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Sum-distinguishing number of sparse hypergraphs

Maria Axenovich∗, Yair Caro†, and Raphael Yuster ‡

Abstract

A vertex labeling of a hypergraph is sum distinguishing if it uses positive integers and the

sums of labels taken over the distinct hyperedges are distinct. Let s(H) be the smallest integer

N such that there is a sum-distinguishing labeling of H with each label at most N . The largest

value of s(H) over all hypergraphs on n vertices and m hyperedges is denoted s(n,m). We

prove that s(n,m) is almost-quadratic in m as long as m is not too large. More precisely, the

following holds: If n ≤ m ≤ nO(1) then

s(n,m) =
m2

w(m)
,

where w(m) is a function that goes to infinity and is smaller than any polynomial in m.

The parameter s(n,m) has close connections to several other graph and hypergraph func-

tions, such as the irregularity strength of hypergraphs. Our result has several applications,

notably:

• We answer a question of Gyárfás et al. whether there are n-vertex hypergraphs with

irregularity strength greater than 2n. In fact we show that there are n-vertex hypergraphs

with irregularity strength at least n2−o(1).

• In addition, our results imply that s∗(n) = n2/w(n) where s∗(n) is the distinguishing

closed-neighborhood number, i.e., the smallest integer N such that any n-vertex graph

allows for a vertex labeling with positive integers at most N so that the sums of labels on

distinct closed neighborhoods of vertices are distinct.

1 Introduction

For a hypergraph H = (V,E), we say that a labeling f : V → N is sum-distinguishing or simply

distinguishing if s(e) 6= s(e′) for any two distinct hyperedges e, e′ ∈ E, where s(e) =
∑

v∈e f(v).

Let s(H) be the smallest integer N such that there is a distinguishing labeling of H with each label

at most N . Note that s(H) is well-defined by assigning vertex labels equal to distinct powers of

2. Distinguishing labelings can be viewed as number-theoretic constructions extending Sidon sets

to non-complete, non-uniform hypergraphs. Using common notation, a Bh[1]-Sidon set is a set X

of integers such that for any integer q, there is at most one subset X ′ of X, |X ′| = h, so that the
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sum of elements from X ′ is q. So, a Bh[1]-Sidon set corresponds to a distinguishing labeling of a

complete h-uniform hypergraph. On the other hand, distinguishing labelings of hypergraphs are

closely connected to several “distinguishing” type parameters of graphs and hypergraphs that we

discuss in more detail later. Let

s(n,m) = max{s(H) : |V (H)| = n, |E(H)| = m} .

Namely, s(n,m) is the largest value of s(H) over all hypergraphs on n vertices and m hyperedges.

Observe first that for the largest possible value of m, namely m = 2n− 1 (corresponding to the full

hypergraph consisting of all possible hyperedges), it trivially holds that s(n, 2n − 1) = 2n−1. So,

in particular, we have that s(n,m) is linear in the number of edges whenever m = Θ(2n). On the

other hand, for general m, a standard probabilistic argument shows that s(n,m) = O(m2). So, it

seems of interest to study the dependence of s(n,m) on m whenever the hypergraph is relatively

sparse. Our main result does just that. We prove, perhaps surprisingly, that for hypergraphs with

polynomially many edges, s(n,m) is neither linear nor quadratic. In fact, we prove that in this

regime, s(n,m) is almost-quadratic in m.

Theorem 1. If n ≤ m ≤ nO(1) then

s(n,m) =
m2

w(m)
,

where w(m) is a function that goes to infinity and is smaller than any polynomial in m. More

formally, for any C > 0, ǫ > 0, there is n0 such that for any n > n0, and any m satisfying

n ≤ m ≤ n1/ǫ, we have that m2−ǫ ≤ s(n,m) ≤ m2/C.

The upper bound in the proof of Theorem 1 relies on several probabilistic arguments, some of

which are rather delicate. For the lower bound, we extend an approach of Bollobás and Pikhurko

[8] used for 2-uniform hypergraphs (i.e. graphs) and their distinguishing labelings.

Our main result has several applications that we next describe. Our first application is to the

problem of distinguishing the vertices of a graph by sums of labels on closed neighborhoods. For

a graph G = (V,E), and a vertex v ∈ V (G), the open neighborhood of v is N(v) = {u ∈ V (G) :

uv ∈ E(G)}; the closed neighborhood of v is N [v] = {v} ∪N(v). For a vertex labeling f of G and

v ∈ V (G), let s∗(v) = s∗f (v) =
∑

x∈N [v] f(x). The labeling f is called vertex sum-distinguishing if

it uses positive integers and s∗(v) 6= s∗(u) for any u, v ∈ V (G) such that N [u] 6= N [v]. Let s∗(G)

be the smallest integer k such that there is a vertex sum-distinguishing labeling of G with a largest

label k and let s∗(n) be the maximum of s∗(G) taken over all graphs with n vertices.

Let s(n) = s(n, n). We observe that the parameters s(n) and s∗(n) are closely connected.

Indeed, for a graph G = (V,E) consider a hypergraph H = HG on a vertex set V with hyperedges

corresponding to the closed neighbourhoods of vertices of G. We see that s∗(G) = s(H). Note that

the number of hyperedges in HG is at most n. The following result is an immediate consequence

of Theorem 1 and Lemma 1, in which we prove that s(n/2) ≤ s∗(n) ≤ s(n). Thus, we obtain:
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Corollary 1. We have that

s∗(n) =
n2

w(n)
,

where w(n) is a function that goes to infinity and is smaller than any polynomial in n. More

formally, for any C > 0, ǫ > 0, there is n0 such that for any n > n0, n
2−ǫ ≤ s∗(n) ≤ n2/C.

The proof of Theorem 1 (and hence Corollary 1) yields an efficient randomized algorithm for

finding a corresponding labeling. For graphs with given maximum and minimum degrees, we

provide a more specific result which also yields an efficient deterministic algorithm.

Theorem 2. Let G be a nonempty n-vertex graph with maximum degree ∆, minimum degree δ,

and the largest number of vertices with pairwise distinct closed neighborhoods equal to n′. Let d(v)

denote the degree of v. Then

n′ + δ

∆ + 1
≤ s∗(G) ≤ max{(n − d(v) − 1)(d(v) + 1) + 2 : v ∈ V (G)} ≤ (∆ + 1)n .

Observe that the upper bound of Theorem 2 is weaker than the upper bound in Corollary 1

whenever ∆ = Θ(n). In fact, it only gives s∗(n) ≤ n2/4 + 2. As a final result concerning s∗, we

consider the case where the graph is a tree. For a tree T and its vertex u, let L(u) be the set of

leaves adjacent to u. Let L(T ) = max{|L(u)| : u ∈ V (T )}.

Theorem 3. Let T be a tree with n ≥ 3 vertices. Then s∗(T ) ≤ 2n − 2 − L(T ), moreover this

bound is tight for stars.

The parameter s(n) is closely related to the notion of irregularity strength of hypergraphs. There

is extensive literature on irregularity strengths of graphs, a notion first introduced (for graphs) by

Chartrand et al. [9], see also for example Nierhoff [13] and Blokhuis and Szőnyi [7], Balister et al.

[4], as well as the survey by Gallian [10]. To define irregularity strength, consider an edge-labeling

f of a hypergraph H with positive integers and for each vertex x compute s(x), the sum of labels

over all hyperedges containing x. The labeling is irregular, if the sums s are distinct for all vertices.

The smallest value of a largest label used in an irregular labeling of H is denoted irr(H) and

irr(n) is the largest value of irr(H) over all n-vertex hypergraphs. Note that irr(H) corresponds

to s(H∗), where H∗ is the dual hypergraph of H. Recall that for a hypergraph H = (V,E), the

dual hypergraph H∗ has vertex set E and edge set {{e ∈ E : e ∋ x} : x ∈ V }. Gyárfás et al.

[11] provided upper bounds on irr(H) and stated that “it is not known whether irr(n) ≥ 2n.” A

consequence of our result gives a better lower bound irr(n) ≥ n2−ǫ for any positive ǫ and sufficiently

large n, and in particular, answers their question.

Theorem 4. For any ǫ > 0, there is n0 such that for any n > n0, irr(n) ≥ n2−ǫ.

We mention a few other closely related problems that have been studied. There is yet another

parameter, similar to s(H), introduced by Bhattacharya et al. [6] and called a discriminator where

the goal is to assign non-negative integer labels to vertices of a hypergraph such that the sums

on the hyperedges are distinct, and positive. While our original motivation was to distinguish
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the vertices of a graph via sums on closed neighborhoods, there is a similar problem restricted

to pairs of vertices that are adjacent, i.e., so-called adjacent vertex sum-distinguishing number,

that was studied for closed neighborhoods by Axenovich et al. [3] and for open neighborhoods by

Bartnicki et al. [5], who use also an unpublished observation by Norin. These above-mentioned

adjacency-dependent parameters can however be upper-bounded by a function of the maximum

degree, independent of the number of vertices of the graph. Finally, we mention that distinguishing

labelings of graphs were also studied by Ahmad et al. [1].

The rest of the paper is structured as follows. In the next section we prove several lemmas

that are required for our theorems. In particular, Lemma 1 comparing s∗(n) and s(n), Lemma 2,

which is the main ingredient in the lower bound on s(n,m) as it implies the existence of a certain

(randomly constructed) hypergraph H with large s(H), and Lemma 3 about the distribution of

the sum of discrete random variables, that we use for the upper bound on s(n,m). In Section 3

we prove Theorem 1, our main result. Section 4 contains the proofs of Theorems 2, 3, and 4. The

final section consists of concluding remarks and open problems.

2 Lemmas

This section consists of several lemmas facilitating the proof of our main theorems. For a positive

integer x, we use the notation [x] = {1, . . . , x}. Our first lemma relates s∗(n), s(n), and s∗(2n).

Lemma 1. For any n ≥ 2, we have s∗(n) ≤ s(n) ≤ s∗(2n).

Proof. Let G be an n-vertex graph with s∗(G) = s∗(n). As mentioned in the introduction, con-

sider a hypergraph H on the vertex set V = V (G) with hypergedges corresponding to the closed

neighborhoods of vertices in G. Since a labeling f of V is vertex sum-distinguishing in G if and

only if it distinguishing in H, we have that s∗(n) = s∗(G) = s(H) ≤ s(n) 1. On the other hand,

consider a hypergraph H on a vertex set B = {b1, . . . , bn} and with n hyperedges e1, . . . , en, such

that s(H) = s(n). Let G be a graph on vertex set A ∪ B, where A = {a1, . . . , an}, A ∩ B = ∅,

where A induces a clique with n vertices, B induces an independent set, and aibj ∈ E(G) if and

only if bj ∈ ei. Then we see that if a labeling f is vertex sum-distinguishing in G then, restricted

to B, it is distinguishing in H. Consider such an optimal f , i.e. with a largest label s∗(G). Since

G has 2n vertices, s∗(G) ≤ s∗(2n). Thus, s(n) = s(H) ≤ s∗(G) ≤ s∗(2n).

Lemma 2. For any fixed r ≥ 2, there is a constant c = c(r) such that for every positive integer N

it holds that there exists an r-uniform hypergraph H on N vertices such that

|E(H)| = Θ(N (r+1)/2
√

logN), and

s(H) ≥ cN r.

Proof. We are going to extend a result of Bollobás and Pikhurko [8] on distinguishing labelings of

graphs to r-uniform hypergraphs. Also note that the inequalities in the lemma’s statement allow

1Observe that H might have less than n edges since not all closed neighborhoods of G are necessarily distinct,
but since adding edges to a hypergraph cannot decrease s, we indeed have s(H) ≤ s(n)
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us to assume, whenever necessary, that N is sufficiently large as a function of r.

Proof idea: We provide a lower bound on s(H) for a random r-uniform hypergraph H ∼
Gr(N, p), i.e., a hypergraph on a vertex set [N ], such that hypergedges are chosen independently

with probability p. In order to show that s(H) > s for a chosen s, we shall consider a fixed labeling

f of [N ] and denote by p′ the probability that f is distinguishing for H. Now, if it holds that

p′ = o(s−N ) then we have Pr[s(H) ≤ s] ≤ sNp′ = o(1). So, in this case we see that almost surely

s(H) > s.

Let q =
√

13r · r!, p = q
√

lnN/
√
N r−1, s = ⌊N r/(2r · r!)⌋ and H ∼ Gr(N, p). Consider a

labeling f : [N ] → [s]. For any e ∈
(

[N ]
r

)

, let s(e) =
∑

i∈e f(i). We estimate p′, the probability that

f is distinguishing for H.

Let Hk be the r-uniform hypergraph on a vertex set [N ], with E(Hk) = {e ∈
([N ]

r

)

: s(e) = k}
and denote hk = |E(Hk)|. Note that for any r-subset of the vertices e ∈

([N ]
r

)

, r ≤ s(e) ≤ sr and

that the Hk’s form an edge-decomposition of the complete r-uniform hypergraph on the vertex set

[N ]. Note that f is distinguishing for H if and only if H has at most one edge in each of the Hk’s.

We need to consider only those Hk’s that have at least two edges so let K = {k : hk ≥ 2}. We have

p′ = Pr[f is distinguishing for H]

=
∏

k∈K

Pr[|E(H) ∩ E(Hk)| ≤ 1]

=
∏

k∈K

(

(1 − p)hk + hkp(1 − p)hk−1
)

.

We need the following statement that is a routine calculation. If t1 ≤ t2 − 2 then

(

(1 − p)t1 + t1p(1 − p)t1−1
) (

(1 − p)t2 + t2p(1 − p)t2−1
)

≤
(

(1 − p)t1+1 + (t1 + 1)p(1 − p)(t1+1)−1
)(

(1 − p)t2−1 + (t2 − 1)p(1 − p)(t2−1)−1
)

. (1)

Using (1) we can upper-bound the expression for p′ by the one in which each hk takes an integer

value x or x+ 1, for some x. Let there be b of x’s and |K|− b of (x+ 1)’s, so bx+ (|K|− b)(x+ 1) =
∑

k∈K hk = h. Assume that xb ≥ h/2 (the case where (|K| − b)(x + 1) ≥ h/2 is analogous). We

have:

p′ =
∏

k∈K

(1 − p)hk + hkp(1 − p)hk−1

≤
(1)

(

(1 − p)x + xp(1 − p)x−1
)b

(

(1 − p)x+1 + (x + 1)p(1 − p)(x+1)−1
)|K|−b

≤ ((1 − p)x + xp(1 − p)x−1)b

≤ ((1 − p)x + xp(1 − p)x−1)
h
2
/x .

5



It is also a routine calculation, that for any any p, 0 < p < 1

max
t≥2

((1 − p)t + tp(1 − p)t−1)1/t =
t=2

((1 − p)2 + 2p(1 − p))1/2 . (2)

Coming back to bounding p′, we have

p′ ≤ ((1 − p)x + xp(1 − p)x−1)
h
2
/x

≤
(2)

((1 − p)2 + 2p(1 − p))h/4

= (1 − p2)h/4

≤ e−p2h/4 .

Observe also that the total number of hypergraphs Hk is at most

sr ≤ N r

2r!
≤ 1

2

(

N

r

)

(1 + o(1)) .

Thus, at least about a half of the possible r-sets of vertices belong to Hk’s that have at least two

edges, i.e., to Hk’s, k ∈ K. In other words, for sufficiently large N ,

h =
∑

k∈K

hk ≥
(

N

r

)

− 1

2

(

N

r

)

(1 + o(1)) ≥ N r

3r!
.

Recall that p = q
√

lnN/
√
N r−1 and q =

√
13r · r!. Then

p′ ≤ e−p2h/4

≤ e−q2(lnN/Nr−1)Nr/(12r!)

= e−(q2/12r!)N lnN

= e−(13r/12)N lnN

≤ N−rN .

Also recall that s = ⌊N r/(2r · r!)⌋ so,

Pr[s(H) ≤ s] ≤ sNp′

≤ sNN−rN

= o(1) .

This implies that with high probability s(H) > s = cN r, for a constant c depending on r. Moreover,

with high probability |E(H)| = Θ(p
(

N
r

)

) = Θ(pN r) = Θ(N (r+1)/2
√

logN).

Our final lemma of this section upper-bounds the probability that a sum of i.i.d. uniform

discrete random variables attains a particular value. We will use it as an ingredient in the upper
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bound proof of Theorem 1.

Lemma 3. For any constant C > 0, there exists ℓ0 such that for any ℓ > ℓ0 the following holds.

There is an integer N0 = N0(ℓ) such that for any N > N0, if X1, . . . ,X2ℓ are i.i.d. uniform discrete

random variables over [N ], then for any integer t, Pr[X1 + · · · + X2ℓ = t] ≤ 5/(e4CN).

Proof. We first establish the following claim, asserting the concavity of a sum of i.i.d. uniform

discrete random variables.

Claim 1. Let X1, . . . ,Xℓ be i.i.d. uniform discrete random variables over [N ] and let X = X1 +

· · · + Xℓ. Then for every real d ≥ 0 it holds that

Pr[X = (N + 1)ℓ/2 − d] = Pr[X = (N + 1)ℓ/2 + d] ≥ Pr[X = (N + 1)ℓ/2 + d + 1] .

Proof. It will be slightly more convenient to define Wi = Xi − 1, i = 1, . . . , ℓ, W = W1 + · · · + Wℓ,

q = N − 1 and prove the equivalent statement

Pr[W = qℓ/2 − d] = Pr[W = qℓ/2 + d] ≥ Pr[W = qℓ/2 + d + 1] .

Observe first that Pr[W = qℓ/2 − d] = Pr[W = qℓ/2 + d] as W is symmetric around its mean

qℓ/2. Observe next that W ∈ {0, . . . , qℓ} so the inequality is only interesting if d + 1 ≤ qℓ/2 and

qℓ/2 + d is an integer. We prove the claim by induction on ℓ. The case ℓ = 1 trivially holds as W1

is uniform. Assuming the claim holds for ℓ − 1, we prove it for ℓ. Let W ∗ = W1 + · · · + Wℓ−1 so

W = W ∗ + Wℓ. We prove that Pr[W = qℓ/2 + d] ≥ Pr[W = qℓ/2 + d + 1]. Observe that

Pr[W = qℓ/2 + d] =

q
∑

k=0

Pr[W ∗ = qℓ/2 + d− k] · Pr[Wℓ = k] =
1

q + 1

q
∑

k=0

Pr[W ∗ = qℓ/2 + d− k] .

Similarly,

Pr[W = qℓ/2 + d + 1] =
1

q + 1

q
∑

k=0

Pr[W ∗ = qℓ/2 + d + 1 − k] .

So,

(q + 1) (Pr[W = qℓ/2 + d] − Pr[W = qℓ/2 + d + 1])

= Pr[W ∗ = qℓ/2 + d− q] − Pr[W ∗ = qℓ/2 + d + 1]

= Pr[W ∗ = q(ℓ− 1)/2 + d− q/2] − Pr[W ∗ = q(ℓ− 1)/2 + d + 1 + q/2]

≥ 0

where the last inequality follows from the induction hypothesis and from the fact that |d− q/2| <
|d + 1 + q/2|.

To prove the lemma, let

f1 = X1 + · · · + Xℓ and f2 = Xℓ+1 + · · ·X2ℓ .
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We estimate the probability Pr[f1 + f2 = t]. We will first need to prove two additional claims.

The first is an anti-concentration result for f1, f2 and the second is a concentration result for them.

Throughout the remainder of the proof we assume that ℓ is sufficiently large as a function of C and

that N is sufficiently large as a function of ℓ.

Claim 2. Let j ∈ {1, 2}. For any C > 0, there exists γ = γ(C) > 0 such that for every real number

x it holds that

Pr[x− γ
√
ℓN ≤ fj ≤ x + γ

√
ℓN ] ≤ e−4C . (3)

Proof. Recall that each Xi is uniform discrete over [N ]. For the sake of our analysis it would be

convenient to obtain Xi as follows. Let Ui ∼ U [0, 1] (i.e. Ui is uniform continuous in [0, 1]). Define

Xi = ⌈NUi⌉. Since Pr[Ui = 0] = 0, we have that Xi is discrete uniform over [N ] as the probability

that Xi = t is 1/N for each t ∈ [N ]. Denote g1 = U1 + · · ·+Uℓ and g2 = Uℓ+1 + · · ·+U2ℓ so we have

fj − ℓ ≤ Ngj ≤ fj for j ∈ {1, 2}. Since ℓ < γ
√
ℓN , it suffices to prove that for every real number y

it holds that

Pr[y − 2γ
√
ℓ ≤ gj ≤ y + 2γ

√
ℓ] ≤ e−4C .

As gj is an Irwin-Hall distribution (i.e. the sum of i.i.d. copies of U [0, 1]) with mean ℓ/2, the

maximum of the left hand side is obtained when y = ℓ/2 so it suffices to prove that

Pr

[

ℓ

2
− 2γ

√
ℓ ≤ gj ≤

ℓ

2
+ 2γ

√
ℓ

]

≤ e−4C . (4)

Since Ui ∼ U [0, 1], it has mean 1/2 and standard deviation 1/
√

12, so we have by the Central Limit

Theorem that

lim
ℓ→∞

Pr

[

ℓ

2
− 2γ

√
ℓ ≤ gj ≤

ℓ

2
+ 2γ

√
ℓ

]

= Φ(2
√

12γ) − Φ(−2
√

12γ) = 2Φ(2
√

12γ) − 1 .

Now, choose γ such that 2Φ(2
√

12γ) − 1 = e−4C/2. Then we have

lim
ℓ→∞

Pr

[

ℓ

2
− 2γ

√
ℓ ≤ gj ≤

ℓ

2
+ 2γ

√
ℓ

]

=
1

2e4C
,

implying that for all ℓ sufficiently large as a function of C we have that (4) holds.

Claim 3. Let j ∈ {1, 2}. It holds that

Pr[|fj − ℓ(N + 1)/2| ≥ ℓ2/3N ] ≤ 1

ℓ
. (5)

Proof. As in the proof of the previous claim, since fj − ℓ ≤ Ngj ≤ fj and since 2ℓ ≤ ℓ2/3N , it

suffices to prove that

Pr

[

|gj − ℓ/2| ≥ 1

2
ℓ2/3

]

≤ 1

ℓ
.

Since gj is the sum of ℓ i.i.d. random variables, each in [0, 1], and each with mean 1
2 , it follows by
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Chernoff’s inequality (see, e.g. [2], Appendix A) that

Pr

[

|gi − ℓ/2| ≥ 1

2
ℓ2/3

]

≤ 2e−ℓ4/3/(8ℓ) = 2e−ℓ1/3/8 ≤ 1

ℓ
.

Armed with the three claims we proceed as follows. Since f1 and f2 are independent and since

ℓ ≤ fj ≤ ℓN we have that, for any t, 0 ≤ t ≤ 2ℓN ,

Pr[f1 + f2 = t] =
ℓN
∑

k=ℓ

Pr[f1 = k] · Pr[f2 = t− k] .

We cover {ℓ, . . . , ℓN} with five (not necessarily disjoint) sets S1, S2, S3, S4, S5 defined as follows.

S1 ={k | ℓ(N + 1)/2 − γ
√
ℓN ≤ k ≤ ℓ(N + 1)/2 + γ

√
ℓN}

S2 ={k | ℓ(N + 1)/2 − γ
√
ℓN ≤ t− k ≤ ℓ(N + 1)/2 + γ

√
ℓN}

S3 ={k | |k − ℓ(N + 1)/2| ≥ ℓ2/3N}
S4 ={k | |(t− k) − ℓ(N + 1)/2| ≥ ℓ2/3N}
S5 ={ℓ, . . . , ℓN} \ (S1 ∪ S2 ∪ S3 ∪ S4) .

For z ∈ {1, 2, 3, 4, 5} let Jz =
∑

k∈Sz
Pr[f1 = k] · Pr[f2 = t− k] so that we have

Pr[f1 + f2 = t] ≤ J1 + J2 + J3 + J4 + J5 .

We now bound each Jz where we will use Claim 1, Claim 2, Claim 3, and the trivial bound

Pr[fj = k′] ≤ 1/N which holds for every k′ ∈ [N ] since fj is the sum of discrete random variables,

each uniform on N possible values. By the definition of S1 and by Claim 2 applied to f1 with

x = ℓ(N + 1)/2:

J1 =
∑

k∈S1

Pr[f1 = k] · Pr[f2 = t− k] ≤ 1

N

∑

k∈S1

Pr[f1 = k] ≤ 1

Ne4C
.

Similarly, by the definition of S2 and by Claim 2 applied to f2 with x = ℓ(N + 1)/2:

J2 =
∑

k∈S2

Pr[f1 = k] · Pr[f2 = t− k] ≤ 1

N

∑

k∈S2

Pr[f2 = t− k] ≤ 1

Ne4C
.

By the definition of S3 and by Claim 3 applied to f1:

J3 =
∑

k∈S3

Pr[f1 = k] · Pr[f2 = t− k] ≤ 1

N

∑

k∈S3

Pr[f1 = k] ≤ 1

Nℓ
≤ 1

Ne4C
.
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By the definition of S4 and by Claim 3 applied to f2:

J4 =
∑

k∈S4

Pr[f1 = k] · Pr[f2 = t− k] ≤ 1

N

∑

k∈S4

Pr[f2 = t− k] ≤ 1

Nℓ
≤ 1

Ne4C
.

Finally consider J5. To estimate it, we will distinguish between two cases, according to the

value of t. Assume first that t ≤ 2ℓ(N +1)/3 or t ≥ 4ℓ(N +1)/3. In this case S3∪S4 = {ℓ, . . . , ℓN}
and hence S5 = ∅ implying that J5 = 0. Assume next that 2ℓ(N + 1)/3 < t < 4ℓ(N + 1)/3. First,

observe that the number of elements of S5 is at most 2ℓ2/3N +1 < 3ℓ2/3N as it is disjoint from, say,

S3. Consider some term of J5, namely Pr[f1 = k] ·Pr[f2 = t−k] where k ∈ S5. By Claim 1, we have

that Pr[f1 = k] ≤ Pr[f1 = k∗] where k∗ ∈ S1 as k∗ is closer to the mean ℓ(N + 1)/2 than k is. But

the number of elements in S1 is at least 2γ
√
ℓN so we must have Pr[f1 = k] ≤ 1/|S1| ≤ 1/(2γ

√
ℓN).

Similarly, by Claim 1, we have that Pr[f2 = t − k] ≤ Pr[f2 = t − k∗] where k∗ ∈ S2 as t − k∗ is

closer to the mean ℓ(N + 1)/2 than t− k is. But the number of elements in S2 is at least 2γ
√
ℓN

so we must have Pr[f2 = t− k] ≤ 1/|S2| ≤ 1/(2γ
√
ℓN). Hence, in any case,

J5 =
∑

k∈S5

Pr[f1 = k] · Pr[f2 = t− k] ≤ 3ℓ2/3N ·
(

1

2γ
√
ℓN

)2

≤ 1

Ne4C
.

We have thus proved that Pr[f1 + f2 = t] ≤ 5e−4C/N , as required.

3 Proof of the main result

3.1 Proof of the lower bound of Theorem 1

Let ǫ be given, 0 < ǫ < 1. Let n be sufficiently large and m be given such that n ≤ m ≤ n1/ǫ.

We shall construct a hypergraph H on n vertices and m hyperedges such that s(H) ≥ m2−ǫ. Let

r be a positive integer such that ǫ > 2/(r + 1). Recall that Lemma 2 implies, for sufficiently large

N and any positive δ, the existence of a hypergraph H ′ on N vertices and N (r+1)/2+δ hyperedges

satisfying s(H ′) ≥ cN r, for a constant c = c(r).2 Note that N (r+1)/2+δ is slightly larger than the

expression for the number of hyperedges given in Lemma 2, but we can always add hyperedges if

necessary as this does not decrease the parameter s. Next, we choose N such that m = N (r+1)/2+δ .

Thus H ′ has m hyperedges. Note that:

N ≤ (N (r+1)/2+δ)2/(r+1) = m2/(r+1) ≤ (n1/ǫ)2/(r+1) ≤ n,

so by just adding n−N isolated vertices to H ′ we obtain a hypergraph H with n vertices and m

hyperedges and with s(H) = s(H ′) ≥ cN r. Hence for δ sufficiently small

s(H) ≥ cN r ≥ c(m2/(r+1+2δ))r ≥ m2−ǫ .

2We ignore rounding issues as these have no effect on the asymptotic statement of the theorem.
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3.2 Proof of the upper bound of Theorem 1

Consider a hypergraph H = (V,E) on n vertices and m hyperedges. We shall argue that an ap-

propriate random labeling is distinguishing with positive probability. Before we prove our upper

bound m2/C on s(H), we shall quickly remark that the upper bound s(H) ≤ m2 is easy to obtain.

Indeed, to each vertex assign an integer value from [m2] independently with probability 1/m2.

Consider the probability p that two given distinct hyperedges e and e′ get the same sum of the

labels. Fix an arbitrary vertex y in the symmetric difference of e and e′. Then assuming that all

other labels in the union of e and e′ are fixed, there is at most one value of the label assigned to y

that makes the sum of labels in e and e′ the same. Thus p ≤ 1/m2. Taking the union bound over

all
(

m
2

)

pairs of hyperedges, we see that the probability that the labeling is not distinguishing is at

most
(

m
2

)

/m2 < 1.

Next we shall improve this easy upper bound to s(n,m) = o(m2). This turns out to require

significantly more effort. We first describe the main idea of the proof. We consider a hypergraph

H = (V,E) on n vertices and m hyperedges. Let C > 0 and N = ⌈m2/C⌉. Consider a labeling

f : V (H) → [N ] such that f(v) is assigned randomly with Pr[f(v) = i] = 1/N for any i ∈ [N ]

and assignment of values to distinct vertices is independent. Let, for any set Q of vertices, s(Q)

denote
∑

v∈Q f(v). For two hyperedges e, e′, let X(e, e′) = e \ e′. Observe that a vertex labeling f

is distinguishing on H if for any two hyperedges s(X(e, e′)) 6= s(X(e′, e)). Let B(e, e′) be the (bad)

event that s(X(e, e′)) = s(X(e′, e)).

Consider sets D(e, e′) = X(e, e′) ∪ X(e′, e) and split the analysis into cases depending on the

size of D(e, e′). For small D(e, e′) we would like to apply the Lovász Local Lemma, but of course

the lemma’s dependency digraph might have a high degree if there are vertices that belong to many

such D(e, e′)’s, called “dangerously popular” vertices. We treat them first observing that there are

not so many such vertices. Finally, we deal with large D(e, e′)’s. For those we show that the bad

event B(e, e′) does not happen by choosing a large set S of size 2ℓ in X(e, e′) or in X(e′, e), fixing

the labels on the remaining vertices in D(e, e′) and showing that Pr[B(e, e′)] ≤ Pr[s(S) = t] for

a specific value t, finally upper-bounding the latter using Lemma 3. We now proceed with the

detailed proof.

For our fixed C, let K > P > C where K and P are positive integer constants chosen to satisfy

the claimed inequalities used in the proof. They will only depend on C. For the rest of the proof

we assume that C > 3 and note that if the theorem holds for some value of C, it holds for any

smaller positive value of C.

• A pair of hyperedges e, e′ is dangerous if |D(e, e′)| ≤ K. Otherwise, the pair is called non-

dangerous.

• We call a vertex w ∈ V (H) dangerously popular if for at least m2/K3 dangerous pairs e, e′ it

holds that w ∈ D(e, e′). Let S be the set of all dangerously popular vertices.

• For a pair e, e′ ∈ E(H) (whether dangerous or not) let Y (e, e′) = X(e, e′) ∩ S, the set of

dangerously popular vertices in X(e, e′) and let Z(e, e′) = X(e, e′) \ Y (e, e′).

11



• We call a pair e, e′ ∈ E(H) special if each vertex of D(e, e′) is dangerously popular, i.e.

D(e, e′) = Y (e, e′) ∪ Y (e′, e).

• Two special pairs e1, e
′
1 and e2, e

′
2 are equivalent if {X(e1, e

′
1),X(e′1, e1)} = {X(e2, e

′
2),X(e′2, e2)}.

Observe that “equivalent” is an equivalence relation over the special pairs.

• We call a non-dangerous and non-special pair e, e′ ∈ E(H) newly dangerous if all but at most

P vertices of D(e, e′) are dangerously popular (so 1 ≤ |Z(e, e′)∪Z(e′, e)| ≤ P for such pairs).

We observe that that the number of dangerously popular vertices is |S| ≤ K4. Indeed, the total

sum of cardinalities of all the D(e, e′)’s ranging over all dangerous pairs is at most K
(m
2

)

and as each

dangerously popular vertex is counted at least m2/K3 times, there are at most K
(m
2

)

/(m2/K3) ≤
K4 dangerously popular vertices.

Recall that N = ⌈m2/C⌉. Our assignment of values from [N ] to the vertices of H proceeds in

two steps. We will first assign values to the dangerously popular vertices such that some properties

are guaranteed. We will then assign values to the remaining vertices.

Step 1: Assign random values to the dangerously popular vertices (i.e. the vertices in S). As in

the proof of Lemma 3, for the purpose of our analysis, the random values are assigned as follows.

Each w ∈ S is assigned uniformly and independently a random real g(w) in [0, N ]. Then, we define

f(w) = ⌈g(w)⌉. Since Pr[f(w) = 0] = 0, we have that f(w) is discrete uniform in [N ] as the

probability that f(w) = t is 1/N for each t ∈ [N ].

Recall that Y (e, e′) = X(e, e′)∩S. Let f(e, e′) =
∑

w∈Y (e,e′) f(w). We say that Step 1 is successful

if both of the following hold:

1. For every special pair e, e′ we have f(e, e′) 6= f(e′, e).

2. For at most m2e−4C newly dangerous pairs e, e′ it holds that |f(e, e′) − f(e′, e)| ≤ PN .

Lemma 4. With positive probability, Step 1 is successful.

Lemma 4 will be proved later, but for now assume that it holds, so fix an assignment of the

vertices of S such that Step 1 is successful.

Step 2: Assign random values to the remaining n − |S| vertices. As in Step 1, we assign the

random values are follows. Each w ∈ V (H) \ S is assigned uniformly and independently a random

real g(w) in [0, N ]. Then, we define f(w) = ⌈g(w)⌉. Recall that f(w) is discrete uniform in [N ].

This now defines for each hyperedge e ∈ E(H) the sum s(e) =
∑

w∈e f(w). We need to estimate

the probability that s(e) = s(e′) for distinct hyperedges e, e′. We partition the pairs (e, e′) of

hyperedges into five types:

(a) The special pairs.

(b) The newly dangerous pairs for which |f(e, e′) − f(e′, e)| > PN .

(c) The newly dangerous pairs for which |f(e, e′) − f(e′, e)| ≤ PN .

(d) Non-dangerous pairs that are not newly dangerous and not special.
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(e) Dangerous pairs that are not special.

We refer to these types by their letter. Each pair of hyperedges is of precisely one of these types.

We now analyze each type. Let Aa, Ab, Ac, Ad, and Ae be events that there is a pair e, e′ of type

(a), (b), (c), (d), or (e), respectively, such that s(e) = s(e′). We prove the following lemmas later.

Lemma 5. Pr[Aa] = Pr[Ab] = 0.

Lemma 6. Pr[Ac] ≤ e−3C .

Lemma 7. Pr[Ad] ≤ e−3C .

Lemma 8. Pr[Ae] ≤ 1 − e−2C .

Lemmas 5, 6, 7, and 8 imply that Pr[Aa ∪Ab ∪ Ac ∪Ad ∪Ae] ≤ e−3C + e−3C + 1 − e−2C < 1.

Thus, with positive probability none of these bad events happen and there is a desired distinguish-

ing labeling of H. It remains to prove Lemmas 4, 5, 6, 7, and 8.

In several proofs we shall need the following observation for any distinct subsets X and X ′ of

vertices, recalling that s(X) =
∑

w∈X f(w),

Pr(s(X) = s(X ′)) ≤ 1/N. (6)

The reason for this observation to hold is the same as we outlined in the first paragraph of the

proof - fixing all labels except for one vertex, say y, in the symmetric difference of X and X ′, we

see that Pr(s(X) = s(X ′)) ≤ Pr(f(y) = t) = 1/N , for some specific value t.

Proof of Lemma 5. If e, e′ is a pair of type (a), then clearly s(e) − s(e′) = f(e, e′) − f(e′, e). But

since Step 1 is successful, we have that f(e, e′) 6= f(e′, e) and hence s(e) 6= s(e′). Thus the event

Aa never happens.

If e, e′ is a pair of type (b), i.e., a newly-dangerous pair for which |f(e, e′) − f(e′, e)| > PN we

proceed as follows. Assume without loss of generality that f(e, e′) − f(e′, e) > PN . Clearly

s(e) = f(e, e′) +
∑

w∈e∩e′

f(w) +
∑

w∈Z(e,e′)

f(w) ≥ f(e, e′) +
∑

w∈e∩e′

f(w) .

On the other hand,

s(e′) = f(e′, e) +
∑

w∈e∩e′

f(w) +
∑

w∈Z(e′,e)

f(w) ≤ f(e′, e) +
∑

w∈e∩e′

f(w) + PN,

because |Z(e′, e)| ≤ P by the definition of newly-dangerous. It follows from the last two inequalities

that

s(e) − s(e′) ≥ f(e, e′) − f(e′, e) − PN > 0,

so we have that s(e) 6= s(e′). Thus the event Ab never happens.
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Proof of Lemma 6. Let e, e′ be a pair of type (c), namely a newly dangerous pair for which it holds

that |f(e, e′) − f(e′, e)| ≤ PN . As Step 1 is successful, we have that the number of pairs of type

(c) is at most m2e−4C .

By (6), we have that Pr[s(e) = s(e′)] ≤ 1/N . Since the number of pairs of type (c) is at most

m2e−4C we have that

Pr[Ac] ≤
m2e−4C

N
=

m2e−4C

⌈m2/C⌉ ≤ Ce−4C ≤ e−3C .

Proof of Lemma 8. For a pair e, e′ of type (e), let A(e, e′) be the event that s(e) = s(e′). Using

(6) we have Pr[A(e, e′)] ≤ 1/N . Letting L denote the set of pairs of type (e), our goal is to

prove that Pr[∩{e,e′}∈LA(e, e′)] ≥ e−2C as this is equivalent to proving that Pr[Ae] ≤ 1 − e−2C .

To this end, we will use the Lovász Local Lemma (LLL). Consider the dependency digraph on

the events A(e, e′) (note: there could be as many as
(m
2

)

such events). We claim that any event

A(e, e′) depends on not too many other events. Indeed, if Z(e1, e
′
1) ∪ Z(e′1, e1) is disjoint from

Z(e2, e
′
2) ∪ Z(e′2, e2), then the event A(e1, e

′
1) is independent of the event A(e2, e

′
2) as they involve

assignment of values to disjoint sets of vertices. Recall that the pairs of type (e) are, in particular,

dangerous pairs. Hence |Z(e, e′) ∪ Z(e′, e)| ≤ K, for any pair e, e′ of type (e). Furthermore, each

vertex of Z(e, e′)∪Z(e′, e) is not dangerously popular. Thus, we have that A(e, e′) is independent of

all but at most K ·m2/K3 = m2/K2 other events. Denote {e1, e′1} ∼ {e2, e′2} if Z(e1, e
′
1)∪Z(e′1, e1)

is not disjoint from Z(e2, e
′
2) ∪ Z(e′2, e2). To apply LLL, define x(e, e′) = 2/N . For any e1, e2 of

type (e) it now holds that

x(e1, e2)Π{e′
1
,e′

2
}∼{e1,e2}(1 − x(e′1, e

′
2)) ≥ 2

N

(

1 − 2

N

)m2/K2

≥ 2

N

(

1 − 2

N

)CN/K2

>
1

N
≥ Pr[A(e1, e2)]

so the condition in the statement of LLL holds. So, by the LLL, we have that

Pr[∩{e,e′}∈LA(e, e′)] ≥ (1 − x(e, e′))|L| ≥
(

1 − 2

N

)m2/2

≥ e−2C ,

as required.

Proof of Lemma 4. We first prove that with probability at least 2/3, for every special pair e, e′ we

have f(e, e′) 6= f(e′, e). Observe that the number of equivalence classes in the “equivalent” relation

is at most 2|S|2|S| ≤ 4K
4

(namely, a constant). Since for two equivalent special pairs e1, e
′
1 and

e2, e
′
2 we have that f(e1, e

′
1) 6= f(e′1, e1) if and only if f(e2, e

′
2) 6= f(e′2, e2), it suffices to consider a

representative special pair from every equivalence class. Now, if e, e′ is a special pair then, using

(6) we have that Pr[f(e, e′) = f(e′, e)] ≤ 1/N . We have by the union bound that the probability
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that for some special pair f(e, e′) = f(e′, e) is at most 4K
4

/N ≪ 1/3. So, with probability at least

2/3, for every special pair e, e′ we have f(e, e′) 6= f(e′, e).

We next prove that with probability at least 2/3, for at most m2e−4C newly dangerous pairs it

holds that |f(e, e′) − f(e′, e)| ≤ PN (thus, we will have that Step 1 is successful with probability

at least 1 − (1 − 2/3) − (1 − 2/3) > 0, as required). To prove this we will need to establish some

“anti-concentration” result, and this will be possible by applying the law of large numbers to some

appropriate random variable.

Let us fix a newly dangerous pair u, v. We know that u, v is not a dangerous pair, namely

|D(e, e′)| ≥ K. On the other hand, we know that D(e, e′) contains many dangerously popular

vertices, since 1 ≤ |Z(e, e′)| ≤ P . So, either |Y (e, e′)| ≥ (K − P )/2 ≥ K/4 or else |Y (e′, e)| ≥
(K − P )/2 ≥ K/4. Assume without loss of generality that |Y (e, e′)| ≥ K/4. Now, suppose we are

given that f(e′, e) = t for some integer t. Given this information, we would like to upper bound the

probability that f(e, e′) lies in [t−PN, t+PN ]. If we can provide an upper bound which does not

depend on t, then we have upper-bounded the probability that |f(e, e′)− f(e′, e)| ≤ PN regardless

of any given information.

So, consider indeed the random variable f(e, e′). It is the sum of ℓ = |Y (e, e′)| ≥ K/4 i.i.d.

random variables, namely f(e, e′) = X1 + · · · + Xℓ where each Xi is discrete uniform in [N ]. It

will be slightly more convenient to normalize as follows. Recall that each Xi corresponds to some

f(w) for w ∈ Y (e, e′) and that f(w) = ⌈g(w)⌉. Hence Xi is determined by first selecting uniformly

at random a real number Wi in [0, N ] and then setting Xi = ⌈Wi⌉. Define Ui = Wi/N and notice

that Ui ∼ U [0, 1] and that Xi = ⌈NUi⌉.
Let g(e, e′) = U1 + · · · + Uℓ and observe that f(e, e′) − ℓ ≤ Ng(e, e′) ≤ f(e, e′). Thus, it suffices

to upper bound the probability that g(e, e′) lies in [t/N −P − ℓ/N, t/N +P ]. As ℓ/N ≤ K/N ≤ P ,

it suffices to upper bound the probability that g(e, e′) lies in [t∗−2P, t∗ + 2P ] for some real number

t∗. As U1 + · · · + Uℓ is an Irwin–Hall distribution which is concave in [0, ℓ], the latter probability

is maximized when t∗ = ℓ/2, so it remains to upper bound the probability that g(e, e′) lies in

[ℓ/2 − 2P, ℓ/2 + 2P ]. As the Ui are i.i.d. each having mean 1
2 and standard deviation 1/

√
12

(i.e. absolutely bounded standard deviation), the (weak) law of large numbers applies to their sum

g(e, e′), namely for every constant P

lim
ℓ→∞

Pr[g(e, e′) ∈ [ℓ/2 − 2P, ℓ/2 + 2P ]] = 0 .

This, in turn, means that for all K sufficiently large as a function of P,C (hence all ℓ sufficiently

large since ℓ ≥ |K|/4),

Pr[g(e, e′) ∈ [ℓ/2 − 2P, ℓ/2 + 2P ]] ≤ 1

3
e−4C .

We have thus proved that Pr[|f(e, e′)−f(e′, e)| ≤ PN ] ≤ e−4C/3. As there are less than m2 pairs to

consider, we have that the expected number of newly dangerous pairs satisfying |f(e, e′)−f(e′, e)| ≤
PN is at most m2e−4C/3. By Markov’s inequality the probability that there are more than m2e−4C

such pairs is less than 1/3, so indeed with probability at least 2/3, for at most m2e−4C newly

dangerous pairs it holds that |f(e, e′) − f(e′, e)| ≤ PN .
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Proof of Lemma 7. Let e, e′ be a pair of type (d), namely it is a non-dangerous pair and is not newly

dangerous nor special. We will prove that Pr[s(e) = s(e′)] ≤ e−3C/m2. The lemma then follows

as there are less than m2 such pairs to consider. Being non-dangerous and not newly dangerous

means that |Z(e, e′) ∪ Z(e′, e)| ≥ P . Assume without loss of generality that |Z(e, e′)| ≥ P/2. Let

ℓ = ⌊P/4⌋ and let Z be a subset of Z(e, e′) of size 2ℓ.

Suppose we are given the value of f(w) for all w ∈ V (H) \ Z. Then, conditioned on this

information, for s(e) = s(e′) to hold, s(Z) must avoid a particular value t. By Lemma 3 we have

that Pr[s(Z) = t] ≤ 5/(e4CN). Thus using the union bound over all pairs of hyperedges of type

(d), we have that

Pr[Ad] ≤ m2

2

5

e4CN
≤ 5C

e4C
≤ e−3C .

4 Proofs of Theorems 2, 3, 4.

4.1 Proof of Theorem 2

Let G be a nonempty n-vertex graph with maximum degree ∆, minimum degree δ, and the largest

number of vertices with pairwise distinct closed neighbourhoods equal to n′. We aim to show that

n′ + δ

∆ + 1
≤ s∗(G) ≤ max{(n− d(v) − 1)(d(v) + 1) + 2 : v ∈ V (G)} .

For a vertex labeling f , we say that a pair of vertices u, v is bad if N [u] 6= N [v] and s∗f (u) = s∗f (v),

otherwise the pair is good. Thus, a labeling is vertex sum-distinguishing if all pairs are good. Let

ξ = max{(n − d(v) − 1)(d(v) + 1) + 2 : v ∈ V (G)}, where d(v) is the degree of vertex v. Consider

a labeling f : V (G) → [ξ] with a smallest number of bad pairs. We argue that the number of bad

pairs is, in fact, zero.

If not, let u, v be a bad pair. Let x = u if u and v are not adjacent and otherwise let x = w,

for some w ∈ (N(v) \ N(u)) ∪ (N(u) \ N(v)). Note that changing the label for x makes the pair

u, v good. We shall change the label of x such that no good pair becomes bad, i.e., so that the

number of bad pairs decreases. Denote the new labeling f ′. Let t be a new value assigned to x,

i.e., t 6= f(x), f ′(x) = t, f ′(z) = f(z), for any z ∈ V (G) − x.

We see that s∗f ′(y) = s∗f (y) if y 6∈ N [x] and s∗f ′(y) = s∗f (y) − f(x) + t if y ∈ N [x]. Thus

s∗f ′(y) 6= s∗f ′(y′) if s∗f (y) 6= s∗f (y′) and (y, y′ ∈ N [x] or y, y′ ∈ V (G) − N [x]). We have that

s∗f ′(y) = s∗f ′(y′) for y ∈ N [x] and y′ 6∈ N [x] if and only if s∗f (y) − f(x) + t = s∗f (y′). So, a new bad

pair can only appear if one vertex is in N [x] and another is not.

Choose t ∈ Q, where

Q = [ξ] \
(

{f(x)} ∪ {s∗f (y′) − s∗f (y) + f(x) : y ∈ N [x], y′ 6∈ N [x]}
)

.
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Since

|{s∗f (y′) − s∗f (y) + f(x) : y ∈ N [x], y′ 6∈ N [x]}| ≤ |{(y, y′) : y ∈ N [x], y′ 6∈ N [x]}|
= (n− d(x) − 1)(d(x) + 1)

≤ ξ − 2,

the set Q is non-empty, so there is a choice of t ≤ ξ, such that t 6= f(x) and s∗f ′(y) 6= s∗f ′(y′) for

any y ∈ N [x] and y′ 6∈ N [x]. Since there is no bad pair y, y′ for y, y′ ∈ N [x] or y, y′ 6∈ N [x] in f ′

that was not bad in f and the pair u, v that was bad in f is no longer bad in f ′, we see that the

number of bad pairs in f ′ is strictly less than the number of bad pairs in f , a contradiction.

For the lower bound, observe that if f is a vertex sum-distinguishing labeling of G with the

largest label k, then S = {s∗f (v) : v ∈ V (G)} ⊆ {(δ(G) + 1) · 1, . . . , (∆ + 1) · k}. Since |S| ≥ n′, we

have n′ ≤ |S| ≤ (∆ + 1)k − (δ + 1) + 1, giving the desired lower bound.

Note that the lower bound is tight for any pair δ,∆, δ ≤ ∆. If δ = ∆ consider G = K∆+1, for

which n′ = 1, s∗(G) = 1, and (n′ + δ)/(∆ + 1) = 1. If δ < ∆, consider G that is a vertex-disjoint

union of K∆+1 and Kδ+1. In this case n′ = 2, s∗(G) = 1, and ⌈(n′ + δ)/(∆ + 1)⌉ = 1.

4.2 Proof of Theorem 3

For a tree T and its vertex u, let L(u) be the set of leaves adjacent to u. Let L(T ) = max{|L(u)| :

u ∈ V (T )}. We shall prove for n ≥ 3 and any tree T on n vertices, that s∗(T ) ≤ 2n− 2 − L(T ) by

induction on n. Note that this bound is sharp for stars.

The case n = 3 holds vacuously since T is a star. Suppose the statement holds for n ≥ 3, and

suppose T has n + 1 vertices and is not a star. Choose a vertex u for which L(T ) = |L(u)|, choose

a leaf v adjacent to u, and let T ∗ = T − v. Then L(T ) − 1 = |L(u)| − 1 ≤ L(T ∗). By induction

there is a vertex sum-distinguishing labeling f : V (T ∗) → [2n− 2 − L(T ∗)] of T ∗. Observe that

2n− 2 − L(T ∗) ≤ 2n− 2 − (L(T ) − 1) = 2n− 1 − L(T ) < 2n− L(T ) = 2(n + 1) − 2 − L(T ) .

We define a labeling f ′ : V (T ) → [2n − L(T )] such that f ′(u) = f(u), u ∈ V (T ∗), f ′(v) = ξ.

We argue that we can find an appropriate ξ so that the labeling f ′ does not contain bad pairs,

i.e., pairs of vertices y, y′ such that N [y] 6= N [y′] but s∗f ′(y) = s∗f ′(y′). Since there are no bad pairs

in T ∗ under f , we have that y, y′ is not a bad pair if y, y′ ∈ T − {u, v}. Thus we need to consider

only the pairs y, y′, where y ∈ {u, v}. Let L = L(u) in T .

If y = u and y′ ∈ L, we see that s∗f ′(u) > s∗f ′(y′) regardless of ξ. Thus such a pair y, y′ is not

bad. A pair y = u, y′ = u′, u′ ∈ V (T ∗) − ({u} ∪ L) can be bad if s∗f ′(u) = s∗f (u) + ξ = s∗f (u′). A

pair y = v, y′ = u′, u′ ∈ V (T ∗) − u can be bad if s∗f ′(v) = f(u) + ξ = s∗f (u′). Thus, if ξ 6∈ X, where

X = {s∗f (u′) − s∗f (u) : u′ ∈ V (T ∗) − ({u} ∪ L)} ∪ {s∗f (u′) − f(u) : u′ ∈ V (T ∗) − u} ,

then f ′ has no bad pairs on T . Note that |X| ≤ (n− 1) − |L|+ (n− 1) = 2n− |L| − 2. Thus, there

is an available choice for ξ in [2n − |L|] −X.
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4.3 Proof of Theorem 4

Let H be the hypergraph from Lemma 2 and let H∗ be the dual hypergraph of H, so irr(H∗) =

s(H). Let n be the number of vertices of H∗ that is the number of edges in H, i.e. n = |E(H)| =

Θ(N (r+1)/2
√

logN). We also have that s(H) = cN r, so for ǫ < 2/(r + 1) we have

irr(H∗) ≥ cN r ≥ Cn2r/(r+1)/ logr n ≥ n2−ǫ .

5 Concluding remarks and open problems

As mentioned in the introduction, there are connections between the considered problem and Sidon

sets. Recall that a Bh[1]-Sidon set is a set X of integers such that for any integer q, there is at

most one subset X ′ of X, |X ′| = h, so that the sum of elements from X ′ is q. The following

bounds on the sizes of Sidon sets are known: if X ⊆ [K] and X is a Bh[1]-Sidon, then |X| ≤
(h · h!K)1/h(1 + o(1)), see for example [14, 15]. Let c(h) be a constant depending on h only such

that |X| ≤ (c(h)K)1/h(1+o(1)) for any Bh[1]-Sidon set X, X ⊆ [K]. Consider a hypergraph H that

is a union of a complete h-uniform hypergraph on N vertices and
(N
h

)

−N isolated vertices. Then H

has the same number n = Nh/h!(1 + o(1)) of vertices and edges and s(H) ≥ (1/c(h))hNh = Θ(n).

So, this only gives a linear lower bound on s(n) = s(n, n), much weaker than Theorem 1.

Note that a similar problem defined on open neighbourhoods of the vertices of a graph is

equivalent to the setting we considered on the complement G of the graph G. Indeed, if f is a

vertex sum-distinguishing labeling of G, then the numbers
∑

u 6∈N [v] f(u), v ∈ V (G) are distinct for

any two vertices with distinct open neighbourhoods. We see that V (G) −N [v] = NG(v), thus the

sums considered correspond to the sums over open neighbourhoods in the complement.

Yet another variant of s(H) is its restriction to injective labelings. Denoting the corresponding

parameters by sinj(H) and sinj(n,m) we see, by definition, that sinj(H) ≥ s(H) so sinj(n,m) ≥
s(n,m). If a hypergraph H ′ is a union of H and all hypergedges consisting of exactly one vertex of

H, then sinj(H) ≤ s(H ′), and H ′ has at most |E(H)| + |V (H)| edges. Thus, Theorem 1 trivially

extends to sinj(n,m). By defining s∗inj(n) similarly and following the steps of Theorem 2, one can

also show that s∗inj(G) ≤ (∆ + 2)n, for any graph G on n vertices and maximum degree ∆.

In this paper, we addressed hypergraphs on n vertices and m hyperedges, for n ≤ m ≤ nO(1). It

may be of some interest to determine the behavior of s(n,m) when m is larger than a polynomial

function of n. As mentioned in the introduction, the closer m gets to 2n, the closer s(n,m) gets to

be linear in m.

Finally, it may be of some interest to improve the upper bound s∗(G) ≤ n(∆ + 1) given in

Theorem 2 for regimes of ∆ that are significantly less than quadratic.
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