Shape of the asymptotic maximum sum-free sets in integer lattice grids

Hong Liu* Guanghui Wang ${ }^{\dagger}$ Laurence Wilkes ${ }^{\ddagger}$ Donglei Yang ${ }^{\S}$

19th August 2022

Abstract

We determine the shape of all sum-free sets in $\{1,2, \ldots, n\}^{2}$ of size close to the maximum $\frac{3}{5} n^{2}$, solving a problem of Elsholtz and Rackham. We show that all such asymptotic maximum sum-free sets lie completely in the stripe $\frac{4}{5} n-o(n) \leq x+y \leq \frac{8}{5} n+o(n)$. We also determine for any positive integer p the maximum size of a subset $A \subseteq\{1,2, \ldots, n\}^{2}$ which forbids the triple (x, y, z) satisfying $p x+p y=z$.

1 Introduction

A cornerstone result of Schur Sch16 states that for sufficiently large integer n and a fixed integer r, any r-coloring of $[n]:=\{1,2, \ldots, n\}$ yields a monochromatic triple x, y, z such that $x+y=z$. For an integer $n \in \mathbb{N}$ a subset $A \subseteq[n]$ is sum-free if it has no solution for the equation $x+y=z$, i.e. for all $x, y \in A$ we have $x+y \notin A$. The topic of sum-free sets of integers is well-studied in combinatorial number theory and has a long history.

It is clear that the sets

$$
S_{1}=\left\{1,3,5, \ldots, 2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right\} \quad \text { and } \quad S_{2}=\left\{\left\lceil\frac{n+1}{2}\right\rceil,\left\lceil\frac{n+1}{2}\right\rceil+1, \ldots, n\right\}
$$

are sum-free and of size $\left\lceil\frac{n}{2}\right\rceil$. If n is even, $S_{3}=S_{2}-1$ is another one of the same size. Let us denote the density of a maximum sum-free subset of $[n]$ by $\mu([n]):=\max \left\{\left.\frac{|S|}{n} \right\rvert\, S \subseteq\right.$ [n], S is sum-free $\}$. If $S \subseteq[n]$ is a sum-free set and $a \in S$ is the largest element, then at most one of x or $a-x$ can be in S for each $x \leq a$. Therefore $|S| \leq\left\lceil\frac{a}{2}\right\rceil \leq\left\lceil\frac{n}{2}\right\rceil$. Together with the above examples, we see that

$$
\mu([n])= \begin{cases}\frac{1}{2} & \text { if } n \text { even } \\ \frac{1}{2}+\frac{1}{2 n} & \text { if } n \text { odd. }\end{cases}
$$

[^0]
1.1 Structure for large sum-free sets

Given the extremal result, great efforts has been made to better understand the general structure of large sum-free sets in $[n]$. The first result on this topic was due to Freiman [Fre92] who showed that if the size of a sum-free set in $[n]$ is large enough, then it will either consist of all odd numbers as in S_{1} above or it will be close to the second half of the interval as S_{2}. We remark that more structural results are known for large sum-free sets in the 1dimensional integer lattice (see [DFST99] and a recent progress [Tra18]). Such structural results are not only interesting on their own; they have been utilized e.g. in recent work on enumerating maximal sum-free sets (see BLST18]).

The problem of sum-free sets has been generalized to higher dimensional lattice $\mathbb{Z}^{d}, d \geq 2$. Similarly, we define $\mu\left([n]^{d}\right):=\max \left\{\left.\frac{|S|}{n^{d}} \right\rvert\, S \subseteq[n]^{d}\right.$ is sum-free $\}$. In particular, for $d=2$, the problem of finding the largest sum-free subset of $[n]^{2}=\{1,2, \ldots, n\}^{2}$ was firstly presented by Cameron as an unsolved problem in Cam05.

Conjecture 1.1. Cam05 There exists a constant $c \in \mathbb{R}$ such that $\mu\left([n]^{2}\right)=c+O(1 / n)$.
Cameron later [Cam02] suggested that Conjecture 1.1 is true with $c=0.6$ and gave a lower bound construction:

$$
S_{0}=\left\{(x, y) \in[n]^{2} \mid u \leq x+y \leq 2 u-1\right\},
$$

which has maximum density 0.6 when $u=\left\lfloor\frac{4 n+7}{5}\right\rfloor$. Recently, Elsholtz and Rackham settled Conjecture 1.1 in [ER17], proving that indeed

$$
\mu\left([n]^{2}\right)=0.6+O(1 / n)
$$

In the same paper, Elsholtz and Rackham [ER17] raised the problem of classifying the sumfree sets whose size are close to the extremal value.

In this paper, we resolve this problem by showing that any sum-free subset $S \subseteq[n]^{2}$ of size at least $\left(\frac{3}{5}-o(1)\right) n^{2}$ will have all its points in the region $\left\{(x, y) \in[n]^{2} \left\lvert\, \frac{4 n}{5}-o(n) \leq\right.\right.$ $\left.x+y<\frac{8 n}{5}+o(n)\right\}$.
Theorem 1.2. For all $\gamma>0$ there exists $\delta>0$ and $n_{0} \in \mathbb{N}$ such that the following holds for all $n>n_{0}$. If $S \subseteq[n]^{2}$ is sum-free with $|S|>\left(\frac{3}{5}-\delta\right) n^{2}$, then

$$
S \subseteq\left\{(x, y) \in[n]^{2} \left\lvert\, \frac{4 n}{5}-\gamma n \leq x+y<\frac{8 n}{5}+\gamma n\right.\right\}
$$

This gives a satisfying answer to the 2 -dimension sum-free problem. The situation is, however, unclear for higher dimension. In particular, even the maximum density of a sumfree set in the 3 -dimension grid $[n]^{3}$ is unknown.

$1.2(p, q)$-sum-free sets

Given positive integers d, n and rational numbers p, q, a set $S \subseteq[n]^{d}$ is called (p, q)-sum-free if it has no solution for the equation $p x+q y=z$. As a generalization of sum-free sets (i.e. (1,1)-sum-free sets), the notion of (p, q)-sum-free sets encapsulates many fundamental topics in combinatorial number theory. In particular, for $d=1$, a $\left(\frac{1}{2}, \frac{1}{2}\right)$-sum-free set is precisely a set without 3 -term arithmetic progression, which has received considerable attention in recent decades. Therefore, it is a natural question to determine the size of the largest (p, q)-sum-free sets in $[n]^{d}$. Here one can similarly define

$$
\mu_{[p, q]}\left([n]^{d}\right):=\max \left\{\left.\frac{|S|}{n^{d}} \right\rvert\, S \subseteq[n]^{d} \text { is }(p, q) \text {-sum-free }\right\} .
$$

By Roth's theorem [Rot53], $\mu_{[1 / 2,1 / 2]}([n])=o(1)$. See [Blo16] for the best known upper bound for the size of a $(1 / 2,1 / 2)$-sum-free set. In Ruz93, Ruz95], instead of the form $x+y=z$, Ruzsa instigated the study of more general linear equations $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$. In particular, for more general cases when p, q are positive integers and $p \geq 2$, Hancock and Treglown [HT17] completely determined the value $\mu_{[p, q]}([n])$. For higher dimensional lattices, Choi, Kim and Park [CKP20] initiated the investigation of the form $x_{1}+x_{2}+\cdots+x_{k}=b$, where b is a prescribed point in $[n]^{2}$.

For 2-dimension (p, q)-sum-free problem, we make the first attempt to determine $\mu_{[p, p]}\left([n]^{2}\right)$ for any integer p.

Theorem 1.3. Let $p \in \mathbb{N}$ and $S \subseteq[n]^{2}$ be a (p, p)-sum-free set. Then

$$
|S| \leq\left(1-\frac{2}{4 p^{2}+1}\right) n^{2}+O(n)
$$

We observe that the upper bound in Theorem 1.3 is optimal up to the error term $O(n)$, given by the following construction. For any positive integers p, q and positive real a, define $S=\left\{(x, y) \in[n]^{2} \mid a<x+y<(p+q) a\right\}$. One can easily check that S is (p, q)-sum-free with size

$$
|S|=\left(1-\frac{2}{(p+q)^{2}+1}\right) n^{2}+O(n)
$$

when $a=\frac{2(p+q)}{(p+q)^{2}+1} n$, corresponding to the stripe

$$
S=\left\{(x, y) \in[n]^{2} \left\lvert\, \frac{2(p+q)}{(p+q)^{2}+1} n<x+y<\frac{2(p+q)^{2}}{(p+q)^{2}+1} n\right.\right\}
$$

We conjecture that for all integers p and q, the above construction provides the maximum (p, q)-sum-free set.

Conjecture 1.4. Let p, q and n be positive integers and $S \subseteq[n]^{2}$ be $a(p, q)$-sum-free set. Then

$$
|S| \leq\left(1-\frac{2}{(p+q)^{2}+1}\right) n^{2}+O(n)
$$

Organization. The rest of the paper will be organized as follows. Section 2 includes some notation and tools needed. Section 3 is devoted to the proof of Theorem 1.2. The proof of Theorem 1.3 is given in Section 4 .

2 Preliminaries

Given a convex polygon P in $\mathbb{R}_{[0, n]}^{2}$, denote by $\Lambda(P)$ the number of lattice points contained within P, and by $\|P\|$ the area of P with respect to the Lebesgue measure. The translate of P by a vector $a \in \mathbb{R}_{[0, n]}^{2}$ is denoted as $P+a:=\{a+(x, y) \mid(x, y) \in P\}$. Write $a-P:=$ $\{a-(x, y) \mid(x, y) \in P\}$. Throughout the proof, we always use the following result which is a corollary of Lemma 3.1 in [ER17].

Lemma 2.1. If P is a convex polygon in $\mathbb{R}_{[0, n]}^{2}$ with finitely many sides, then $\Lambda(P)=\|P\|+$ $O(n)$.

This lemma implies that any convex polygon P, described above, satisfies that $\Lambda(P)=$ $\|P\|+O(n)$, which allows us to focus on the area $\|P\|$ instead of $\Lambda(P)$.

For two points $p_{1}, p_{2} \in \mathbb{R}_{[0, n]}^{2}$, denote by $m\left(p_{1}, p_{2}\right)$ the gradient and by $c\left(p_{2}, p_{2}\right)$ the y intercept of the line in \mathbb{R}^{2} passing through p_{1} and p_{2}.

Definition 2.2 (Upper boundary). Given a set $A \subseteq \mathbb{R}_{[0, n]}^{2}$, the upper boundary of A is a set of points in A, denoted by ∂A, such that for each $p_{1} \in \partial A$ there exists a point $p_{2} \in A \backslash\left\{p_{1}\right\}$ with the following properties:

- $m\left(p_{1}, p_{2}\right)<0$;
- Let $T=\left\{(x, y) \subseteq \mathbb{R}_{[0, n]}^{2} \mid y>m\left(p_{1}, p_{2}\right) x+c\left(p_{1}, p_{2}\right)\right\}$. Then $|A \cap T|=0$.

Any two such points p_{1}, p_{2} are said to be adjoint, and the line passing through two points that are adjoint is called an upper boundary line. The second condition above states that there is no point of A strictly above any upper boundary line.

The following lemma shows that if the upper boundary of a set A is empty, then A has a 'top right corner'.

Lemma 2.3 (Lemma 5.1 in [ER17]). Suppose $A \subseteq \mathbb{R}_{[0, n]}^{2}$ such that $\partial A=\emptyset$. Then there is a point $(a, b) \in A$ such that $a \geq x$ and $b \geq y$ for all $(x, y) \in A$.

We also need the concept of pairing sets, which will be frequently used throughout the proof.
Definition 2.4. Given a point $\left(a_{1}, a_{2}\right) \in \mathbb{R}_{[0, n]}^{2}$ and a set $P \subseteq \mathbb{R}_{[0, n]}^{2}$, we call P a pairing set for (a_{1}, a_{2}) if for any $x \in P$, we have $\left(a_{1}, a_{2}\right)-x \in P$.

The following lemma guarantees that for any point in a sum-free set S, every pairing set for that point cannot intersect too much with S.

Lemma 2.5 (Lemma 3.4 in [ER17]). Let S be a sum-free set in $[n]^{2}$. Then for any $a \in S$ and a pairing set P for a, we have $|P \cap S| \leq \frac{1}{2} \Lambda(P)$.

The following lemma bounds the intersection of a set and its translate with a sum-free set.

Lemma 2.6. Given two sets $S, T \subseteq[n]^{2}$, if S is sum-free, then for any $a \in S$, it holds that

$$
|S \cap(T \cup(a \pm T))| \leq|T| .
$$

Proof. For each element $t \in T$ there is a corresponding element $a \pm t \in a \pm T$. Since $a \in S$, one can observe from sum-freeness that at most one of t and $a \pm t$ belongs to S.

3 Proof of Theorem 1.2

We carry out the proof in a few steps. First, using Lagrange multiplier, we show that any almost maximum-size sum-free set S in $[n]^{2}$ has an upper boundary line that is close to the line $y+x=\frac{8 n}{5}$, see Lemma 3.3. Then we show that there is a point $\left(x^{*}, y^{*}\right)$ in S close to $\left(\frac{4 n}{5}, \frac{4 n}{5}\right)$, see Lemma 3.4. Finally, using this point $\left(x^{*}, y^{*}\right)$, we show in Section 3.3 that S has no point below the line $y+x=\frac{4 n}{5}-o(n)$, which, together with the upper boundary line close to $y+x=\frac{8 n}{5}$, implies that S must be close to the extremal stripe $\frac{4 n}{5} \leq x+y \leq \frac{8 n}{5}$.

Throughout the proofs, when we write $\beta \ll \gamma$, we always mean that β, γ are constants in $(0,1)$, and there exists $\beta_{0}=\beta_{0}(\gamma)$ such that the subsequent arguments hold for all $0<\beta \leq \beta_{0}$. Hierarchies of other lengths are defined analogously.

Definition 3.1. A sum-free set $S \subseteq[n]^{2}$ with $\partial S \neq \emptyset$ is of Type 1 if there exists a point $p_{1}=\left(x_{1}, y_{1}\right) \in \partial S$ with $x_{1} \leq y_{1}$ and $x_{1} y_{1} \geq x y$ for all $(x, y) \in \partial S$, and a point $p_{2}=\left(x_{2}, y_{2}\right)$ adjoint to p_{1} satisfying the following conditions, where we simply write $m=m\left(p_{1}, p_{2}\right)$ and $c=c\left(p_{1}, p_{2}\right)$.
(1) $x_{2}>x_{1}, y_{2}<y_{1}$ and $m<-\frac{y_{1}}{x_{1}} \leq-1$;
(2) $c>n$ and $-c \leq n m$.

In addition, S is of Type 2 if there exist two adjoint points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ in ∂S satisfying the following conditions.
(1) $x_{2}>x_{1}, y_{2}<y_{1}$ and $-\frac{y_{1}}{x_{1}} \leq m \leq-\frac{y_{2}}{x_{2}}$;
(2) $y_{2} \leq \frac{c}{2} \leq y_{1}$;
(3) $c>n$ and $-c<n m$.

For either type of the sum-free sets, we call the upper boundary lines passing through p_{1} and p_{2} typical. Let

$$
A=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \mid y>m x+c\right\}
$$

with m and c given as above. Then A is a triangle in both cases.
For the Type 1 set S, we claim that the upper boundary line $y=m x+c$ satisfies $x_{1}>\frac{n}{2}$. In fact, since $m<-\frac{y_{1}}{x_{1}}$ and $y_{1}=m x_{1}+c$, we have that $x_{1}>\frac{c}{-2 m}>\frac{n}{2}$ because $-c<n m$.

If S is of Type 2, then it is straightforward to check that the following two sets are nonempty (see Figure 1).

$$
\begin{aligned}
& T_{1}=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \mid x \geq x_{1}, y-m x \leq \frac{c}{2}\right\}, \\
& T_{2}=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \mid y \geq y_{2}, y-m x \leq \frac{c}{2}\right\}
\end{aligned}
$$

Figure 1: S is of Type 2
The two types we defined above correspond to the only two cases in ER17] that attain the maximum density $\frac{3}{5}$. We will use the following bounds for these two types of sum-free sets.

Lemma 3.2 (ER17]). Given a sum-free set $S \subseteq[n]^{2}$, if $|S|>0.56 n^{2}$, then either
(1) S is of Type 1 and $|S| \leq(n+1)^{2}-\frac{1}{2} x_{1} y_{1}+\frac{(c+n m-n)^{2}}{2 m}$, or
(2) S is of Type 2 and $|S| \leq(n+1)^{2}+\frac{c^{2}}{8 m}+\frac{1}{2 m}(n-n m-c)^{2}$.

3.1 Fixing an upper boundary line

Given constants ε and C, we call a line $L \varepsilon$-close to the line $x+y=C$ if the portion of L intersecting $\mathbb{R}_{[0, n]}^{2}$ lies entirely within the set $\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2}| | x+y-C \mid \leq \varepsilon n\right\}$. Similarly, we call two points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right) \varepsilon$-close to each other if $\left|x_{1}-x_{2}\right| \leq \varepsilon n$ and $\left|y_{1}-y_{2}\right| \leq \varepsilon n$.

Lemma 3.3. Given $\varepsilon>0$, there exist $\delta>0$ and $n_{0} \in \mathbb{N}$ such that the following holds for all $n>n_{0}$. If $S \subseteq[n]^{2}$ is sum-free and $|S|>\left(\frac{3}{5}-\delta\right) n^{2}$, then there is a typical upper boundary line for S which is ε-close to $x+y=\frac{8 n}{5}$.
Proof. Given $\varepsilon>0$, let $\delta=\frac{\varepsilon^{2}}{100}$ and n be sufficiently large with respect to ε. Let $S \subseteq[n]^{2}$ be a sum-free set with $|S|>\left(\frac{3}{5}-\frac{\varepsilon^{2}}{100}\right) n^{2}$.

Suppose for contradiction that any upper boundary line $y=m x+c$ for S is not ε-close to $x+y=\frac{8 n}{5}$. That is, either the y - or the x-intercept is far from where it should be:

$$
\text { either }|c-8 n / 5|>\varepsilon n \text { or }|c / m+8 n / 5|>\varepsilon n .
$$

In both cases we shall obtain a contradiction by showing that $|S| \leq\left(3 / 5-\varepsilon^{2} / 100\right) n^{2}$.
Considering the typical upper boundary line $y=m x+c$ passing through p_{1} and p_{2} given in Definition 3.1, we will finish the case when the y-intercept is too far, that is, $|c-8 n / 5|>\varepsilon n$, whose proof will be divided into two cases depending on the type of S. The case when the x-intercept is too far (that is, $|c / m+8 n / 5|>\varepsilon n$) is similar and we omit the details.

Suppose first that S is of Type 1, then by Lemma $3.2(1)$, we have

$$
|S| \leq(n+1)^{2}-\frac{1}{2}\left(x_{1}\left(m x_{1}+c\right)-\frac{(c+m n-n)^{2}}{m}\right)=: f(x, m, c) .
$$

To simplify the presentation, we introduce a new variable η with $\eta \in(-\infty,-\varepsilon) \cup(\varepsilon,+\infty)$ and define

$$
f_{\eta}:=\max \{f(x, m, c) \mid c-8 n / 5=\eta n\} .
$$

Let $L:=f(x, m, c)-\lambda g$, where $g=c-8 n / 5-\eta n$. By solving $\frac{\partial L}{\partial x}=0, \frac{\partial L}{\partial m}=0, \frac{\partial L}{\partial c}=0$ and $\frac{\partial L}{\partial \lambda}=0$, we obtain $m=-\sqrt{1+2 \eta+\frac{5 \eta^{2}}{4}}$ and $x=\frac{\frac{4}{5}+\frac{\eta}{2}}{\sqrt{1+2 \eta+\frac{5 \eta^{2}}{4}}} n$, and thus the maximum value is

$$
f_{\eta}=\left(8 / 5+\eta-\sqrt{1+2 \eta+5 \eta^{2} / 4}\right) n^{2}+O(n)
$$

As η takes values over $(-\infty,-\varepsilon) \cup(\varepsilon,+\infty)$, we get

$$
f_{\eta} \leq\left(8 / 5+\varepsilon-\sqrt{1+2 \varepsilon+5 \varepsilon^{2} / 4}\right) n^{2}+O(n) \leq\left(3 / 5-\varepsilon^{2} / 100\right) n^{2} .
$$

For the second case when S is of Type 2, by Lemma 3.2(2), we have:

$$
|S| \leq(n+1)^{2}+\frac{c^{2}}{8 m}+\frac{(n-n m-c)^{2}}{2 m}
$$

Using Lagrange multiplier again, we arrive at the same bound $\left(8 / 5+\varepsilon-\sqrt{1+2 \varepsilon+5 \varepsilon^{2} / 4}\right) n^{2}+$ $O(n) \leq\left(3 / 5-\varepsilon^{2} / 100\right) n^{2}$ as desired.

3.2 Top right corner

Lemma 3.4. For any $\beta>0$, there exist $\delta>0$ and $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}$, if $S \subseteq[n]^{2}$ is sum-free with $|S|>\left(\frac{3}{5}-\delta\right) n^{2}$, then there is a point $\left(x^{*}, y^{*}\right) \in S$ which is β-close to the point $\left(\frac{4 n}{5}, \frac{4 n}{5}\right)$.

Proof. We first handle Type 1 sum-free sets. Given $\beta>0$, we have constants $\delta=\chi_{3.3}>0$ and $n_{0} \in \mathbb{N}$ returned from Lemma 3.3 with $\varepsilon=\beta / 6$. Let $S \subseteq[n]^{2}$ be a sum-free set of Type 1 with $|S|>\left(\frac{3}{5}-\delta\right) n^{2}$. Then Lemma 3.3 gives a typical upper boundary line $y=m x+c$ that is ε-close to $x+y=\frac{8 n}{5}$ and let $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right)$ be the two points involved. Therefore, $\left|c-\frac{8 n}{5}\right|<\varepsilon n,\left|x_{1}+y_{1}-\frac{8 n}{5}\right|<\varepsilon n$. Consequently, by triangle inequality we have

$$
|m+1|=\frac{\left|x_{1}+y_{1}-c\right|}{x_{1}}<\frac{2 \varepsilon n}{x_{1}}<4 \varepsilon
$$

where the last inequality follows since $x_{1}>n / 2$. Recall that $m \leq-\frac{y_{1}}{x_{1}} \leq-1$. Then we have that $\left|m+\frac{y_{1}}{x_{1}}\right|<4 \varepsilon$.

Using these facts we can write $m=-\frac{y_{1}}{x_{1}}-\gamma_{1}$ and $c=\left(\frac{8}{5}+\gamma_{2}\right) n$ for constants $0 \leq \gamma_{1}<4 \varepsilon$ and $\left|\gamma_{2}\right|<\varepsilon$. Using the equation $y_{1}=m x_{1}+c$, we obtain that $y_{1}=\frac{4}{5} n+\frac{\gamma_{2} n-\gamma_{1} x_{1}}{2}$. As $x_{1} \leq n$, by triangle inequality, we have

$$
\left|y_{1}-\frac{4 n}{5}\right|<\frac{5 \varepsilon n}{2}<\beta n .
$$

Moreover, since $-\frac{y_{1}}{x_{1}} \geq m>-1-4 \varepsilon$ and $x_{1} \leq y_{1}$, we can easily obtain that $\left|x_{1}-\frac{4 n}{5}\right|<$ $6 \varepsilon n=\beta n$. So $\left(x_{1}, y_{1}\right)$ is β-close to the point $\left(\frac{4 n}{5}, \frac{4 n}{5}\right)$ as desired.

Let us turn to Type 2 sum-free sets. Now, given $\beta>0$, choose positive constants ε, δ with $\delta \ll \varepsilon \ll \beta$. Let S be a sum-free set of Type 2 with $|S|>\left(\frac{3}{5}-\delta\right) n^{2}$. Then applying Lemma 3.3 with $\sqrt{2} \varepsilon$ playing the role of ε gives a typical upper boundary line $y=m x+c$ passing through $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ (see Figure 22 , which is $\sqrt{2} \varepsilon$-close to $x+y=\frac{8 n}{5}$. This implies that the line $y=m x+\frac{c}{2}$ is $\frac{\varepsilon}{\sqrt{2}}$-close to $x+y=\frac{4 n}{5}$. We may assume for contradiction that S has no points in the region

$$
T_{\beta}=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \mid x, y \geq \frac{4 n}{5}-\beta n, y+x \leq \frac{8 n}{5}\right\} .
$$

Redefine the regions as follows:

$$
\begin{gathered}
A=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \left\lvert\, y+x \geq \frac{8 n}{5}+\sqrt{2} \varepsilon n\right.\right\}, \\
T_{1}=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \left\lvert\, y+x \leq \frac{4 n}{5}-\frac{\varepsilon n}{\sqrt{2}}\right., x \geq x_{1}\right\}, \\
T_{2}=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \left\lvert\, y+x \leq \frac{4 n}{5}-\frac{\varepsilon n}{\sqrt{2}}\right., y \geq y_{2}\right\} .
\end{gathered}
$$

Note that

$$
T_{1}+T_{2}=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \left\lvert\, y+x \leq \frac{8 n}{5}-\sqrt{2} \varepsilon n\right., x \geq x_{1}, y \geq y_{2}\right\} .
$$

We now proceed by considering the areas which may be excluded from S. Firstly, we show that S has two points in T_{1} that are far apart.

Claim 3.5. There are two points in $T_{1} \cap S$ which are at least βn far apart.

Figure 2: S is of Type 2: the two purple stripes are $\left\{(x, y)\left|\left|x+y-\frac{8 n}{5}\right| \leq \sqrt{2} \varepsilon n\right\}\right.$ (on the top right) and $\left\{(x, y)\left|\left|x+y-\frac{4 n}{5}\right| \leq \frac{\varepsilon n}{\sqrt{2}}\right\}\right.$.

Proof of claim. If this is not true, then there are less than $\pi\left(\frac{\beta n}{2}\right)^{2} \leq \beta^{2} n^{2}$ points of S in T_{1}, given by the number of points in a square around a circle of diameter βn in T_{1}. Since $\left\|T_{\beta}\right\|=\frac{1}{2}(2 \beta)^{2} n^{2}=2 \beta^{2} n^{2}$, we then use the pairing set P_{1} for $\left(x_{1}, y_{1}\right)$ and thus

$$
\begin{aligned}
|S| & \leq n^{2}-\Lambda(A)-\frac{1}{2} \Lambda\left(P_{1}\right)-\Lambda\left(T_{1}\right)+\beta^{2} n^{2}-\Lambda\left(T_{\beta}\right) \\
& =n^{2}-\|A\|-\frac{1}{2}\left\|P_{1}\right\|-\left\|T_{1}\right\|+\beta^{2} n^{2}-\left\|T_{\beta}\right\|+O(n) \\
& =n^{2}-\frac{1}{2}\left(\frac{2}{5}-\sqrt{2} \varepsilon\right)^{2} n^{2}-\frac{1}{2} x_{1} y_{1}-\frac{1}{2}\left(\frac{4}{5}-\frac{\varepsilon}{\sqrt{2}}-\frac{x_{1}}{n}\right)^{2} n^{2}+\beta^{2} n^{2}-2 \beta^{2} n^{2}+O(n)
\end{aligned}
$$

It is easy to see this is maximized when y_{1} is minimal and $x_{1}+y_{1}=\frac{8 n}{5}-\sqrt{2} \varepsilon n$. Then

$$
|S| \leq\left(\frac{3}{5}-\beta^{2}+10 \varepsilon\right) n^{2}
$$

Therefore, we reach a contradiction by the fact that $\delta \ll \varepsilon \ll \beta$.
By Claim 3.5, we let s and t be two points in T_{1} with distance greater than βn, and let

$$
T_{2}^{s}:=s+T_{2} \quad \text { and } \quad T_{2}^{t}:=t+T_{2}
$$

Claim 3.6. $\Lambda\left(T_{\beta} \backslash T_{2}^{s}\right), \Lambda\left(T_{\beta} \backslash T_{2}^{t}\right)<\frac{\beta^{2}}{L} n^{2}$, where $L=\frac{4}{5 \sqrt{3}-6}$.
Proof of claim. Suppose to the contrary that either $\Lambda\left(T_{\beta} \backslash T_{2}^{s}\right) \geq \frac{\beta^{2}}{L} n^{2}$ or $\Lambda\left(T_{\beta} \backslash T_{2}^{t}\right) \geq \frac{\beta^{2}}{L} n^{2}$, and by symmetry we may assume the first inequality holds. Considering the pairing set P_{2} for $\left(x_{2}, y_{2}\right)$ and T_{2} paired with T_{2}^{s}, we can obtain from Lemmas 2.5 and 2.6 that

$$
\begin{aligned}
|S| & \leq n^{2}-\Lambda(A)-\frac{1}{2} \Lambda\left(P_{2}\right)-\Lambda\left(T_{2}\right)-\Lambda\left(T_{\beta} \backslash T_{2}^{s}\right) \\
& \leq\left(\frac{3}{5}-\frac{\beta^{2}}{L}+O(\varepsilon)\right) n^{2}
\end{aligned}
$$

which once again gives a contradiction as $\delta \ll \beta$.

In the rest of the proof, we shall find a partition $T_{2}=T_{2,1} \cup T_{2,2}$ into two regions such that their corresponding translates $T_{2,1}^{s}=s+T_{2,1}$ and $T_{2,2}^{t}=t+T_{2,2}$ are distantly separated in $T_{1}+T_{2}$, which provides a significant portion of points in $T_{\beta} \backslash\left(T_{2,1}^{s} \cup T_{2,2}^{t}\right)$ that are to be excluded from S.

Write $s=\left(x_{s}, y_{s}\right)$ and $t=\left(x_{t}, y_{t}\right)$. By Claim[3.6, we can find that the two points $s+\left(0, y_{2}\right)$ and $t+\left(0, y_{2}\right)$ belong to the region $\left\{(x, y) \in[n]^{2} \mid x, y \leq \frac{4 n}{5}\right\}$. We may assume $x_{s}+y_{s} \geq x_{t}+y_{t}$ and let $d:=x_{s}+y_{s}-\left(x_{t}+y_{t}\right)$. It is easy to see in Figure 3 that d is the difference between the corresponding y-intercepts of the red diagonal and the blue diagonal. By the symmetry of all the shapes involved, we can further assume that $x_{s} \geq x_{t}$.

Figure 3: The red triangle represents T_{2}^{t}, the blue one represents T_{2}^{s} and the black one represents T_{β}.

Claim 3.7. $d \leq\left(2-2 \sqrt{\frac{2 L-1}{2 L}}\right) \beta n=\frac{\sqrt{3}-1}{2} \beta n$.
Proof of claim. It is easy to see the region $T_{\beta} \cap T_{2}^{t}$ is a triangle similar to T_{β}. Note that the area of $T_{\beta} \backslash T_{2}^{t}$ is at least

$$
\frac{1}{2}(2 \beta n)^{2}-\frac{1}{2}(2 \beta n-d)^{2}=\left(2 \beta n-\frac{d}{2}\right) d .
$$

By Claim 3.6, we have that $\left(2 \beta n-\frac{d}{2}\right) d \leq \frac{\beta^{2} n^{2}}{L}$, which yields the bound on d as desired.
Define points

$$
X_{1}=\left(x_{s}, y_{s}+y_{2}\right), \quad X_{2}=\left(x_{t}, y_{t}+y_{2}\right) \quad \text { and } \quad X_{3}=\left(x_{s}, y_{t}+y_{2}\right) .
$$

Let $P_{1} X_{1}$ and $P_{2} X_{2}$ be line segments which are parallel to $P X_{3}$ (see Figure 4). Construct a line passing through $\left(0, y_{2}\right)$ which is also parallel to the line segments $P X_{3}$, where $P=\left(\frac{4 n}{5}, \frac{4 n}{5}\right)$. Such a line separates T_{2} into two parts, and we denote by $T_{2,2}$ the part above the line and $T_{2,1}$ for the rest.
Claim 3.8. There exists a triangle $T_{\beta, 1} \subseteq T_{\beta}$ similar to T_{β} such that $T_{\beta, 1}$ does not intersect with either of the regions $T_{2,1}+s$ or $T_{2,2}+t$ and $\Lambda\left(T_{\beta, 1}\right) \geq \frac{\beta^{2} n^{2}}{8}$.
Proof of claim. Let $h:=y_{t}-y_{s}$. Since s and t are of distance at least βn far apart, that is, $\left(x_{s}-x_{t}\right)^{2}+\left(y_{s}-y_{t}\right)^{2}=(h+d)^{2}+h^{2} \geq \beta^{2} n^{2}$, together with Claim 3.7, we obtain that either $h \geq \frac{\sqrt{2 \beta^{2}-d^{2}}}{2}-\frac{d}{2} \geq \frac{\beta n}{2}$ or $h \leq-\frac{\sqrt{2 \beta^{2}-d^{2}}}{2}-\frac{d}{2}<-d$, where the latter contradicts with the assumption that $x_{s}-x_{t}=h+d \geq 0$. Thus, $h \geq \frac{\beta n}{2}$ and the segment $P_{1} P_{2}$ has length at least $\frac{\sqrt{2}}{2} \beta n$. Let $T_{\beta, 1}$ be the rectangle triangle $P_{1} P_{2} Q$ with diagonal line $P_{1} P_{2}$. Then $T_{\beta, 1}$ has area at least $\frac{\beta^{2} n^{2}}{8}$ and does not intersect either of the regions $T_{2,1}+s$ or $T_{2,2}+t$.

Figure 4: The triangle $U V W$ represents T_{β}, in which $P=\left(\frac{4 n}{5}, \frac{4 n}{5}\right)$ is the median point for the line segment $U W$.

As aforementioned, now we are ready to finish the proof. Applying Lemma 2.6 to $T_{2,1}, T_{2,2}$ and their translates $T_{2,1}+s, T_{2,2}+t$, we obtain that

$$
\begin{aligned}
|S| & \leq n^{2}-\Lambda(A)-\frac{1}{2} \Lambda\left(P_{2}\right)-\Lambda\left(T_{2}\right)-\Lambda\left(T_{\beta, 1}\right) \\
& =n^{2}-\|A\|-\frac{1}{2}\left\|P_{2}\right\|-\left\|T_{2}\right\|-\left\|T_{\beta, 1}\right\|+O(n) \\
& \leq n^{2}-\frac{1}{2}\left(\frac{2}{5}-\sqrt{2} \varepsilon\right)^{2} n^{2}-\frac{1}{2} x_{2} y_{2}-\frac{1}{2}\left(\frac{4}{5}-\frac{\varepsilon}{\sqrt{2}}-\frac{x_{2}}{n}\right)^{2} n^{2}-\frac{\beta^{2} n^{2}}{8}+O(n) .
\end{aligned}
$$

The right-hand side above is maximized when y_{2} is minimal and $x_{2}+y_{2}=\frac{8 n}{5}-\sqrt{2} \varepsilon n$. Thus,

$$
|S| \leq\left(\frac{3}{5}-\frac{\beta^{2}}{8}+O(\varepsilon)\right) n^{2}
$$

a final contradiction.

3.3 Putting things together

We are now ready to prove our main result, knowing that any almost maximum sum-free set contains an upper boundary line $o(1)$-close to $y+x=\frac{8 n}{5}$ and a point $o(1)$-close to $\left(\frac{4 n}{5}, \frac{4 n}{5}\right)$.

Proof of Theorem 1.2. Given $\gamma>0$, choose $\delta \ll \varepsilon \ll \beta \ll \gamma$. Let $S \subseteq[n]^{2}$ be a sum-free set of size at least $(3 / 5-\delta) n^{2}$. Then by Lemma $3.3, S$ has a typical upper boundary line $y=m x+c$ which is ε-close to $y+x=\frac{8 n}{5}$. Now it suffices to show that S has no point below the line $x+y=\frac{4 n}{5}-\gamma n$ (see the red line in Figure 5).

Note that Lemma 3.4 ensures the existence of a point $\left(x_{1}, y_{1}\right)$ in S that is β-close to $\left(\frac{4 n}{5}, \frac{4 n}{5}\right)$. Suppose to the contrary that $p_{0}=\left(x_{0}, y_{0}\right) \in S$ is such a point below the line $x+y=\frac{4 n}{5}-\gamma n$, and without loss of generality we may assume that $y_{0} \geq x_{0}$.

Let

$$
A=:\left\{(x, y) \in[n]^{2} \left\lvert\, y+x>\frac{8 n}{5}+\varepsilon n\right.\right\}
$$

Considering the pairing set $P:=\left\{(x, y) \in[n]^{2} \mid x \leq x_{1}, y \leq y_{1}\right\}$ for $\left(x_{1}, y_{1}\right)$, there are at most

$$
\begin{equation*}
n^{2}-\Lambda(A)-\frac{1}{2} \Lambda(P) \leq\left(\frac{3}{5}+\left(\frac{2}{5}-\frac{\varepsilon}{2}\right) \varepsilon+\left(\frac{4}{5}-\frac{\beta}{2}\right) \beta\right) n^{2}+O(n) \tag{1}
\end{equation*}
$$

points which may be included in S; and all these points are below the line $x+y=\frac{8 n}{5}+\varepsilon n$. Then, writing

$$
D_{1}:=\left\{(x, y) \in[n]^{2} \left\lvert\, y>\frac{4 n}{5}+\beta n\right., y+x<\frac{8 n}{5}-\varepsilon n\right\}
$$

and

$$
D_{2}:=\left\{(x, y) \in[n]^{2} \left\lvert\, x>\frac{4 n}{5}+\beta n\right., y+x<\frac{8 n}{5}-\varepsilon n\right\}
$$

it follows from the assumption $|S| \geq(3 / 5-\delta) n^{2}$ and (1) that

$$
\begin{equation*}
\frac{1}{n^{2}}\left|\left(D_{1} \cup D_{2}\right) \backslash S\right| \leq \delta+\left(\frac{2}{5}-\frac{\varepsilon}{2}\right) \varepsilon+\left(\frac{4}{5}-\frac{\beta}{2}\right) \beta=: v(\delta, \varepsilon, \beta) \tag{2}
\end{equation*}
$$

Note that we can choose $\delta, \varepsilon, \beta$ small enough such that $v(\delta, \varepsilon, \beta)=o\left(\gamma^{2}\right)$. In the remaining proof, we shall find in $D_{1} \cup D_{2}$ (or its translate) a relatively large subset of lattice points which are to be excluded from S, yielding a contradiction.

Figure 5: The case when $x_{0}<\frac{n}{5}-\frac{\gamma}{2} n$: The two grey regions $R:=\left(D_{2}+p_{0}\right) \cap D_{2}$ and its translate $R-p_{0}$ form a pairing, which excludes from the sum-free set S the amount of points which fit in one of the regions.

First assume that p_{0} is such that $x_{0}<\frac{n}{5}-\frac{\gamma}{2} n$. Then the region $D_{2}+p_{0}$ intersects D_{2} on a set of lattice points, denoted by R. Since $R, R-p_{0} \subseteq D_{1} \cup D_{2}$, applying Lemma 2.6 with $a=p_{0}$ and $T=R-p_{0}$ gives that $\left|\left(R \cup\left(R-p_{0}\right)\right) \cap S\right| \leq|R|$, and thus

$$
\left|\left(D_{1} \cup D_{2}\right) \backslash S\right| \geq\left|\left(R \cup\left(R-p_{0}\right)\right) \backslash S\right| \geq\left|R \cup\left(R-p_{0}\right)\right|-|R|
$$

It is easy to observe that $\left|R \cup\left(R-p_{0}\right)\right|-|R|$ is minimized when p_{0} is close to the point $\left(\frac{n}{5}-\frac{\gamma n}{2}, \frac{3 n}{5}-\frac{\gamma n}{2}\right)$, yielding an area of size at least $\left(\frac{3}{8} \gamma^{2}+\frac{\gamma-2 \beta}{4}(\beta-2 \varepsilon)\right) n^{2}+O(n)$ (See Figure 5). Thus $\left|\left(D_{1} \cup D_{2}\right) \backslash S\right| \geq\left(\frac{3}{8} \gamma^{2}+\frac{\gamma-2 \beta}{4}(\beta-2 \varepsilon)\right) n^{2}+O(n)>v(\delta, \varepsilon, \beta) n^{2}$, a contradiction to (2).

Now it remains to consider the case when p_{0} satisfies $x_{0} \geq \frac{n}{5}-\frac{\gamma n}{2}$. We consider the overlap of $\left(D_{1} \cup D_{2}\right)-p_{0}$ with $\left(x_{1}, y_{1}\right)-\left(\left(D_{1} \cup D_{2}\right)-p_{0}\right)$ and denote by \mathcal{O} the set of lattice points in the overlap (see Figure 6). Let

$$
D:=\left(\left(D_{1} \cup D_{2}\right)-p_{0}\right) \backslash\left(D_{1} \cup D_{2}\right)
$$

Then it is easy to verify that $\mathcal{O} \subseteq D$. Note that by Lemma 2.6 with $a=p_{0}$ and $T=D_{1} \cup D_{2}$, one has that

$$
\left|\left(D \cup D_{1} \cup D_{2}\right) \cap S\right| \leq\left|D_{1} \cup D_{2}\right|
$$

Figure 6: All possible shapes of \mathcal{O} : the green lines frame the region $\left(D_{1} \cup D_{2}\right)-p_{0}$, whilst the purple lines frame $\left(x_{1}, y_{1}\right)-\left(\left(D_{1} \cup D_{2}\right)-p_{0}\right)$. The trivial cases where the overlap is cut off by the x - and y-axes are not shown.

Then, using (2), we have

$$
\begin{aligned}
|\mathcal{O} \cap S| \leq|D \cap S| & =\left|\left(D \cup D_{1} \cup D_{2}\right) \cap S\right|-\left|\left(D_{1} \cup D_{2}\right) \cap S\right| \\
& \leq\left|\left(D_{1} \cup D_{2}\right) \backslash S\right| \leq v(\delta, \varepsilon, \beta) n^{2}
\end{aligned}
$$

Moreover, by definition we know that $\left(x_{1}, y_{1}\right)-\mathcal{O} \subseteq \mathcal{O}$, that is, \mathcal{O} (and also $P \backslash \mathcal{O}$) is a pairing set for $\left(x_{1}, y_{1}\right)$. It follows from Lemma 2.5 that

$$
\begin{aligned}
|S| & \leq n^{2}-\Lambda(A)-\frac{1}{2} \Lambda(P \backslash \mathcal{O})-(|\mathcal{O}|-|\mathcal{O} \cap S|) \\
& \leq n^{2}-\|A\|-\frac{1}{2}\|P\|-\frac{1}{2}|\mathcal{O}|+v(\delta, \varepsilon, \beta) n^{2} \\
& \leq n^{2}-\frac{1}{2}\left(\frac{2 n}{5}-\varepsilon n\right)^{2}-\frac{1}{2}\left(\frac{4 n}{5}-\beta n\right)^{2}-\frac{1}{2}|\mathcal{O}|+v(\delta, \varepsilon, \beta) n^{2} \\
& =\frac{3}{5} n^{2}+o\left(\gamma^{2}\right) n^{2}-\frac{1}{2}|\mathcal{O}| .
\end{aligned}
$$

Therefore, it suffices to show that $|\mathcal{O}|=\Omega\left(\gamma^{2}\right) n^{2}$, and in the remaining proof we shall verify this by considering all possible shapes of \mathcal{O}.

Figure 7: each numbered region will produce a unique shape of the overlap.
Since $\left(x_{1}, y_{1}\right)$ is β-close to $\left(\frac{4 n}{5}, \frac{4 n}{5}\right)$ and $\beta \ll \gamma$, we may further assume that $\left(x_{1}, y_{1}\right)=$ $\left(\frac{4 n}{5}, \frac{4 n}{5}\right)$ in order not to cluster the presentation. We list in Figure 6 all possible shapes of the overlap \mathcal{O}, which originate from the location of the point $\left(x_{0}, y_{0}\right)$ (see Figure 7). In particular, the area of the overlap in each of these cases is given as follows:
(1) $4\left(\frac{3}{5} n-y_{0}\right)\left(\frac{4}{5} n-y_{0}-x_{0}-\varepsilon n\right)$, where $y_{0} \geq \frac{n}{2}+\frac{\beta}{2} n, x_{0} \geq \frac{1}{5} n-\frac{\gamma}{2} n$.
(2) $4\left(y_{0}-\frac{2}{5} n-\beta n\right)\left(\frac{4}{5} n-y_{0}-x_{0}-\varepsilon n\right)$, where $y_{0} \in\left[\frac{1}{2} n-\frac{\beta+\varepsilon}{2} n, \frac{1}{2} n+\frac{\beta}{2} n\right], x_{0} \geq \frac{1}{5} n-\frac{\gamma}{2} n$.
(3) $\left(n-2 y_{0}-\beta n-\varepsilon n\right)^{2}+4\left(y_{0}-\frac{2}{5} n-\beta n\right)\left(\frac{4}{5} n-y_{0}-x_{0}-\varepsilon n\right)$, where

$$
y_{0} \in\left[\frac{2}{5} n+\beta n, \frac{1}{2} n-\frac{\beta+\varepsilon}{2} n\right], x_{0} \in\left[\frac{1}{5} n-\frac{\gamma}{2} n, \frac{3}{10} n+\frac{\beta-\varepsilon}{2} n\right] .
$$

(4) $4\left(\frac{4}{5} n-y_{0}-x_{0}-\varepsilon n\right)\left(x_{0}-\frac{1}{5} n-2 \beta n\right)$, where $y_{0} \geq \frac{2}{5} n+\beta n, x_{0} \geq \frac{3}{10} n+\frac{\beta-\varepsilon}{2} n$.
(5) $\left(n-2 y_{0}-\beta n-\varepsilon n\right)^{2}$, where

$$
y_{0} \in\left[\frac{2}{5} n-\frac{\varepsilon}{2} n, \frac{2}{5} n+\beta n\right], x_{0} \in\left[\frac{1}{5} n-\frac{\gamma}{2} n, \frac{3}{10} n+\frac{\beta-\varepsilon}{2} n\right] .
$$

(6) $4\left(\frac{4}{5} n-y_{0}-x_{0}-\varepsilon n\right)\left(\frac{1}{5} n+x_{0}-y_{0}-\beta n\right)$, where

$$
y_{0} \in\left[\frac{2}{5} n-\frac{\varepsilon}{2} n, \frac{2}{5} n+\beta n\right], x_{0} \geq \frac{3}{10} n+\frac{\beta-\varepsilon}{2} n .
$$

(7) $2\left(\frac{1}{5} n-\beta n\right)^{2}-\left(2 y_{0}-\frac{3}{5} n+\varepsilon n-\beta n\right)^{2}$, where

$$
y_{0} \in\left[\frac{3}{10} n+\frac{\beta-\varepsilon}{2} n, \frac{2}{5} n-\frac{\varepsilon}{2} n\right], x_{0} \in\left[\frac{1}{5} n-\frac{\gamma}{2} n, \frac{3}{10} n+\frac{\beta-\varepsilon}{2} n\right] .
$$

(8) $2\left(\frac{1}{5} n-\beta n\right)^{2}-\left(2 y_{0}-\frac{3}{5} n+\varepsilon n-\beta n\right)^{2}-\left(2 x_{0}-\frac{3}{5} n+\varepsilon n-\beta n\right)^{2}$, where

$$
\frac{3}{10} n+\frac{\beta-\varepsilon}{2} n \leq x_{0} \leq y_{0} \leq \frac{2}{5} n-\frac{\varepsilon}{2} n .
$$

(9) $2\left(\frac{1}{5} n-\beta n\right)^{2}$, where $\frac{1}{5} n-\frac{\gamma}{2} n \leq x_{0} \leq y_{0} \leq \frac{3}{10} n+\frac{\beta-\varepsilon}{2} n$.

It is obvious that for the regions 5,7 and 9 , the area of the overlap has size $\Omega\left(\gamma^{2}\right) n^{2}$. The only regions which interest us are the ones bordering the line $y+x=\frac{4 n}{5}-\gamma n$. Moreover, the regions in question are $1,2,3,4,6$ and 8 . Among them, the minimum overlap is achieved in region 1 by letting $\left(x_{0}, y_{0}\right)=\left(\frac{n}{5}-\frac{\gamma n}{2}, \frac{3 n}{5}-\frac{\gamma n}{2}\right)$, which yields a value of $|\mathcal{O}| \geq 2 \gamma(\gamma-\varepsilon) n^{2}$ as desired. This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

In this section we investigate the maximum size of a (p, p)-sum-free set S. To simplify the presentation, we write p-sum-free for (p, p)-sum-free. Our proof builds on the techniques developed in the work of Elsholtz and Rackham [ER17]. We need a variant notion of pairing set as follows.

Definition 4.1. For any $\left(a_{1}, a_{2}\right) \in \mathbb{R}_{[0, n]}^{2}, P \subseteq \mathbb{R}_{[0, n]}^{2}$ is a p-pairing set for $\left(a_{1}, a_{2}\right)$ if, for any $\left(x_{1}, x_{2}\right) \in P$, we have $\left(\frac{a_{1}}{p}-x_{1}, \frac{a_{2}}{p}-x_{2}\right) \in P$.

Similar to Lemmas 2.5 and 2.6, the following lemma guarantees that for any point $a \in S$ and its p-pairing set P, at least half of the points in P are excluded from S. Similar statement also holds when we consider a set and its translate dilated by p. We omit the proof.

Lemma 4.2. Let $S \subseteq[n]^{2}$ be a p-sum-free set.
(1) If P is a p-pairing set for some $a \in S$, then we have $|S \cap P| \leq \frac{1}{2} \Lambda(P)$.
(2) If $T \subseteq \mathbb{R}_{[0, n]}^{2}$ and $a \in S$, then $|S \cap(p(a+T) \cup T)| \leq \Lambda(T)$.

Proof of Theorem 1.3 . Let $S \subseteq[n]^{2}$ be a p-sum-free set. Our goal is to show that $|S| \leq$ $\left(1-\frac{2}{4 p^{2}+1}\right) n^{2}+O(n)$ for $p \geq 2$. We may neglect any boundary effects as they give error terms $O(n)$ for the size of S, which will be omitted so as to ease the presentation. We consider cases depending on the placement of upper boundary lines.

Case 1: $|\partial S| \leq 1$. As vertices in the upper boundary come in (adjoint) pairs, we see that in this case $\partial S=\emptyset$, and thus Lemma 2.3 ensures the existence a point $p_{1}=\left(x_{1}, y_{1}\right) \in S$ such that $x_{1} \geq x$ and $y_{1} \geq y$ for all $(x, y) \in S$. Let $P:=\left\{(x, y) \left\lvert\, 0 \leq x \leq \frac{x_{1}}{p}\right., 0 \leq y \leq \frac{y_{1}}{p}\right\}$. Then P is a p-pairing set for p_{1} and thus by Lemma 4.2, we have that

$$
\begin{aligned}
|S| & \leq(n+1)^{2}-\left(n-x_{1}\right) n-\left(n-y_{1}\right) x_{1}-\frac{1}{2} \Lambda(P) \\
& =\left(1-\frac{1}{2 p^{2}}\right) x_{1} y_{1}+O(n) \leq\left(1-\frac{1}{2 p^{2}}\right) n^{2}+O(n)<\left(1-\frac{2}{4 p^{2}+1}\right) n^{2}
\end{aligned}
$$

Case 2: $|\partial S| \geq 2$ and for every two points $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right)$ that are adjoint in ∂S with $x_{1}<x_{2}$ and $y_{1}>y_{2}$, we have either $m\left(p_{1}, p_{2}\right)>-\frac{y_{2}}{x_{2}}$ or $m\left(p_{1}, p_{2}\right)<-\frac{y_{1}}{x_{1}}$.

In this case, we choose $p_{1}=\left(x_{1}, y_{1}\right) \in \partial S$ such that $x_{1} y_{1} \geq x y$ holds for every $(x, y) \in \partial S$ and $P_{1}:=\left\{(x, y) \left\lvert\, 0 \leq x \leq \frac{x_{1}}{p}\right., 0 \leq y \leq \frac{y_{1}}{p}\right\}$. By symmetry, we may further assume that $y_{1} \geq x_{1}$. If there does not exist $p_{2}=\left(x_{2}, y_{2}\right) \in \partial S$ adjoint to p_{1} with $x_{2}>x_{1}$ and $y_{2}<y_{1}$, then by Lemma 4.2 and that $y_{1} \geq x_{1}$, we have

$$
|S| \leq n^{2}-\left(n-x_{1}\right) n-\frac{1}{2} \Lambda\left(P_{1}\right) \leq n x_{1}-\frac{x_{1}^{2}}{2 p^{2}} \leq\left(1-\frac{1}{2 p^{2}}\right) n^{2}
$$

Thus, we may assume that there exists $p_{2}=\left(x_{2}, y_{2}\right) \in \partial S$ adjoint to p_{1} with $x_{2}>x_{1}$ and $y_{2}<y_{1}$. Let $L: y=m x+c$ be the line passing through p_{1}, p_{2} and define

$$
A=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \mid y>m x+c\right\}
$$

We claim that $m<-\frac{y_{1}}{x_{1}} \leq-1$. Indeed, by the assumption of Case 2, assume for contradiction that $m>-\frac{y_{2}}{x_{2}}$, then

$$
x_{2} y_{2}=x_{2}\left(y_{1}+m\left(x_{2}-x_{1}\right)\right) \geq x_{2} y_{1}-y_{2}\left(x_{2}-x_{1}\right)=x_{1} y_{1}+\left(y_{1}-y_{2}\right)\left(x_{2}-x_{1}\right)>x_{1} y_{1}
$$

contrary to the choice of p_{1}.
We split into two subcases depending on the x - and y-intercept of L. Note first that, if $c \leq n$, then we have $-\frac{c}{m} \leq n$ because $m \leq-1$, and so $|S|<\frac{1}{2} n^{2}$ as $A \cap S=\emptyset$.
(I). If $c>n$ and $-\frac{c}{m} \leq n$, then

$$
|S| \leq n^{2}-\Lambda(A)-\frac{1}{2} \Lambda\left(P_{1}\right)=\frac{n}{m}\left(\frac{n}{2}-c\right)-\frac{1}{2 p^{2}} x_{1} y_{1}=\frac{n}{m}\left(\frac{n}{2}-y_{1}\right)+x_{1} n-\frac{1}{2 p^{2}} x_{1} y_{1}
$$

Now if $y_{1} \leq \frac{n}{2}$, then as $m<-1$ and $x_{1} \leq y_{1} \leq \frac{n}{2}$, we observe that $|S| \leq x_{1} n \leq \frac{1}{2} n^{2}$. We may then assume $y_{1}>\frac{n}{2}$.

If $x_{1}<\frac{n}{2}$, then by the assumption that $m<-\frac{y_{1}}{x_{1}}$, we have

$$
|S| \leq \frac{n x_{1}}{y_{1}}\left(y_{1}-\frac{n}{2}\right)+x_{1} n-\frac{1}{2 p^{2}} x_{1} y_{1} \leq\left(2 n-\frac{n^{2}}{2 y_{1}}-\frac{y_{1}}{2 p^{2}}\right) \frac{n}{2} \leq\left(1-\frac{1}{2 p}\right) n^{2}
$$

where the last inequality follows from $\frac{n^{2}}{2 y_{1}}+\frac{y_{1}}{2 p^{2}} \geq 2 \sqrt{\frac{n^{2}}{2 y_{1}} \frac{y_{1}}{2 p^{2}}}=\frac{n}{p}$.

Assume then $x_{1} \geq \frac{n}{2}$. Note that as $-\frac{c}{m} \leq n$, the slope of L is smaller than the slope of the line passing through p_{1} and $(n, 0)$, and so $m \leq \frac{-y_{1}}{n-x_{1}}$. Thus, we have

$$
\begin{aligned}
|S| & \leq \frac{n\left(n-x_{1}\right)}{y_{1}}\left(y_{1}-\frac{n}{2}\right)+x_{1} n-\frac{1}{2 p^{2}} x_{1} y_{1} \leq n^{2}-\left(\frac{n-x_{1}}{2 n} n^{2}+\frac{x_{1} y_{1}}{2 p^{2}}\right) \\
& =\frac{n^{2}}{2}+\left(\frac{n}{2}-\frac{y_{1}}{2 p^{2}}\right) x_{1} \leq \frac{n^{2}}{2}+\left(\frac{n}{2}-\frac{y_{1}}{2 p^{2}}\right) y_{1} \leq\left(1-\frac{1}{2 p^{2}}\right) n^{2},
\end{aligned}
$$

where the second last inequality follows since $x_{1} \leq y_{1}$ and the last one follows from $p \geq 2$.
(II). If $c>n$ and $-\frac{c}{m}>n$, then A is a triangle and thus

$$
\begin{aligned}
|S| & \leq n^{2}-\Lambda(A)-\frac{1}{2} \Lambda\left(P_{1}\right) \\
& =n^{2}+\frac{\left(n-y_{1}\right)^{2}}{2 m}+\frac{m\left(n-x_{1}\right)^{2}}{2}-\left(n-x_{1}\right)\left(n-y_{1}\right)-\frac{x_{1} y_{1}}{2 p^{2}}
\end{aligned}
$$

The right-hand side above is increasing when $m \leq-\frac{n-y_{1}}{n-x_{1}}$. Since $\frac{n-y_{1}}{n-x_{1}} \leq \frac{y_{1}}{x_{1}} \leq-m$, it follows that

$$
\begin{aligned}
|S| & \leq n^{2}-\frac{\left(n-y_{1}\right)^{2}}{\frac{2 y_{1}}{x_{1}}}-\frac{y_{1}\left(n-x_{1}\right)^{2}}{2 x_{1}}-\left(n-x_{1}\right)\left(n-y_{1}\right)-\frac{x_{1} y_{1}}{2 p^{2}} \\
& \leq 2\left(x_{1}+y_{1}\right) n-n^{2}-\left(2+\frac{1}{2 p^{2}}\right) x_{1} y_{1}
\end{aligned}
$$

where the right-hand side of the last inequality is maximized when $x_{1}=y_{1}=\frac{4 p^{2}}{4 p^{2}+1} n$, and thus $|S| \leq\left(1-\frac{2}{4 p^{2}+1}\right) n^{2}$.

Case 3: There exist $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right)$ adjoint in ∂S such that $x_{1}<x_{2}, y_{1}>y_{2}$ and $-\frac{y_{1}}{x_{1}} \leq m\left(p_{1}, p_{2}\right) \leq-\frac{y_{2}}{x_{2}}$.

For each p_{i} with $i \in[2]$, define $P_{i}:=\left\{(x, y) \left\lvert\, 0 \leq x \leq \frac{x_{i}}{p}\right., 0 \leq y \leq \frac{y_{i}}{p}\right\}$ and set $A=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \mid y>m x+c\right\}$ (see Figure 8). Since $m \leq-\frac{y_{2}}{x_{2}}$ and $y_{2}=m x_{2}+c$, we have that $y_{2} \leq \frac{c}{2}$. Similarly, by the condition $m \geq-\frac{y_{1}}{x_{1}}$, we have that $y_{1} \geq \frac{c}{2}$.

Define

$$
T_{1}=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \left\lvert\, x \geq \frac{x_{1}}{p}\right., y \leq m x+\frac{c}{2 p}\right\}
$$

and

$$
T_{2}=\left\{(x, y) \in \mathbb{R}_{[0, n]}^{2} \left\lvert\, y \geq \frac{y_{2}}{p}\right., y \leq m x+\frac{c}{2 p}\right\}
$$

We claim that $T_{1}, T_{2} \neq \emptyset$. These amount to proving $-\frac{c}{2 m p} \geq \frac{x_{1}}{p}$ and $\frac{c}{2 p} \geq \frac{y_{2}}{p}$, which in turn follows from the fact that $y_{2} \leq \frac{c}{2} \leq y_{1}$.

If $T_{1} \cap S=\emptyset$, then a short calculation shows

$$
|S| \leq n^{2}-\Lambda\left(T_{1}\right)-\Lambda(A)-\frac{1}{2} \Lambda\left(P_{1}\right) \leq n^{2}+\frac{c^{2}}{8 p^{2} m}-\|A\|
$$

If $T_{1} \cap S \neq \emptyset$, then take a point $a \in T_{1} \cap S$, then one can check that $p\left(a+T_{2}\right) \cap T_{2}=\emptyset$. By Lemma 4.2, we have $\left|S \cap\left(p\left(a+T_{2}\right) \cup T_{2}\right)\right| \leq \Lambda\left(T_{2}\right)$. By the definition of T_{2}, any point $(x, y) \in p\left(a+T_{2}\right)$ satisfies that $y \leq m x+c$ and $x \geq x_{1}, y \geq y_{2}$. We again arrive to

$$
|S| \leq n^{2}-\Lambda\left(T_{2}\right)-\Lambda(A)-\frac{1}{2} \Lambda\left(P_{2}\right) \leq n^{2}+\frac{c^{2}}{8 p^{2} m}-\|A\|
$$

Figure 8: $T_{1}, T_{2} \neq \emptyset$.
Suppose now that $c \leq n$. If $-\frac{c}{m} \leq n$, then $|S| \leq \frac{1}{2} n^{2}$ by excluding A alone. So $-\frac{c}{m}>n$. Then $\|A\|=\frac{n(2 n-m n-2 c)}{2}$ and we get, using $c \leq n$ and $x+y \geq 2 \sqrt{x y}$ for $x, y>0$,

$$
|S| \leq n^{2}+\frac{c^{2}}{8 p^{2} m}-\|A\|=\frac{c^{2}}{8 p^{2} m}+\frac{n^{2} m}{2}+c n \leq c n-\frac{c n}{2 p} \leq\left(1-\frac{1}{2 p}\right) n^{2} .
$$

We may then assume $c>n$. The case $-\frac{c}{m} \leq n$ can be handled as the above $c \leq n$ and $-\frac{c}{m} \geq n$ case. Thus, we can assume $-\frac{c}{m}>n$. Then A is a triangle with $\|A\|=-\frac{(n-m n-c)^{2}}{2 m}$ and

$$
|S| \leq n^{2}+\frac{c^{2}}{8 p^{2} m}+\frac{(n-m n-c)^{2}}{2 m}=\left(\frac{1}{8 p^{2}}+\frac{1}{2}\right) \frac{c^{2}}{m}+\frac{n(m-1)}{m} c+\frac{n^{2} m}{2}+\frac{n^{2}}{2 m} .
$$

The quadratic function of c above is maximized when $c=-\frac{(m-1) n}{1+\frac{1}{4 p^{2}}}$. Thus

$$
|S| \leq n^{2}\left[\frac{4 p^{2}}{4 p^{2}+1}+\left(\frac{1}{2}-\frac{2 p^{2}}{4 p^{2}+1}\right)\left(m+\frac{1}{m}\right)\right] \leq\left(1-\frac{2}{4 p^{2}+1}\right) n^{2}
$$

where the maximum is achieved when we choose $m=-1$ and thus $c=\frac{8 p^{2}}{4 p^{2}+1} n$.
This completes the proof.

References

[Blo16] T. F. Bloom, A quantitative improvement for Roth's theorem on arithmetic progressions, J. Lond. Math. Soc. (2) 93 (2016), no. 3, 643-663. MR 3509957
[BLST18] József Balogh, Hong Liu, Maryam Sharifzadeh, and Andrew Treglown, Sharp bound on the number of maximal sum-free subsets of integers, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 8, 1885-1911. MR 3854894
[Cam02] Peter J. Cameron, Sum-free sets of a square, manuscript (2002).
[Cam05] , Research problems from the 19th British Combinatorial Conference, Discrete Math. 293 (2005), no. 1-3, 313-320. MR 2136071
[CKP20] Ilkyoo Choi, Ringi Kim, and Boram Park, Maximum k-sum n-free sets of the 2dimensional integer lattice, Electron. J. Combin. 27 (2020), no. 4, Paper No. 4.2, 12. MR 4245177
[DFST99] Jean-Marc Deshouillers, Gregory A. Freiman, Vera Sós, and Mikhail Temkin, On the structure of sum-free sets. II, no. 258, 1999, Structure theory of set addition, pp. xii, 149-161. MR 1701193
[ER17] Christian Elsholtz and Laurence Rackham, Maximal sum-free sets of integer lattice grids, J. Lond. Math. Soc. (2) 95 (2017), no. 2, 353-372. MR 3656272
[Fre92] Gregory A. Freiman, On the structure and the number of sum-free sets, no. 209, 1992, Journées Arithmétiques, 1991 (Geneva), pp. 13, 195-201. MR 1211012
[HT17] Robert Hancock and Andrew Treglown, On solution-free sets of integers, European J. Combin. 66 (2017), 110-128. MR 3692141
[Rot53] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109. MR 51853
[Ruz93] Imre Z. Ruzsa, Solving a linear equation in a set of integers. I, Acta Arith. 65 (1993), no. 3, 259-282. MR 1254961
[Ruz95] , Solving a linear equation in a set of integers. II, Acta Arith. 72 (1995), no. $4,385-397$. MR 1348205
[Sch16] I. Schur, Uber die kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jahresber. Deutsch. Math.Verein. 25 (1916), 114-117.
[Skr93] Maxim Skriganov, On integer points in polygons, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 2, 313-323. MR 1220271
[Tra18] Tuan Tran, On the structure of large sum-free sets of integers, Israel J. Math. 228 (2018), no. 1, 249-292. MR 3874843

[^0]: ${ }^{*}$ Extremal Combinatorics and Probability Group (ECOPRO), Institute for Basic Science (IBS), Daejeon, South Korea, Email: hongliu@ibs.re.kr. H.L. was supported by the Institute for Basic Science (IBS-R029$\mathrm{C} 4)$.
 ${ }^{\dagger}$ School of Mathematics, Shandong University, China. Email: ghwang@sdu.edu.cn. G.W. was supported by National Key R\&D Program of China (2020YFA0712400), Natural Science Foundation of China (11871311, 11631014) and seed fund program for international research cooperation of Shandong University.
 ${ }^{\ddagger}$ Department of Computer Science, KU Leuven, Belgium. Email: laurence.wilkes@kuleuven.be.
 ${ }^{\S}$ Data Science Institute, Shandong University, China, Email: dlyang@sdu.edu.cn. D.Y. was supported by the China Postdoctoral Science Foundation (2021T140413), Natural Science Foundation of China (12101365) and Natural Science Foundation of Shandong Province (ZR2021QA029).

