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Abstract

We determine the shape of all sum-free sets in {1, 2, . . . , n}2 of size close to the max-
imum 3

5n
2, solving a problem of Elsholtz and Rackham. We show that all such asymptotic

maximum sum-free sets lie completely in the stripe 4
5n− o(n) ≤ x+ y ≤ 8

5n+ o(n). We
also determine for any positive integer p the maximum size of a subset A ⊆ {1, 2, . . . , n}2
which forbids the triple (x, y, z) satisfying px+ py = z.

1 Introduction

A cornerstone result of Schur [Sch16] states that for sufficiently large integer n and a fixed
integer r, any r-coloring of [n] := {1, 2, . . . , n} yields a monochromatic triple x, y, z such that
x + y = z. For an integer n ∈ N a subset A ⊆ [n] is sum-free if it has no solution for the
equation x + y = z, i.e. for all x, y ∈ A we have x + y /∈ A. The topic of sum-free sets of
integers is well-studied in combinatorial number theory and has a long history.

It is clear that the sets

S1 =

{
1, 3, 5, . . . , 2

⌊
n− 1

2

⌋
+ 1

}
and S2 =

{⌈
n+ 1

2

⌉
,

⌈
n+ 1

2

⌉
+ 1, . . . , n

}
are sum-free and of size

⌈
n
2

⌉
. If n is even, S3 = S2 − 1 is another one of the same size.

Let us denote the density of a maximum sum-free subset of [n] by µ([n]) := max{ |S|n | S ⊆
[n],S is sum-free}. If S ⊆ [n] is a sum-free set and a ∈ S is the largest element, then at most
one of x or a− x can be in S for each x ≤ a. Therefore |S| ≤

⌈
a
2

⌉
≤
⌈
n
2

⌉
. Together with the

above examples, we see that

µ([n]) =

{
1
2 if n even,

1
2 + 1

2n if n odd.
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1.1 Structure for large sum-free sets

Given the extremal result, great efforts has been made to better understand the general
structure of large sum-free sets in [n]. The first result on this topic was due to Freiman
[Fre92] who showed that if the size of a sum-free set in [n] is large enough, then it will either
consist of all odd numbers as in S1 above or it will be close to the second half of the interval
as S2. We remark that more structural results are known for large sum-free sets in the 1-
dimensional integer lattice (see [DFST99] and a recent progress [Tra18]). Such structural
results are not only interesting on their own; they have been utilized e.g. in recent work on
enumerating maximal sum-free sets (see [BLST18]).

The problem of sum-free sets has been generalized to higher dimensional lattice Zd, d ≥ 2.
Similarly, we define µ([n]d) := max{ |S|

nd
| S ⊆ [n]d is sum-free}. In particular, for d = 2, the

problem of finding the largest sum-free subset of [n]2 = {1, 2, . . . , n}2 was firstly presented
by Cameron as an unsolved problem in [Cam05].

Conjecture 1.1. [Cam05] There exists a constant c ∈ R such that µ([n]2) = c+O(1/n).

Cameron later [Cam02] suggested that Conjecture 1.1 is true with c = 0.6 and gave a
lower bound construction:

S0 = {(x, y) ∈ [n]2 | u ≤ x+ y ≤ 2u− 1},

which has maximum density 0.6 when u = b4n+7
5 c. Recently, Elsholtz and Rackham settled

Conjecture 1.1 in [ER17], proving that indeed

µ([n]2) = 0.6 +O(1/n).

In the same paper, Elsholtz and Rackham [ER17] raised the problem of classifying the sum-
free sets whose size are close to the extremal value.

In this paper, we resolve this problem by showing that any sum-free subset S ⊆ [n]2 of
size at least (35 − o(1))n2 will have all its points in the region {(x, y) ∈ [n]2 | 4n

5 − o(n) ≤
x+ y < 8n

5 + o(n)}.

Theorem 1.2. For all γ > 0 there exists δ > 0 and n0 ∈ N such that the following holds for
all n > n0. If S ⊆ [n]2 is sum-free with |S| > (35 − δ)n

2, then

S ⊆ {(x, y) ∈ [n]2 | 4n

5
− γn ≤ x+ y <

8n

5
+ γn}.

This gives a satisfying answer to the 2-dimension sum-free problem. The situation is,
however, unclear for higher dimension. In particular, even the maximum density of a sum-
free set in the 3-dimension grid [n]3 is unknown.

1.2 (p, q)-sum-free sets

Given positive integers d, n and rational numbers p, q, a set S ⊆ [n]d is called (p, q)-sum-free
if it has no solution for the equation px + qy = z. As a generalization of sum-free sets (i.e.
(1,1)-sum-free sets), the notion of (p, q)-sum-free sets encapsulates many fundamental topics
in combinatorial number theory. In particular, for d = 1, a (12 ,

1
2)-sum-free set is precisely a

set without 3-term arithmetic progression, which has received considerable attention in recent
decades. Therefore, it is a natural question to determine the size of the largest (p, q)-sum-free
sets in [n]d. Here one can similarly define

µ[p,q]([n]d) := max

{
|S|
nd
| S ⊆ [n]d is (p, q)-sum-free

}
.
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By Roth’s theorem [Rot53], µ[1/2,1/2]([n]) = o(1). See [Blo16] for the best known upper bound
for the size of a (1/2, 1/2)-sum-free set. In [Ruz93, Ruz95], instead of the form x+y = z, Ruzsa
instigated the study of more general linear equations a1x1 + · · ·+ akxk = b. In particular, for
more general cases when p, q are positive integers and p ≥ 2, Hancock and Treglown [HT17]
completely determined the value µ[p,q]([n]). For higher dimensional lattices, Choi, Kim and
Park [CKP20] initiated the investigation of the form x1 + x2 + · · · + xk = b, where b is a
prescribed point in [n]2.

For 2-dimension (p, q)-sum-free problem, we make the first attempt to determine µ[p,p]([n]2)
for any integer p.

Theorem 1.3. Let p ∈ N and S ⊆ [n]2 be a (p, p)-sum-free set. Then

|S| ≤
(

1− 2

4p2 + 1

)
n2 +O(n).

We observe that the upper bound in Theorem 1.3 is optimal up to the error term O(n),
given by the following construction. For any positive integers p, q and positive real a, define
S = {(x, y) ∈ [n]2 | a < x+ y < (p+ q)a}. One can easily check that S is (p, q)-sum-free with
size

|S| =
(

1− 2

(p+ q)2 + 1

)
n2 +O(n),

when a = 2(p+q)
(p+q)2+1

n, corresponding to the stripe

S =

{
(x, y) ∈ [n]2 | 2(p+ q)

(p+ q)2 + 1
n < x+ y <

2(p+ q)2

(p+ q)2 + 1
n

}
.

We conjecture that for all integers p and q, the above construction provides the maximum
(p, q)-sum-free set.

Conjecture 1.4. Let p, q and n be positive integers and S ⊆ [n]2 be a (p, q)-sum-free set.
Then

|S| ≤
(

1− 2

(p+ q)2 + 1

)
n2 +O(n).

Organization. The rest of the paper will be organized as follows. Section 2 includes some
notation and tools needed. Section 3 is devoted to the proof of Theorem 1.2. The proof of
Theorem 1.3 is given in Section 4.

2 Preliminaries

Given a convex polygon P in R2
[0,n], denote by Λ(P ) the number of lattice points contained

within P , and by ‖P‖ the area of P with respect to the Lebesgue measure. The translate of
P by a vector a ∈ R2

[0,n] is denoted as P + a := {a + (x, y) | (x, y) ∈ P}. Write a − P :=

{a− (x, y) | (x, y) ∈ P}. Throughout the proof, we always use the following result which is a
corollary of Lemma 3.1 in [ER17].

Lemma 2.1. If P is a convex polygon in R2
[0,n] with finitely many sides, then Λ(P ) = ‖P‖+

O(n).

This lemma implies that any convex polygon P , described above, satisfies that Λ(P ) =
‖P‖+O(n), which allows us to focus on the area ‖P‖ instead of Λ(P ).

For two points p1, p2 ∈ R2
[0,n], denote by m(p1, p2) the gradient and by c(p2, p2) the y-

intercept of the line in R2 passing through p1 and p2.

3



Definition 2.2 (Upper boundary). Given a set A ⊆ R2
[0,n], the upper boundary of A is a set

of points in A, denoted by ∂A, such that for each p1 ∈ ∂A there exists a point p2 ∈ A \ {p1}
with the following properties:

• m(p1, p2) < 0;

• Let T = {(x, y) ⊆ R2
[0,n] | y > m(p1, p2)x+ c(p1, p2)}. Then |A ∩ T | = 0.

Any two such points p1, p2 are said to be adjoint, and the line passing through two points
that are adjoint is called an upper boundary line. The second condition above states that
there is no point of A strictly above any upper boundary line.

The following lemma shows that if the upper boundary of a set A is empty, then A has a
‘top right corner’.

Lemma 2.3 (Lemma 5.1 in [ER17]). Suppose A ⊆ R2
[0,n] such that ∂A = ∅. Then there is a

point (a, b) ∈ A such that a ≥ x and b ≥ y for all (x, y) ∈ A.

We also need the concept of pairing sets, which will be frequently used throughout the
proof.

Definition 2.4. Given a point (a1, a2) ∈ R2
[0,n] and a set P ⊆ R2

[0,n], we call P a pairing set

for (a1, a2) if for any x ∈ P , we have (a1, a2)− x ∈ P .

The following lemma guarantees that for any point in a sum-free set S, every pairing set
for that point cannot intersect too much with S.

Lemma 2.5 (Lemma 3.4 in [ER17]). Let S be a sum-free set in [n]2. Then for any a ∈ S
and a pairing set P for a, we have |P ∩ S| ≤ 1

2Λ(P ).

The following lemma bounds the intersection of a set and its translate with a sum-free
set.

Lemma 2.6. Given two sets S, T ⊆ [n]2, if S is sum-free, then for any a ∈ S, it holds that

|S ∩ (T ∪ (a± T ))| ≤ |T |.

Proof. For each element t ∈ T there is a corresponding element a ± t ∈ a ± T . Since a ∈ S,
one can observe from sum-freeness that at most one of t and a± t belongs to S.

3 Proof of Theorem 1.2

We carry out the proof in a few steps. First, using Lagrange multiplier, we show that any
almost maximum-size sum-free set S in [n]2 has an upper boundary line that is close to the
line y + x = 8n

5 , see Lemma 3.3. Then we show that there is a point (x∗, y∗) in S close to
(4n5 ,

4n
5 ), see Lemma 3.4. Finally, using this point (x∗, y∗), we show in Section 3.3 that S has

no point below the line y+x = 4n
5 −o(n), which, together with the upper boundary line close

to y + x = 8n
5 , implies that S must be close to the extremal stripe 4n

5 ≤ x+ y ≤ 8n
5 .

Throughout the proofs, when we write β � γ, we always mean that β, γ are constants in
(0, 1), and there exists β0 = β0(γ) such that the subsequent arguments hold for all 0 < β ≤ β0.
Hierarchies of other lengths are defined analogously.

Definition 3.1. A sum-free set S ⊆ [n]2 with ∂S 6= ∅ is of Type 1 if there exists a point
p1 = (x1, y1) ∈ ∂S with x1 ≤ y1 and x1y1 ≥ xy for all (x, y) ∈ ∂S, and a point p2 = (x2, y2)
adjoint to p1 satisfying the following conditions, where we simply write m = m(p1, p2) and
c = c(p1, p2).

4



(1) x2 > x1, y2 < y1 and m < − y1
x1
≤ −1;

(2) c > n and −c ≤ nm.

In addition, S is of Type 2 if there exist two adjoint points p1 = (x1, y1) and p2 = (x2, y2) in
∂S satisfying the following conditions.

(1) x2 > x1, y2 < y1 and − y1
x1
≤ m ≤ − y2

x2
;

(2) y2 ≤ c
2 ≤ y1;

(3) c > n and −c < nm.

For either type of the sum-free sets, we call the upper boundary lines passing through p1
and p2 typical. Let

A = {(x, y) ∈ R2
[0,n] | y > mx+ c}

with m and c given as above. Then A is a triangle in both cases.
For the Type 1 set S, we claim that the upper boundary line y = mx+ c satisfies x1 >

n
2 .

In fact, since m < − y1
x1

and y1 = mx1 + c, we have that x1 >
c
−2m > n

2 because −c < nm.
If S is of Type 2, then it is straightforward to check that the following two sets are

nonempty (see Figure 1).

T1 =
{

(x, y) ∈ R2
[0,n] | x ≥ x1, y −mx ≤

c

2

}
,

T2 =
{

(x, y) ∈ R2
[0,n] | y ≥ y2, y −mx ≤

c

2

}
.

Figure 1: S is of Type 2

The two types we defined above correspond to the only two cases in [ER17] that attain
the maximum density 3

5 . We will use the following bounds for these two types of sum-free
sets.

Lemma 3.2 ([ER17]). Given a sum-free set S ⊆ [n]2, if |S| > 0.56n2, then either

(1) S is of Type 1 and |S| ≤ (n+ 1)2 − 1
2x1y1 + (c+nm−n)2

2m , or

(2) S is of Type 2 and |S| ≤ (n+ 1)2 + c2

8m + 1
2m(n− nm− c)2.

5



3.1 Fixing an upper boundary line

Given constants ε and C, we call a line L ε-close to the line x + y = C if the portion of L
intersecting R2

[0,n] lies entirely within the set {(x, y) ∈ R2
[0,n] | |x + y − C| ≤ εn}. Similarly,

we call two points p1 = (x1, y1) and p2 = (x2, y2) ε-close to each other if |x1 − x2| ≤ εn and
|y1 − y2| ≤ εn.

Lemma 3.3. Given ε > 0, there exist δ > 0 and n0 ∈ N such that the following holds for all
n > n0. If S ⊆ [n]2 is sum-free and |S| > (35 − δ)n

2, then there is a typical upper boundary
line for S which is ε-close to x+ y = 8n

5 .

Proof. Given ε > 0, let δ = ε2

100 and n be sufficiently large with respect to ε. Let S ⊆ [n]2 be

a sum-free set with |S| > (35 −
ε2

100)n2.
Suppose for contradiction that any upper boundary line y = mx + c for S is not ε-close

to x+ y = 8n
5 . That is, either the y- or the x-intercept is far from where it should be:

either |c− 8n/5| > εn or |c/m+ 8n/5| > εn.

In both cases we shall obtain a contradiction by showing that |S| ≤ (3/5− ε2/100)n2.
Considering the typical upper boundary line y = mx+ c passing through p1 and p2 given

in Definition 3.1, we will finish the case when the y-intercept is too far, that is, |c−8n/5| > εn,
whose proof will be divided into two cases depending on the type of S. The case when the
x-intercept is too far (that is, |c/m+ 8n/5| > εn) is similar and we omit the details.

Suppose first that S is of Type 1, then by Lemma 3.2(1), we have

|S| ≤ (n+ 1)2 − 1

2

(
x1(mx1 + c)− (c+mn− n)2

m

)
=: f(x,m, c).

To simplify the presentation, we introduce a new variable η with η ∈ (−∞,−ε) ∪ (ε,+∞)
and define

fη := max{f(x,m, c) | c− 8n/5 = ηn}.

Let L := f(x,m, c)− λg, where g = c− 8n/5− ηn. By solving ∂L
∂x = 0, ∂L

∂m = 0, ∂L
∂c = 0 and

∂L
∂λ = 0, we obtain m = −

√
1 + 2η + 5η2

4 and x =
4
5
+ η

2√
1+2η+ 5η2

4

n, and thus the maximum value

is
fη =

(
8/5 + η −

√
1 + 2η + 5η2/4

)
n2 +O(n).

As η takes values over (−∞,−ε) ∪ (ε,+∞), we get

fη ≤
(

8/5 + ε−
√

1 + 2ε+ 5ε2/4
)
n2 +O(n) ≤ (3/5− ε2/100)n2.

For the second case when S is of Type 2, by Lemma 3.2(2), we have:

|S| ≤ (n+ 1)2 +
c2

8m
+

(n− nm− c)2

2m
.

Using Lagrange multiplier again, we arrive at the same bound
(

8/5 + ε−
√

1 + 2ε+ 5ε2/4
)
n2+

O(n) ≤ (3/5− ε2/100)n2 as desired.
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3.2 Top right corner

Lemma 3.4. For any β > 0, there exist δ > 0 and n0 ∈ N such that for all n > n0, if
S ⊆ [n]2 is sum-free with |S| > (35 − δ)n

2, then there is a point (x∗, y∗) ∈ S which is β-close
to the point (4n5 ,

4n
5 ).

Proof. We first handle Type 1 sum-free sets. Given β > 0, we have constants δ = δ3.3 > 0
and n0 ∈ N returned from Lemma 3.3 with ε = β/6. Let S ⊆ [n]2 be a sum-free set of Type 1
with |S| > (35−δ)n

2. Then Lemma 3.3 gives a typical upper boundary line y = mx+c that is
ε-close to x+y = 8n

5 and let p1 = (x1, y1), p2 = (x2, y2) be the two points involved. Therefore,
|c− 8n

5 | < εn, |x1 + y1 − 8n
5 | < εn. Consequently, by triangle inequality we have

|m+ 1| = |x1 + y1 − c|
x1

<
2εn

x1
< 4ε,

where the last inequality follows since x1 > n/2. Recall that m ≤ − y1
x1
≤ −1. Then we have

that |m+ y1
x1
| < 4ε.

Using these facts we can write m = − y1
x1
−γ1 and c = (85 +γ2)n for constants 0 ≤ γ1 < 4ε

and |γ2| < ε. Using the equation y1 = mx1+c, we obtain that y1 = 4
5n+ γ2n−γ1x1

2 . As x1 ≤ n,
by triangle inequality, we have ∣∣∣y1 − 4n

5

∣∣∣ < 5εn

2
< βn.

Moreover, since − y1
x1
≥ m > −1 − 4ε and x1 ≤ y1, we can easily obtain that |x1 − 4n

5 | <
6εn = βn. So (x1, y1) is β-close to the point (4n5 ,

4n
5 ) as desired.

Let us turn to Type 2 sum-free sets. Now, given β > 0, choose positive constants ε, δ with
δ � ε � β. Let S be a sum-free set of Type 2 with |S| > (35 − δ)n

2. Then applying Lemma

3.3 with
√

2ε playing the role of ε gives a typical upper boundary line y = mx + c passing
through p1 = (x1, y1) and p2 = (x2, y2) (see Figure 2), which is

√
2ε-close to x+ y = 8n

5 . This
implies that the line y = mx+ c

2 is ε√
2
-close to x+ y = 4n

5 . We may assume for contradiction

that S has no points in the region

Tβ =

{
(x, y) ∈ R2

[0,n] | x, y ≥
4n

5
− βn , y + x ≤ 8n

5

}
.

Redefine the regions as follows:

A =

{
(x, y) ∈ R2

[0,n] | y + x ≥ 8n

5
+
√

2εn

}
,

T1 =

{
(x, y) ∈ R2

[0,n] | y + x ≤ 4n

5
− εn√

2
, x ≥ x1

}
,

T2 =

{
(x, y) ∈ R2

[0,n] | y + x ≤ 4n

5
− εn√

2
, y ≥ y2

}
.

Note that

T1 + T2 =

{
(x, y) ∈ R2

[0,n] | y + x ≤ 8n

5
−
√

2εn, x ≥ x1, y ≥ y2
}
.

We now proceed by considering the areas which may be excluded from S. Firstly, we show
that S has two points in T1 that are far apart.

Claim 3.5. There are two points in T1 ∩ S which are at least βn far apart.

7



Figure 2: S is of Type 2: the two purple stripes are {(x, y) | |x + y − 8n
5 | ≤

√
2εn} (on the

top right) and {(x, y) | |x+ y − 4n
5 | ≤

εn√
2
}.

Proof of claim. If this is not true, then there are less than π(βn2 )2 ≤ β2n2 points of S in
T1, given by the number of points in a square around a circle of diameter βn in T1. Since
‖Tβ‖ = 1

2(2β)2n2 = 2β2n2, we then use the pairing set P1 for (x1, y1) and thus

|S| ≤ n2 − Λ(A)− 1

2
Λ(P1)− Λ(T1) + β2n2 − Λ(Tβ)

= n2 − ‖A‖ − 1

2
‖P1‖ − ‖T1‖+ β2n2 − ‖Tβ‖+O(n)

= n2 − 1

2

(
2

5
−
√

2ε

)2

n2 − 1

2
x1y1 −

1

2

(
4

5
− ε√

2
− x1

n

)2

n2 + β2n2 − 2β2n2 +O(n).

It is easy to see this is maximized when y1 is minimal and x1 + y1 = 8n
5 −
√

2εn. Then

|S| ≤
(

3

5
− β2 + 10ε

)
n2.

Therefore, we reach a contradiction by the fact that δ � ε� β. �

By Claim 3.5, we let s and t be two points in T1 with distance greater than βn, and let

T s2 := s+ T2 and T t2 := t+ T2.

Claim 3.6. Λ(Tβ \ T s2 ),Λ(Tβ \ T t2) < β2

L n
2, where L = 4

5
√
3−6 .

Proof of claim. Suppose to the contrary that either Λ(Tβ \T s2 ) ≥ β2

L n
2 or Λ(Tβ \T t2) ≥ β2

L n
2,

and by symmetry we may assume the first inequality holds. Considering the pairing set P2

for (x2, y2) and T2 paired with T s2 , we can obtain from Lemmas 2.5 and 2.6 that

|S| ≤ n2 − Λ(A)− 1

2
Λ(P2)− Λ(T2)− Λ(Tβ \ T s2 )

≤
(

3

5
− β2

L
+O(ε)

)
n2,

which once again gives a contradiction as δ � β. �

8



In the rest of the proof, we shall find a partition T2 = T2,1 ∪ T2,2 into two regions such
that their corresponding translates T s2,1 = s+ T2,1 and T t2,2 = t+ T2,2 are distantly separated
in T1 + T2, which provides a significant portion of points in Tβ \ (T s2,1 ∪ T t2,2) that are to be
excluded from S.

Write s = (xs, ys) and t = (xt, yt). By Claim 3.6, we can find that the two points s+(0, y2)
and t+(0, y2) belong to the region {(x, y) ∈ [n]2 | x, y ≤ 4n

5 }. We may assume xs+ys ≥ xt+yt
and let d := xs + ys − (xt + yt). It is easy to see in Figure 3 that d is the difference between
the corresponding y-intercepts of the red diagonal and the blue diagonal. By the symmetry
of all the shapes involved, we can further assume that xs ≥ xt.

y + x = 8n
5

Tβ

(0, y2) + t

(0, y2) + s

Figure 3: The red triangle represents T t2, the blue one represents T s2 and the black one
represents Tβ.

Claim 3.7. d ≤
(

2− 2
√

2L−1
2L

)
βn =

√
3−1
2 βn.

Proof of claim. It is easy to see the region Tβ ∩ T t2 is a triangle similar to Tβ. Note that the
area of Tβ \ T t2 is at least

1

2
(2βn)2 − 1

2
(2βn− d)2 =

(
2βn− d

2

)
d.

By Claim 3.6, we have that
(
2βn− d

2

)
d ≤ β2n2

L , which yields the bound on d as desired. �

Define points

X1 = (xs, ys + y2), X2 = (xt, yt + y2) and X3 = (xs, yt + y2).

Let P1X1 and P2X2 be line segments which are parallel to PX3 (see Figure 4). Construct a line
passing through (0, y2) which is also parallel to the line segments PX3, where P = (4n5 ,

4n
5 ).

Such a line separates T2 into two parts, and we denote by T2,2 the part above the line and
T2,1 for the rest.

Claim 3.8. There exists a triangle Tβ,1 ⊆ Tβ similar to Tβ such that Tβ,1 does not intersect

with either of the regions T2,1 + s or T2,2 + t and Λ(Tβ,1) ≥ β2n2

8 .

Proof of claim. Let h := yt − ys. Since s and t are of distance at least βn far apart, that is,
(xs−xt)2 + (ys− yt)2 = (h+ d)2 +h2 ≥ β2n2, together with Claim 3.7, we obtain that either

h ≥
√

2β2−d2
2 − d

2 ≥
βn
2 or h ≤ −

√
2β2−d2
2 − d

2 < −d, where the latter contradicts with the

assumption that xs−xt = h+d ≥ 0. Thus, h ≥ βn
2 and the segment P1P2 has length at least

√
2
2 βn. Let Tβ,1 be the rectangle triangle P1P2Q with diagonal line P1P2. Then Tβ,1 has area

at least β2n2

8 and does not intersect either of the regions T2,1 + s or T2,2 + t. �
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Figure 4: The triangle UVW represents Tβ, in which P = (4n5 ,
4n
5 ) is the median point for

the line segment UW .

As aforementioned, now we are ready to finish the proof. Applying Lemma 2.6 to T2,1, T2,2
and their translates T2,1 + s, T2,2 + t, we obtain that

|S| ≤ n2 − Λ(A)− 1

2
Λ(P2)− Λ(T2)− Λ(Tβ,1)

= n2 − ‖A‖ − 1

2
‖P2‖ − ‖T2‖ − ‖Tβ,1‖+O(n)

≤ n2 − 1

2

(
2

5
−
√

2ε

)2

n2 − 1

2
x2y2 −

1

2

(
4

5
− ε√

2
− x2

n

)2

n2 − β2n2

8
+O(n).

The right-hand side above is maximized when y2 is minimal and x2 + y2 = 8n
5 −
√

2εn. Thus,

|S| ≤
(

3

5
− β2

8
+O(ε)

)
n2,

a final contradiction.

3.3 Putting things together

We are now ready to prove our main result, knowing that any almost maximum sum-free set
contains an upper boundary line o(1)-close to y + x = 8n

5 and a point o(1)-close to (4n5 ,
4n
5 ).

Proof of Theorem 1.2. Given γ > 0, choose δ � ε � β � γ. Let S ⊆ [n]2 be a sum-free
set of size at least (3/5 − δ)n2. Then by Lemma 3.3, S has a typical upper boundary line
y = mx+ c which is ε-close to y+ x = 8n

5 . Now it suffices to show that S has no point below
the line x+ y = 4n

5 − γn (see the red line in Figure 5).
Note that Lemma 3.4 ensures the existence of a point (x1, y1) in S that is β-close to

(4n5 ,
4n
5 ). Suppose to the contrary that p0 = (x0, y0) ∈ S is such a point below the line

x+ y = 4n
5 − γn, and without loss of generality we may assume that y0 ≥ x0.

Let

A =:

{
(x, y) ∈ [n]2 | y + x >

8n

5
+ εn

}
.

10



Considering the pairing set P := {(x, y) ∈ [n]2 | x ≤ x1, y ≤ y1} for (x1, y1), there are at
most

n2 − Λ(A)− 1

2
Λ(P ) ≤

(
3

5
+

(
2

5
− ε

2

)
ε+

(
4

5
− β

2

)
β

)
n2 +O(n) (1)

points which may be included in S; and all these points are below the line x+ y = 8n
5 + εn.

Then, writing

D1 :=

{
(x, y) ∈ [n]2 | y > 4n

5
+ βn, y + x <

8n

5
− εn

}
and

D2 :=

{
(x, y) ∈ [n]2 | x > 4n

5
+ βn, y + x <

8n

5
− εn

}
,

it follows from the assumption |S| ≥ (3/5− δ)n2 and (1) that

1

n2
|(D1 ∪D2) \ S| ≤ δ +

(
2

5
− ε

2

)
ε+

(
4

5
− β

2

)
β =: υ(δ, ε, β). (2)

Note that we can choose δ, ε, β small enough such that υ(δ, ε, β) = o(γ2). In the remaining
proof, we shall find in D1 ∪ D2 (or its translate) a relatively large subset of lattice points
which are to be excluded from S, yielding a contradiction.

Figure 5: The case when x0 <
n
5 −

γ
2n: The two grey regions R := (D2 + p0) ∩ D2 and its

translate R−p0 form a pairing, which excludes from the sum-free set S the amount of points
which fit in one of the regions.

First assume that p0 is such that x0 <
n
5 −

γ
2n. Then the region D2 + p0 intersects D2 on

a set of lattice points, denoted by R. Since R,R − p0 ⊆ D1 ∪D2, applying Lemma 2.6 with
a = p0 and T = R− p0 gives that |(R ∪ (R− p0)) ∩ S| ≤ |R|, and thus

|(D1 ∪D2) \ S| ≥ |(R ∪ (R− p0)) \ S| ≥ |R ∪ (R− p0)| − |R|.

11



It is easy to observe that |R ∪ (R − p0)| − |R| is minimized when p0 is close to the point

(n5−
γn
2 ,

3n
5 −

γn
2 ), yielding an area of size at least

(
3
8γ

2 + γ−2β
4 (β − 2ε)

)
n2+O(n) (See Figure

5). Thus |(D1 ∪D2) \S| ≥
(
3
8γ

2 + γ−2β
4 (β − 2ε)

)
n2 +O(n) > υ(δ, ε, β)n2, a contradiction to

(2).
Now it remains to consider the case when p0 satisfies x0 ≥ n

5−
γn
2 . We consider the overlap

of (D1 ∪D2)− p0 with (x1, y1)− ((D1 ∪D2)− p0) and denote by O the set of lattice points
in the overlap (see Figure 6). Let

D := ((D1 ∪D2)− p0) \ (D1 ∪D2).

Then it is easy to verify that O ⊆ D. Note that by Lemma 2.6 with a = p0 and T = D1∪D2,
one has that

|(D ∪D1 ∪D2) ∩ S| ≤ |D1 ∪D2|.

Figure 6: All possible shapes of O: the green lines frame the region (D1 ∪ D2) − p0, whilst
the purple lines frame (x1, y1)− ((D1 ∪D2)− p0). The trivial cases where the overlap is cut
off by the x- and y-axes are not shown.

Then, using (2), we have

|O ∩ S| ≤ |D ∩ S| = |(D ∪D1 ∪D2) ∩ S| − |(D1 ∪D2) ∩ S|
≤ |(D1 ∪D2) \ S| ≤ υ(δ, ε, β)n2.

Moreover, by definition we know that (x1, y1) − O ⊆ O, that is, O (and also P \ O) is a
pairing set for (x1, y1). It follows from Lemma 2.5 that

12



|S| ≤ n2 − Λ(A)− 1

2
Λ(P \ O)− (|O| − |O ∩ S|)

≤ n2 − ‖A‖ − 1

2
‖P‖ − 1

2
|O|+ υ(δ, ε, β)n2

≤ n2 − 1

2

(2n

5
− εn

)2
− 1

2

(4n

5
− βn

)2
− 1

2
|O|+ υ(δ, ε, β)n2

=
3

5
n2 + o(γ2)n2 − 1

2
|O|.

Therefore, it suffices to show that |O| = Ω(γ2)n2, and in the remaining proof we shall
verify this by considering all possible shapes of O.

Figure 7: each numbered region will produce a unique shape of the overlap.

Since (x1, y1) is β-close to (4n5 ,
4n
5 ) and β � γ, we may further assume that (x1, y1) =

(4n5 ,
4n
5 ) in order not to cluster the presentation. We list in Figure 6 all possible shapes of the

overlap O, which originate from the location of the point (x0, y0) (see Figure 7). In particular,
the area of the overlap in each of these cases is given as follows:

(1) 4
(
3
5n− y0

) (
4
5n− y0 − x0 − εn

)
, where y0 ≥ n

2 + β
2n, x0 ≥ 1

5n−
γ
2n.

(2) 4
(
y0 − 2

5n− βn
) (

4
5n− y0 − x0 − εn

)
, where y0 ∈ [12n−

β+ε
2 n, 12n+ β

2n], x0 ≥ 1
5n−

γ
2n.

(3) (n− 2y0 − βn− εn)2 + 4
(
y0 − 2

5n− βn
) (

4
5n− y0 − x0 − εn

)
, where

y0 ∈
[

2

5
n+ βn,

1

2
n− β + ε

2
n

]
, x0 ∈

[
1

5
n− γ

2
n,

3

10
n+

β − ε
2

n

]
.
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(4) 4
(
4
5n− y0 − x0 − εn

) (
x0 − 1

5n− 2βn
)
, where y0 ≥ 2

5n+ βn, x0 ≥ 3
10n+ β−ε

2 n.

(5) (n− 2y0 − βn− εn)2, where

y0 ∈
[

2

5
n− ε

2
n,

2

5
n+ βn

]
, x0 ∈

[
1

5
n− γ

2
n,

3

10
n+

β − ε
2

n

]
.

(6) 4
(
4
5n− y0 − x0 − εn

) (
1
5n+ x0 − y0 − βn

)
, where

y0 ∈
[

2

5
n− ε

2
n,

2

5
n+ βn

]
, x0 ≥

3

10
n+

β − ε
2

n.

(7) 2
(
1
5n− βn

)2 − (2y0 − 3
5n+ εn− βn

)2
, where

y0 ∈
[

3

10
n+

β − ε
2

n,
2

5
n− ε

2
n

]
, x0 ∈

[
1

5
n− γ

2
n,

3

10
n+

β − ε
2

n

]
.

(8) 2
(
1
5n− βn

)2 − (2y0 − 3
5n+ εn− βn

)2 − (2x0 − 3
5n+ εn− βn

)2
, where

3

10
n+

β − ε
2

n ≤ x0 ≤ y0 ≤
2

5
n− ε

2
n.

(9) 2
(
1
5n− βn

)2
, where 1

5n−
γ
2n ≤ x0 ≤ y0 ≤

3
10n+ β−ε

2 n.

It is obvious that for the regions 5, 7 and 9, the area of the overlap has size Ω(γ2)n2. The
only regions which interest us are the ones bordering the line y+x = 4n

5 − γn. Moreover, the
regions in question are 1, 2, 3, 4, 6 and 8. Among them, the minimum overlap is achieved in
region 1 by letting (x0, y0) = (n5 −

γn
2 ,

3n
5 −

γn
2 ), which yields a value of |O| ≥ 2γ(γ − ε)n2 as

desired. This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

In this section we investigate the maximum size of a (p, p)-sum-free set S. To simplify the
presentation, we write p-sum-free for (p, p)-sum-free. Our proof builds on the techniques
developed in the work of Elsholtz and Rackham [ER17]. We need a variant notion of pairing
set as follows.

Definition 4.1. For any (a1, a2) ∈ R2
[0,n], P ⊆ R2

[0,n] is a p-pairing set for (a1, a2) if, for any

(x1, x2) ∈ P , we have (a1p − x1,
a2
p − x2) ∈ P .

Similar to Lemmas 2.5 and 2.6, the following lemma guarantees that for any point a ∈ S
and its p-pairing set P , at least half of the points in P are excluded from S. Similar statement
also holds when we consider a set and its translate dilated by p. We omit the proof.

Lemma 4.2. Let S ⊆ [n]2 be a p-sum-free set.

(1) If P is a p-pairing set for some a ∈ S, then we have |S ∩ P | ≤ 1
2Λ(P ).

(2) If T ⊆ R2
[0,n] and a ∈ S, then |S ∩ (p(a+ T ) ∪ T )| ≤ Λ(T ).

14



Proof of Theorem 1.3. Let S ⊆ [n]2 be a p-sum-free set. Our goal is to show that |S| ≤(
1− 2

4p2+1

)
n2 + O(n) for p ≥ 2. We may neglect any boundary effects as they give error

terms O(n) for the size of S, which will be omitted so as to ease the presentation. We consider
cases depending on the placement of upper boundary lines.

Case 1: |∂S| ≤ 1. As vertices in the upper boundary come in (adjoint) pairs, we see that in
this case ∂S = ∅, and thus Lemma 2.3 ensures the existence a point p1 = (x1, y1) ∈ S such
that x1 ≥ x and y1 ≥ y for all (x, y) ∈ S. Let P := {(x, y) | 0 ≤ x ≤ x1

p , 0 ≤ y ≤
y1
p }. Then P

is a p-pairing set for p1 and thus by Lemma 4.2, we have that

|S| ≤ (n+ 1)2 − (n− x1)n− (n− y1)x1 −
1

2
Λ(P )

=

(
1− 1

2p2

)
x1y1 +O(n) ≤

(
1− 1

2p2

)
n2 +O(n) <

(
1− 2

4p2 + 1

)
n2.

Case 2: |∂S| ≥ 2 and for every two points p1 = (x1, y1), p2 = (x2, y2) that are adjoint in ∂S
with x1 < x2 and y1 > y2, we have either m(p1, p2) > − y2

x2
or m(p1, p2) < − y1

x1
.

In this case, we choose p1 = (x1, y1) ∈ ∂S such that x1y1 ≥ xy holds for every (x, y) ∈ ∂S
and P1 := {(x, y) | 0 ≤ x ≤ x1

p , 0 ≤ y ≤ y1
p }. By symmetry, we may further assume that

y1 ≥ x1. If there does not exist p2 = (x2, y2) ∈ ∂S adjoint to p1 with x2 > x1 and y2 < y1,
then by Lemma 4.2 and that y1 ≥ x1, we have

|S| ≤ n2 − (n− x1)n−
1

2
Λ(P1) ≤ nx1 −

x21
2p2
≤
(

1− 1

2p2

)
n2.

Thus, we may assume that there exists p2 = (x2, y2) ∈ ∂S adjoint to p1 with x2 > x1 and
y2 < y1. Let L : y = mx+ c be the line passing through p1, p2 and define

A = {(x, y) ∈ R2
[0,n] | y > mx+ c}.

We claim that m < − y1
x1
≤ −1. Indeed, by the assumption of Case 2, assume for contradiction

that m > − y2
x2

, then

x2y2 = x2(y1 +m(x2 − x1)) ≥ x2y1 − y2(x2 − x1) = x1y1 + (y1 − y2)(x2 − x1) > x1y1,

contrary to the choice of p1.
We split into two subcases depending on the x- and y-intercept of L. Note first that, if

c ≤ n, then we have − c
m ≤ n because m ≤ −1, and so |S| < 1

2n
2 as A ∩ S = ∅.

(I). If c > n and − c
m ≤ n, then

|S| ≤ n2 − Λ(A)− 1

2
Λ(P1) =

n

m

(n
2
− c
)
− 1

2p2
x1y1 =

n

m

(n
2
− y1

)
+ x1n−

1

2p2
x1y1.

Now if y1 ≤ n
2 , then as m < −1 and x1 ≤ y1 ≤ n

2 , we observe that |S| ≤ x1n ≤ 1
2n

2. We may
then assume y1 >

n
2 .

If x1 <
n
2 , then by the assumption that m < − y1

x1
, we have

|S| ≤ nx1
y1

(
y1 −

n

2

)
+ x1n−

1

2p2
x1y1 ≤

(
2n− n2

2y1
− y1

2p2

)
n

2
≤
(

1− 1

2p

)
n2.

where the last inequality follows from n2

2y1
+ y1

2p2
≥ 2
√

n2

2y1
y1
2p2

= n
p .
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Assume then x1 ≥ n
2 . Note that as − c

m ≤ n, the slope of L is smaller than the slope of
the line passing through p1 and (n, 0), and so m ≤ −y1

n−x1 . Thus, we have

|S| ≤ n(n− x1)
y1

(
y1 −

n

2

)
+ x1n−

1

2p2
x1y1 ≤ n2 −

(
n− x1

2n
n2 +

x1y1
2p2

)
=
n2

2
+

(
n

2
− y1

2p2

)
x1 ≤

n2

2
+

(
n

2
− y1

2p2

)
y1 ≤

(
1− 1

2p2

)
n2,

where the second last inequality follows since x1 ≤ y1 and the last one follows from p ≥ 2.
(II). If c > n and − c

m > n, then A is a triangle and thus

|S| ≤ n2 − Λ(A)− 1

2
Λ(P1)

= n2 +
(n− y1)2

2m
+
m(n− x1)2

2
− (n− x1)(n− y1)−

x1y1
2p2

.

The right-hand side above is increasing when m ≤ −n−y1
n−x1 . Since n−y1

n−x1 ≤
y1
x1
≤ −m, it follows

that

|S| ≤ n2 − (n− y1)2
2y1
x1

− y1(n− x1)2

2x1
− (n− x1)(n− y1)−

x1y1
2p2

≤ 2(x1 + y1)n− n2 −
(

2 +
1

2p2

)
x1y1,

where the right-hand side of the last inequality is maximized when x1 = y1 = 4p2

4p2+1
n, and

thus |S| ≤
(

1− 2
4p2+1

)
n2.

Case 3: There exist p1 = (x1, y1), p2 = (x2, y2) adjoint in ∂S such that x1 < x2, y1 > y2 and
− y1
x1
≤ m(p1, p2) ≤ − y2

x2
.

For each pi with i ∈ [2], define Pi := {(x, y) | 0 ≤ x ≤ xi
p , 0 ≤ y ≤ yi

p } and set

A = {(x, y) ∈ R2
[0,n] | y > mx+ c} (see Figure 8). Since m ≤ − y2

x2
and y2 = mx2 + c, we have

that y2 ≤ c
2 . Similarly, by the condition m ≥ − y1

x1
, we have that y1 ≥ c

2 .
Define

T1 = {(x, y) ∈ R2
[0,n] | x ≥

x1
p
, y ≤ mx+

c

2p
},

and
T2 = {(x, y) ∈ R2

[0,n] | y ≥
y2
p
, y ≤ mx+

c

2p
}.

We claim that T1, T2 6= ∅. These amount to proving − c
2mp ≥

x1
p and c

2p ≥
y2
p , which in turn

follows from the fact that y2 ≤ c
2 ≤ y1.

If T1 ∩ S = ∅, then a short calculation shows

|S| ≤ n2 − Λ(T1)− Λ(A)− 1

2
Λ(P1) ≤ n2 +

c2

8p2m
− ‖A‖.

If T1 ∩ S 6= ∅, then take a point a ∈ T1 ∩ S, then one can check that p(a+ T2) ∩ T2 = ∅.
By Lemma 4.2, we have |S ∩ (p(a + T2) ∪ T2)| ≤ Λ(T2). By the definition of T2, any point
(x, y) ∈ p(a+ T2) satisfies that y ≤ mx+ c and x ≥ x1, y ≥ y2. We again arrive to

|S| ≤ n2 − Λ(T2)− Λ(A)− 1

2
Λ(P2) ≤ n2 +

c2

8p2m
− ‖A‖.
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Figure 8: T1, T2 6= ∅.

Suppose now that c ≤ n. If − c
m ≤ n, then |S| ≤ 1

2n
2 by excluding A alone. So − c

m > n.

Then ‖A‖ = n(2n−mn−2c)
2 and we get, using c ≤ n and x+ y ≥ 2

√
xy for x, y > 0,

|S| ≤ n2 +
c2

8p2m
− ‖A‖ =

c2

8p2m
+
n2m

2
+ cn ≤ cn− cn

2p
≤
(

1− 1

2p

)
n2.

We may then assume c > n. The case − c
m ≤ n can be handled as the above c ≤ n and

− c
m ≥ n case. Thus, we can assume − c

m > n. Then A is a triangle with ‖A‖ = − (n−mn−c)2
2m

and

|S| ≤ n2 +
c2

8p2m
+

(n−mn− c)2

2m
=

(
1

8p2
+

1

2

)
c2

m
+
n(m− 1)

m
c+

n2m

2
+
n2

2m
.

The quadratic function of c above is maximized when c = − (m−1)n
1+ 1

4p2
. Thus

|S| ≤ n2
[

4p2

4p2 + 1
+

(
1

2
− 2p2

4p2 + 1

)(
m+

1

m

)]
≤
(

1− 2

4p2 + 1

)
n2,

where the maximum is achieved when we choose m = −1 and thus c = 8p2

4p2+1
n.

This completes the proof.
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