly
longer would imply (by simplicity of α) the existence of a row above row i that was
exactly one cell shorter than row i, a contradiction.

Hence for all j ą i, we have α̂j ă α̂i, so every pair of rows involving row i and a
row above it in Dpα̂q satisfies the condition to be simple. The remaining case is a
pair of rows with one strictly below and one strictly above row i. The only way this
pair could fail the condition is if αi was the only part of α satisfying the condition for
this pair in Dpαq, that is, the higher row in the pair is weakly longer than the lower
row and the ith row is one cell shorter than the lower row. But this would mean that
row i in α̂ is shorter than a row above it (namely, the higher in the pair), which we
have seen is impossible. �
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Proposition 3.22. A composition α is simple if and only if for every T P SYRTpαq,
entries increase from bottom to top in each column of T .

Proof. Suppose α ( n is simple. We proceed by induction on n; the base case where
n “ 1 is clear. Suppose that entries increase from bottom to top in all columns for
every simple composition of n´1. Consider the entry n in T . By Lemma 3.15 the cell
containing n is always removable, and then, since α is simple, this cell is the highest
in its column (the existence of a weakly longer row above this cell would imply the
existence of another row above that is one cell shorter, contradicting removability).
Now delete this cell; by Lemma 3.21 the resulting tableau is an SYRT for a simple
composition of n ´ 1. By the inductive hypothesis, entries all columns in this SYRT
increase from bottom to top. Then since n is highest in its column in T , entries in
all columns of T increase from bottom to top.

Conversely, suppose α is not simple. Then there exist a pair of rows of Dpαq with
indices i ă j, each of length at least 2, such that the higher row j is weakly longer
than the lower row i and there is no row between them that is one cell shorter than
row i. Define compositions αlow “ pα1, . . . , αjq and αhigh “ pαj`1, . . . , αℓpαqq. Then
in Dpαlowq, the rightmost cell in row i is removable. Choose any Tlow P SYRTpαlowq
such that the largest entry |αlow| in Tlow is in this removable cell (this can be done by
Lemma 3.15). Observe that this removable cell is not the highest cell in its column,
hence entries do not increase upwards in this column. Now choose any filling Thigh of
Dpαhighq with the entries |αlow| ` 1, . . . , n that satisfies the SYRT conditions. Then
the filling of Dpαq whose lowest j rows are filled as Tlow and remaining rows are filled
as Thigh is an SYRT, and has a column in which entries do not increase from bottom
to top. �

4. Classification of indecomposability

In this section we establish the following theorem, classifying when Rα is indecom-
posable.

Theorem 4.1. The Hnp0q-module Rα is indecomposable if and only if α is simple.

One direction is immediate from the results in Section 3. By Corollary 3.11, Rα is
decomposable whenever SYRTpαq has more than one equivalence class. Therefore by
Propositions 3.8 and 3.22, if α is not simple, then Rα is decomposable.

To prove the converse direction, we will show more generally that for any α ( n,
the submodule RE0

α of Rα is indecomposable. Then by Proposition 3.22, it follows
that when α is simple, Rα “ RE0

α is indecomposable.

4.1. The source tableau of E0. We begin by establishing a concrete description
of the source tableau of E0, which will be needed later. Let α ( n and define the
boundary cells of Dpαq to be the cells in the first column, along with the cells that
have no cell strictly above them in the same column or in the column immediately to
the left. Order the boundary cells by pa, bq ă pc, dq if either a “ c “ 1 and b ă d, or
a ă c. Note that this total order proceeds up the first column, then rightwards.
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To each boundary cell we associate a collection of cells in Dpαq called a thread. We
say a cell is threaded if it (already) belongs to a thread. The thread associated to
the first boundary cell p1, 1q is just the cell p1, 1q itself. Assuming threads have been
associated to the first j´1 boundary cells, the thread associated to the jth boundary
cell consists of the jth boundary cell κ, the highest unthreaded cell strictly below κ in
the column immediately to the right of κ, the highest unthreaded cell strictly below
that in the next column to the right, and so on. The thread terminates when there is
no unthreaded cell strictly below in the next column to the right. In this way, each
thread is a sequence of cells in consecutive columns, proceeding strictly northwest to
southeast in Dpαq, and each cell belongs to at most one thread.

Example 4.2. For α “ p2, 5, 1, 3, 3q, we label the cells of Dpαq according to their
thread: the jth thread consists of all cells with entry j. The entry in each boundary
cell is bolded.

5 6 7

4 5 6

3

2 3 5 6 8

1 2

Lemma 4.3. For any composition α, the threads partition Dpαq.

Proof. By definition, each cell belongs to at most one thread. To show each cell
belongs to some thread, suppose for a contradiction that some cells were not threaded
during the threading process. Consider the leftmost, then highest such cell; call it κ
and suppose it is in column c. Since all boundary cells are threaded by definition,
κ cannot be a boundary cell. Hence there exists a cell in Dpαq strictly above κ in
column c ´ 1. Let κ1 be the lowest such cell. By assumption, κ1 is threaded. Since
there exist unthreaded cells in column c strictly below κ1 at the time κ1 gets threaded
(in particular, κ is such a cell), the thread containing κ1 continues to column c. But κ
is the highest cell in column c strictly below κ1, and by assumption is unthreaded at
the time the thread containing κ1 is being created, so the thread containing κ1 must
continue to κ, contradicting that κ is unthreaded. �

Lemma 4.4. For any composition α, there is never an unthreaded cell weakly south-
west of a threaded cell in Dpαq at any point during the threading process.

Proof. We claim a thread always takes the lowest unthreaded cell in each column,
which immediately implies the statement. Suppose when constructing the jth thread,
we did not take the lowest unthreaded cell in some column c, and that this was the
first instance in the threading process that a non-lowest cell was taken. Let κ denote
the lowest unthreaded cell in column c at this instance in the process. We may assume
c ą 1, since all cells in the first column are boundary cells and the threading process
forces each of them to be threaded in order from bottom to top. Consider the lowest
cell κ1 in column c ´ 1 that is strictly above κ. Note that the jth thread has used a
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cell in column c strictly above κ, so it must have used a cell in column c ´ 1 strictly
above κ as well. By our assumption, there is currently no threaded cell above an
unthreaded cell in column c´1, so in particular, the cell κ1 must already be threaded.
But if κ1 is the lowest cell in column c ´ 1 that is strictly above κ, then, since rows
of Dpαq are left-justified, κ is the highest cell in column c that is strictly below κ1.
Hence, since κ is currently unthreaded, κ1 and κ must belong to the same thread. If
the thread of κ1 is not the jth thread, this contradicts κ being currently unthreaded.
If the thread of κ1 is the jth thread, this contradicts our assumption that the jth
thread chooses a different cell to κ in column c. �

Suppose Dpαq has threads L1, . . . , Lm, in order. Define a standard filling Tsup of
Dα by filling each thread Lk with |L1| ` . . . ` |Lk ´ 1| ` 1, |L1| ` . . . ` |Lk ´ 1| `
2, . . . , |L1| ` . . . ` |Lk ´ 1| ` |Lk| consecutively from right to left.

Example 4.5. Let α “ p2, 5, 1, 3, 3q, as in Example 4.2. Then

Tsup “ 9 12 13

6 8 11

5

3 4 7 10 14

1 2

.

Proposition 4.6. For any composition α, Tsup is the source tableau of E0.

Proof. It follows immediately from Lemma 4.4 that Tsup satisfies (R1) and (R2), and
that entries increase from bottom to top in all columns. For (R3), it is enough to
confirm that for any pair consisting of a cell with entry x in column c ´ 1 strictly
above a cell with entry z in column c, we have x ą z. Suppose for a contradiction that
we had x ă z. Then the cell with entry z cannot belong to the same thread as the
cell with entry x; it belongs to a later thread. This means that when constructing the
thread that uses the cell with entry x, the cell with entry z was unthreaded but not
used by this thread. Since the cell with entry z is moreover in the column immediately
right of the cell with entry x and strictly below it, the thread using the cell with entry
x must have used a cell in that column. By Lemma 4.4, this cell cannot be strictly
above the cell with entry z, but by the definition of threading this cell cannot be
strictly below the cell with entry z. This contradicts z being greater than x. Hence
Tsup P E0.

It remains to show Tsup is a source tableau; by Corollary 3.17, this implies it is the
only source tableau of E0. Consider any entry i. By definition of Tsup either i ` 1 is
in the column immediately left of i and above i, or i occupies a boundary cell and
i` 1 is the rightmost entry of the next thread. In the latter case, i` 1 cannot be left
of i, since the sequence of boundary cells proceeds weakly leftwards and all cells in a
thread are to the right of the boundary cell of that thread. Hence the condition in
Proposition 3.12 is satisfied. �
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4.2. Proof of indecomposability of RE0
α . A module M is indecomposable if and

only if the only idempotent module endomorphisms ofM are 0 and 1 [Jac89]. Suppose
f is an idempotent Hnp0q-module morphism of RE0

α . By Corollary 3.18, RE0
α is

generated by Tsup, thus f : RE0
α Ñ RE0

α is completely determined by fpTsupq. Let

fpTsupq “
ÿ

TPE0

aTT.

We will show that in fact aT “ 0 for all T ‰ Tsup; it then follows that fpTsupq “
aTsup

Tsup, whence idempotence of f immediately implies that f is either 0 or 1.
The following lemma establishes that aT 1 “ 0 for a large class of SYRTs T 1 P E0.

Lemma 4.7. Let T 1 P E0. If there an i such that i P DespT 1q but i R DespTsupq, then
aT 1 “ 0.

Proof. Since πipTsupq “ Tsup, we have

fpTsupq “ fpπipTsupqq “ πipfpTsupqq “ πip
ÿ

TPSYRTpαq

aTT q “
ÿ

TPSYRTpαq

aTπipT q.

Therefore the coefficient aT 1 of T 1 in fpTsupq is the sum of the coefficients of the
S P SYRTpαq such that πipSq “ T 1. But πipT

1q ‰ T 1 since i P DespT 1q. Therefore if
πipSq “ T 1, then T 1 “ πipSq “ π2

i pSq “ πipT
1q ‰ T 1, a contradiction. So there is no

such S, and thus aT 1 “ 0. �

Remark 4.8. For dual immaculate quasisymmetric functions, quasisymmetric Schur
functions and extended Schur functions, the indecomposability classification follows
immediately from the appropriate analogue of Lemma 4.7 ([BBS`15], [TvW15], [Sea20]).
Specifically, for each of these families of functions, the source tableau of the relevant
cyclic 0-Hecke (sub)module has an especially simple form, namely, the filling we use
in the proof of Proposition 3.8 or a reversal of this. This can then be used to show
that every non-source tableau has some descent that is not a descent of the source
tableau. On the other hand, for RE0

α the source tableau Tsup is more complicated,
and indeed not every T P E0 has a descent that is not a descent of the source tableau,
even if α is simple. Therefore establishing indecomposability of RE0

α requires further
analysis.

From now on, fix T̂ P E0 such that T̂ ‰ Tsup and DespT̂ q Ď DespTsupq. Lemma 4.7
reduces the problem to showing that aT̂ “ 0. To do this, we make use of a technique
of [Kön19], which requires us to establish the existence of a sequence of operators

that sends Tsup to 0 but does not send T̂ to 0, such that each operator in the sequence

exchanges entries of T̂ . We exhibit such a sequence in Corollary 4.16.
Fix a sequence of operators πi1 . . . πip such that πi1 . . . πippTsupq “ si1 . . . sippTsupq “

T̂ . Such a sequence exists since Tsup is the source tableau of E0 (Proposition 4.6). Let

ε denote the smallest entry that occupies a different cell in T̂ to the cell it occupies
in Tsup. For the following lemmas leading to Corollary 4.16, we use the following
running example as an illustration.



18 J. BARDWELL AND D. SEARLES

Example 4.9. Let α “ p5, 3, 4, 1, 2q ( 15. Below are Tsup and a T̂ P E0 with

DespT̂ q “ t1, 3, 6, 11, 13u “ DespTsupq.

Tsup “ 11 13

10

6 9 12 15

3 5 8

1 2 4 7 14

T̂ “ 11 15

10

6 9 13 14

3 5 8

1 2 4 7 12

Here we have π14π12π13pTsupq “ s14s12s13pTsupq “ T̂ and ε “ 12. Notice this sequence
of operators does not contain any πi such that i ă ε, and that ε occupies a cell in
T̂ strictly right of the cell it occupies in Tsup, agreeing with Lemmas 4.10 and 4.11
below.

Lemma 4.10. For any i ă ε, πi does not appear in any sequence πi1 . . . πip of oper-

ators such that πi1 . . . πippTsupq “ si1 . . . sippTsupq “ T̂ .

Proof. We proceed by induction on i. Since 1 is always in the lowest cell in the first
column of any SYRT, π1 cannot act as s1 on any SYRT, thus π1 does not appear
in the sequence. Now let 1 ă i ă ε and suppose π1, . . . , πi´1 do not appear. By
definition, application of πi moves i strictly rightwards, and the only way to move i

strictly leftwards is by applying πi´1. Since by assumption πi´1 is never applied, if
πi is applied then in T̂ the entry i occupies a position strictly right of the position i

occupies in Tsup, contradicting the minimality of ε. �

Lemma 4.11. The cell of Dpαq occupied by ε in T̂ is strictly right of the cell of Dpαq
occupied by ε in Tsup.

Proof. By Lemma 4.10, πε´1 never occurs in πi1 . . . πip . However, since ε occupies a

different cell in T̂ than it does in Tsup, πε must occur. Application of πε moves ε

strictly rightwards, and ε cannot ever move strictly leftwards because the sequence
does not contain πε´1. �

In Example 4.9, notice that in Tsup the entry ε “ 12 occupies the rightmost cell in
its thread (that is, the cells with entries 12 and 13), and that ε´ 1 “ 11 is a descent,
agreeing with the statements of Lemmas 4.12 and 4.13 below.

Lemma 4.12. The cell containing ε in Tsup is the rightmost cell in its thread.

Proof. Suppose the cell containing ε in Tsup was not the rightmost in its thread. Then
ε ´ 1 is in the column immediately right of the column containing ε; in particular,
ε ´ 1 is not a descent in Tsup. We will show that ε ´ 1 must be a descent in T̂ ,

contradicting the assumption DespT̂ q Ď DespTsupq.

By Lemma 4.10, ε ´ 1 occupies the same cell in T̂ as it does in Tsup, and by

Lemma 4.11 ε occupies a cell in T̂ that is strictly right of the cell it occupies in Tsup.
Therefore, it suffices to show that ε is moved at least two columns rightwards when πε
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is first applied, since this will ensure ε is strictly right of ε´ 1 in T̂ . (Any subsequent
applications of πε only move ε further rightwards.) When πε is applied, ε swaps with
ε ` 1, so we need to show that ε ` 1 cannot be in the column immediately right of
the column that ε occupies in Tsup when πε is first applied, since then ε would only
move one column rightwards.

In Tsup, there is no cell in the column of ε´1 (i.e., the column immediately right of
the column of ε) that is above ε ´ 1 and strictly below ε. (Otherwise since columns
increase from bottom to top, this cell would have an entry greater than ε, and this
cell and the cell containing ε form a triple which would violate (R3)). Moreover any
cell below ε ´ 1 in the column of ε ´ 1 has an entry smaller than ε ´ 1 due to the
increasing column condition, and these entries never change during the process due
to Lemma 4.10.

Therefore when πε is first applied, if ε ` 1 is in the column of ε ´ 1, it must be
weakly above ε. Let T 1 P E0 denote the SYRT to which πε is first applied in the
process. It is impossible for ε` 1 to be strictly above ε in T 1, because then the entry
in the cell in the column containing ε and the row containing ε ` 1 would have to
be both strictly greater than ε and strictly smaller that ε ` 1 due to (R1) and the
increasing column condition. Therefore, ε` 1 can only be in the column immediately
right of ε in T 1 if it is right-adjacent to ε, but then πεpT

1q “ 0, contradicting that

πi1 . . . πippTsupq “ T̂ . �

Lemma 4.13. The entry ε ´ 1 is a descent of Tsup.

Proof. By Lemma 4.12, ε is the rightmost (and thus smallest) entry in its thread.
Hence ε ´ 1 is the largest (and leftmost) entry in the preceding thread. Since later
threads start weakly right of earlier threads and cells in a thread proceed strictly
rightwards, if the thread containing ε has at least 2 cells, then we are done. If it has
only one cell, then the only way for ε to not be strictly right of ε´1 in Tsup is for both
ε and ε ´ 1 to be in threads consisting of a single cell in the first column. But when
transforming T̂ into Tsup, πε´1 is never applied whereas πε is. Since applying πε moves

ε strictly rightwards, ε ´ 1 is a descent in T̂ , contradicting DespT̂ q Ď DespT q. �

Lemma 4.13 implies that ε is not in the first column of Tsup, since ε must be strictly
right of ε´ 1. Therefore, in Tsup there exists a cell left-adjacent to the cell containing
ε. Let x denote the entry left-adjacent to ε in Tsup. In Example 4.9, we have x “ 9.

Note also that the entries 9, 10, 11 are all strictly left of ε “ 12 in both Tsup and T̂ ,
agreeing with the statements of Lemma 4.14 and Lemma 4.15 below.

In Tsup, define a run of entries to the entries in a single thread of cells, thought of
as an increasing sequence. In this way, we define the jth run of Tsup to be the entries
in the jth thread of Dpαq. In Example 4.9, the 4th run of T consists of the entries
7, 8, 9, 10.

Lemma 4.14. The entries x, x` 1, . . . , ε´ 2, ε´ 1 all reside strictly left of ε in Tsup.

Proof. Since ε is the rightmost entry in its run by Lemma 4.12, none of x, x`1, . . . , ε´
2, ε´1 belong to the run involving ε; they belong to strictly earlier runs. By definition,
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all entries of the run involving x that are greater than x are strictly left of x, and
thus strictly left of ε.

Consider any run using entries from x, x ` 1, . . . , ε ´ 2, ε ´ 1 that is not the run
containing x. Since such a run is strictly earlier than the run containing ε, it begins
weakly to the left of where the run using ε begins. This implies the starting entry of
any run involving x, x ` 1, . . . , ε ´ 2, ε ´ 1 is strictly to the left of ε (the only way it
could be in the same column as ε is if ε was the first and only entry of its run and
was in the first column, but we know ε is not in the first column). We claim this
run must in fact end at least two columns to the left of ε, which implies that all its
entries are strictly left of ε. If such a run assigned an entry (say y) to a cell in the
column of x (i.e. immediately left of the column of ε), then since this run is later
than the run involving x, it places y strictly above x (and thus strictly above ε) by
Lemma 4.4. But then y and ε form two cells of a triple with y ă ε, hence there must
exist an entry z right-adjacent to y with z ă ε. But this is impossible since entries
increase upwards in columns of Tsup. �

Lemma 4.15. In T̂ , all entries x, x ` 1, . . . , ε ´ 2, ε ´ 1 reside strictly left of ε, and
the entry left-adjacent to ε is strictly smaller than x.

Proof. By definition, all entries 1, . . . , ε ´ 1 occupy the same cell in T̂ as they do in
Tsup, and by Lemma 4.14, all entries x, x ` 1, . . . ε ´ 1, ε reside strictly left of ε in

Tsup. By the proof of Lemma 4.12, ε occupies a cell in T̂ that is strictly right of the
cell it occupies in Tsup. So these entries must reside at least two columns to the left

of ε in T̂ , and thus none of them are left-adjacent to ε in T̂ . Since the entry of the
cell left-adjacent to ε in T̂ is strictly smaller than ε (by (R1)), it must also be strictly
smaller than x. �

In Example 4.9, we have π9π10π11pTsupq “ 0 while π9π10π11pT̂ q “ s9s10s11pT̂ q ‰ 0,
agreeing with the statement of Corollary 4.16 below.

Corollary 4.16. The operator πxπx`1 . . . πε´2πε´1 satisfies

(1) πxπx`1 . . . πε´2πε´1pTsupq “ 0; and

(2) πxπx`1 . . . πε´2πε´1pT̂ q “ sxsx`1 . . . sε´2sε´1pT̂ q ‰ 0.

Proof. For (1), by Lemma 4.14 all of x, x ` 1, . . . , ε ´ 2, ε ´ 1 are strictly left of ε in
Tsup, and x is left-adjacent to ε. Therefore, each operator πj for x ă j in the sequence
exchanges the entry j ` 1 in the cell that contains ε in Tsup, with the entry j. Hence,
after πx`1 is applied, the entry right-adjacent to x is x` 1, and so applying πx yields
0.

For (2), by Lemma 4.15, all of x, x`1, . . . , ε´2, ε´1 are strictly left of ε in T̂ , and
the entry left-adjacent to ε is strictly smaller than x. Therefore, similarly to (1), each
πj in the sequence of operators exchanges the entry j ` 1 in the cell that contains ε

in T̂ , with the entry j. Since the entry left-adjacent to ε in T̂ is strictly smaller than
x, none of the operators πj in the sequence yield 0, and in particular all of them act
by sj . �
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Finally, recall the partial ordering on SYRTpαq given in Lemma 3.4 and restrict
this ordering to E0. Define the rank of T P E0 to be p if there is a sequence of
operators πi1 . . . πip satisfying πi1 . . . πippTsupq “ si1 . . . sippTsupq “ T . Such a sequence
must exist since Tsup is the source tableau of E0, and it is straightforward to ob-
serve that si1 . . . sip must be a reduced word in the symmetric group Sn. It follows
that rankpT q is well-defined, and moreover that if πjpT q “ sjpT q for some j, then
rankpπjpT qq “ rankpT q ` 1. We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Recall that our goal is to show that if fpTsupq “
ř

TPE0
aTT ,

then aT “ 0 for any T ‰ Tsup. Suppose for a contradiction that there exists some
T P E0 that is not equal to Tsup and has nonzero coefficient. By Lemma 4.7, aT “ 0

whenever T has a descent that is not a descent of Tsup. Therefore, let T̂ ‰ Tsup be of

maximal rank such that aT̂ ‰ 0 and DespT̂ q Ď DespTsupq.
Let πxπx`1 . . . πε´2πε´1 be the sequence of operators from Corollary 4.16, i.e.,

πxπx`1 . . . πε´2πε´1pTsupq “ 0 and πxπx`1 . . . πε´2πε´1pT̂ q “ sxsx`1 . . . sε´2sε´1pT̂ q “
T 1 ‰ 0. We claim that if aT ‰ 0 for some T P E0 and πxπx`1 . . . πε´2πε´1pT q “ T 1,

then in fact T “ T̂ . To see this, note that in order to be equal, πxπx`1 . . . πε´2πε´1pT q

and T̂ must have the same rank. However, by assumption rankpT̂ q ě rankpT q, and

each πi acts by si when applied in sequence to T̂ . Since each application of si raises
rank by one, the only way these two tableaux can have the same rank is for T and
T̂ to have the same rank and for each πi to also act by si when applied in sequence
to T . But then we have sxsx`1 . . . sε´2sε´1pT q “ sxsx`1 . . . sε´2sε´1pT̂ q, and it follows

that T “ T̂ since each si is injective.
Therefore, the coefficient of T 1 “ πxπx`1 . . . πε´2πε´1pT̂ q in

πxπx`1 . . . πε´2πε´1pfpTsupqq “
ÿ

SPE0

aSπxπx`1 . . . πε´2πε´1pSq

is precisely aT̂ . On the other hand,

πxπx`1 . . . πε´2πε´1pfpTsupqq “ fpπxπx`1 . . . πε´2πε´1pTsupqq “ fp0q “ 0.

Hence aT̂ “ 0, contradicting our assumption aT̂ ‰ 0.
Therefore fpTsupq “ aTsup

Tsup, and RE0
α is indecomposable. It follows that Rα is

indecomposable if Rα “ RE0
α , which is exactly the case when α is simple. Since we

have already observed that Rα is decomposable when α is not simple, this completes
the proof of Theorem 4.1.
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