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TORIC RICHARDSON VARIETIES OF CATALAN TYPE AND

WEDDERBURN–ETHERINGTON NUMBERS

EUNJEONG LEE, MIKIYA MASUDA, AND SEONJEONG PARK

Abstract. We associate a complete non-singular fan with a polygon triangulation. Such a
fan appears from a certain toric Richardson variety, called of Catalan type introduced in this
paper. A toric Richardson variety of Catalan type is a Fano Bott manifold. We show that toric

Richardson varieties of Catalan type are classified up to isomorphism in terms of unordered
binary trees. In particular, the number of isomorphism classes of n-dimensional toric Richardson
varieties of Catalan type is the (n+ 1)th Wedderburn–Etherington number.
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1. Introduction

In this paper, we restrict our concern to Lie type A. Let G = GLn+1(C), B the Borel sub-
group consisting of upper triangular matrices in G, and T the complex torus consisting of diag-
onal matrices in G. The flag variety is a smooth projective variety defined by the homogeneous
space G/B. The complex torus T acts on G/B by the left multiplication. As exhibited by Gelfand
and Serganova [9] (also, see [8]), the study of the action of the torus T on the flag variety G/B
provides a fruitful connection between combinatorics on the symmetric group and equivariant
algebraic geometry on the flag variety. For instance, through a moment map

µ : G/B → Rn+1,

we see how the closures of T-orbits in G/B are related to the combinatorics of polytopes, called
Coxeter matroid polytopes . The set of T-fixed points in G/B can naturally be identified with the
symmetric group Sn+1 on n+ 1 letters and we have

µ(z) = (z−1(1), . . . , z−1(n+ 1)) for z ∈ Sn+1,
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see [18, Lemma 3.1].
For a pair (v, w) of elements in Sn+1 satisfying v ≤ w in the Bruhat order, Kodama and

Williams [15] introduced the Bruhat interval polytope Qv,w which is defined as the convex hull of
the points (z(1), . . . , z(n + 1)) in Rn+1 for all z with v ≤ z ≤ w. The combinatorial properties
of Bruhat interval polytopes were further investigated by Tsukerman and Williams in [24]. The
Bruhat interval polytope Qv,w is an example of a Coxeter matroid polytope and is the image of the

Richardson variety Xv−1

w−1 by the moment map µ. Here, Xv−1

w−1 is the intersection of the Schubert

variety Xw−1 := Bw−1B/B ⊂ G/B and the opposite Schubert variety w0Xw0v−1 , where w0 is the

longest element in Sn+1. Note that Xv−1

w−1 = Xw−1 when v is the identity element. We remark
that the action of T on G/B leaves any Richardson variety.

It is known that

dimR Qv,w ≤ ℓ(w)− ℓ(v) = dimCX
v−1

w−1 ,

where ℓ is the length function on Sn+1. The Richardson variety Xv−1

w−1 is a toric variety with

respect to the T-action if and only if dimR Qv,w = ℓ(w)− ℓ(v). In this case, the fan of Xv−1

w−1 is the
normal fan of Qv,w. Every toric Schubert variety is smooth, but a toric Richardson variety is not
necessarily smooth. It is smooth if and only if the corresponding Bruhat interval polytope Qv,w is
combinatorially equivalent to a cube (see [18, Proposition 5.6]). This means that a smooth toric
Richardson variety is a Bott manifold that is the total space of an iterated CP 1-bundle over a
point, where each CP 1-bundle is the projectivization of the Whitney sum of two line bundles.
Indeed, Hirzebruch surfaces are 2-dimensional Bott manifolds.

It is known that when v is the identity element e, the Bruhat interval polytope Qe,w is com-
binatorially equivalent to a cube if and only if w is a product of distinct simple transpositions si
interchanging i and i + 1 (see [6, 14, 16]). Such characterization of w is not known for general v
but there are many pairs (v, w) such that Qv,w is combinatorially equivalent to a cube (see [18]).
Among them, the following pair of v and w is the simplest form:

(1.1) w = vs1s2 · · · sn (or w = vsn · · · s2s1) and ℓ(w) − ℓ(v) = n.

In this paper, we associate a complete non-singular fan of dimension n with a triangulation of
a convex (n + 2)-gon Pn+2 and see that such a fan is the normal fan of Qv,w for the pair (v, w)
in (1.1) and vice versa. As is well-known, the number of triangulations of Pn+2 is the Catalan

number Cn = 1
n+1

(

2n
n

)

, so we say that a toric Richardson variety (or a toric variety) is of Catalan

type if its fan is associated with a polygon triangulation. A toric (Richardson) variety of Catalan
type is not only a Bott manifold but also Fano (Lemma 6.5). We note that not all smooth toric
Richardson varieties are Fano. Indeed, there is a toric Schubert variety which is not Fano although
any toric Schubert variety (of Lie type A) is weak Fano (see [17]).

There is a well-known bijection between the set of triangulations of Pn+2 and the set of (rooted)
binary trees with n vertices. We note that a binary tree is ordered, which means that an ordering
is specified for the children of each vertex. We show that two polygon triangulations produce
isomorphic toric (Richardson) varieties of Catalan type if and only if the corresponding binary
trees are isomorphic as rooted trees when we forget the orderings. Namely, we have the following.

Theorem 1.1 (Theorem 6.6 and Corollary 6.7). The set of isomorphism classes of n-dimensional

toric (Richardson) varieties of Catalan type bijectively corresponds to the set of unordered binary

trees with n vertices, where the cardinality of the latter set is known as the Wedderburn–Etherington

number bn+1.

The Wedderburn–Etherington number bn (n ≥ 1) is the number of ways of parenthesizing a
string of n letters, subject to a commutative (but nonassociative) binary operation and appears
in counting several different objects (see Sequence A001190 in OEIS [21], [22, A56 in p.133]). The
generating function B(x) =

∑

n≥1 bnx
n of the Wedderburn–Etherington numbers satisfies the

functional equation

B(x) = x+
1

2
B(x)2 +

1

2
B(x2),

https://oeis.org/A001190
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which was the motivation of Wedderburn in his work [25] and was considered by Etherington [5].
This functional equation is equivalent to the recurrence relation

b2m−1 =

m−1
∑

i=1

bib2m−i−1 (m ≥ 2), b2m =
bm(bm + 1)

2
+

m−1
∑

i=1

bib2m−i

with b1 = 1. Using this recurrence relation, one can calculate the Wedderburn–Etherington
numbers, see Table 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bn 1 1 1 2 3 6 11 23 46 98 207 451 983 2179 4850

Table 1. Wedderburn–Etherington numbers bn for small values of n

As mentioned above, the Bruhat interval polytope Qe,w (which is the moment map image of
the Schubert variety Xw−1) is combinatorially equivalent to a cube if and only if w is a product
of distinct simple transpositions. This fact is generalized to any Lie type (see [6, 14, 16]). In
our forthcoming paper [17], we will discuss toric Schubert varieties in any Lie type and see that
directed Dynkin diagrams appear in their classification.

This paper is organized as follows. We illustrate the ideas underlying the paper with an example
in Section 2. In Section 3, we review Catalan numbers and the bijective correspondence between
polygon triangulations and binary trees. In Section 4, we associate primitive vectors vk’s and
wk’s for k = 1, . . . , n with a triangulation of Pn+2. In Section 5, we study how these primitive
vectors vk’s and wk’s are related to the binary tree associated with the polygon triangulation. In
Section 6, we form a fan using vk’s and wk’s, where these vectors become ray generators of the
fan, and see when such fans are isomorphic. In Section 7, we review how to associate a binary tree
(equivalently a polygon triangulation), denoted by ψ(u), with a permutation u. We also associate
a Bruhat interval polytope with the permutation u and see that its normal fan agrees with the fan
associated with ψ(u). In Section 8, we interpret the results obtained in the previous sections in
terms of Richardson varieties. We also consider products of toric Richardson varieties of Catalan
type and enumerate their isomorphism classes.

2. An example illustrating the idea

We illustrate the idea underlying this paper with an example, which will help the reader to
understand the argument developed in the paper.

Consider two permutations v = 1243 and w = 2431 in S4, where v and w are written in
one-line notation. Note that the pair (v, w) satisfies the condition in (1.1). The Bruhat interval
[1243, 2431] consists of 8 permutations in the red part of Figure 1(1) and the Bruhat interval
polytope Q1243,2431 is a 3-cube drawn in red and thick in Figure 1(2). Here, for permutations v
and w in Sn+1, the Bruhat interval [v, w] is defined to be [v, w] := {z ∈ Sn+1 | v ≤ z ≤ w}. The
entire polytope in Figure 1(2) is the 3-dimensional permutohedron, where the vertices are all the
permutations in S4 and the label on a vertex, say 2431, shows that the coordinate of the vertex
is (2, 4, 3, 1) ∈ R4.

One sees from Figure 1(2) that there are three edges emanating from the vertex v = 1243 (resp.
w = 2431) and their primitive edge vectors are

p1 = e1 − e2, p2 = e2 − e3, p3 = e2 − e4

(resp. q1 = −e1 + e4, q2 = −e2 + e3, q3 = −e3 + e4),
(2.1)

where e1, e2, e3, e4 denote the standard basis of R4. These primitive vectors correspond to the
atoms and coatoms of the Bruhat interval [1243, 2431]. More precisely, the following pairs {i, j}

(2.2) {1, 2}, {2, 3}, {2, 4} (resp. {1, 4}, {2, 3}, {3, 4}).
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(2) Bruhat interval polytope Q1243,2431

Figure 1. A Bruhat interval polytope which is a 3-cube.

satisfy that vti,j covers v and vti,j ≤ w (resp. wti,j is covered by w and v ≤ wti,j), where
ti,j denotes the transposition interchanging i and j.1 These correspond to the primitive vectors
in (2.1). We subtract 1 from the first three pairs above (corresponding to the atoms) in each
element, so that we obtain

(2.3) {0, 1}, {1, 2}, {1, 3} (resp. {1, 4}, {2, 3}, {3, 4})

and we may regard them as edges or diagonals of the pentagon P5 with vertices labelled from 0
to 4 in counterclockwise order. The result is shown in Figure 2(1), where edges or diagonals of P5

obtained from the first three pairs in (2.3) are shown by blue solid lines while those obtained from
the latter three pairs are shown by red dashed lines. They form a triangulation of P5.

4

3

2

1

0

(1) A triangulation of P5

w1

w2

w3

v3
v1

v2

4

3

2

1

0

(2) Facet normal vectors

Figure 2. Triangulation and facet normal vectors obtained from Q1243,2431

The reader may wonder why we subtract 1 from the first three pairs in (2.2) corresponding to
the atoms. Even though the reason will be revealed in Section 7 (see Proposition 7.2), we briefly
explain it. The permutation v = 1243 (resp. w = 2431) is obtained from 243 by putting the
number 1 at the head (resp. at the tail). If we regard the positions of the numbers 2, 4, 3 in 243 as
the 1st, the 2nd, the 3rd in this order, then the positions of the numbers 1, 2, 4, 3 in v = 1243 are
the 0th, the 1st, the 2nd, the 3rd in this order. In this regard, a permutation which covers v, say
2143, is obtained from v = 1243 by interchanging the 0th position and the 1st position, so that
we obtain the pair {0, 1} in (2.3). This is the reason why we subtract 1 from the pairs in (2.2)
corresponding to the atoms but leave the pairs corresponding to the coatoms unchanged.

The primitive edge vectors p1,p2,p3 (resp. q1,q2,q3) in (2.1) form a basis of the sublattice M
of Z4 with the sum of the coordinates equal to zero. Through the dot product on Z4, we can think

1For permutations x and y, we say y covers x (or equivalently, x is covered by y) if there does not exist z such
that x < z < y.
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of the dual lattice of M as the quotient lattice N = Z4/Z(1, 1, 1, 1). Let ̟k (k = 0, 1, 2, 3, 4) be

the quotient image of
∑k

i=1 ei in N . Then {̟1, . . . , ̟4} is a basis of N and ̟0 = ̟5 = 0 by
definition. The dual basis of p1,p2,p3 (resp. q1,q2,q3) is given by

v1 = ̟1 = ̟1 −̟4, v2 = ̟2 −̟3, v3 = ̟3 −̟4,

(resp. w1 = −̟1 = ̟0 −̟1, w2 = ̟1 −̟2, w3 = ̟1 −̟3).
(2.4)

These vectors may be regarded as the primitive inward facet normal vectors of the 3-cubeQ1243,2431,
so they are ray generators of the normal fan ofQ1243,2431. Finally, we note that v1,v2,v3,w1,w2,w3

in (2.4) can be assigned to edges or diagonals of P5 as shown in Figure 2(2) by looking at the
suffixes of ̟i’s in their expression (2.4). Then the three relations

v1 +w1 = 0, v2 +w2 = w3, v3 +w3 = v1

obtained from (2.4) correspond to the three triangles in our triangulation of P5 as is seen in
Figure 2(2), where we understand that the zero vector 0 is assigned to the distinguished edge
connecting the vertices 0 and 4.

3. Catalan numbers: polygon triangulations and binary trees

There are several equivalent definitions of Catalan numbers Cn = 1
n+1

(

2n
n

)

as is provided in [22].
In this section, we recall two combinatorial models of Catalan numbers: triangulations of polygons
and binary trees.

We first recall the polygon triangulation model. Let Pn+2 denote a convex polygon in the plane
with n + 2 vertices (or convex (n + 2)-gon for simplicity). We label the vertices from 0 to n + 1
in counterclockwise order. A triangulation of Pn+2 is a decomposition of Pn+2 into a set of n
triangles by adding n − 1 diagonals of Pn+2 which do not intersect in their interiors. We also
mean by a triangulation of Pn+2 the set of the boundary edges of the n triangles.2 For example,
we present triangulations of P5 in Figure 3. The number of triangulations of Pn+2 is known to be
the Catalan number Cn.

4

3

2

1

0 4

3

2

1

0 4

3

2

1

0 4

3

2

1

0 4

3

2

1

0

Figure 3. Triangulations of P5.

The binary trees provide another combinatorial model for Catalan numbers (see [22, Theo-
rem 1.5.1]). A binary tree is defined recursively as follows. The empty set ∅ is a binary tree.
Otherwise, a binary tree has a root vertex v, a left subtree B1, and a right subtree B2, both of
which are binary trees. We draw a binary tree by putting the root vertex v at the top, the left
subtree B1 below and to the left of v, and the right subtree B2 below and to the right of v. More-
over, we draw an edge from v to the root of each nonempty Bi. Hence, each vertex of a binary tree
is connected to at most two children, which are called the left child and the right child (one or
both can be empty). See Figure 4 for binary trees with three vertices. We draw additional circles
to decorate the root vertices.

Figure 4. Binary trees with three vertices

2In [22], a triangulation of Pn+2 is defined to be a set of n− 1 diagonals of Pn+2 which do not intersect in their
interiors.
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As we already mentioned, there is a bijective correspondence between the set of triangulations T
of a convex polygon Pn+2 with n + 2 vertices and that of binary trees BT with n vertices. We
recall the construction of a bijection from triangulations T of Pn+2 to binary trees BT . Let e be
an edge connecting 0 and n + 1. (Note that one may choose any edge of the polygon to get a
bijective correspondence.) We associate a vertex of BT with a triangle in T . The root vertex v
of BT corresponds to the triangle of which e is an edge. Here, we notice that for the boundary
edge e of Pn+2, there uniquely exists a triangle containing e in the triangulation T of Pn+2. Hence,
the root vertex of BT is well-defined.

For the triangle containing the edge e, we denote the remaining edges by fL(e) and fR(e)
such that fL(e), fR(e), and e are placed counterclockwise. The vertex associated with the other
triangle containing fL(e) becomes the left child of the root vertex v of BT , and similarly, the other
triangle containing fR(e) defines the right child of the root vertex v of BT . Here, if the triangle
corresponding to v is the only triangle containing fL(e) (i.e., fL(e) is a boundary edge), then the
left subtree of v is the empty set. Similarly, we also set the right subtree of v is the empty set
if fR(e) is a boundary edge. Continuing this process, we obtain a binary tree BT . In Figure 5,
we draw a binary tree associated with a triangulation, where the triangle containing the edge e is
colored in yellow and the root of BT is decorated with an additional circle.

9

8

7

6

54

3

2

1

0 e

fR
(e
)f L

(e
)

Figure 5. A triangulated polygon and the associated binary tree.

4. Left and right trees of polygon triangulations

In this section, we introduce the left tree and the right tree of a polygon triangulation T .
Moreover, we define vectors obtained from the left and right trees, and study their properties.

Take the distinguished edge e connecting 0 and n + 1. We inductively define a map
F : T \ {e} → {L,R} as follows, where the triangulation T is regarded as the set of the bound-
ary edges of the n triangles. For the triangle containing the edge e, we denote the remaining
edges by fL(e) and fR(e) such that fL(e), fR(e), and e are placed counterclockwise. Then we set
F (fL(e)) = L and F (fR(e)) = R. When we remove the edge e from T , we obtain two triangulated
polygons, say QL and QR, with one common vertex.3 For each triangulation, we continue the
same process. That is, for the triangulation Q• having the distinguished edge f•(e), we consider
the triangle containing f•(e), and denote the remaining edges of the triangle by fL(f•(e)) and
fR(f•(e)) such that fL(f•(e)), fR(f•(e)), and f•(e) are placed counterclockwise for each • = L,R.
Then we define F (fL(f•(e))) = L and F (fR(f•(e))) = R. Continuing this process, we obtain a map
F : T \ {e} → {L,R}. Indeed, the map produces a partition of the set T \ {e}.

3If one of QL and QR, say Q•, is a single edge, then we do not apply the following process to Q•.
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Definition 4.1. Let T be a triangulation of Pn+2. We define two rooted graphs, called the left

graph T L

T and the right graph T R

T of T as follows.

• V (T L

T ) = {0, 1, . . . , n} and 0 is the root vertex; E(T L

T ) = {f ∈ T | F (f) = L}.
• V (T R

T ) = {1, 2, . . . , n+ 1} and n+ 1 is the root vertex; E(T R

T ) = {f ∈ T | F (f) = R}.

Example 4.2. Let T be a triangulation of P10 given in Figure 5, which is the following set of
edges:

T = {{i, i+ 1} | 0 ≤ i ≤ 8} ∪ {0, 9} ∪ {{0, 2}, {2, 6}, {2, 7}, {2, 9}, {3, 6}, {3, 5}, {7, 9}}.

By taking the edge e = {0, 9}, we get fL(e) = {0, 2} and fR(e) = {2, 9}, so we have F ({0, 2}) = L

and F ({2, 9}) = R. By removing the edge e, we get a triangulation QL of P3 and a triangulationQR

of P8. For the edge fL(e) = {0, 2}, we have fL({0, 2}) = {0, 1} and fR({0, 2}) = {1, 2}. On the
other hand, for the edge fR(e) = {2, 9}, we have fL({2, 9}) = {2, 7} and fR({2, 9}) = {7, 9}.
Accordingly, we get

F ({0, 1}) = F ({2, 7}) = L, F ({1, 2}) = F ({7, 9}) = R.

Continuing this process, we obtain the following.

f {0, 1} {0, 2} {2, 3} {3, 4} {3, 5} {2, 6} {2, 7} {7, 8}
F (f) L L L L L L L L

f {1, 2} {2, 9} {3, 6} {4, 5} {5, 6} {6, 7} {7, 9} {8, 9}
F (f) R R R R R R R R

We depict the left graph and the right graph of this triangulation T of P10 in Figure 6. The
left graph T L

T is colored in blue while the right graph T R

T is colored in red and dashed.

Remark 4.3. There is a bijective correspondence between the set of triangulations of Pn+2 and
that of full binary trees with 2n+1 vertices (or n+1 endpoints) as shown in [22, #5 in §2]. Here,
we say a binary tree is full if every vertex has zero or two children. For a triangulation T of Pn+2,
the corresponding full binary tree CT is obtained by adding leaves to BT as follows. Recall the
construction of BT that the left (resp. right) subtree of a vertex v becomes the empty set whenever
the triangle (in T ) corresponding to v is formed by edges fL(f), fR(f), f and the edge fL(f) (resp.
fR(f)) is on the boundary of Pn+2. To construct CT , we add the left (resp. right) leaf vertex
of a vertex v of BT if the edge fL(f) (resp. fR(f)) is on the boundary of Pn+2, where the edges
fL(f), fR(f), f form the triangle (in T ) corresponding to v. By drawing this full binary tree CT on
the triangulation T , one can see that the edges of the left graph T L

T (resp. the right graph T R

T )
intersect the edges of CT connecting a vertex and its left child (resp. its right child). See Figure 6.

From the definition of the left and the right graphs, we obtain the following lemma which proves
that the left and the right graphs are indeed trees.

Lemma 4.4. Let T be a triangulation of Pn+2. For each 1 ≤ k ≤ n, there is only one edge {kL, k}
with kL < k in the left graph T L

T and similarly there is only one edge {k, kR} with k < kR in the

right graph T R

T . Moreover, kL, k, kR are the vertices of a triangle in T . Indeed, both graphs T L

T and

T R

T are trees.

Proof. For each 1 ≤ k ≤ n, there is a unique triangle in T which has k as the middle vertex. Let
kℓ < k < kr be the vertices of the triangle. By definition, the edge {kℓ, k} is in the left tree T L

T

while the edge {k, kr} is in the right tree T R

T . Since there are exactly n edges in T L

T (resp. T R

T ),
{kℓ, k} (resp. {k, kr}) for 1 ≤ k ≤ n provide all the edges in T L

T (resp. T R

T ). This implies that kℓ
(resp. kr) is the desired kL (resp. kR).

We claim that T L

T and T R

T are trees. First consider the left graph T L

T . Since there is an edge
{kL, k} with kL < k for each 1 ≤ k ≤ n, any vertex k is connected to the root vertex 0, so the
graph T L

T is connected. Moreover, the number of edges is n. Accordingly, the left graph T L

T is
a tree. Similarly, the right graph T R

T is connected and there are n edges, so T R

T is a tree. This
proves the lemma. �
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0

Figure 6. The left graph (colored in blue) and the right graph (colored in red
and dashed) of the triangulation of P10 in Figure 5; and the corresponding full
binary tree CT . Here, we fill the vertices V (CT ) \ V (BT ) with purple.

As is proved in Lemma 4.4, both graphs T L

T and T R

T are trees. So we will call them the left tree

and the right tree, respectively.

Remark 4.5. The set of left trees of polygon triangulations provides a model for the Catalan
numbers. More precisely, as is explained in [22, #21 in §2], there is a bijective correspondence
between the set of triangulations and the set of noncrossing increasing trees on the vertex set
{0, 1, . . . , n}. The latter set is a set of trees whose vertices are arranged in increasing order around
a circle such that no edges cross in their interior, and such that all paths from the root vertex 0
are increasing. On the other hand, the set of right trees is the set of noncrossing decreasing trees
on the vertex set {1, 2, . . . , n+ 1} with the root vertex n+ 1. Indeed, we have

#{T L

T | T a triangulation of Pn+2} = #{T R

T | T a triangulation of Pn+2} = Cn.

For each k = 1, . . . , n, we define

(1) pk = ekL+1 − ek+1,
(2) qk = −ek + ekR ,

where {e1, . . . , en+1} is the standard basis of Zn+1. The vectors p1, . . . ,pn (similarly, q1, . . . ,qn)
form a basis of the sublattice M of Zn+1 where

M = {(x1, . . . , xn+1) ∈ Zn+1 | x1 + · · ·+ xn+1 = 0}.

Through the dot product on Zn+1, the dual lattice N of M can be identified with the quotient
lattice of Zn+1 by the sublattice generated by (1, . . . , 1), i.e.

N = Zn+1/Z(1, . . . , 1).

Let ̟i (i = 0, 1, . . . , n+ 1) be the quotient image of
∑i

k=1 ek in N . Then {̟1, . . . , ̟n} is a basis
of N and ̟0 = ̟n+1 = 0 by definition.

To each edge {a, b} ∈ T with a < b, we assign the vector ̟a −̟b and denote it by va when
{a, b} ∈ T R

T and wb when {a, b} ∈ T L

T , in other words,

vk = ̟k −̟kR ,

wk = ̟kL −̟k,
(4.1)

for k = 1, . . . , n by Lemma 4.4. Note that the zero vector 0 is assigned to the distinguished edge
{0, n+ 1} because ̟0 = ̟n+1 = 0.

With this understood, we have the following.

Proposition 4.6. Let 〈 , 〉 be the pairing between N andM induced from the dot product on Zn+1.

Then we have

〈vi,pj〉 = 〈wi,qj〉 = δij ,
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where δij denotes the Kronecker delta.

Proof. We prove the statement by providing 〈vi,pj〉 = δij and 〈wi,qj〉 = δij . We first consider
the pairing 〈vi,pj〉. By definition of vk, pk and ̟i, we have

(4.2) 〈vi,pj〉 = 〈̟i −̟iR , ejL+1 − ej+1〉 = 〈−(ei+1 + · · ·+ eiR), ejL+1 − ej+1〉.

On the other hand, we see from the construction of the left and right trees that

[i+ 1, iR] ∩ {jL + 1, j + 1} =

{

{j + 1} when i = j,

∅ or {jL + 1, j + 1} when i 6= j.

This together with (4.2) implies 〈vi,pj〉 = δij . The proof of the latter identity 〈wi,qj〉 = δij is
similar to the above. Indeed, by definition of wk, qk and ̟i, we have

(4.3) 〈wi,qj〉 = 〈̟iL −̟i,−ej + ejR〉 = 〈−(eiL+1 + · · ·+ ei),−ej + ejR〉.

On the other hand, we see from the construction of the left and right trees that

[iL + 1, i] ∩ {jR, j} =

{

{j} when i = j,

∅ or {jR, j} when i 6= j.

This together with (4.3) implies 〈wi,qj〉 = δij . Hence the result follows. �

Example 4.7. In the case of Example 4.2, the vectors pk,qk,vk,wk for 1 ≤ k ≤ 8 are given as
follows:

k kL < k < kR pk qk vk wk

1 0 < 1 < 2 e1 − e2 −e1 + e2 ̟1 −̟2 ̟0 −̟1 = −̟1

2 0 < 2 < 9 e1 − e3 −e2 + e9 ̟2 −̟9 = ̟2 ̟0 −̟2 = −̟2

3 2 < 3 < 6 e3 − e4 −e3 + e6 ̟3 −̟6 ̟2 −̟3

4 3 < 4 < 5 e4 − e5 −e4 + e5 ̟4 −̟5 ̟3 −̟4

5 3 < 5 < 6 e4 − e6 −e5 + e6 ̟5 −̟6 ̟3 −̟5

6 2 < 6 < 7 e3 − e7 −e6 + e7 ̟6 −̟7 ̟2 −̟6

7 2 < 7 < 9 e3 − e8 −e7 + e9 ̟7 −̟9 = ̟7 ̟2 −̟7

8 7 < 8 < 9 e8 − e9 −e8 + e9 ̟8 −̟9 = ̟8 ̟7 −̟8

See Figure 7 for the assignment of the vectors wk’s and vk’s to the left and right trees.

9

8

7

6

54

3

2

1

0

w1

w2

w3 w6

w7

w4 w5

w8

v8

v7v2

v6

v4

v1

v5

v3

Figure 7. Vectors assigned to the left and right trees of the triangulation T
of P10 in Figure 5
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5. Left and right trees and binary trees

Let T be a triangulation of Pn+2 and let vk and wk (k ∈ [n] := {1, . . . , n}) be the vectors
associated with T defined in the previous section. In this section, we observe how the sum vk+wk

(k ∈ [n]) is related to the binary tree BT (see Corollary 5.5).

Lemma 5.1. There is a unique integer k0 ∈ [n] such that vk0 +wk0 = 0 and for k ∈ [n]\{k0} we

have

(5.1) vk +wk =

{

vkL if {kL, kR} ∈ E(T R

T ),

wkR if {kL, kR} ∈ E(T L

T ).

In fact, k0 is the remaining vertex of the triangle containing the distinguished edge {0, n+ 1}.

Proof. The vertices kL, k, kR form a triangle in T by Lemma 4.4 and we have

vk +wk = ̟kL −̟kR ,

which follows from (4.1). When {kL, kR} = {0, n + 1}, we have ̟kL − ̟kR = 0 because
̟0 = ̟n+1 = 0 by definition. Otherwise, {kL, kR} is an edge of T L

T or T R

T . By Lemma 4.4,
we obtain (kL)R = kR if {kL, kR} ∈ E(T R

T ); otherwise, we obtain (kR)L = kL. Hence, again by (4.1),
we get

̟kL −̟kR =

{

vkL if {kL, kR} ∈ E(T R

T ),

wkR if {kL, kR} ∈ E(T L

T ).

This proves the lemma. �

Example 5.2. The direct computation of the sum vk + wk of the vectors vk, wk provided in
Example 4.7 shows the following:

v1 +w1 = (̟1 −̟2) + (−̟1) = w2, v2 +w2 = ̟2 + (−̟2) = 0,

v3 +w3 = (̟3 −̟6) + (̟2 −̟3) = w6, v4 +w4 = (̟4 −̟5) + (̟3 −̟4) = w5,

v5 +w5 = (̟5 −̟6) + (̟3 −̟5) = v3, v6 +w6 = (̟6 −̟7) + (̟2 −̟6) = w7,

v7 +w7 = ̟7 + (̟2 −̟7) = v2, v8 +w8 = ̟8 + (̟7 −̟8) = v7.

One can check that Lemma 5.1 holds from this computation. For example, when k = 1, for
the triangle with vertices 0 < 1 < 2, the edge {0, 2} is in the left tree, so the lemma says that
v1 +w1 = w2, which agrees with the computation above. Each relation above corresponds to a
triangle in Figure 7.

Motivated by Lemma 5.1, we define a function ϕ = ϕT : [n] \ {k0} → [n] by

(5.2) ϕ(k) =

{

kL if {kL, kR} ∈ E(T R

T ),

kR if {kL, kR} ∈ E(T L

T ),

and a sign map σ = σT : [n] \ {k0} → {+,−} by

σ(k) =

{

+ if {kL, kR} ∈ E(T R

T ),

− if {kL, kR} ∈ E(T L

T ).

Proposition 5.3. We have |ϕ−1(ℓ)| ≤ 2 for any ℓ ∈ [n], and if ϕ(k1) = ϕ(k2) for k1 6= k2, then
σ(k1) 6= σ(k2).

Proof. The vertices kL, k, kR form a triangle in T for k = 1, . . . , n by Lemma 4.4 and we often
denote the triangle by kL < k < kR in the following. Let k1 < k2 and ϕ(k1) = ϕ(k2) = ℓ. We claim
that the triangles (k1)L < k1 < (k1)R and (k2)L < k2 < (k2)R must be adjacent to the triangle
ℓL < ℓ < ℓR as depicted in Figure 8(3), which implies the former assertion |ϕ−1(ℓ)| ≤ 2 in the
proposition.

We consider the following four cases according as ϕ(ki) = (ki)L or (ki)R for i = 1, 2 by (5.2):

(1) (k1)L = ϕ(k1) = ℓ = ϕ(k2) = (k2)L;
(2) (k1)R = ϕ(k1) = ℓ = ϕ(k2) = (k2)R;
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(3) (k1)L = ϕ(k1) = ℓ = ϕ(k2) = (k2)R; or
(4) (k1)R = ϕ(k1) = ℓ = ϕ(k2) = (k2)L.

Since kL < k < kR for any k and k1 < k2, we obtain (k1)L < k1 < k2 < (k2)R, so case (3) does not
occur. For case (1), the triangles (k1)L < k1 < (k1)R and (k2)L < k2 < (k2)R share the vertex ℓ
and

{ℓ, (k1)R}, {ℓ, (k2)R} ∈ E(T R

T )

by (5.2) as depicted in Figure 8(1). However, this contradicts Lemma 4.4 since ℓ < (ki)R for
i = 1, 2 and (k1)R 6= (k2)R, so case (1) does not occur. Similarly case (2) also does not occur, see
Figure 8(2). Finally, for case (4), since {(k1)L, (k1)R} is an edge in T L

T and (k1)L < (k1)R = ℓ, we
have (k1)L = ℓL by Lemma 4.4. Similarly we have (k2)R = ℓR, see Figure 8(3). Therefore, the
triangles (k1)L < k1 < (k1)R and (k2)L < k2 < (k2)R are adjacent to the triangle ℓL < ℓ < ℓR as
depicted in Figure 8(3). This proves the claim.

Moreover, in case (4),

ϕ(k1) = ℓ = (k1)R, so σ(k1) = −, and ϕ(k2) = ℓ = (k2)L, so σ(k2) = +.

This shows the latter assertion in the proposition. �

ℓ

k1
k2

(k2)R

(k1)R

(1) (k1)L = ℓ = (k2)L

(k1)L

k1

(k2)L

k2

ℓ

(2) (k1)R = ℓ = (k2)R

(k2)R = ℓR

k2

ℓ

k1

(k1)L = ℓL

(3) (k1)R = ℓ = (k2)L

Figure 8. Triangles in the proof of Proposition 5.3

Definition 5.4. We define the (vertex-labeled) binary tree B(ϕ,σ) associated with ϕ and σ as
follows:

• V (B(ϕ,σ)) = [n] and the root vertex is the element k0 defined in Lemma 5.1.
• For each k ∈ [n] \ {k0}, its parent is ϕ(k). Moreover, if σ(k) = −, then the vertex k is the

left child of ϕ(k) and if σ(k) = +, then the vertex k is the right child of ϕ(k).

For each 1 ≤ k ≤ n, there is a unique triangle in T having k as the middle vertex by Lemma 4.4.
This provides the vertex-labeling on the binary tree BT defined in Section 3. The proof of Propo-
sition 5.3 implies the following.

Corollary 5.5. Let T be a triangulation of Pn+2 and BT the binary tree defined in Section 3.

Considering the vertex-labeling on BT given by Lemma 4.4, the binary tree BT is the same as

B(ϕ,σ) defined above as a vertex-labeled tree.

Figure 9 provides an example of the binary tree B(ϕ,σ). Comparing this binary tree B(ϕ,σ) with
the one in Figure 5, we obtain an example of Corollary 5.5.

6. Fans and toric varieties of Catalan type

Let T be a triangulation of Pn+2 and let vk and wk (k ∈ [n]) be the vectors associated with T
defined in Section 4. In this section, we provide fans and toric varieties of Catalan type using the
vectors vk,wk and study when such fans are isomorphic.

Before describing the fan corresponding to a triangulation T , we prepare one terminology. Let
Σ be a fan. A subset P of the primitive ray vectors in Σ is called a primitive collection of Σ if

Cone(P ) /∈ Σ but Cone(P \ {u}) ∈ Σ for every u ∈ P.

We denote by PC(Σ) the set of primitive collections of Σ.
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2

1

−

7

6
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5
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−

+

−

−

8

+

+

Figure 9. The vertex-labeled binary tree B(ϕ,σ) associated with the triangula-
tion T of P10 in Figure 5.

u1

u2

u3

u4

Figure 10. A fan in Example 6.1. The set of primitive collections is
{{u1,u3}, {u2,u4}}.

Example 6.1. Suppose that Σ consists of four ray vectors u1 = (1, 0), u2 = (0, 1), u3 = (−1, 0),
u4 = (−1,−1); and four maximal cones Cone(u1,u2),Cone(u1,u4),Cone(u2,u3),Cone(u3,u4) as
shown in Figure 10. Then the set of primitive collections of Σ is {{u1,u3}, {u2,u4}}.

Lemma 6.2. Let T be a triangulation of Pn+2 and let vk and wk (k ∈ [n]) be the vectors

associated with T . Define a set ΣT of cones as follows: A subset Q ⊂ {vk,wk | k ∈ [n]}
forms a cone Cone(Q) ∈ ΣT if and only if {vi,wi} 6⊂ Q for all i ∈ [n].Then ΣT is a complete

non-singular fan in N ⊗ R. Moreover, the set PC(ΣT ) of primitive collections of the fan ΣT is

PC(ΣT ) = {{vk,wk} | k ∈ [n]}.

Proof. Take a permutation u ∈ Sn such that u(k0) = 1 and u(ϕ(k)) < u(k) for any k ∈ [n] \ {k0}.
We notice that the existence of u follows from the fact that B(ϕ,σ) is a tree. Then, it follows from
Lemma 5.1 that the transition matrix A defined by

(wu−1(1), . . . ,wu−1(n)) = (vu−1(1), . . . ,vu−1(n))A

is an upper triangular n × n integer matrix with −1 as diagonals. This implies that there is an
automorphism of the lattice which sends the vectors vu−1(1), . . . ,vu−1(n) to the standard basis
vectors; and the vectors wu−1(1), . . . ,wu−1(n) to the column vectors of the matrix A. On the other
hand, it is known from [20, Proposition 3.2] that the set ΣT of cones made by such vectors always
form a complete non-singular fan. This proves the lemma. �

Example 6.3. Suppose that T is the triangulation in Figure 5. As we saw in Example 5.2, k0 = 2
and

ϕ(1) = 2, ϕ(3) = 6, ϕ(4) = 5, ϕ(5) = 3, ϕ(6) = 7, ϕ(7) = 2, ϕ(8) = 7,
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where ϕ : [8] \ {2} → [8] is defined in (5.2). If we take u = 21687534, then it satisfies
u(k0) = u(2) = 1 and u(ϕ(k)) < u(k) for any k ∈ [8] \ {2}, and the transition matrix A de-
fined by (wu−1(1), . . . ,wu−1(8)) = (vu−1(1), . . . ,vu−1(8))A is

A =

























−1 −1 1 0 1 1 0 0
0 −1 0 0 0 0 0 0
0 0 −1 1 −1 −1 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 −1 0 0
0 0 0 0 0 −1 1 1
0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 −1

























,

which is an upper triangular matrix with −1 as diagonals as we expected.

Definition 6.4. For a polygon triangulation T , we say that the fan ΣT and the corresponding
(smooth compact) toric variety X(ΣT ) are of Catalan type.

Lemma 6.2 says that the underlying simplicial complex of the fan ΣT is the boundary complex
of an n-dimensional cross-polytope. It is known from [20, Corollary 3.5] that such a fan is indeed
the normal fan of an n-cube, so X(ΣT ) is projective.

Let Σ be a complete non-singular fan and let PC(Σ) be the primitive collections. For a primitive
collection P = {u′

1, . . . ,u
′
ℓ}, there exists a unique cone σ such that u′

1 + · · ·+ u′
ℓ is in the interior

of σ. Let u1, . . . ,ur be the primitive generators of σ. Then, there exist positive integers a1, . . . , ar
such that

(6.1) u′
1 + · · ·+ u′

ℓ = a1u1 + · · ·+ arur.

(If the sum is the zero vector, then the set {u1, . . . ,ur} is assumed to be empty.) We call the
linear relation in (6.1) the primitive relation corresponding to the primitive collection P ; and we
define the degree degP of the primitive collection P as the number ℓ − (a1 + · · · + ar). Using
Batyrev’s criterion [2] for a smooth projective toric variety, we obtain the following.

Lemma 6.5. The toric variety X(ΣT ) is Fano.

Proof. Let P be any primitive collection of ΣT . Then P = {vk,wk} for some k ∈ [n] by Lemma 6.2
and degP > 0 by Lemma 5.1, indeed degP = 2 when k = k0 and 1 otherwise. Therefore, X(ΣT )
is Fano by Batyrev’s criterion [2, Proposition 2.3.6]. �

We say that two binary trees B and B′ are isomorphic as unordered rooted trees if there is a
bijection f : V (B) → V (B′) between the set of vertices which sends the root of B to the root of B′

and induces a bijection between the set of edges (which does not need to preserve the left and
right children). We note that a binary tree obtained from B by interchanging the left and right
children of a vertex is isomorphic to B and any isomorphism is obtained by a composition of this
operation at vertices.

Theorem 6.6. Let T and T ′ be triangulations of Pn+2. Then the fans ΣT and ΣT ′ are isomorphic

(equivalently, the toric varieties X(ΣT ) and X(ΣT ′) are isomorphic) if and only if the binary

trees BT and BT ′ are isomorphic as unordered rooted trees.

Proof. We first notice that both fans ΣT and ΣT ′ define Fano toric varieties by Lemma 6.5.
Recall from [2, Proposition 2.1.8, Theorem 2.2.4] that two Fano toric varieties X(Σ) and X(Σ′)
for Σ ⊂ N ⊗ R and Σ′ ⊂ N ′ ⊗ R are isomorphic if and only if there exists a lattice isomorphism
Φ: N → N ′ providing a bijection between Σ and Σ′ such that Φ preserves each primitive collection
and their relation.

We denote the lattice and vectors associated with T ′ by putting a prime. If the fans ΣT
and ΣT ′ are isomorphic, then there is an isomorphism Φ between the lattices N and N ′ preserving
the cones and primitive collections in ΣT and ΣT ′ . Therefore, for each i ∈ [n], there exists an
index η(i) ∈ [n] such that {Φ(vi),Φ(wi)} = {v′

η(i),w
′
η(i)} holds, so Φ(vi) is either v

′
η(j) or w′

η(j).

Since Φ: N → N ′ is an isomorphism, η : [n] → [n] is a bijection. Note that for a triangulation T ,
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the binary tree BT encodes the information of primitive relations in ΣT by Corollary 5.5. Indeed,
for each k ∈ [n] \ {k0}, we have a primitive relation

vk +wk =

{

vϕ(k) if k is the left child of ϕ(k),

wϕ(k) if k is the right child of ϕ(k).

Since Φ preserves the primitive relation, the bijection η provides an isomorphism between the
binary trees BT and BT ′ as unordered rooted trees.

Suppose that two binary trees BT and BT ′ are isomorphic as unordered rooted trees. We
already notice that any isomorphism between unordered rooted trees is obtained by a composition
of interchanging the left and right children of a vertex. Accordingly, we have a lattice isomorphism
preserving each primitive collection and their relation. Hence two fans ΣT and ΣT ′ are isomorphic
and the result follows. �

By Theorem 6.6, the number of isomorphism classes of n-dimensional toric varieties of Catalan
type is the same as that of unordered binary trees with n vertices. It is known that the latter is
the Wedderburn–Etherington number bn+1 mentioned in the introduction.

Corollary 6.7. The number of isomorphism classes of n-dimensional toric varieties of Catalan

type is the Wedderburn–Etherington number bn+1.

Remark 6.8. A smooth projective toric variety associated with the normal fan of a non-singular
lattice n-cube is called a Bott manifold. A Bott manifold can also be obtained as the total space
of an iterated CP 1-bundle over a point called a Bott tower (see [10]). So, our toric variety X(ΣT )
is a Bott manifold and Fano. A Fano Bott manifold is not necessarily of Catalan type, i.e. not
necessarily of the form X(ΣT ). However, one can associate a graph, called a signed rooted forest,
with a Fano Bott manifold, and Fano Bott manifolds can be classified in terms of signed rooted
forests (see [13, 4]). As one may expect, the signed rooted forest associated with X(ΣT ) is the
binary tree BT = B(ϕ,σ) with the sign σ(k) assigned to each edge {k, ϕ(k)}, see Figure 9.

7. Permutations, polygon triangulations, and Bruhat interval polytopes

As explained in Section 3, there is a canonical bijection between the set of binary trees with n
vertices and that of triangulations of Pn+2. In this section, we will explain how a binary tree
having n vertices, equivalently a triangulation of Pn+2, is associated with a permutation in Sn.
The permutation is also associated with a Bruhat interval polytope, which is combinatorially
equivalent to an n-cube in our case. The vectors v1, . . . ,vn,w1, . . . ,wn introduced in Section 4
turn out to be the facet normal vectors of the Bruhat interval polytope.

We recall a surjection from the set Sn of permutations on [n] to that of binary trees with n
vertices (cf. [19, Appendix A]). To a permutation u ∈ Sn, we associate a binary tree ψ(u) by finding
the smallest number in the one-line notation of u inductively. We start with the one-line notation
u(1)u(2) · · · u(n) of u. The smallest integer, say u(p), in the sequence (which is 1 here) becomes
the root of the binary tree ψ(u) with n vertices. Then the subsequence u(1) · · · u(p−1) will provide
the left subtree of the root vertex, and the subsequence u(p+ 1) · · · u(n) will provide the right
subtree of the root vertex. More precisely, the smallest integer in the sequence u(1) · · · u(p− 1)
presents the root of a binary tree with p − 1 vertices, and it is the left child of the root vertex
of ψ(u). On the other hand, the smallest integer in the sequence u(p+ 1) · · · u(n) presents the
root of a binary tree with n − p vertices, and it is the right child of the root vertex of ψ(u).
Continuing this process, we get the binary tree ψ(u).

The binary tree ψ(u) can also be obtained by drawing vertices on the n × n grid. For a
permutation u ∈ Sn, we put n vertices on (u(i), i) position for i = 1, . . . , n. (Here, we read the
coordinates from top to bottom and left to right, like matrix coordinates.) The vertex (1, u−1(1))
is placed in the first row, and it presents the root. We measure a distance between two vertices
by taking the difference in row position. By connecting the left (resp. right) closest point of the
root vertex, we obtain the left (resp. right) child. Continuing this process, we obtain the binary
tree ψ(u).
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For example, let u = 31687524. The binary tree ψ(u) has the root at (1, 2) and the root has two
children such that the left subtree is given by u(1) = 3, which is the tree consisting of one vertex,
that is, the left child of the root is (3, 1). The right subtree is given by u(3) u(4) · · · u(8) = 687524,
which provides a binary tree with 6 vertices and the number 2 will present the root vertex, i.e.,
the right child of the vertex (1, 2) is (2, 7). We depict the 8 × 8 grid and the corresponding
tree ψ(31687524) in Figure 11; the binary trees ψ(u) of permutations u ∈ S3 in Figure 12.
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Figure 11. The binary tree ψ(u) for u = 31687524
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Figure 12. Permutations u ∈ S3 and the corresponding binary trees ψ(u).

Because there is a canonical bijection between the set of binary trees with n vertices and that
of triangulations of Pn+2, we identify them so that we obtain the following.

Proposition 7.1 (cf. [19, Appendix A]). The assignment

ψ : Sn ։ {binary trees with n vertices} = {triangulations of Pn+2}

is surjective.

We denote by si the simple transposition in Sn+1 interchanging i and i + 1 for i = 1, . . . , n.
We also denote by ti,j (i < j) the transposition interchanging two numbers i and j, so si = ti,i+1.
For w ∈ Sn+1, an expression w = si1 · · · siℓ is called reduced if it is minimal among all such
expressions. We denote by ℓ(w) the length of any reduced expression of w and call it the length ofw.
The Bruhat order is a partial order on Sn+1 defined to be v ≤ w if a reduced decomposition of v is
a substring of some reduced decomposition of w. We recall from [3, §3.2] that for permutations v
and w in Sn+1, we have

(7.1) v ≤ w ⇐⇒ {v(1), . . . , v(i)}↑ ≤ {w(1), . . . , w(i)}↑ for all i = 1, . . . , n.

Here, for a set {a1, . . . , ai} of distinct integers, {a1, . . . , ai}↑ denotes the ordered i-tuple obtained
from the set {a1, . . . , ai} by arranging its elements in ascending order. For two ordered tuples
(a1, . . . , ai) and (b1, . . . , bi) of distinct numbers, we define (a1, . . . , ai) ≤ (b1, . . . , bi) if ak ≤ bk for
all 1 ≤ k ≤ i.

For elements v and w in Sn+1 with v ≤ w, the Bruhat interval polytope Qv,w is defined as
follows:

Qv,w = Conv{(z(1), z(2), . . . , z(n+ 1)) ∈ Rn+1 | v ≤ z ≤ w}.
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It is known that

(7.2) dimR Qv,w ≤ ℓ(w)− ℓ(v)

and Qv,w is called toric if the equality above holds, i.e. dimR Qv,w = ℓ(w)− ℓ(v). (We will see in
the next section that Qv,w is toric if and only if the corresponding Richardson variety is a toric
variety.) The Bruhat interval polytope Qv,w is combinatorially equivalent to a cube if and only if
it is toric and simple ([24], [18]). There are many pairs (v, w) such that Qv,w is combinatorially
equivalent to a cube. In the following, we will consider such pairs associated with a permutation
in Sn.

For a permutation u ∈ Sn, we define permutations uh and ut in Sn+1 by

uh(i) =

{

1 if i = 1,

u(i− 1) + 1 if 2 ≤ i ≤ n+ 1,
ut(i) =

{

u(i) if 1 ≤ i ≤ n,

n+ 1 if i = n+ 1.

For example, if u = 2314, then uh = 13425 and ut = 23145. As one may see, the permutation uh
is obtained from u by putting the additional number 1 at the head while ut is obtained from u by
putting the additional number n + 1 at the tail. In the notation, h stands for head and t stands
for tail.

We set
s(1, n) = s1s2 · · · sn, s(n, 1) = snsn−1 · · · s1.

One notes that if a pair (v, w) of elements in Sn+1 satisfies

w = vs(1, n) (resp. w = vs(n, 1)) and ℓ(w) = ℓ(v) + n,

then v(1) = 1 (resp. v(n+ 1) = n+ 1), so that

(7.3) (v, w) = (uh, uhs(1, n)) (resp. (v, w) = (ut, uts(n, 1))) for some u ∈ Sn.

It is shown in [12, §5 and §6] (see also [18]) that the Bruhat interval polytope Qv,w for the
pair (v, w) in (7.3) is combinatorially equivalent to an n-cube and our concern in this section is
the pairs in (7.3). We first consider the former case (v, w) = (uh, uhs(1, n)).

Proposition 7.2. Let u ∈ Sn and let T = ψ(u) be the corresponding triangulation of Pn+2. We

denote by T L

T and T R

T the left and right trees of T as before. Then the edges of T L

T correspond to

the atoms of the Bruhat interval [uh, uhs(1, n)] while the edges of T R

T correspond to the coatoms of

the Bruhat interval [uh, uhs(1, n)]. More precisely,

{(i, j) | uh ⋖ uhti,j ≤ uhs(1, n)} = {(i, j) | {i− 1, j − 1} ∈ E(T L

T )},

{(i, j) | uh ≤ uhs(1, n)ti,j ⋖ uhs(1, n)} = {(i, j) | {i, j} ∈ E(T R

T )}.

Here, x⋖ y means that x < y and there does not exist z such that x < z < y.

Proof. It follows from [18, §7 and §8] that the atoms and coatoms of the Bruhat interval
[v, w] = [uh, uhs(1, n)] are given as follows:

(1) For each j = 2, . . . , n+ 1, there exists a unique i such that

i < j, v(i) < v(j), v(k) > v(j) for any i < k < j.

The element vti,j is an atom of the interval [v, w]. The n elements obtained in this way
form the set of atoms of [v, w].

(2) For each i = 1, . . . , n, there exists a unique j such that

i < j, w(i) > w(j), w(i) < w(k) for any i < k < j.

The element wti,j is a coatom of the interval [v, w]. The n elements obtained in this way
form the set of coatoms of [v, w].

We compare this with the description of the edges E(T L

T ) and E(T R

T ). Let k = u−1(1), that is,
v(k + 1) = 2. Then, by the above description, {1, k + 1} provides an atom. Moreover, we have
w−1(n + 1) = 1 and w−1(2) = k. This implies that {k, n+ 1} provides a coatom. On the other
hand, consider the binary tree ψ(u) and the corresponding polygon triangulation T . By definition
of ψ(u) and the association between rooted binary trees and polygon triangulations described in
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Section 3, we have a triangle {0, k, n+1} (having a distinguished edge {0, n+1}) in the (n+2)-gon
triangulation T . Indeed, {0, k} ∈ E(T L

T ) and {k, n + 1} ∈ E(T R

T ). Continuing this process, i.e.,
choosing the minimum at each step, inductively for permutations given by u(1) · · ·u(k − 1) and
u(k + 1) · · ·u(n), we get the corresponding triangulation of the (n+ 2)-gon and this provides the
set of edges of the left tree and that of the right tree. Hence the result follows. �

Example 7.3. Let u = 31687524. Then, the triangulation T = ψ(u) is as shown in Figure 6,
v = uh = 142798635 and w = uhs(1, 8) = 427986351. There are 8 atoms of the interval [v, w] given
by vti,j where (i, j) is one of the following pairs:

(1, 2), (1, 3), (3, 4), (4, 5), (4, 6), (3, 7), (3, 8), (8, 9).

These pairs provide the edges of T L

T by subtracting 1 from every component, which are

(0, 1), (0, 2), (2, 3), (3, 4), (3, 5), (2, 6), (2, 7), (7, 8).

On the other hand, there are 8 coatoms given by wti,j where (i, j) is one of the following pairs:

(1, 2), (2, 9), (3, 6), (4, 5), (5, 6), (6, 7), (7, 9), (8, 9).

These pairs are the edges of T R

T .

Theorem 7.4. For u ∈ Sn, the normal fan of the Bruhat interval polytope Quh,uhs(1,n) is the

fan Σψ(u) associated with the triangulation ψ(u) of Pn+2.

Proof. As remarked before, Quh,uhs(1,n) is combinatorially equivalent to an n-cube. The vertices
of Quh,uhs(1,n) correspond to the elements in the Bruhat interval [uh, uhs(1, n)] and the n edges
emanating from the vertex uh (resp. uhs(1, n)) of Quh,uhs(1,n) correspond to the atoms (resp.
coatoms) of [uh, uhs(1, n)]. Therefore, it follows from Proposition 7.2 and the definition of a Bruhat
interval polytope that the primitive edge vectors emanating from the vertex uh (resp. uhs(1, n))
are given by p1, . . . ,pn (resp. q1, . . . ,qn) defined in Section 4, where the triangulation T of Pn+2

is ψ(u). Their dual vectors are the vectors v1, . . . ,vn (resp. w1, . . . ,wn) by Proposition 4.6,
so these vectors are ray generators of the normal fan of Quh,uhs(1,n) which is combinatorially
equivalent to an n-cube. To complete the proof of the theorem, we need to see which pairs of
facets of Quh,uhs(1,n) are in an opposite position.

The n atoms and coatoms of the Bruhat interval [uh, uhs(1, n)] are

atoms: uht∗,2, uht∗,3, . . . , uht∗,n+1,

coatoms: uhs(1, n)t1,∗, uhs(1, n)t2,∗, . . . , uhs(1, n)tn,∗,

where ∗ means an appropriate number. We claim that

(7.4) uht∗,j � uhs(1, n)tj−1,∗ for j = 2, . . . , n+ 1.

We may assume that uht∗,j = uhti,j and uhs(1, n)tj−1,∗ = uhs(1, n)tj−1,k for appropriate
1 ≤ i < j ≤ n + 1 and 1 ≤ j − 1 < k ≤ n + 1. We compare the first j − 1 entries of uhti,j
and uhs(1, n)tj−1,k:

uhti,j : uh(1), uh(2), . . . , uh(i − 1), uh(j), uh(i+ 1), . . . , uh(j − 2) uh(j − 1), . . .
uhs(1, n)tj−1,k : uh(2), uh(3), . . . , uh(i), uh(i+ 1), uh(i+ 2), . . . , uh(j − 1) uh(k + 1), . . .

Here, we have that uh(i) < uh(j) since uhti,j > uh. Also, we get

uh(j) = uhs(1, n)(j − 1) > uhs(1, n)(k) = uh(k + 1)

since uhs(1, n)tj−1,k < uhs(1, n). Therefore, we have that

{uh(1), uh(j)}↑ � {uh(i), uh(k + 1)}↑ .

This proves the claim (7.4) together with (7.1).
The claim (7.4) implies that the set of primitive collections of the normal fan of Quh,uhs(1,n) is

{{vk,wk} | k ∈ [n]}. This together with Lemma 6.2 proves the theorem. �

As for the latter case (v, w) = (ut, uts(n, 1)), we have the following.
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Theorem 7.5. For u ∈ Sn, the normal fan of the Bruhat interval polytope Qut,uts(n,1) is isomor-

phic to the fan Σψ(w0uw0) associated with the triangulation ψ(w0uw0) of Pn+2, where w0 denotes

the longest element in Sn.

Proof. First, we note that Qv,w and Qw0vw0,w0ww0
are isomorphic as lattice polytopes for any

v, w ∈ Sn+1 with v ≤ w, where the same notation w0 as above is used for the longest element
in Sn+1. Indeed, the isomorphism is given by the linear automorphism of Rn+1 defined by

(x1, . . . , xn+1) → (n+ 2− xn+1, . . . , n+ 2− x1)

because (w0zw0)(i) = n+ 2− z(n+ 2− i) for any z ∈ Sn+1 and i = 1, . . . , n+ 1. Therefore, the
normal fan of Qv,w is isomorphic to that of Qw0vw0,w0ww0

.
On the other hand, since w0utw0 = (w0uw0)h as is easily checked, we have

(w0utw0, w0uts(n, 1)w0) = ((w0uw0)h, (w0uw0)hs(1, n)).

This together with Theorem 7.4 implies the theorem. �

Remark 7.6. For u ∈ Sn, binary trees ψ(u) and ψ(uw0) are isomorphic as unordered rooted trees.
This is because since (uw0)(i) = u(n+1− i) for i = 1. . . . , n, ψ(uw0) is the binary tree obtained by
reflecting ψ(u) about the vertical line passing through the root. This operation corresponds to the
reflection of Pn+2 through the line which cuts the edge joining the vertices 0 and n+ 1 vertically.
For example, this vertical line for P10 and the reflection are given in Figure 13. Therefore, the
fan Σψ(w0uw0) in Theorem 7.5 is isomorphic to the fan Σψ(w0u) associated with ψ(w0u). However,
ψ(u) and ψ(w0u) are not isomorphic as unordered rooted trees in general, so the fans Σψ(u) and
Σψ(w0uw0) are not isomorphic in general.

(1) T and B (2) Reflection image of T and B

Figure 13. Reflection of a triangulated polygon and a binary tree.

Remark 7.7. For each triangulation T of Pn+2, there exists a Bruhat interval polytope whose
normal fan is the fan ΣT by the surjectivity of ψ and Theorems 7.4 and 7.5. On the other hand,
for n ≤ 4, whenever the normal fan of a Bruhat interval polytope Qv,w is of Catalan type, the
pair (v, w) is of the form (uh, uhs(1, n)) or (ut, uts(n, 1)). We do not know whether this is true for
any n.

Remark 7.8. One may wonder whether the normal fan of a Bruhat interval polytope Qv,w is of
Catalan type whenever Qv,w is combinatorially equivalent to a cube. However, this is not true. For
example, when v is the identity element and w = s3s1s2 = 2413, the Bruhat interval polytope Qv,w
is combinatorially equivalent to a 3-cube and its normal fan has ray generators

v1 = ̟1, v2 = ̟2, v3 = ̟3,
w1 = −̟1, w2 = ̟1 −̟2 +̟3, w3 = −̟3.

Since v2 +w2 = v1 + v3, the primitive relations do not satisfy even the Fano condition, so it is
not of Catalan type.
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8. Smooth toric Richardson varieties of Catalan type

In this section, we interpret the results obtained in the previous sections in terms of Richardson
varieties. We first recall the definition of Richardson varieties and their properties. Let G =
GLn+1(C), B ⊂ G the subgroup consisting of upper triangular matrices, and T ⊂ B the subgroup
consisting of diagonal matrices. The homogeneous space G/B is called the flag variety which can
be identified with

Fℓn+1 := {({0} ( V1 ( V2 ( · · · ( Vn+1 = Cn+1) | dimC Vi = i for i = 1, . . . , n+ 1}.

The left multiplication by T on G induces the T-action on G/B. The set of T-fixed points in G/B
bijectively corresponds to the symmetric group Sn+1 on [n+ 1]. Indeed, for each w ∈ Sn+1, we
have

ew := ({0} ( 〈ew(1)〉 ( 〈ew(1), ew(2)〉 ( · · · ( Cn+1) ∈ (Fℓn+1)
T

which is called a coordinate flag. Here, e1, . . . , en+1 are the standard basis vectors of Cn+1. There
is a moment map

(8.1) µ : G/B → Rn+1

which sends the coordinate flag ew to the point (w−1(1), . . . , w−1(n+ 1)) in Rn+1 (see [18, §3]).

For an element w ∈ Sn+1, we denote by Xw the Schubert variety BwB/B in the flag vari-
ety G/B. For a pair (v, w) of elements in Sn+1 with v ≤ w, the Richardson variety Xv

w is defined
by the intersection Xw ∩ w0Xw0v. For example, Xe

w = Xw and Xe
w0

= Xw0
= G/B, where e

denotes the identity element in Sn+1. Each Richardson variety is a T-invariant irreducible variety
and

(8.2) dimCX
v
w = ℓ(w) − ℓ(v).

Through the correspondence ew → w, the set of T-fixed points in Xv
w corresponds to the Bruhat

interval [v, w] = {z ∈ Sn+1 | v ≤ z ≤ w} (cf. [7, §10.5]). Therefore, by the convexity theorem due
to Atiyah [1] (or Guillemin–Sternberg [11]), we have

(8.3) µ(Xv
w) = Conv{µ(z) | v ≤ z ≤ w} = Qv−1,w−1

because µ(ez) = (z−1(1), . . . , z−1(n + 1)) for any z ∈ Sn+1. Recall from [24, Proposition 7.12]
that the Xv

w is a toric variety with respect to the T-action if and only if

dimR Qv−1,w−1 = ℓ(w−1)− ℓ(v−1) = ℓ(w) − ℓ(v).

Therefore, when Xv
w is toric, its fan is the normal fan of Qv−1,w−1 .

Every toric Schubert variety is smooth but not all toric Richardson varieties are smooth
(see [18]). Smooth toric Richardson varieties are characterized in term of their moment poly-
topes as follows.

Proposition 8.1 ([18, Proposition 1.2, Theorem 1.3, Corollary 5.8]). A Richardson variety Xv
w

is toric and smooth if and only if Qv−1,w−1 is combinatorially equivalent to a cube (equivalently,
Qv,w is combinatorially equivalent to a cube).

We say that a smooth toric Richardson variety Xv
w is of Catalan type if it is of Catalan type

as a toric variety, in other words, if the normal fan of Qv−1,w−1 is of Catalan type. Since any
n-dimensional fan of Catalan type is realized as the normal fan of Qv−1,w−1 with
(v−1, w−1) = (uh, uhs(1, n)) for some u ∈ Sn by Theorem 7.4, we obtain the following as a
direct consequence of Corollary 6.7.

Corollary 8.2. The number of isomorphism classes of n-dimensional smooth toric Richardson

varieties of Catalan type is the Wedderburn–Etherington number bn+1.

We shall consider a wider family of smooth toric Richardson varieties. Since µ(Xv
w) = Qv−1,w−1 ,

we shall use Xv−1

w−1 instead of Xv
w so that µ(Xv−1

w−1) = Qv,w and we can apply the results in the
previous sections or in [18] directly.
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It is known that Qe,w is toric if and only if w is a product of distinct simple transpositions.
Thus, it is natural to study a pair (v, w) such that

(8.4) v−1w = sj1sj2 · · · sjm with ℓ(w)− ℓ(v) = m,

where j1, . . . , jm are mutually distinct. Note that the pair (v, w) treated in the previous section
is a special case where v−1w = s(1, n) or s(n, 1). It is shown in [18, Proposition 7.1] that Qv,w for
the pair (v, w) in (8.4) is toric. However, such Qv,w is not necessarily combinatorially equivalent
to a cube (see [18, §7]) although it is combinatorially equivalent to a cube when v = e. We recall
from [18, §7] a sufficient condition such that Qv,w is combinatorially equivalent to a cube. To state
it, we set up some notation and terminology.

For p and q in [n], we set

s(p, q) =

{

spsp+1 · · · sq when p ≤ q,

spsp−1 · · · sq when p ≥ q.

For each s(p, q), we set
p̄ = min{p, q}, q̄ = max{p, q}.

We note that if j1, . . . , jm ∈ [n] are mutually distinct, then we have a minimal expression

(8.5) sj1sj2 · · · sjm = s(p1, q1)s(p2, q2) · · · s(pr, qr),

where the intervals [p̄1, q̄1], . . . , [p̄r, q̄r] are disjoint and r is the minimum among such expressions.
We say that the product sj1sj2 · · · sjm in (8.5) is proper if no two intervals among [p̄1, q̄1], . . . , [p̄r, q̄r]
are adjacent.

Example 8.3. (1) Suppose that w = s1s2s1s4s5s6 and v = s1. Then v−1w = s(2, 1)s(4, 6)
and it is proper because [1, 2] and [4, 6] are not adjacent.

(2) Suppose that w = s1s2s1s3s4 and v = s1. Then v
−1w = s(2, 1)s(3, 4) and it is not proper

because [1, 2] and [3, 4] are adjacent.

For 1 ≤ p < q ≤ n, we define
π[p,q] : Sn+1 → Sq−p+2

by sending w = w(1)w(2) · · ·w(n + 1) ∈ Sn+1 to u = u(1)u(2) · · ·u(q − p + 2) such that the
subsequence w(p)w(p+1) · · ·w(q+1) has the same pattern as u. Here, we say that two sequences
of numbers a(1)a(2) · · ·a(k) and b(1)b(2) · · · b(k) have the same pattern if for all 1 ≤ i < j ≤ k,
a(i) < a(j) if and only if b(i) < b(j).

Example 8.4. Let v = 173254689 and w = vs(1)s(4, 3)s(6, 8) = 715326894. We get (p̄1, q̄1) =
(1, 1), (p̄2, q̄2) = (3, 4), and (p̄3, q̄3) = (6, 8). Since v(1)v(2) = 17, v(3)v(4)v(5) = 325, and
v(6)v(7)v(8)v(9) = 4689, we have

π[1,1](v) = 12, π[3,4](v) = 213, π[6,8](v) = 1234.

Similarly, we get
π[1,1](w) = 21, π[3,4](w) = 321, π[6,8](w) = 2341.

Then one can see that
Qv,w = Q12,21 × Q213,321 × Q1234,2341,

where each factor is of Catalan type (meaning that its normal fan is of Catalan type).

The observation above holds in general. Indeed, we have the following.

Proposition 8.5 ([18, Lemma 6.1 and Proposition 7.3]). Suppose that the minimal expression

of sj1sj2 · · · sjm in (8.5) is proper. Then, for any pair (v, w) such that v−1w = sj1sj2 · · · sjm and

ℓ(w) − ℓ(v) = m, the Bruhat interval polytope Qv,w is combinatorially equivalent to an m-cube.

More precisely, if we set (vi, wi) = (π[p̄i,q̄i](v), π[p̄i,q̄i](w)) for i = 1, . . . , r, then we have

Qv,w =
r
∏

i=1

Qvi,wi
and hence Xv−1

w−1 =
r
∏

i=1

X
v
−1

i

w
−1

i

,

where each factor is of Catalan type.
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Proof. Recall from [18, Proposition 7.3] that if the minimal expression of sj1sj2 · · · sjm in (8.5) is
proper, then any pair (v, w) in the statement defines the Bruhat interval polytope Qv,w which is
combinatorially equivalent to an m-cube. This proves the former statement.

Furthermore, the Bruhat interval polytope Qv,w is toric by [18, Theorem 5.7], that is, dimQv,w =
ℓ(w)− ℓ(v). On the other hand, by [24, Theorem 4.1], every face of a Bruhat interval polytope is
itself a Bruhat interval polytope; moreover, a Bruhat interval polytope Qx,y forms a face of a toric
Bruhat interval polytope Qv,w for any [x, y] ⊂ [v, w] by [18, Theorem 5.1]. Therefore, the face
structure of the toric Bruhat interval Qv,w considered in the statement is decided by its Bruhat
subintervals. Because the minimal expression is proper, we have

[x, y] ⊂ [v, w] ⇐⇒ [π[p̄i,q̄i](x), π[p̄i,q̄i](y)] ⊂ [vi, wi] for all i = 1, . . . , r.

This proves the latter statement. �

Example 8.6. Let v and w be a pair in Example 8.4. Then

(v1, w1) = (12, 21) = ((1)
h
, (1)

h
s(1, 1)),

(v2, w2) = (213, 321) = ((21)
t
, (21)

t
s(2, 1)),

(v3, w3) = (1234, 2341) = ((123)
h
, (123)

h
s(1, 3)).

Therefore, it follows from Proposition 8.5, Theorems 7.4 and 7.5 that

Xv−1

w−1
∼= X(Σψ(1))×X(Σψ(21))×X(Σψ(123)).

The binary forest ψ(1) ⊔ ψ(21) ⊔ ψ(123) is shown as follows.

Using the sequence {bn} of the Wedderburn–Etherington numbers, we can also enumerate the

number of isomorphism classes of Richardson varieties Xv−1

w−1 such that v−1w has a proper minimal
expression as follows.

Theorem 8.7. Let fm be the number of isomorphism classes of m-dimensional smooth toric

Richardson varieties Xv−1

w−1 with v, w ∈ Sn+1 such that v−1w has a proper minimal expression of

distinct m simple transpositions, where we assume n≫ m. Then

(8.6)
∑

m≥0

fmx
m =

1
∏

k>0(1− xk)bk+1
.

Proof. Since bk+1 is equal to the number of unordered binary trees having k vertices, the right-
hand side of (8.6) is the generating function of the number of unordered binary forests having
m vertices. So, it is enough to show that there is a bijective correspondence between the set of
isomorphism classes of m-dimensional smooth toric Richardson varieties in the statement and the
set of unordered binary forests having m vertices.

The correspondence, denoted by Ψ, from the isomorphism classes of k-dimensional smooth
toric Richardson varieties of Catalan type to the set of unordered binary tree having k vertices
is bijective by Corollary 8.2. On the other hand, each smooth toric Richardson variety in the
statement is a product of toric Richardson varieties of Catalan type by Proposition 8.5. Therefore,
the bijective correspondence Ψ induces a correspondence Ψ̄ from the set of isomorphism classes of
m-dimensional Richardson varieties in the statement to the set of unordered binary forests having
m vertices. The correspondence Ψ̄ is clearly injective. Using the surjectivity of Ψ and a natural
embedding

Sk1 × · · · ×Skr → Sn+1,

where k1 + · · ·+ kr = n+ 1, one can see that Ψ̄ is surjective if we pick a sufficiently large n. �
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The sequence {fm} is called Piet Hut’s “coat-hanger” sequence, which counts unlabeled rooted
forests with m edges such that each vertex has at most two children and the degree of each root is
one (see Sequence A088325 in OEIS [21]). We present fm for small values of m in Table 2. Also,
we draw all unordered binary forests having m vertices for m = 3, 4 in Figure 14.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

fm 1 2 4 8 16 34 71 153 332 730 1617 3620 8148 18473

Table 2. Piet Hut’s “coat-hanger” sequence fm for small values of m

(1) m = 3

(2) m = 4

Figure 14. Unordered binary forests having m vertices for m = 3 and 4. We
decorate the roots with double circles.

Example 8.8. For each binary forest B = B1 ⊔ · · · ⊔ Br having r connected components in

Figure 14, we provide a pair (v, w) such that Xv−1

w−1
∼= X(ΣB1

)× · · · ×X(ΣBr
).

(1) For m = 3, from left to right, each pair (v, w) is given by

(1234, 2341), (1324, 3241), (12345, 23154), (123456, 214365)

(2) For m = 4, from left to right, each pair (v, w) is given by

(12345, 23451), (12435, 24351), (13524, 35241), (123456, 231564),

(123456, 234165), (132456, 324165), (1234567, 2315476), (12345678, 21436587).

We close this section by addressing some questions. We proved in Lemma 6.5 that every
Richardson variety of Catalan type are smooth toric Fano varieties. Moreover, any smooth toric
Fano Richardson variety Xv

w for v, w ∈ S4 is a product of toric varieties of Catalan type.4 It is
natural to ask the following.

Question 8.9. Is any smooth toric Fano Richardson variety a product of toric varieties of Catalan

type?

Flag varieties and Richardson varieties are defined for any Lie type so it would be interesting
to extend the investigation of the connection between the combinatorics and toric Richardson
varieties to other Lie types.

Question 8.10. Does there exist a combinatorial object which describes and classifies toric Richard-

son varieties in other Lie types for the pairs (v, w) in (1.1)?

4We have checked this using the computer program SageMath [23].

http://oeis.org/A088325
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