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Abstract
We show that the number of partial triangulations of a set of n points on the plane is at least the

(n− 2)-nd Catalan number. This is tight for convex n-gons. We also describe all the equality cases.

LetM be a set of points on the plane and letM ′ be the set of all vertices of the convex hull conv(M) ofM .
A full triangulation of M is a triangulation of conv(M) such that the set of vertices of the triangulation
is M . A partial triangulation is a triangulation of conv(M) such that the set of its vertices V satisfies
M ′ ⊂ V ⊂M .

Let Wn be the number of (full or partial) triangulations of a convex n-gon, and put W2 = 1 for
convenience. It is easy to see that Wn = cn−2, where ci is the i-th Catalan number (see Lemma 3 for a
proof). Recall that cn = 1

n+1

(
2n
n

)
, cn+1 =

∑
i=0 cicn−i, and that the first few numbers starting from c0

are {1, 1, 2, 5, 14, 42, . . .}.
The following conjecture was raised by Emo Welzl during the Oberwolfach meeting on Discrete ge-

ometry in September 2020 (cf. Problem 10 in [1]):

Conjecture. Convex n-gons minimize the number of partial triangulations among any point sets in
general position. In other words, any set of n points on the plane in general position has at least Wn

partial triangulations.

Interestingly, convex n-gons are not the only examples of point sets with minimum number of partial
triangulations. Another n-point set with Wn−2 partial triangulations is the so-called double circle: a set
consisting of a convex n/2-gon and n/2 points chosen in the interior of the convex hull, each correspond-
ing to one of the sides of the outer n/2-gon and very close to the midpoint of the respective side. Double
circles are the examples with the smallest known number of full triangulations: 12n/2 for n-point sets.
We refer to a paper of E. Welzl [3] for an account of related counting problems, and to a paper of U.
Wagner and E. Welzl [2] for the study of flip graphs of full and partial triangulations.

In this short note, we show that the above conjecture is indeed true and determine all possible equality
cases. For a set of points M and a point P ∈ M we say that P is an interior point of M if it does not
lie on the convex hull of M . We say that in interior point P is close to a side QR of the convex hull of
M , if any triangle P ′QR with P ′ ∈ M contains P. Note that, for any side QR of the convex hull of M ,
there may be at most one point close to it.

Definition. We call a set of points M quasi-convex if each interior point of M is close to some side of
conv(M).

Theorem 1. Any set of n points on the plane in general position has at least Wn partial triangulations.
Moreover, a set of n points has exactly Wn triangulations if and only if it is quasi-convex.

That is, all extremal examples in some sense “interpolate” between a set in convex position and the
double circle.

In the next section, we will give the proof of the conjecture without the equality cases. In Section 2
we will give the proof of the theorem with the equality cases. The two proofs are similar, but the second
builds on the first one and is a bit more technical. This is the reason we give both proofs.
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Figure 1: Point X is to the left of the point Y .

1 Proof of the conjecture
Lemma 1. For integer x, y > 2 we have

WxWy 6Wx+y−2.

Proof. Let us rewrite the inequality using Catalan numbers. Let α = x − 2, β = y − 2. We have
WxWy = cαcβ , Wx+y−2 = cα+β , and the inequality states cαcβ ≤ cα+β . By one of the definitions of
Catalan numbers, cα and cβ are the numbers of balanced bracket sequences of α and β pairs of brackets,
respectively. A concatenation of two such bracket sequences is, in turn, a balanced bracket sequence of
α+ β brackets. There are exactly cα+β such bracket sequences and each two sequences obtained by such
concatenation are clearly different (for fixed α and β). This concludes the proof.

Corollary 1. For integer k1, k2, . . . , km > 2 we have

Wk1 . . .Wkm 6Wk1+...+km−2(m−1).

For this section we tacitly assume that all the angles that we work with are smaller than π. Given
points A,B,C on the plane, consider the angle BAC and points X,Y inside the angle, all 5 points being
in general position. We say that a point X ∈ M is to the left of a point Y ∈ M if ∠BAX < ∠BAY ,
and is to the right if ∠BAX > ∠BAY (cf. Fig. 1). The terminology comes from the situation when the
bisector of ∠BAC is a vertical ray going downwards, B is on the left ray of the angle, and C is on the
right ray. Still, note that it is not the same as stating that the x-coordinate of X is less than that of Y .
In what follows, we use the term polyline for a polygonal chain (broken line).

Fix an angle ABC and set of points M inside the angle, all points being in general position. The set
M = {P1, P2, . . . , Pn} is enumerated left to right. Also, put P0 = B, Pn+1 = C for convenience. Consider
an arbitrary polyline L = Pa0Pa1 . . . Pam+1

, a0 = 0 < a1 < . . . < am < am+1 = n+ 1, going from left to
right.

The next definition is describing the position of points in M with respect to L. Let us first give it
informally. Imagine that there are nails in each of the points M ∪ {B,C} and there is a rubber band
stretched from B go C that breaks exactly in the points of L. We are going to define a characteristic
vector of L, which for each point of P encodes whether the rubber band passes above or below the nail.

Let us give a formal definition. Fix a point Pi ∈M . Let Pal and Par be the two points of the polyline
L such that al < i < ar and r − l is minimal possible. Depending on whether or not P is itself a vertex
of the polyline, r − l is either 2 or 1.

Let P be a vertex from M \L. We say that the polyline passes above P if AP intersects PalPar , and
passes below P if AP does not intersect PalPar . Let P be a vertex from L. Then the definition is opposite
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(and it is useful to keep in mind the rubber band analogy here). We say that the polyline passes above P
if the segment AP does not intersect with the segment PalPar , and passes below P if AP intersects with
PalPar . Finally, we define the characteristic vector χL ∈ {0, 1}n of L, where χi = 1 iff L passes above Pi.

In what follows, we tacitly assume that a polyline L in a given angle XY Z starts with X and ends
with Z. The internal vertices of a polyline are its vertices excluding X,Z.

Lemma 2. Fix an angle BAC and a set of points M = {P1, P2, . . . , Pn} inside the angle. Then any
vector in {0, 1}n is a characteristic vector of exactly one polyline L in M .

Proof. Observe that there are exactly 2n different polylines and 2n different characteristic vectors. Thus,
it is sufficient to prove that each vector from {0, 1}n is a characteristic vector for some polyline.

Using the rubber band intuition, the proof is obvious: pass the band above/below the i-th nail
depending on the value of χi. Then we are naturally obtaining some polyline in M . Let us give a formal
proof.

We prove the statement by induction on n. For n = 0 the statement is evident: the polyline BC is
the single possible polyline.

Assume that the statement holds for m < n, and let us prove it for n. Let M be a set of n points
inside the angle BAC. Take χ ∈ {0, 1}n and let us construct the corresponding polyline. Let Pk ∈ M
be the point such that the angle ABPk is the smallest among ABPi, i = 1, . . . , n. We consider two cases
depending on χk.

Let χk = 0. Then the polyline should pass below Pk. Consider a vector χ′ obtained by erasing the
k’th coordinate of χ. By induction, applied to the angle BAC, the set M ′ = M \ Pk, and the vector χ′,
there exists a polyline L such that χ′ is its characteristic vector (relative to M ′). Moreover, each polyline
for M ′ clearly passes below Pk and thus, when thought of as a polyline for M , the k-th component of the
characteristic vector of L equals 0. This completes the proof in this case.

Let χk = 1. The required polyline should pass above Pk. Let χ1, χ2 be the vectors consisting of
the first k − 1 and the last n − k coordinates of χ, respectively. By induction, for the angle BAPk
and the set of points M1 = {P1, P2, . . . , Pk−1} there exists a polyline with a characteristic vector equal
to χ1. Similarly, for the angle PkAC and the set M2 = {Pk+1, Pk+2, . . . , Pn} there exists a polyline
with characteristic vector χ2. By the choice of Pk, the union of these polylines passes above Pk and,
consequently, its characteristic vector with respect to BAC equals χ.

Proof of the conjecture. Consider a set of points M . We prove the theorem by induction on the number
of points of M . The case when the points are in convex position serves as the base of induction.

We call the points of M inside conv(M) red, and the vertices of the convex hull black (here and in
what follows, the colors are for convenience of notation only). Fix a black point A. For each red point P
choose a ‘green’ point P ′ on the ray AP so that the black and the green points are in convex position. In
order to prove the theorem, it is sufficient to show that the number of triangulations of a convex polygon
formed by the black and green points (we call these triangulations green) is not greater than the number
of partial triangulations of M (we call these triangulations red).

Obviously, any red triangulation contains the edges of conv(M), and similarly for the green triangula-
tions. We are going to compare the number of red and green triangulations subclass by subclass, defined
by the exact set of edges drawn from A.

Let B and C be the vertices on the convex hull of M that are adjacent to A. Fix an arbitrary subset
S of green and black points. Consider the green triangulations in which A is adjacent precisely to the
elements of S. In those triangulations, neighboring points of S (in the left to right order according to the
angle BAC) are obviously adjacent. These edges together form a polyline L1 from B to C that has S as
the set of internal vertices. Also note that L1 passes below the points from S and passes above all other
green or black points. To finish the green triangulation, we have to triangulate several non-overlapping
polygons below L1. The number of such triangulations is a product of several numbers Wx.

By Lemma 2, there exists a polyline L2 from B to C with red and black vertices inside the angle BAC
that has the same characteristic vector as L1. (Actually, L1 and L2 share the same set of black vertices.)
Let T be the set of internal vertices of L2. In the red triangulations, we draw an edge between A and a
red vertex if and only if it belongs to T (cf. Fig. 2). This definition, combined with Lemma 2, guarantees
that the set of triangulations that we construct shall be distinct for distinct S. Indeed, we can graphically
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Figure 2: An example of the correspondence between green triangulations and red triangulations for one
maximal cap.

represent it as follows: Ngreen(A) = S ↔ L1 ↔ χ(L1) = χ(L2) ↔ L2 ↔ T = Nred(A), where Ncolor(A)
is the set of neighbors of A within the subpolygon in the triangulation of the corresponding color, and
the element on one side of any arrow uniquely determines the element on the other side. Note that if
we think of the polylines L1 and L2 as of rubber bands, we have that a red point and the corresponding
green point are either both above their rubber bands or both below them.

The last step of the proof is to show that there are at least as many red triangulations with Nred(A) =
T as green triangulations with Ngreen(A) = S. Let us cut L2 into the maximal upwards convex (cap)
sections that share endpoints. Consider one such section D0, . . . , Dm (see Figure 2 for an illustration).
Note that the points D0 and Dm are elements of S ∪ {B,C}. Indeed, if D0 (Dm) is different from B,C,
then L2 passes below D0 by the fact that the section is a maximal cap. At the same time, L1 passes
below a green or a black vertex iff it is in S. Define a set M ′ that consists of D0, Dm and the set of
all red or black points s.t. L2 passes above them (note that L2 passes above any black point inside the
angle D0ADm). The set conv(M ′) is bounded by L2 on one side, and so we can use any triangulation
of M ′ in the red triangulation. Assume that there are c black and a green points (strictly) inside the
angle D0ADm, and that b green points among them belong to S. (Note that there are no black points
that lie inside this angle and that belong to S because of the convexity of D0, . . . , Dm.) Within the angle
D0ADm, the partially constructed green triangulation consists of b+ 1 non-overlapping convex polygons
that we need to further triangulate. Let k1, . . . , kb+1 be the sizes of these polygons. Each of the b points
from S belongs to two of these polygons, and so k1 + . . . + kb+1 = a + b + c + 2. Using Lemma 1, the
number of ways to triangulate those polygons is

b+1∏
i=1

Wki 6Wk1+...+kb+1−2b = Wa−b+c+2 . (1)

On the other hand, inside the angleD0ADm there are exactly a red points, of which b points correspond to
the green points from S. They are above L2 and thus do not belong toM ′. This gives |M ′| = a−b+c+2.
Thus, by the induction statement, the number of partial red triangulations of M ′ is at least Wa−b+c+2,
which is at least the number of green triangulations inside the angle D0ADm.

Apply this argument on each convex section of L2. Once we fix a particular triangulation of each of
the aforementioned green polygons, the green triangulation is complete. At the same time, even after
fixing the triangulations of all M ′, the red triangulation may be incomplete: for instance, there may
be a polygon below the convex hulls of M ′s that was not yet triangulated. But there is at least one
way to finish the triangulation, and the obtained triangulations will be distinct for distinct incomplete
triangulations.
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Thus, the number of green triangulations with Ngreen(A) = S is at most the number of red triangu-
lations with Nred(A) = T . Moreover, for different sets S, the families of corresponding triangulations,
both red and green, are disjoint. Summing up the numbers of the green and the corresponding red trian-
gulations, we obtain that the number of red triangulations is at least the number of green triangulations,
which concludes the proof.

2 Extremal point sets: proof of Theorem 1

We first prove that the quasi-convex sets are indeed extremal.

Remark. LetM be an quasi-convex set. Recall that each side AiBi of the convex hull has at most 1 point
Pi that is close to it. We therefore can define a polygonM with the set of verticesM and a natural order
of the vertices: the vertices of conv(M) appear in the counter-clockwise order, and the vertex Pi that is
close to a side AiBi appears between the vertices Ai and Bi. In what follows, we callM a quasi-convex
polygon.

Lemma 3. Let M be a set of n points in a general position. If M is quasi-convex then the number of
partial triangulations of M is equal to Wn.

Proof. We prove the statement by induction on n. The base case is n = 3. Recall that by convention
W2 = 1 as well. First note that the following formula is a restatement of the formula for the Catalan
numbers in terms of W ’s:

Wn =

n−1∑
k=2

WkWn−k+1.

Next, let us show that the number of triangulations of a set M of n points in convex position is equal
to Wn for all n ≥ 4. Indeed, pick any side AB of the convex hull. In any triangulation, there should be
a unique vertex P that forms a triangle with AB. Triangle PAB splits M into two convex sets M1,M2,
each of size at least 2. If |M1| = k then |M2| = n − k + 1. By induction, the number of triangulations
of M1 is Wk, and that of M2 is Wn−k+1. Of course, any triangulation of M1 can be composed with any
triangulation ofM2 in order to get a triangulation ofM . Varying the choice of P, we get that the number
of triangulations of M is

∑n−1
k=2 WkWn−k+1, which is equal to Wn.

In what follows, we assume that M has at least 1 interior point.
Let A, B be some non-neighbor vertices ofM. Let us prove that the segment AB is fully contained

inside the polygonM. It is sufficient to show that AB does not intersect any side ofM. This is obvious
in the case when both vertices of the side belong to the convex hull of M . Now assume that CD is
a side of M such that C is an interior point of M and D is a vertex of its convex hull. Denote E
the other vertex of the side of conv(M) to which C is close. Then, by the definition of a close point,
C ∈ conv({B,D,E})∩ conv({A,D,E}). But AB cannot be contained in both triangles. Indeed, w.l.o.g.
assume that the distance from A to the line DE is at most the distance from B to the line DE. Then
the distance from any point of AB to DE is at least as big as the distance from A to the line DE, and
thus AB is not contained in ADE. At the same time, the segment CD lies inside ADE, which means
that the triangle ADE “separates” CD and AB. Therefore, CD does not intersect with AB. Since this
is valid for any choice of CD, we conclude that AB lies fully insideM.

Fix an interior point P of M . Let A, B be the two neighbor points of P in M. Let us consider a
partial triangulation ofM. If P is an isolated vertex of the triangulation then this triangulation is also a
partial triangulation ofM \{P}, and by induction there areMn−1 of those. Note thatWn−1 = Wn−1W2.

If P is not an isolated vertex then, by the closeness of P , PA and PB must be among the edges of
the triangulation. Let C be a vertex of a triangle in the triangulation that contains AP . The triangle
ACP dividesM into two polygonsM1 andM2. Each of these polygons are not self-intersecting by the
conclusion derived two paragraphs above. Denote by M1, M2 the corresponding point sets. Let us prove
that M1 and M2 are quasi-convex. First we note that interior points different from P,C remain close to
the corresponding sides. The fact that P is contained in the triangle ABC implies that P is a vertex of
the convex hull of M2. Thus, the only potential problematic vertex is C itself. If C is a vertex of the
convex hull of M then both M1 and M2 are quasi-convex. If C is a close point to some side DE then C
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Figure 3: Point X is to the left of the point Y .

is inside the triangle PDE. Therefore, C is a vertex of the convex hull of M1 and M2, which means that
M1 and M2 are quasi-convex again.

If M1 consists of k points then M2 consists of n− k + 1 points. Moreover, note that, by varying the
choice of C, k can take each value from 2 to n− 2 (M2 has at least 3 vertices: B,C, P ).

By the inductive assumption, the number of partial triangulation of M , where P is not an isolated
vertex andM1 consists of k vertices, is Wk ·Wn−k+1. Adding the number of partial triangulations with
P isolated, we get that the total number of partial triangulations of M is equal to

Wn−1 +

n−2∑
k=2

WkWn−k+1 =

n−1∑
k=2

WkWn−k+1 = Wn,

which concludes the proof.

In what follows, we show that if M contains interior points that are not close to any of the sides of
the convex hull, then the number of partial triangulations of M is strictly bigger than Wn. We start with
a set of definitions and a key lemma that are analogous to that in Section 1.

Consider some points A,X, Y in general position on the plane, so that neither AX nor AY is vertical.
We say that a point X ∈M is to the left of a point Y ∈M if, when rotating a vertical ray emanating

from A in the counter-clockwise direction, we first hit X and then Y (cf. Figure 3).
In what follows, we use the term polygon for a closed polygonal chain. It will play the same role as

polylines in the first proof. We only consider polygons with vertices P1, . . . , Pn such that for any two
consecutive vertices Pi, Pi+1 (indices taken modulo n) we need to rotate the ray APi by less than π
counter-clockwise in order to hit Pi+1. We call such polygons good, but often omit it, writing simply a
“polygon”).

Fix a point A and a set of pointsM , all points being in general position. The setM = {P1, P2, . . . , Pn}
is enumerated left to right. We also assume that no ray APi is vertical. Consider an arbitrary polygon
L = Pa1 . . . Pam , enumerated from left to right.

The next definition is describing the position of points in M with respect to L. Let us first give
it informally. Imagine that there are nails in each of the points M and there is a closed rubber band
stretched around A that breaks exactly in the points of L. We are going to define a characteristic vector
of L, which for each point of P encodes whether the rubber band passes closer to A than the nail or
farther from A than the nail.
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Let us give a formal definition. Fix a point Pi ∈ M . Let Pl(i) and Pr(i) be the two points of the
polygon L (i.e., l(i), r(i) ∈ {a1, . . . , am}) such that l(i) < i < r(i) and r(i)− l(i) is minimal possible, all
indices taken modulo n.

Let Pi be a vertex from M \ L. We say that the polyline passes above Pi if ∠Pl(i)PiPr(i) < π, and
passes below Pi if ∠Pl(i)PiPr(i) > π, where here and below we measure the angles that contain A. Let
Pi be a vertex from L. Then the definition is opposite (and it is useful to keep in mind the rubber
band analogy here). We say that the polygon passes above Pi if ∠Pl(i)PiPr(i) > π and passes below Pi
if ∠Pl(i)PiPr(i) < π. Finally, we define the characteristic vector χL ∈ {0, 1}n of L, where χi = 1 iff L
passes above Pi.

Consider the map Ψ : {polygons on M} → {0, 1}n that maps a polygon to its characteristic vector.

Lemma 4. Fix a point A and a set of points M = {P1, P2, . . . , Pn} inside the angle with properties as
above. Then Ψ is an injection. Moreover, the image of Ψ stays the same if we replace the set M by
another set of points M ′ = {P ′1, . . . , P ′n}, where P ′i lies on the ray APi for each i = 1, . . . , n.

Proof. Using the rubber band intuition, the proof is simple. For the first part, if we pass the band
above/below the i-th nail depending on the value of χi and then tighten it, then we clearly get a unique
polygon (it may not necessarily be good though). Once we got a good polygon, we can move the nails
along the rays emanating from A. It may change the vertices of the polygon, but it will not change the
characteristic vector of the polygon, and the polygon will stay good. Let us give a formal proof.

We first prove the second part of the statement. In order to do so, it is sufficient to show the following:
whenever Ψ(M) contains a certain characteristic vector, this vector is also contained in Ψ(M ′), where
M ′ = {P1, . . . , Pi−1, P

′
i , Pi+1, . . . , Pn} and P ′i lies on the ray APi.

We start with the set M and fix a polygon L that corresponds to some characteristic vector χ. We
move the point Pi towards P ′i . Note that the characteristic vector of the polygon changes only if for
some Pj the points Pj , Pl(j) and Pr(j) become collinear. (This is easy to see because the definition of
above/below the polygon for a given point Pj depends on the positioning of P`(j) and Pr(j) only, and
thus, in order to see the change in the characteristic vector of L, we need the collinearity to happen for
such three points for some j.) Moreover, one of these three points must be Pi. Such collinearities will
occur only finitely many times while moving Pi to P ′i , and so it is enough to check that the vector χ
is a characteristic vector of some polyline for the new point set, obtained after Pi passing through this
collinearity. Thus, abusing notation, let us assume that Pi is coincides with the position of the point just
before the collinearity and P ′i coincides with the position of the point just after the collinearity.

We also denote P ′k := Pk if k 6= i for convenience. We consider some cases depending on the position of
the points. Let χj be the j′th coordinate of χ. If χj = 1 and Pj is a vertex of L then ∠Pl(j)PjPr(j) < π and
∠P ′l(j)P

′
jP
′
r(j) > π. In this case, we remove the vertex Pj from the vertices of L, obtaining a new polygon

L′. It is easy to see that the characteristic vector of L′ (as a polygon on M ′) coincides with χ. Indeed,
the j-th coordinate coincides because of the modification we made, and the other coordinates stay the
same because we chose Pi, P ′i sufficiently close to the collinearity position (and thus no other collinearity
happened while moving from Pi to P ′i ). If χj = 1 and Pj is not a vertex of L then ∠Pl(j)PjPr(j) > π and
∠P ′l(j)P

′
jP
′
r(j) < π. In this case, we add the vertex Pj to the vertices of L, obtaining a new polygon L′.

The analysis is analogous. The cases when χj = 0 are treated analogously. This completes the proof of
the second part.

We move on to the proof of the first part of the lemma. We first note that, when replacing M by
M ′ as in the second part of the lemma, any “good” polygon stays good (this only depends on the angles
PaiAPai+1

, but these angles stay the same when moving the points along the rays emanating from A).
Thus, when we move points along the rays, neither the set of good polygons nor the image of Ψ change.
By moving the points along the rays, we can achieve thatM is in convex position, and thus it is sufficient
to prove the first part of the lemma for such sets M .

Assume that M is in convex position and take two different polygons L1, L2 on the vertices of M .
Going left to right, let Pai be the first point that is the vertex of exactly one polygon of those two, say, of
L1. Using convexity of M , the point Pai lies above the polygon L1 and below the polygon L2, and thus
these two polygons have different characteristic vectors. This proves the injectivity of Ψ.

The first and key step in the proof of Theorem 1 is to reduce the situation to the case when we have
one internal point. Assume that A ∈ M is an internal point that is not close to any side of conv(M).
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Recall that we call the points of the convex hull of M black. We are going to apply the same argument
to A as it was done in the proof of the conjecture. More precisely, we replace each interior (red) point
P ∈ M \ {A} by another (green) point P ′, so that all green and black points are in convex position.
Denote byM ′ the set of all green and black points together with A. The only difference between this and
the previous argument is that we apply Lemma 4 instead of Lemma 2. Lemma 4 guarantees the bijection
between good green polygons and good red polygons, and this is the only property that we actually use.
The rest of the proof stays precisely the same, and we conclude that the number of partial triangulations
of M is at least the number of partial triangulations of M ′.

The next step is the following lemma.

Lemma 5. A is not close to any side of the convex hull of M ′.

Proof. Assume that A is close to a side PQ of conv(M ′), and P precedes Q in the counter-clockwise
order. We consider two cases depending on the color of P,Q. If one of these points is green, then consider
the black points P ′, Q′ on the convex hull such that P ′ is the closest black point that precedes P in the
counter-clockwise order (which may coincide with P ) and, similarly, Q′ is the closest black point that
succeeds Q in the counter-clockwise order (which, again, may coincide with Q). Note that PQ separates
A from P ′Q′ because A was contained in the convex hull of the black points, and thus either PP ′Q′ or
P ′Q′Q is a triangle that does not contain A.

Next, assume that both P and Q are black. Since A was not close to PQ in M , there was a red
point U ∈ M such that A was not contained in the triangle UPQ. This implies that one of the lines
UQ, UP separated A from UPQ. W.l.o.g., assume that this was UQ. Denote by U ′ the green point that
corresponds to U . But then the line U ′Q separates A from the triangle U ′PQ, and thus A is is not close
to PQ.

The last part of the proof is to show that if M ′ is a set of n points with exactly 1 interior point A
that is not close to any side of the convex hull, then the number of partial triangulations of M ′ is strictly
bigger than Wn.

Assume that the vertices of M ′ are P1, . . . , Pn−1. First, note that if a point X is a close to some side
PiPi+1 if and only if it is contained in the triangles PiPi+1Pi+2 and Pi−1PiPi+1 (with indices modulo
n− 1). Thus, for any 4 consecutive vertices Pi−1, Pi, Pi+1, Pi+2 A is either not contained in Pi−1PiPi+1

or in PiPi+1Pi+2. Fix any vertex Pi of the convex hull of M ′ such that A does not lie in Pi−1PiPi+1,
and assume that the ray PiA intersects the side PjPj+1 of the convex hull of M ′. By symmetry, we may
assume that A is not contained in Pj−1PjPj+1. Let A′ be a point on the ray PiA just past the segment
PjPj+1. In particular, P1, . . . , Pn−1, A

′ are in convex position.
Recall that in the proof of the conjecture, we constructed an injection from the set of green triangu-

lations to the set of red triangulations. Therefore, in order to show that M ′ has strictly more than Wn

partial triangulations, it is sufficient to exhibit a partial red triangulation that is not an image of any
green triangulation.

Consider the red triangulation, in which Pi is only connected to Pi−1, Pi+1 and A, and in which A is
connected to all Ps, s ∈ [n − 1] \ {j}. We additionally draw an edge Pj−1Pj+1. We claim that this red
triangulation is not an image of any green triangulation.

Indeed, in the proof of the conjecture we split the neighbors of Pi into convex parts, which in our
case would be Pi−1A and APi+1. In the green triangulation, we will then triangulate the polygons
Pi−1Pi−2 . . . PjA

′ and Pi+1Pi+2 . . . Pj+1A independently, which corresponds to red triangulations that
each contain the edges PjA and Pj+1A (and a triangle PjPj+1A). However, there is no edge PjA in our
triangulation, which proves the claim and concludes the proof of Theorem 1.
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