A chain theorem for sequentially 3-rank-connected graphs with respect to vertex-minors

Duksang Lee ${ }^{* 2,1,3}$ and Sang-il Oum ${ }^{\dagger 1,2}$
${ }^{1}$ Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
${ }^{2}$ Department of Mathematical Sciences, KAIST, Daejeon, South Korea
${ }^{3}$ Department of Industrial and Systems Engineering, KAIST, Daejeon, South Korea
Email: duksang@kaist.ac.kr, sangil@ibs.re.kr

May 22, 2023

Abstract

Tutte (1961) proved the chain theorem for simple 3-connected graphs with respect to minors, which states that every simple 3-connected graph G has a simple 3-connected minor with one edge fewer than G, unless G is a wheel graph. Bouchet (1987) proved an analog for prime graphs with respect to vertex-minors. We present a chain theorem for higher connectivity with respect to vertex-minors, showing that every sequentially 3 -rank-connected graph G has a sequentially 3 -rank-connected vertex-minor with one vertex fewer than G, unless $|V(G)| \leq 12$.

1 Introduction

Tutte [11] proved the chain theorem for simple 3-connected graphs with respect to minors, which states that every simple 3 -connected graph G has a simple 3 -connected minor with one edge fewer than G, unless G is a wheel graph. We will present a chain theorem for vertex-minors.

For a vertex v of a graph G, the local complementation at v is an operation obtaining a new graph $G * v$ from G by replacing the subgraph induced by the neighbors of v with its complement graph. A graph H is a vertex-minor of G if H can be obtained from G by a sequence of local complementations and vertex deletions.

For a graph G, the cut-rank function ρ_{G} is a function which maps a set X of vertices of G to the rank of a matrix over the binary field whose rows are labeled by X and columns are labeled by $V(G)-X$, where the (i, j)-entry is 1 if i and j are adjacent in G and 0 otherwise. A graph G is prime if there is no set X of vertices of G such that $|X| \geq 2,|V(G)-X| \geq 2$, and $\rho_{G}(X) \leq 1$. Bouchet proved the following chain theorem for prime graphs with respect to vertex-minors. Later, Allys [1] proved a stronger theorem.

Theorem 1.1 (Bouchet [2, Theorem 3.2]). Every prime graph G has a prime vertex-minor H with $|V(H)|=|V(G)|-1$, unless $|V(G)| \leq 5$.

A set X of vertices of G is sequential in G if there is an ordering a_{1}, \ldots, a_{k} of the vertices in X such that $\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right) \leq 2$ for each $1 \leq i \leq k$. A graph G is sequentially 3 -rank-connected if it is prime and whenever $\rho_{G}(X) \leq 2$ for $X \subseteq V(G)$, either X or $V(G)-X$ is sequential in G.

[^0]Here is our chain theorem for sequentially 3 -rank-connected graphs with respect to vertexminors.

Theorem 1.2. Every sequentially 3-rank-connected graph G has a sequentially 3-rank-connected vertex-minor H with $|V(H)|=|V(G)|-1$, unless $|V(G)| \leq 12$.

Our theorem is motivated by the following theorem for sequentially 4 -connected matroids, proved by Geelen and Whittle.
Theorem 1.3 (Geelen and Whittle [5, Theorem 1.2]). Every sequentially 4-connected matroid M has a sequentially 4-connected minor N with $|E(N)|=|E(M)|-1$, unless M is a wheel matroid or a whirl matroid.

Theorem 1.3 was motivated by the conjecture on the number of inequivalent representations over a fixed prime field. This conjecture was later proved by Geelen and Whittle [6] by using a stronger version of Theorem 1.3 due to Oxley, Semple, and Whittle [9]. It would be interesting to see if this stronger version also has a vertex-minor analog.

Let us briefly sketch the proof of Theorem 1.2. The proof consists of three parts. In the first part, we prove it for 3 -rank-connected graphs that are prime graphs with no set X such that $\rho_{G}(X) \leq 2,|X|>2$, and $|V(G)-X|>2$. The second part discusses internally 3-rank-connected graphs that are not 3 -rank-connected. The last part considers sequentially 3 -rank-connected graphs that are not internally 3 -rank-connected.

Essentially, the proof is based on the submodularity of the matrix rank function. We will also use Theorem 1.1. Proof ideas of some lemmas are from Geelen and Whittle [5]. We will also use triplets introduced by Oum [8].

Our paper is organized as follows. In Section 2, we review vertex-minors and several inequalities for cut-rank functions. In Section 3, we prove elementary lemmas on sequential sets and sequentially 3 -rank-connected graphs. In Section 4, we prove the main theorem for 3 -rankconnected graphs. In Section 5, we prove our theorem for internally 3 -rank-connected graphs. In Section 6, we conclude the proof by dealing with sequentially 3 -rank-connected graphs which are not internally 3 -rank-connected.

2 Preliminaries

A graph is simple if it has no loops and parallel edges. In this paper, all graphs are finite and simple. For a graph G and a vertex v, let $N_{G}(v)$ be the set of vertices adjacent to v in G. For a graph G and a subset X of $V(G)$, let $G[X]$ be the subgraph of G induced on X.

Vertex-minors For a graph G and a vertex v of G, let $G * v$ be the graph obtained by replacing $G\left[N_{G}(v)\right]$ with its complement. The operation obtaining $G * v$ from G is called the local complementation at v. A graph H is locally equivalent to G if H can be obtained from G by a sequence of local complementations. A graph H is a vertex-minor of a graph G if H can be obtained from G by applying local complementations and deleting vertices.

For an edge $u v$ of a graph G, let $G \wedge u v=G * u * v * u$. Then $G \wedge u v$ is obtained from G by pivoting $u v$. The graph $G \wedge u v$ is well defined since $G * u * v * u=G * v * u * v$ [7, Corollary 2.2].

Lemma 2.1 (see Oum [7]). Let G be a graph and v be a vertex of G. If $x, y \in N_{G}(v)$, then $(G \wedge v x) \backslash v$ is locally equivalent to $(G \wedge v y) \backslash v$.

By Lemma 2.1, we write G / v to denote $G \wedge u v \backslash v$ for a neighbor u of v in G because we are only interested in graphs up to local equivalence.

Lemma 2.2 (Geelen and Oum [4, Lemma 3.1]). Let G be a graph and v and w be vertices of G. Then the following hold.
(1) If $v \neq w$ and $v w \notin E(G)$, then $(G * w) \backslash v,(G * w * v) \backslash v$, and $(G * w) / v$ are locally equivalent to $G \backslash v, G * v \backslash v$, and G / v respectively.
(2) If $v \neq w$ and $v w \in E(G)$, then $(G * w) \backslash v,(G * w * v) \backslash v$, and $(G * w) / v$ are locally equivalent to $G \backslash v, G / v$, and $(G * v) \backslash v$ respectively.
(3) If $v=w$, then $(G * w) \backslash v,(G * w * v) \backslash v$, and $(G * w) / v$ are locally equivalent to $G * v \backslash v$, $G \backslash v$, and G / v respectively.

Lemma 2.2 implies the following lemma, which was first proved by Bouchet.
Lemma 2.3 (Bouchet [3, Corollary 9.2]). Let H be a vertex-minor of a graph G such that $V(H)=V(G)-\{v\}$ for a vertex v of G. Then H is locally equivalent to one of $G \backslash v, G * v \backslash v$, and G / v.

Cut-rank function and rank-connectivity For an $X \times Y$-matrix A and $I \subseteq X, J \subseteq Y$, let $A[I, J]$ be an $I \times J$-submatrix of A. Let A_{G} be the adjacency matrix of a graph G over the binary field GF(2). The cut-rank $\rho_{G}(X)$ of a subset X of $V(G)$ is defined by

$$
\rho_{G}(X)=\operatorname{rank}\left(A_{G}[X, V(G)-X]\right) .
$$

It is trivial to check that $\rho_{G}(X)=\rho_{G}(V(G)-X)$. For disjoint sets X, Y of a graph G, let $\rho_{G}(X, Y)=\operatorname{rank}\left(A_{G}[X, Y]\right)$. A graph G is k-rank-connected if there is no partition (A, B) of $V(G)$ such that $|A|,|B|>\rho_{G}(A)$ and $\rho_{G}(A)<k$. A graph is prime if it is 2-rank-connected. Observe that 1-rank-connected graphs are connected graphs.

Lemma 2.4. If G is a 3 -rank-connected graph with at least 6 vertices, then $\operatorname{deg}_{G}(v) \geq 3$ for each $v \in V(G)$.

Proof. Suppose that $\operatorname{deg}_{G}(v) \leq 2$. Let X be the set of neighbors of v. Then $\rho_{G}(X \cup\{v\}) \leq|X| \leq$ 2. However, $\rho_{G}(X \cup\{v\})<|X \cup\{v\}|$ and $2<|V(G)-(X \cup\{v\})|$, contradicting assumption that G is 3 -rank-connected.

Lemma 2.5 (Oum [8, Proposition 2.4]). Let k be a positive integer. If a graph G is k-rankconnected and $|V(G)| \geq 2 k$, then for each $v \in V(G)$, the graph $G \backslash v$ is $(k-1)$-rank-connected.

Lemma 2.6. Let k be a positive integer. A k-rank-connected graph with $|V(G)| \geq 2 k$ is k connected.

Proof. We use induction on k. Let G be a k-rank-connected graph with $|V(G)| \geq 2 k$. We may assume that $k>1$. Let X be a subset of $V(G)$ with $|X|<k$. It is enough to prove that $G \backslash X$ is connected. Since G is 1-rank-connected, G is connected and therefore we may assume that X is nonempty. Let v be a vertex in X. By applying Lemma 2.5 and the induction hypothesis, $G \backslash v$ is $(k-1)$-connected and therefore $(G \backslash v) \backslash(X-\{v\})=G \backslash X$ is connected.

The following lemmas give properties of the matrix rank function and the cut-rank function.
Lemma 2.7 (see Oum [7, Proposition 2.6]). If a graph G^{\prime} is locally equivalent to a graph G, then $\rho_{G}(X)=\rho_{G^{\prime}}(X)$ for each $X \subseteq V(G)$.

Lemma 2.8. Let G be a graph and v be a vertex of G. For a subset X of $V(G)-\{v\}$, we have
(i) $\rho_{G \backslash v}(X)+1 \geq \rho_{G}(X) \geq \rho_{G \backslash v}(X)$.
(ii) $\rho_{G \backslash v}(X)+1 \geq \rho_{G}(X \cup\{v\}) \geq \rho_{G \backslash v}(X)$.

Proof. Observe that removing a row or a column of a matrix decreases the rank by at most 1.

Lemma 2.9 (see Truemper [10]). Let A be an $X \times Y$-matrix. For sets $X_{1}, X_{2} \subseteq X$ and $Y_{1}, Y_{2} \subseteq Y$,

$$
\operatorname{rank}\left(A\left[X_{1}, Y_{1}\right]\right)+\operatorname{rank}\left(A\left[X_{2}, Y_{2}\right]\right) \geq \operatorname{rank}\left(A\left[X_{1} \cap X_{2}, Y_{1} \cup Y_{2}\right]\right)+\operatorname{rank}\left(A\left[X_{1} \cup X_{2}, Y_{1} \cap Y_{2}\right]\right)
$$

Lemma 2.9 implies the following seven lemmas.
Lemma 2.10 (see Oum [7, Corollary 4.2]). Let G be a graph and let X, Y be subsets of $V(G)$. Then,

$$
\rho_{G}(X)+\rho_{G}(Y) \geq \rho_{G}(X \cap Y)+\rho_{G}(X \cup Y)
$$

Lemma 2.11. Let G be a graph and X and Y be subsets of $V(G)$. Then,

$$
\rho_{G}(X)+\rho_{G}(Y) \geq \rho_{G}(Y-X)+\rho_{G}(X-Y)
$$

Proof. Apply Lemma 2.10 with X and $V(G)-Y$.
Lemma 2.12 (Oum [8, Lemma 2.3]). Let G be a graph and v be a vertex of G. Let X and Y be subsets of $V(G)-\{v\}$. Then, the following hold.
(S1) $\rho_{G \backslash v}(X)+\rho_{G}(Y \cup\{v\}) \geq \rho_{G \backslash v}(X \cap Y)+\rho_{G}(X \cup Y \cup\{v\})$.
(S2) $\rho_{G \backslash v}(X)+\rho_{G}(Y) \geq \rho_{G}(X \cap Y)+\rho_{G \backslash v}(X \cup Y)$.
Lemma 2.13. Let G be a graph and v be a vertex of G. Let X, Y be subsets of $V(G \backslash v)$. If $X \subseteq Y$ and $\rho_{G \backslash v}(Y) \geq \rho_{G}(Y)$, then $\rho_{G \backslash v}(X)=\rho_{G}(X)$.

Proof. By (S2) of Lemma 2.12,

$$
\rho_{G \backslash v}(X)+\rho_{G}(Y) \geq \rho_{G \backslash v}(Y)+\rho_{G}(X)
$$

Therefore, by Lemma 2.8(i), $0 \leq \rho_{G}(X)-\rho_{G \backslash v}(X) \leq \rho_{G}(Y)-\rho_{G \backslash v}(Y) \leq 0$. So we conclude that $\rho_{G \backslash v}(X)=\rho_{G}(X)$.

Lemma 2.14. Let G be a graph and v be a vertex of G. Let X, Y be subsets of $V(G)$. If $v \in Y \subseteq X$ and $\rho_{G \backslash v}(Y-\{v\}) \geq \rho_{G}(Y)$, then $\rho_{G \backslash v}(X-\{v\})=\rho_{G}(X)$.

Proof. We apply Lemma 2.13 for $V(G)-X$ and $V(G)-Y$.
Lemma 2.15. Let G be a graph and v be a vertex of G. Let X and Y be subsets of $V(G)-\{v\}$. Then,

$$
\rho_{G \backslash v}(X)+\rho_{G}(Y \cup\{v\}) \geq \rho_{G \backslash v}(Y-X)+\rho_{G}(X-Y)
$$

Proof. Apply (S1) of Lemma 2.12 with $V(G)-(X \cup\{v\})$ and Y.
Lemma 2.16 (Oum [8, Lemma 2.2]). Let G be a graph and a, b be distinct vertices of G. Let $A \subseteq V(G)-\{a\}$ and $B \subseteq V(G)-\{b\}$. Then, the following hold.
(A1) If $b \notin A$ and $a \notin B$, then $\rho_{G}(A \cap B)+\rho_{G \backslash a \backslash b}(A \cup B) \leq \rho_{G \backslash a}(A)+\rho_{G \backslash b}(B)$.
(A2) If $b \in A$ and $a \notin B$, then $\rho_{G \backslash b}(A \cap B)+\rho_{G \backslash a}(A \cup B) \leq \rho_{G \backslash a}(A)+\rho_{G \backslash b}(B)$.
(A3) If $b \in A$ and $a \in B$, then $\rho_{G \backslash a \backslash b}(A \cap B)+\rho_{G}(A \cup B) \leq \rho_{G \backslash a}(A)+\rho_{G \backslash b}(B)$.
Lemma 2.17 (Oum [7, Proposition 4.3]). Let G be a graph and x be a vertex of G. For a subset X of $V(G)-\{x\}$, the following hold.
(1) $\rho_{G * x \backslash x}(X)=\operatorname{rank}\left(\begin{array}{cc}1 & A_{G}[\{x\}, V(G)-(X \cup\{x\})] \\ A_{G}[X,\{x\}] & A_{G}[X, V(G)-(X \cup\{x\})]\end{array}\right)-1$.

$$
\rho_{G / x}(X)=\operatorname{rank}\left(\begin{array}{cc}
0 & A_{G}[\{x\}, V(G)-(X \cup\{x\})] \tag{2}\\
A_{G}[X,\{x\}] & A_{G}[X, V(G)-(X \cup\{x\})]
\end{array}\right)-1 .
$$

From Lemma 2.17, we deduce the following lemma.
Lemma 2.18. Let G be a graph and $x \in V(G)$. Let C be a subset of $V(G)-\{x\}$ such that $\rho_{G \backslash x}(C)=\rho_{G}(C)$. Then $\rho_{G * x \backslash x}(C)=\rho_{G}(C \cup\{x\})-1$ or $\rho_{G / x}(C)=\rho_{G}(C \cup\{x\})-1$.

Proof. Let $D=V(G)-(C \cup\{x\})$. Since $\rho_{G \backslash x}(C)=\rho_{G}(C)$, a column vector $A_{G}[C,\{x\}]$ is in the column space of $A_{G}[C, D]$. Then let A^{\prime} and $A^{\prime \prime}$ be matrices over GF(2) such that

$$
A^{\prime}=\left(\begin{array}{cc}
1 & A_{G}[\{x\}, D] \\
A_{G}[C,\{x\}] & A_{G}[C, D]
\end{array}\right) \text { and } A^{\prime \prime}=\left(\begin{array}{cc}
0 & A_{G}[\{x\}, D] \\
A_{G}[C,\{x\}] & A_{G}[C, D]
\end{array}\right) .
$$

Then $\operatorname{rank}\left(A^{\prime}\right)=\rho_{G}(C \cup\{x\})$ or $\operatorname{rank}\left(A^{\prime \prime}\right)=\rho_{G}(C \cup\{x\})$ and therefore, by Lemma 2.17, we have $\rho_{G * x \backslash x}(C)=\operatorname{rank}\left(A^{\prime}\right)-1=\rho_{G}(C \cup\{x\})-1$ or $\rho_{G / x}(C)=\operatorname{rank}\left(A^{\prime \prime}\right)-1=\rho_{G}(C \cup\{x\})-1$.

Lemma 2.19 (Oum [7, Lemma 4.4]). Let G be a graph and x be a vertex of G. Let (X_{1}, Y_{1}) and $\left(X_{2}, Y_{2}\right)$ be partitions of $V(G)-\{x\}$. Then the following hold:
(P1) $\rho_{G \backslash x}\left(X_{1}\right)+\rho_{G * x \backslash x}\left(X_{2}\right) \geq \rho_{G}\left(X_{1} \cap X_{2}\right)+\rho_{G}\left(Y_{1} \cap Y_{2}\right)-1$.
(P2) $\rho_{G \backslash x}\left(X_{1}\right)+\rho_{G / x}\left(X_{2}\right) \geq \rho_{G}\left(X_{1} \cap X_{2}\right)+\rho_{G}\left(Y_{1} \cap Y_{2}\right)-1$.
The following lemma is an easy consequence of Lemmas 2.7 and 2.19.
Lemma 2.20. Let G be a graph and x be a vertex of G. Let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be partitions of $V(G)-\{x\}$. Then,

$$
\rho_{G * x \backslash x}\left(X_{1}\right)+\rho_{G / x}\left(X_{2}\right) \geq \rho_{G}\left(X_{1} \cap X_{2}\right)+\rho_{G}\left(Y_{1} \cap Y_{2}\right)-1 .
$$

3 Sequentially 3-rank-connected graphs

Let us recall the definition of sequentially 3 -rank-connected graphs introduced in Section 1. A subset A of $V(G)$ is sequential in a graph G if there is an ordering $a_{1}, \ldots, a_{|A|}$ of the elements of A such that $\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right) \leq 2$ for each $1 \leq i \leq|A|$. A graph G is sequentially 3 -rankconnected if it is prime and for each subset X of $V(G)$ with $\rho_{G}(X) \leq 2$, we have that X or $V(G)-X$ is sequential in G.

We now present basic lemmas on sequential sets and sequentially 3 -rank-connected graphs.
Lemma 3.1. Let G be a graph and A be a subset of $V(G)$. Let t be a vertex of G such that $\rho_{G}(A \cup\{t\})=\rho_{G}(A)$. Then $A \cup\{t\}$ is sequential in G if and only if A is sequential in G.
Proof. We may assume that $t \notin A$. The backward direction is obvious. So it is enough to show the forward direction.

Since $A \cup\{t\}$ is sequential in G, there is an ordering a_{1}, \ldots, a_{m} of the elements of $A \cup\{t\}$ such that $m=|A \cup\{t\}|$ and $\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right) \leq 2$ for each $1 \leq i \leq m$. Let $1 \leq j \leq m$ be an index such that $a_{j}=t$. Then for each $j+1 \leq i \leq m$, by Lemma 2.10, we have

$$
\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right)+\rho_{G}(A) \geq \rho_{G}(A \cup\{t\})+\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}-\{t\}\right),
$$

and therefore $\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}-\{t\}\right) \leq \rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right)$. For each $1 \leq i \leq m-1$, let

$$
a_{i}^{\prime}= \begin{cases}a_{i} & \text { if } i<j, \\ a_{i+1} & \text { if } i \geq j .\end{cases}
$$

Hence, by above inequality, A is sequential in G because $a_{1}^{\prime}, \ldots, a_{m-1}^{\prime}$ is a desired ordering of the elements of A.

Lemma 3.2. Let G be a prime graph that is not sequentially 3 -rank-connected and let T_{1}, \ldots, T_{n} be pairwise disjoint 3 -element subsets of $V(G)$ such that $\rho_{G}\left(T_{i}\right)=2$ for each $1 \leq i \leq n$. Then there exists a subset A of $V(G)$ such that $\rho_{G}(A) \leq 2$, neither A nor $V(G)-A$ is sequential in G, and for each $1 \leq i \leq n$, we have that $T_{i} \subseteq A$ or $T_{i} \subseteq V(G)-A$.

Proof. We proceed by induction on n. Since G is prime and not sequentially 3 -rank-connected, there is a subset A of $V(G)$ such that $\rho_{G}(A) \leq 2$, and neither A nor $V(G)-A$ is sequential in G. So we can assume that $n \geq 1$. By the induction hypothesis, there is a subset A^{\prime} of $V(G)$ such that $\rho_{G}\left(A^{\prime}\right) \leq 2$, and neither A^{\prime} nor $V(G)-A^{\prime}$ is sequential in G, and for each $1 \leq i \leq n-1$, either $T_{i} \subseteq A^{\prime}$ or $T_{i} \subseteq V(G)-A^{\prime}$. Let $B^{\prime}=V(G)-A^{\prime}$. We may assume that $A^{\prime} \cap T_{n} \neq \emptyset$ and $B^{\prime} \cap T_{n} \neq \emptyset$. Then, by symmetry, we can assume that $\left|A^{\prime} \cap T_{n}\right|=2$ and let x be the element of $B^{\prime} \cap T_{n}$. Since $\left|T_{n}-\{x\}\right|=2$ and G is prime, we have $\rho_{G}\left(T_{n}-\{x\}\right)=2=\rho_{G}\left(T_{n}\right)$. Then, by Lemma 2.10,

$$
\rho_{G}\left(A^{\prime}\right)+2=\rho_{G}\left(A^{\prime}\right)+\rho_{G}\left(T_{n}\right) \geq \rho_{G}\left(A^{\prime} \cup\{x\}\right)+\rho_{G}\left(T_{n}-\{x\}\right)=\rho_{G}\left(A^{\prime} \cup\{x\}\right)+2 .
$$

Hence $\rho_{G}\left(A^{\prime} \cup\{x\}\right) \leq \rho_{G}\left(A^{\prime}\right) \leq 2$. Since $V(G)-A^{\prime}$ is not sequential in $G,\left|V(G)-A^{\prime}\right| \geq 4$ and so $\left|V(G)-\left(A^{\prime} \cup\{x\}\right)\right| \geq 3$. Hence $\rho_{G}\left(A^{\prime}\right)=\rho_{G}\left(A^{\prime} \cup\{x\}\right)=2$ because G is prime. Hence, by Lemma 3.1, neither $A^{\prime} \cup\{x\}$ nor $V(G)-\left(A^{\prime} \cup\{x\}\right)$ is sequential in G.

For each $1 \leq i \leq n-1$, we have $x \notin T_{i}$ because T_{n} and T_{i} are disjoint. Therefore, $T_{i} \subseteq A^{\prime} \cup\{x\}$ or $T_{i} \subseteq V(G)-\left(A^{\prime} \cup\{x\}\right)$ for each $1 \leq i \leq n$.

4 Treating 3-rank-connected graphs

In this section, we prove Theorem 1.2 for 3 -rank-connected graphs.
The following lemma shows that every vertex-minor of a 3 -rank-connected graph G with one vertex fewer than G is prime.

Lemma 4.1. Let G be a 3 -rank-connected graph with $|V(G)| \geq 6$ and x be a vertex of G. Then all of $G \backslash x, G * x \backslash x$, and G / x are prime.

Proof. By Lemma 2.7, it is enough to show that $G \backslash x$ is prime. This is implied by Lemma 2.5.
A graph G is weakly 3-rank-connected if G is prime and $V(G)$ has no subset X such that $|X| \geq 5,|V(G)-X| \geq 5$, and $\rho_{G}(X) \leq 2$. The following lemma can be deduced easily from [8, Proposition 2.6] and Lemma 2.2.

Lemma 4.2 (Oum [8]). Let G be a 3 -rank-connected graph with $|V(G)| \geq 6$ and x be a vertex of G. Then at least two of $G \backslash x, G * x \backslash x$, and G / x are weakly 3-rank-connected.

Lemma 4.3. Let G be a 3 -rank-connected graph with $|V(G)| \geq 6$ and let $S=\left\{v_{1}, \cdots, v_{t}\right\}$ be the set of all vertices x of G such that $G \backslash x$ is not weakly 3-rank-connected. Let $G^{\prime}=G * v_{1} * \cdots * v_{t}$. Then $G^{\prime} \backslash v$ is weakly 3 -rank-connected for every vertex v of G^{\prime}.

Proof. If $v \notin S$, then $G^{\prime} \backslash v=(G \backslash v) * v_{1} * \cdots * v_{t}$ and so $G^{\prime} \backslash v$ is weakly 3 -rank-connected. If $v=v_{i}$ for some $1 \leq i \leq t$, then by Lemma 4.2, $G * v \backslash v$ is weakly 3-rank-connected. Since $G^{\prime} \backslash v=(G * v \backslash v) * v_{1} * \cdots * v_{i-1} * v_{i+1} * \cdots * v_{t}$ is locally equivalent to $G * v \backslash v$, we deduce that $G^{\prime} \backslash v$ is weakly 3 -rank-connected.

Lemma 4.4. Let G be a 3-rank-connected graph and x be a vertex of G. Let P be a 4 -element subset of $V(G)-\{x\}$ such that $\rho_{G \backslash x}(P) \leq 2$ and (A, B) be a partition of $V(G)-\{x\}$ such that $|A|,|B| \geq 4$ and $\rho_{H}(A) \leq 2$ for some $H \in\{G * x \backslash x, G / x\}$. Then $|A \cap P|=|B \cap P|=2$.

Proof. Suppose that $|A \cap P| \neq|B \cap P|$. We may assume that $|A \cap P|>|B \cap P|$. Since $\rho_{G \backslash x}(P) \leq 2$ and $\rho_{H}(A) \leq 2$, by (P1) and (P2) of Lemma 2.19, we have

$$
4 \geq \rho_{G \backslash x}(P)+\rho_{H}(A) \geq \rho_{G}(A \cap P)+\rho_{G}(B-P)-1
$$

Since $|A \cap P|>2$ and G is 3-rank-connected, $\rho_{G}(A \cap P)>2$. Hence $\rho_{G}(B-P) \leq 2$. Since G is 3-rank-connected, $|B-P| \leq 2$, which implies that $|B \cap P| \geq 2$, contradicting the fact that $|P|=4$.

A 4-element subset P of $V(G)$ is a quad of G if $\rho_{G}(P)=2$ and $\rho_{G}(P-\{x\})=3$ for each $x \in P$.

Lemma 4.5. Let G be a prime graph and A be a subset of $V(G)$ such that $\rho_{G}(A)=2$ and $|A| \leq 4$. Then A is a quad of G or A is sequential in G.

Proof. Suppose that A is not sequential in G. Then $|A|=4$ and $\rho_{G}(T)=3$ for each 3-element subset T of A. Therefore, A is a quad of G.

Our key ingredient of this section is Proposition 4.6, which states that it is sufficient to identify a set $\left\{t_{1}, t_{2}, t_{3}\right\}$ of three vertices and a quad Q_{i} from $G \backslash t_{i}$ for each $i \in\{1,2,3\}$ that satisfy the following conditions:
(1) $G \backslash t_{i}$ is weakly 3 -rank-connected for each $i \in\{1,2,3\}$.
(2) $Q_{1} \cap Q_{2}=\left\{t_{3}\right\}, Q_{2} \cap Q_{3}=\left\{t_{1}\right\}$, and $Q_{3} \cap Q_{1}=\left\{t_{2}\right\}$.

The remainder of this section will focus on identifying these three vertices and quads.
Proposition 4.6. Let t_{1}, t_{2}, and t_{3} be distinct vertices of a 3 -rank-connected graph G such that $G \backslash t_{1}, G \backslash t_{2}$, and $G \backslash t_{3}$ are weakly 3-rank-connected. For each $i \in\{1,2,3\}$, let Q_{i} be a quad of $G \backslash t_{i}$. If $Q_{1} \cap Q_{2}=\left\{t_{3}\right\}, Q_{2} \cap Q_{3}=\left\{t_{1}\right\}$, and $Q_{3} \cap Q_{1}=\left\{t_{2}\right\}$, then for each $i \in\{1,2,3\}$, either $G * t_{i} \backslash t_{i}$ or G / t_{i} is sequentially 3-rank-connected.
Proof. Since $|V(G)| \geq\left|Q_{1} \cup Q_{2}\right|=7$, by Lemma 4.1, all of $G \backslash v, G * v \backslash v$, and G / v are prime for each vertex v of G. Observe that $\left\{t_{2}, t_{3}\right\} \subseteq Q_{1},\left\{t_{1}, t_{3}\right\} \subseteq Q_{2}$, and $\left\{t_{1}, t_{2}\right\} \subseteq Q_{3}$. For each $i \in\{1,2,3\}$, let a_{i} and b_{i} be two distinct vertices of $Q_{i}-\left\{t_{1}, t_{2}, t_{3}\right\}$.

Suppose that neither $G * t_{1} \backslash t_{1}$ nor G / t_{1} is sequentially 3-rank-connected. Let us first show that $\rho_{G \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)=3$. Since $G \backslash t_{1}$ is prime, $\rho_{G \backslash t_{1}}\left(\left\{a_{3}, b_{3}\right\}\right)=2=\rho_{G \backslash t_{1}}\left(\left\{t_{2}, t_{3}, a_{1}, b_{1}\right\}\right)$. By Lemma 2.11,

$$
\rho_{G \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)+\rho_{G \backslash t_{1}}\left(\left\{t_{2}, t_{3}, a_{1}, b_{1}\right\}\right) \geq \rho_{G \backslash t_{1}}\left(\left\{a_{3}, b_{3}\right\}\right)+\rho_{G \backslash t_{1}}\left(\left\{t_{3}, a_{1}, b_{1}\right\}\right),
$$

and therefore $\rho_{G \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right) \geq \rho_{G \backslash t_{1}}\left(\left\{t_{3}, a_{1}, b_{1}\right\}\right)$. Since $Q_{1}=\left\{t_{2}, t_{3}, a_{1}, b_{1}\right\}$ is a quad of $G \backslash t_{1}$, $\rho_{G \backslash t_{1}}\left(\left\{t_{3}, a_{1}, b_{1}\right\}\right)=3$. Therefore $\rho_{G \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)=3$ and, by symmetry, $\rho_{G \backslash t_{1}}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right)=$ 3.

Since $3=\rho_{G \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right) \leq \rho_{G}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right) \leq 3$, we have $\rho_{G}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)=3$. Since $Q_{3}=\left\{t_{1}, t_{2}, a_{3}, b_{3}\right\}$ is a quad of $G \backslash t_{3}$ and G is 3 -rank-connected, we observe that $3 \leq$ $\rho_{G}\left(\left\{t_{1}, t_{2}, a_{3}, b_{3}\right\}\right) \leq 1+\rho_{G \backslash t_{3}}\left(\left\{t_{1}, t_{2}, a_{3}, b_{3}\right\}\right)=3$ and therefore $\rho_{G}\left(\left\{t_{1}, t_{2}, a_{3}, b_{3}\right\}\right)=3$. Similarly, $\rho_{G}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right)=\rho_{G}\left(\left\{t_{1}, t_{3}, a_{2}, b_{2}\right\}\right)=3$. Therefore, by Lemma 2.18, the following hold.
(R1) $\rho_{G * t_{1} \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)=2$ or $\rho_{G / t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)=2$.
(R2) $\rho_{G * t_{1} \backslash t_{1}}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right)=2$ or $\rho_{G / t_{1}}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right)=2$.

Since G is 3-rank connected, $\rho_{G}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right), \rho_{G}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right) \geq 3$. So by Lemma 2.20, $\rho_{G * t_{1} \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)+\rho_{G / t_{1}}\left(V\left(G \backslash t_{1}\right)-\left\{t_{3}, a_{2}, b_{2}\right\}\right)=\rho_{G}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)+\rho_{G}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right)-1 \geq 5$. Hence, $\rho_{G * t_{1} \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)+\rho_{G / t_{1}}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right) \geq 5$ and similarly,

$$
\rho_{G * t_{1} \backslash t_{1}}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right)+\rho_{G / t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right) \geq 5
$$

Therefore, by (R1) and (R2), either
(a) $\rho_{G * t_{1} \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)=\rho_{G * t_{1} \backslash t_{1}}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right)=2$, or
(b) $\rho_{G / t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)=\rho_{G / t_{1}}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right)=2$.

By Lemma 2.2, we may assume (a), because otherwise we can choose a neighbor $y \notin\left\{t_{2}, t_{3}\right\}$ of t_{1} in G by Lemma 2.4 and replace G by $G * y$. By Lemma 3.2, there is a subset A of $V\left(G * t_{1} \backslash t_{1}\right)$ such that

- $\rho_{G * t_{1} \backslash t_{1}}(A) \leq 2$,
- neither A nor $V\left(G * t_{1} \backslash t_{1}\right)-A$ is sequential in $G * t_{1} \backslash t_{1}$,
- $\left\{t_{2}, a_{3}, b_{3}\right\} \subseteq A$ or $\left\{t_{2}, a_{3}, b_{3}\right\} \subseteq V\left(G * t_{1} \backslash t_{1}\right)-A$, and
- $\left\{t_{3}, a_{2}, b_{2}\right\} \subseteq A$ or $\left\{t_{3}, a_{2}, b_{2}\right\} \subseteq V\left(G * t_{1} \backslash t_{1}\right)-A$.

We may assume that $\left\{t_{2}, a_{3}, b_{3}\right\} \subseteq A$ by replacing A with $V\left(G * t_{1} \backslash t_{1}\right)-A$ if necessary. Let $B=V\left(G * t_{1} \backslash t_{1}\right)-A$.

Suppose that $\left\{t_{3}, a_{2}, b_{2}\right\} \subseteq A$. Observe that $\rho_{G}(A) \leq \rho_{G * t_{1} \backslash t_{1}}(A)+1 \leq 3$. Since $\left\{t_{1}, t_{2}, a_{3}, b_{3}\right\}$ is a quad of $G \backslash t_{3}$, by (S1) of Lemma 2.12,

$$
\begin{aligned}
3+2 & \geq \rho_{G}(A)+\rho_{G \backslash t_{3}}\left(\left\{t_{1}, t_{2}, a_{3}, b_{3}\right\}\right)=\rho_{G}\left(\left(A-\left\{t_{3}\right\}\right) \cup\left\{t_{3}\right\}\right)+\rho_{G \backslash t_{3}}\left(\left\{t_{1}, t_{2}, a_{3}, b_{3}\right\}\right) \\
& \geq \rho_{G \backslash t_{3}}\left(\left(A-\left\{t_{3}\right\}\right) \cap\left\{t_{1}, t_{2}, a_{3}, b_{3}\right\}\right)+\rho_{G}\left(\left(A-\left\{t_{3}\right\}\right) \cup\left\{t_{1}, t_{2}, t_{3}, a_{3}, b_{3}\right\}\right) \\
& =\rho_{G \backslash t_{3}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)+\rho_{G}\left(A \cup\left\{t_{1}\right\}\right) \geq 3+\rho_{G}\left(A \cup\left\{t_{1}\right\}\right) .
\end{aligned}
$$

Therefore $\rho_{G}\left(A \cup\left\{t_{1}\right\}\right) \leq 2$, contradicting our assumption that G is 3 -rank-connected. So we deduce that $\left\{t_{3}, a_{2}, b_{2}\right\} \subseteq B$.

By Lemma 4.4, $\left|A \cap\left\{t_{2}, t_{3}, a_{1}, b_{1}\right\}\right|=\left|B \cap\left\{t_{2}, t_{3}, a_{1}, b_{1}\right\}\right|=2$. So $\left|A \cap\left\{a_{1}, b_{1}\right\}\right|=\mid B \cap$ $\left\{a_{1}, b_{1}\right\} \mid=1$ and we can assume that $\left\{a_{1}, t_{2}, a_{3}, b_{3}\right\} \subseteq A$ and $\left\{b_{1}, t_{3}, a_{2}, b_{2}\right\} \subseteq B$ by swapping a_{1} and b_{1} if necessary.

If $|A|=4$, then A is sequential in $G * t_{1} \backslash t_{1}$ because $\rho_{G * t_{1} \backslash t_{1}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right) \leq 2$ and $\left\{t_{2}, a_{3}, b_{3}\right\} \subseteq$ A, contradicting our assumption on A. Hence $|A| \geq 5$.

If $|B|=4$, then B is sequential in $G * t_{1} \backslash t_{1}$ because $\rho_{G * t_{1} \backslash t_{1}}\left(\left\{t_{3}, a_{2}, b_{2}\right\}\right) \leq 2$ and $\left\{t_{3}, a_{2}, b_{2}\right\} \subseteq$ B, contradicting our assumption on B. So $|B| \geq 5$ and $|V(G)|=|A|+|B|+1 \geq 11$.

For each $k \in\{1,2,3\}$, let $P_{k}=Q_{k} \cup\left\{t_{k}\right\}=\left\{t_{1}, t_{2}, t_{3}, a_{k}, b_{k}\right\}$. Observe that $\rho_{G}\left(P_{k}\right) \leq$ $\rho_{G \backslash t_{k}}\left(Q_{k}\right)+1 \leq 3$ for each $1 \leq k \leq 3$. Since G is 3-rank-connected and $\left|P_{1} \cap P_{3}\right|=3$, we have $\rho_{G}\left(P_{1} \cap P_{3}\right) \geq 3$. By Lemma 2.10,

$$
6 \geq \rho_{G}\left(P_{1}\right)+\rho_{G}\left(P_{3}\right) \geq \rho_{G}\left(P_{1} \cup P_{3}\right)+\rho_{G}\left(P_{1} \cap P_{3}\right) \geq \rho_{G}\left(P_{1} \cup P_{3}\right)+3
$$

which implies that $\rho_{G}\left(P_{1} \cup P_{3}\right) \leq 3$. Observe that $\left|V(G)-\left(A \cup\left(P_{1} \cup P_{3}\right)\right)\right| \geq\left|B-\left\{b_{1}, t_{3}\right\}\right| \geq 3$. Since G is 3-rank-connected, $\rho_{G}\left(A \cup\left(P_{1} \cup P_{3}\right)\right) \geq 3$. By Lemma 2.10,
$3+3 \geq \rho_{G}(A)+\rho_{G}\left(P_{1} \cup P_{3}\right) \geq \rho_{G}\left(A \cap\left(P_{1} \cup P_{3}\right)\right)+\rho_{G}\left(A \cup\left(P_{1} \cup P_{3}\right)\right) \geq \rho_{G}\left(A \cap\left(P_{1} \cup P_{3}\right)\right)+3$. Therefore $\rho_{G}\left(\left\{a_{1}, t_{2}, a_{3}, b_{3}\right\}\right)=\rho_{G}\left(A \cap\left(P_{1} \cup P_{3}\right)\right) \leq 3$. Hence by Lemma 2.10,

$$
\begin{aligned}
3+2 & \geq \rho_{G \backslash t_{3}}\left(\left\{a_{1}, t_{2}, a_{3}, b_{3}\right\}\right)+\rho_{G \backslash t_{3}}\left(\left\{t_{1}, t_{2}, a_{3}, b_{3}\right\}\right) \\
& \geq \rho_{G \backslash t_{3}}\left(\left\{a_{1}, t_{1}, t_{2}, a_{3}, b_{3}\right\}\right)+\rho_{G \backslash t_{3}}\left(\left\{t_{2}, a_{3}, b_{3}\right\}\right)=\rho_{G \backslash t_{3}}\left(\left\{a_{1}, t_{1}, t_{2}, a_{3}, b_{3}\right\}\right)+3 .
\end{aligned}
$$

Hence $\rho_{G \backslash t_{3}}\left(\left\{a_{1}, t_{1}, t_{2}, a_{3}, b_{3}\right\}\right) \leq 2$, contradicting our assumption that $G \backslash t_{3}$ is weakly 3-rankconnected.

An independent set of a graph is a set of pairwise nonadjacent vertices. For sets A and B, let $A \triangle B=(A-B) \cup(B-A)$.

Lemma 4.7. Let G be a 3 -rank-connected graph with $|V(G)| \geq 6$ and x be a vertex of G such that $G \backslash x$ is weakly 3-rank-connected. Let P be a quad of $G \backslash x$. Then there is a graph G^{\prime} locally equivalent to G such that the following hold.
(1) $G^{\prime} \backslash v$ is weakly 3-rank-connected for each vertex $v \in P \cup\{x\}$.
(2) $N_{G^{\prime}}(t)-P \neq \emptyset$ for each $t \in P$.
(3) P is a quad of $G^{\prime} \backslash x$.

Proof. Let $P=\{p, q, r, s\}$. By Lemma 4.3, there is a graph locally equivalent to G satisfying (1) and (3). We may assume that among all graphs locally equivalent to G satisfying (1) and (3), G maximizes the number of edges between vertices in P.

We may assume that $N_{G}(p) \subseteq\{q, r, s\}$ because otherwise (1), (2), and (3) hold for $G^{\prime}=G$. Since P is a quad of $G \backslash x$, we have $\rho_{G \backslash x}(P)=2$, which implies that $|V(G \backslash x)-P| \geq 2$. So $|V(G)| \geq 7$. Since G is 3-rank-connected, by Lemma 2.4, we have $N_{G}(p)=\{q, r, s\}$.

Suppose that $\{q, r, s\}$ is independent in G. Since G is 3-rank-connected, by Lemma 2.6, G is 3 -connected and so $G \backslash x \backslash p$ is connected. Let X be a shortest path joining two vertices of $\{q, r, s\}$ in $G \backslash x \backslash p$. By symmetry, we may assume that $X=q v_{1} \cdots v_{m} r$ and $v_{i} \neq s$ for each $1 \leq i \leq m$. Since $\{q, r, s\}$ is independent in G, we deduce that $m \geq 1$ and $\left\{v_{1}, \ldots, v_{m}\right\} \subseteq V(G)-(P \cup\{x\})$. Then let $G^{\prime}=G * v_{1} * \cdots * v_{m}$. Then G^{\prime} satisfies (1) and (3). Moreover, $N_{G^{\prime}}(p)=\{q, r, s\}$ and $q r \in E\left(G^{\prime}\right)$. Hence $\left|E\left(G^{\prime}[P]\right)\right|>|E(G[P])|$, contradicting the choice of G. Therefore, $\{q, r, s\}$ is not independent in G.

Since G is 3 -rank-connected, we have $3 \leq \rho_{G}(P) \leq \rho_{G \backslash x}(P)+1=3$. Hence $\rho_{G}(P)=3$ and so $N_{G}(q)-P, N_{G}(r)-P$, and $N_{G}(s)-P$ are nonempty, pairwise distinct, and ($N_{G}(s)-$ P) $\triangle\left(N_{G}(q)-P\right) \triangle\left(N_{G}(r)-P\right) \neq \emptyset$.

If $G * q \backslash q$ is weakly 3-rank-connected, then let $G^{\prime}=G * q$. Obviously, (1) and (3) hold. We have $N_{G^{\prime}}(p)-P=N_{G}(q)-P=N_{G^{\prime}}(q)-P \neq \emptyset$. For each vertex $v \in\{r, s\}$,

$$
N_{G^{\prime}}(v)-P= \begin{cases}N_{G}(v)-P \neq \emptyset & \text { if } v \text { is not adjacent to } q \text { in } G, \\ \left(N_{G}(q)-P\right) \triangle\left(N_{G}(v)-P\right) \neq \emptyset & \text { if } v \text { is adjacent to } q \text { in } G,\end{cases}
$$

and therefore G^{\prime} satisfies (2). So we can assume that none of $G * q \backslash q, G * r \backslash r$, and $G * s \backslash s$ is weakly 3 -rank-connected. Then by Lemma 4.2, all of $G / q, G / r$, and G / s are weakly 3 -rank-connected.

Since $\{q, r, s\}$ is not independent in G, by symmetry, we may assume that q and r are adjacent in G. Let $G^{\prime}=G \wedge q r$. For each vertex $v \in P \cup\{x\}$, if $v \in\{p, s, x\}$, then $G^{\prime} \backslash v=(G \backslash v) \wedge q r$ and if $v \in\{q, r\}$, then $G^{\prime} \backslash v=G / v$, which implies that (1) and (3) hold. Then $N_{G^{\prime}}(q)-P=N_{G}(r)-P$ and $N_{G^{\prime}}(r)-P=N_{G}(q)-P$. Since $p \in N_{G}(q) \cap N_{G}(r)$ and $N_{G}(q)-P \neq N_{G}(r)-P$, we have $N_{G^{\prime}}(p)-P=\left(N_{G}(q)-P\right) \triangle\left(N_{G}(r)-P\right) \neq \emptyset$. Furthermore,

$$
N_{G^{\prime}}(s)-P= \begin{cases}N_{G}(s)-P \neq \emptyset & \text { if } s \notin N_{G}(q) \cup N_{G}(r), \\ \left(N_{G}(s)-P\right) \triangle\left(N_{G}(q)-P\right) \neq \emptyset & \text { if } s \in N_{G}(r)-N_{G}(q), \\ \left(N_{G}(s)-P\right) \triangle\left(N_{G}(r)-P\right) \neq \emptyset & \text { if } s \in N_{G}(q)-N_{G}(r), \\ \left(N_{G}(s)-P\right) \triangle\left(N_{G}(q)-P\right) \triangle\left(N_{G}(r)-P\right) \neq \emptyset & \text { if } s \in N_{G}(q) \cap N_{G}(r)\end{cases}
$$

Hence, (2) holds.
Lemma 4.8. Let G be a 3-rank-connected graph with $|V(G)| \geq 6$ and x be a vertex of G. Let P be a quad of $G \backslash x$ and t be a vertex in P. If $G \backslash t$ is weakly 3 -rank-connected, then one of the following holds.
(Q1) $G \backslash t$ is sequentially 3-rank-connected.
(Q2) There is a subset X of $V(G \backslash t)$ such that $\rho_{G \backslash t}(X) \leq 2, X \cap P \neq \emptyset,(V(G \backslash t)-X) \cap P \neq \emptyset$, and neither X nor $V(G \backslash t)-X$ is sequential in $G \backslash t$.
(Q3) $\rho_{G \backslash t}(P-\{t\})=2$ and $G \backslash t$ has a quad Y containing x such that $Y \cap P=\emptyset$.
Proof. Suppose that $G \backslash t$ is not sequentially 3 -rank-connected. Then there is a subset X of $V(G \backslash t)$ such that $\rho_{G \backslash t}(X) \leq 2$ and neither X nor $V(G \backslash t)-X$ is sequential in $G \backslash t$. Let $Y=V(G \backslash t)-X$ and $\left(Z_{1}, Z_{2}\right)=(X-\{x\}, Y-\{x\})$. Since both X and Y are non-sequential in $G \backslash t$, we have $|X|,|Y| \geq 4$ and so $\left|Z_{1}\right|,\left|Z_{2}\right| \geq 3$. If $X \cap P \neq \emptyset$ and $Y \cap P \neq \emptyset$, then (Q2) holds. So by symmetry, we may assume that $P-\{t\} \subseteq X$. Then $P-\{t\} \subseteq Z_{1}$. Since P is a quad of $G \backslash x$, we know that $\rho_{G \backslash x}(P)=2=\rho_{G \backslash x}(P-\{t\})-1 \leq \rho_{G \backslash x \backslash t}(P-\{t\})$. Then by Lemma 2.14, $\rho_{G \backslash x}\left(Z_{1} \cup\{t\}\right)=\rho_{G \backslash x \backslash t}\left(Z_{1}\right)$.

By Lemma 4.1, $G \backslash x$ is prime and so $2 \leq \rho_{G \backslash x}\left(Z_{1} \cup\{t\}\right)=\rho_{G \backslash x \backslash t}\left(Z_{1}\right) \leq \rho_{G \backslash t}(X) \leq 2$, which implies that

$$
\rho_{G \backslash x}\left(Z_{1} \cup\{t\}\right)=\rho_{G \backslash x \backslash t}\left(Z_{1}\right)=2 .
$$

Since G is 3-rank-connected and $\left|V(G)-\left(Z_{1} \cup\{x, t\}\right)\right| \geq\left|Z_{2}\right| \geq 3$, we have $\rho_{G}\left(Z_{1} \cup\{x, t\}\right) \geq 3$. So by Lemma (A3) of Lemma 2.16,

$$
2+\rho_{G \backslash t}\left(Z_{1} \cup\{x\}\right) \geq \rho_{G \backslash x}\left(Z_{1} \cup\{t\}\right)+\rho_{G \backslash t}\left(Z_{1} \cup\{x\}\right) \geq \rho_{G}\left(Z_{1} \cup\{x, t\}\right)+\rho_{G \backslash x \backslash t}\left(Z_{1}\right) \geq 3+2 .
$$

Hence $\rho_{G \backslash t}\left(Z_{1} \cup\{x\}\right)>2$ and $x \in Y$. So $\left(Z_{1}, Z_{2}\right)=(X, Y-\{x\})$ and $\rho_{G \backslash x}(X \cup\{t\})=$ $\rho_{G \backslash x}\left(Z_{1} \cup\{t\}\right)=2$. Since $t \in P$ and $x \notin Z_{1}$, by (A2) of Lemma 2.16,

$$
2+2 \geq \rho_{G \backslash x}(P)+\rho_{G \backslash t}\left(Z_{1}\right) \geq \rho_{G \backslash x}\left(Z_{1} \cup\{t\}\right)+\rho_{G \backslash t}(P-\{t\}) \geq 2+\rho_{G \backslash t}(P-\{t\}) .
$$

Therefore, $\rho_{G \backslash t}(P-\{t\})=2$ because $G \backslash t$ is prime. Since X is non-sequential in $G \backslash t$ and $\rho_{G \backslash t}(P-\{t\}) \leq 2$, we have $|X| \geq 5$. Hence $|Y|=4$ because $G \backslash t$ is weakly 3-rank-connected. Since Y is non-sequential in $G \backslash t$, by Lemma 4.5, $Y=Z_{2} \cup\{x\}$ is a quad of $G \backslash t$. Hence (Q3) holds.

Lemma 4.9. Let G be a 3-rank-connected graph such that $|V(G)| \geq 12$ and x be a vertex of G. Let P be a quad of $G \backslash x$ and t be a vertex of P. Let (X, Y) be a partition of $V(G)-\{t\}$ such that $\rho_{G \backslash t}(X) \leq 2$ and neither X nor Y is sequential in $G \backslash t$. If $G \backslash x$ and $G \backslash t$ are weakly 3-rank-connected and $|X \cap P|=1$, then the following hold.
(K1) $\rho_{G \backslash x \backslash t}(X-\{x\})=\rho_{G \backslash t}(X)=2$.
(K2) X is a quad of $G \backslash t$ containing x.
Proof. Since neither X nor Y is sequential in $G \backslash t$, we have $|X|,|Y| \geq 4$ and so $|X-\{x\}|, \mid Y-$ $\{x\} \mid \geq 3$. Clearly, $\rho_{G \backslash x \backslash t}(X-\{x\}) \leq \rho_{G \backslash t}(X) \leq 2$. Let q be the element of $X \cap P$ and r, s be the elements of $Y \cap P$. Let $C=X-\{q, x\}$ and $D=Y-\{r, s, x\}$. Then we have $|D| \geq 1$ because $|Y| \geq 4$.

Let us show that $\rho_{G \backslash x \backslash t}(C) \leq 2$. Since P is a quad of $G \backslash x$, by (ii) of Lemma 2.8, $\rho_{G \backslash x \backslash t}(P-$ $\{t\}) \leq \rho_{G \backslash x}(P)=2=\rho_{G \backslash x}(P-\{q\})-1 \leq \rho_{G \backslash x \backslash t}(\{r, s\})$. Hence, by Lemma 2.11,

$$
\begin{aligned}
\rho_{G \backslash x \backslash t}(X-\{x\})+2 & \geq \rho_{G \backslash x \backslash t}(X-\{x\})+\rho_{G \backslash x \backslash t}(P-\{t\}) \\
& \geq \rho_{G \backslash x \backslash t}(C)+\rho_{G \backslash x \backslash t}(\{r, s\}) \geq \rho_{G \backslash x \backslash t}(C)+2
\end{aligned}
$$

and therefore $\rho_{G \backslash x \backslash t}(C) \leq \rho_{G \backslash x \backslash t}(X-\{x\}) \leq 2$. Since P is a quad of $G \backslash x$, by (i) of Lemma 2.8, $\rho_{G \backslash x}(P)=2=\rho_{G \backslash x}(P-\{t\})-1 \leq \rho_{G \backslash x \backslash t}(P-\{t\})$. By Lemma 2.15,
$2+\rho_{G \backslash x \backslash t}(C) \geq \rho_{G \backslash x}((P-\{t\}) \cup\{t\})+\rho_{G \backslash x \backslash t}(C) \geq \rho_{G \backslash x}(C)+\rho_{G \backslash x \backslash t}(P-\{t\}) \geq \rho_{G \backslash x}(C)+2$,
which implies that $\rho_{G \backslash x}(C) \leq \rho_{G \backslash x \backslash t}(C) \leq 2$. Hence $\rho_{G \backslash x}(C)=\rho_{G \backslash x \backslash t}(C)=\rho_{G \backslash x \backslash t}(X-\{x\})=$ $\rho_{G \backslash t}(X)=2$ because $G \backslash x$ is prime and $|V(G \backslash x)-C| \geq 2$. Hence (K1) holds.

Since $G \backslash x$ is weakly 3-rank-connected and $|V(G \backslash x)-C| \geq|P|+|D| \geq 5$, we deduce that $|C| \leq 4$ and $|X| \leq 6$. So $|Y| \geq 11-|X| \geq 5$.

Suppose that $x \notin X$. Then $X=X-\{x\}$ and $\rho_{G \backslash x \backslash t}(X)=\rho_{G \backslash t}(X)=2$. Since $C \subseteq X$, by Lemma 2.13, we have $\rho_{G \backslash t}(C)=\rho_{G \backslash x \backslash t}(C)=2$. By (A1) of Lemma 2.16,

$$
\rho_{G \backslash x}(C)+\rho_{G \backslash t}(C) \geq \rho_{G}(C)+\rho_{G \backslash x \backslash t}(C),
$$

which implies that $\rho_{G}(C) \leq 2$. So $|C| \leq 2$ because G is 3-rank-connected. Then $|X|=|C \cup\{q\}| \leq$ 3 , contradicting our assumption on X. Hence $x \in X$.

Since $G \backslash t$ is weakly 3-rank-connected, $\rho_{G \backslash t}(X)=2$, and $|Y| \geq 5$, we have $|X|=4$. Therefore, by Lemma 4.5, X is a quad of $G \backslash t$ and (K2) holds.

Lemma 4.10. Let G be a 3-rank-connected graph with $|V(G)| \geq 12$ and no sequentially 3-rankconnected vertex-minor on $|V(G)|-1$ vertices. Let x be a vertex of G such that $G \backslash x$ is weakly 3 -rank-connected and P be a quad of $G \backslash x$. Then there is a graph G^{\prime} locally equivalent to G such that the following hold.
(1) $G^{\prime} \backslash v$ is weakly 3-rank-connected for each vertex v of $P \cup\{x\}$.
(2) P is a quad of $G^{\prime} \backslash x$.
(3) There exist a 2-element subset S of P and a quad X_{u} of $G^{\prime} \backslash u$ for each u in S such that $x \in X_{u},\left|X_{u} \cap P\right|=1$, and $V\left(G^{\prime} \backslash u\right)-X_{u}$ is not sequential in $G^{\prime} \backslash u$.

Proof. By Lemma 4.1, $G \backslash v$ is prime for each vertex v of G. By Lemma 4.7, we can assume that $G \backslash v$ is weakly 3-rank-connected for each vertex v of $P \cup\{x\}$, the set P is a quad of $G \backslash x$, and $N_{G}(t)-P$ is nonempty for each $t \in P$.

By Lemma 4.8, each vertex t in P satisfies (Q2) or (Q3). Suppose that at most 1 vertex of P satisfies (Q2). Then by Lemma 4.8, there exist 3 vertices q, r, s of P such that $\rho_{G \backslash q}(P-\{q\})=2$, $\rho_{G \backslash r}(P-\{r\})=2$, and $\rho_{G \backslash s}(P-\{s\})=2$. Since P is a quad of $G \backslash x$, by (i) of Lemma 2.8, we have $\rho_{G}(P) \leq \rho_{G \backslash x}(P)+1 \leq 3$. Since G is 3 -rank-connected, $3 \leq \rho_{G}(P)$ and therefore, $\rho_{G}(P)=3$. By (A3) of Lemma 2.16,

$$
\begin{aligned}
2+2 & =\rho_{G \backslash q}(P-\{q\})+\rho_{G \backslash r}(P-\{r\}) \\
& \geq \rho_{G}(P)+\rho_{G \backslash q \backslash r}(P-\{q, r\})=3+\rho_{G \backslash q \backslash r}(P-\{q, r\})
\end{aligned}
$$

Therefore, $\rho_{G \backslash q \backslash r}(P-\{q, r\}) \leq 1$ and by symmetry, $\rho_{G \backslash q \backslash s}(P-\{q, s\}) \leq 1$ and $\rho_{G \backslash r \backslash s}(P-$ $\{r, s\}) \leq 1$. Let p be the element of $P-\{q, r, s\}$. Since $N_{G}(t)-P \neq \emptyset$ for each $t \in P$, we have $N_{G}(p)-P=N_{G}(q)-P=N_{G}(r)-P=N_{G}(s)-P$ and therefore $\rho_{G}(P)=1$, contradicting our assumption.

Therefore, there exist a subset $S=\{p, q\}$ of P and a subset X_{u} of $V(G \backslash u)$ for each $u \in S$ such that $\rho_{G \backslash u}\left(X_{u}\right) \leq 2$, both $X_{u} \cap P$ and $\left(V(G \backslash u)-X_{u}\right) \cap P$ are nonempty, and neither X_{u} nor $V(G \backslash u)-X_{u}$ is sequential in $G \backslash u$.

Let $Y_{p}=V(G \backslash p)-X_{p}$ and $Y_{q}=V(G \backslash q)-X_{q}$. By symmetry, we may assume that $\left|X_{p} \cap P\right|=1$ and $\left|X_{q} \cap P\right|=1$. Then by (K2) of Lemma 4.9, X_{p} is a quad of $G \backslash p, X_{q}$ is a quad of $G \backslash q$, and $x \in X_{p} \cap X_{q}$.

Lemma 4.11. Let G be a 3-rank-connected graph with $|V(G)| \geq 12$ and x, y be distinct vertices of G such that both $G \backslash x$ and $G \backslash y$ are weakly 3-rank-connected. Let A be a quad of $G \backslash x$ and B be a quad of $G \backslash y$. Then $|A \cap B| \leq 2$.

Proof. Suppose that $|A \cap B| \geq 3$. First let us consider the case when $y \notin A$ and $x \notin B$. Since G is 3 -rank-connected and $|V(G)-(A \cap B)| \geq 3$, we have $\rho_{G}(A \cap B) \geq 3$. So by (A1) of Lemma 2.16,

$$
2+2 \geq \rho_{G \backslash x}(A)+\rho_{G \backslash y}(B) \geq \rho_{G}(A \cap B)+\rho_{G \backslash x \backslash y}(A \cup B) \geq 3+\rho_{G \backslash x \backslash y}(A \cup B)
$$

Hence $\rho_{G \backslash x \backslash y}(A \cup B) \leq 1$. Then by (ii) of Lemma 2.8, we have $\rho_{G \backslash x}(A \cup B \cup\{y\}) \leq 2$. Since $G \backslash x$ is weakly 3 -rank-connected and $|A \cup B \cup\{y\}| \in\{5,6\}$, we deduce that $|V(G \backslash x)-(A \cup B \cup\{y\})| \leq 4$ and so $|V(G)| \leq 11$, contradicting our assumption.

Now we consider the case when either

- $y \in A$ and $x \notin B$, or
- $y \notin A$ and $x \in B$.

By symmetry, we may assume that $y \in A$ and $x \notin B$. Then $|A \cap B|=3$ because $x \notin B$. Since $G \backslash x$ is weakly 3-rank-connected, $|A \cup B|=5$, and $|V(G \backslash x)-(A \cup B)| \geq 6$, we have $\rho_{G \backslash x}(A \cup B) \geq 3$. By (A2) of Lemma 2.16,

$$
2+2 \geq \rho_{G \backslash x}(A)+\rho_{G \backslash y}(B) \geq \rho_{G \backslash x}(A \cup B)+\rho_{G \backslash y}(A \cap B) \geq 3+\rho_{G \backslash y}(A \cap B)
$$

Hence $\rho_{G \backslash y}(A \cap B) \leq 1$, contradicting the fact that $G \backslash y$ is prime.
Now it remains to consider the case when $y \in A$ and $x \in B$. Since $x \notin A$ and $y \notin B$, we have $|A \cap B|=3$. Since G is 3-rank-connected and $|V(G)-(A \cup B)| \geq 7$, we have $\rho_{G}(A \cup B) \geq 3$. By (A3) of Lemma 2.16,

$$
2+2 \geq \rho_{G \backslash x}(A)+\rho_{G \backslash y}(B) \geq \rho_{G}(A \cup B)+\rho_{G \backslash x \backslash y}(A \cap B) \geq 3+\rho_{G \backslash x \backslash y}(A \cap B)
$$

So $\rho_{G \backslash x \backslash y}(A \cap B) \leq 1$ and $\rho_{G \backslash x}(A \cap B) \leq 2$, contradicting the assumption that A is a quad of $G \backslash x$.

Lemma 4.12. Let G be a 3-rank-connected graph with $|V(G)| \geq 12$ and x be a vertex of G. Let P be a quad of $G \backslash x$ and y be a vertex of P. Let Q be a quad of $G \backslash y$. If $G \backslash x$ is weakly 3-rank-connected and $|P \cap Q|=2$, then $x \in Q$.

Proof. Suppose that $x \notin Q$. Since G is 3-rank-connected, by Lemma 4.1, $G \backslash y$ is prime. Therefore, $\rho_{G \backslash y}(P \cap Q)=2$ because $|P \cap Q|=2$. Since $y \in P$ and $x \notin Q$, by (A2) of Lemma 2.16,

$$
2+2 \geq \rho_{G \backslash x}(P)+\rho_{G \backslash y}(Q) \geq \rho_{G \backslash x}(P \cup Q)+\rho_{G \backslash y}(P \cap Q) \geq \rho_{G \backslash x}(P \cup Q)+2
$$

Hence $\rho_{G \backslash x}(P \cup Q) \leq 2$. Since $G \backslash x$ is weakly 3 -rank-connected and $|P \cup Q|=6$, we have $|V(G \backslash x)-(P \cup Q)| \leq 4$ and so $|V(G)| \leq 11$, contradicting our assumption.

Lemma 4.13. Let G be a 3-rank-connected graph with $|V(G)| \geq 13$ and x be a vertex of G. Let P be a quad of $G \backslash x$ and p, q be distinct vertices of P. For each $u \in\{p, q\}$, let A_{u} be a quad of $G \backslash u$ such that $x \in A_{u},\left|A_{u} \cap P\right|=1$, and $V(G \backslash u)-A_{u}$ is not sequential in $G \backslash u$. If $G \backslash x$, $G \backslash p$, and $G \backslash q$ are weakly 3-rank-connected, then $A_{p} \cap A_{q} \subseteq P \cup\{x\}$.

Proof. For each $u \in\{p, q\}$, let $B_{u}=A_{u}-(P \cup\{x\})$. Then $\left|B_{u}\right|=2$ and $\left|A_{u} \cup P\right|=7$ for each $u \in\{p, q\}$. Let t be the unique element of $A_{p} \cap P$.

Now we claim that $\rho_{G}\left(A_{p} \cup P\right)=3$. By Lemma $2.4, N_{G \backslash x \backslash p}(t) \neq \emptyset$ and so $\rho_{G \backslash x \backslash p}(\{t\})=1$. Since P is a quad of $G \backslash x$, we have $\rho_{G \backslash x \backslash p}(P-\{p\}) \leq \rho_{G \backslash x}(P)=2$. By (K1) of Lemma 4.9, $\rho_{G \backslash x \backslash p}\left(A_{p}-\{x\}\right)=\rho_{G \backslash p}\left(A_{p}\right)=2$. By Lemma 2.14, $\rho_{G \backslash p}\left(A_{p} \cup(P-\{p\})\right)=\rho_{G \backslash x \backslash p}\left(\left(A_{p}-\{x\}\right) \cup\right.$ $(P-\{p\}))$.

By Lemma 2.10,

$$
\begin{aligned}
2+2 & \geq \rho_{G \backslash x \backslash p}\left(A_{p}-\{x\}\right)+\rho_{G \backslash x \backslash p}(P-\{p\}) \\
& \geq \rho_{G \backslash x \backslash p}\left(\left(A_{p}-\{x\}\right) \cup(P-\{p\})\right)+\rho_{G \backslash x \backslash p}(\{t\}) \geq \rho_{G \backslash x \backslash p}\left(\left(A_{p}-\{x\}\right) \cup(P-\{p\})\right)+1 .
\end{aligned}
$$

Hence $\rho_{G \backslash x \backslash p}\left(\left(A_{p}-\{x\}\right) \cup(P-\{p\})\right) \leq 3$.
Since P is a quad of $G \backslash x$, we have $\rho_{G \backslash x}(P)=2=\rho_{G \backslash x}(P-\{p\})-1 \leq \rho_{G \backslash x \backslash p}(P-\{p\})$. So by Lemma 2.14, $\rho_{G \backslash x}\left(\left(A_{p}-\{x\}\right) \cup P\right)=\rho_{G \backslash x \backslash p}\left(\left(A_{p}-\{x\}\right) \cup(P-\{p\})\right)$. By (A3) of Lemma 2.16, $\rho_{G \backslash x}\left(\left(A_{p}-\{x\}\right) \cup P\right)+\rho_{G \backslash p}\left(A_{p} \cup(P-\{p\})\right) \geq \rho_{G}\left(A_{p} \cup P\right)+\rho_{G \backslash x \backslash p}\left(\left(A_{p}-\{x\}\right) \cup(P-\{p\})\right)$.

It follows that $\rho_{G}\left(A_{p} \cup P\right)=\rho_{G \backslash x \backslash p}\left(\left(A_{p}-\{x\}\right) \cup(P-\{p\})\right) \leq 3$. Since G is 3-rank-connected and $\left|A_{p} \cup P\right|,\left|V(G)-\left(A_{p} \cup P\right)\right| \geq 3$, we have $\rho_{G}\left(A_{p} \cup P\right)=3$.

By Lemma 4.11, $\left|A_{p} \cap A_{q}\right| \leq 2$. Since $x \in A_{p} \cap A_{q}$, we have $\left|B_{p} \cap B_{q}\right| \leq 1$.
Suppose that $\left|B_{p} \cap B_{q}\right|=1$. Then $\left|A_{q} \cap\left(A_{p} \cup P\right)\right|=\left|A_{q}\right|-\left|A_{q}-\left(A_{p} \cup P\right)\right|=\left|A_{q}\right|-\left|B_{q}-B_{p}\right|=$ $\left|A_{q}\right|-\left(\left|B_{q}\right|-\left|B_{p} \cap B_{q}\right|\right)=3$. So $\rho_{G \backslash q}\left(A_{q} \cap\left(A_{p} \cup P\right)\right)=3$ because A_{q} is a quad of $G \backslash q$. Since $\rho_{G \backslash q}\left(A_{q}\right)=2$ and $\rho_{G \backslash q}\left(\left(A_{p} \cup P\right)-\{q\}\right) \leq \rho_{G}\left(A_{p} \cup P\right)=3$, by Lemma 2.11,

$$
\begin{aligned}
5 \geq \rho_{G \backslash q}\left(A_{q}\right)+\rho_{G \backslash q}\left(\left(A_{p} \cup P\right)-\{q\}\right) & \geq \rho_{G \backslash q}\left(\left(A_{q} \cup\left(A_{p} \cup P\right)\right)-\{q\}\right)+\rho_{G \backslash q}\left(A_{q} \cap\left(A_{p} \cup P\right)\right) \\
& =\rho_{G \backslash q}\left(\left(A_{q} \cup\left(A_{p} \cup P\right)\right)-\{q\}\right)+3 .
\end{aligned}
$$

Hence $\rho_{G \backslash q}\left(\left(A_{q} \cup\left(A_{p} \cup P\right)\right)-\{q\}\right) \leq 2$. Since $G \backslash q$ is weakly 3-rank-connected and $\mid\left(A_{q} \cup\left(A_{p} \cup P\right)\right)-$ $\{q\}\left|=\left|A_{q}\right|+\left|A_{p} \cup P\right|-\left|A_{q} \cap\left(A_{p} \cup P\right)\right|-1=7\right.$, we deduce that $| V(G \backslash q)-\left(\left(A_{q} \cup\left(A_{p} \cup P\right)\right)-\{q\}\right) \mid \leq 4$. Therefore, $|V(G)| \leq 12$, contradicting our assumption. Therefore, $B_{p} \cap B_{q}=\emptyset$ and so $A_{p} \cap A_{q} \subseteq$ $P \cup\{x\}$.

Lemma 4.14. Let G be a 3-rank-connected graph with $|V(G)| \geq 6$ and a, b be distinct vertices of G. Let A be a quad of $G \backslash a$ and B be a quad of $G \backslash b$. If $|A \cap B|=1$, then $b \in A$ and $a \in B$.

Proof. Suppose not. Then by symmetry, we may assume that $b \notin A$. Since B is a quad of $G \backslash b$, we know that $\rho_{G \backslash b}(B)<\rho_{G \backslash b}(B-A)$. Then by Lemma 2.11,

$$
\rho_{G \backslash b}(B)+\rho_{G \backslash b}(A) \geq \rho_{G \backslash b}(A-B)+\rho_{G \backslash b}(B-A)
$$

and therefore $\rho_{G \backslash b}(A-B)<\rho_{G \backslash b}(A)$. Since A is a quad of $G \backslash a$, we have that $\rho_{G}(A) \leq$ $\rho_{G \backslash a}(A)+1 \leq 3$. By Lemma 4.1, $G \backslash b$ is prime and so

$$
2 \leq \rho_{G \backslash b}(A-B)<\rho_{G \backslash b}(A) \leq \rho_{G}(A) \leq 3,
$$

which implies that $\rho_{G \backslash b}(A-B)=2$ and $\rho_{G \backslash b}(A)=3$. Since $2=\rho_{G \backslash b}(A)-1 \leq \rho_{G \backslash a \backslash b}(A) \leq$ $\rho_{G \backslash a}(A)=2$, we have $\rho_{G \backslash a \backslash b}(A)=2$. Since $a \notin A-B$ and $b \notin A$, by (A1) of Lemma 2.16,

$$
2+2=\rho_{G \backslash a}(A)+\rho_{G \backslash b}(A-B) \geq \rho_{G}(A-B)+\rho_{G \backslash a \backslash b}(A)=\rho_{G}(A-B)+2 .
$$

Hence $\rho_{G}(A-B) \leq 2$, contradicting the condition that G is 3 -rank-connected.
Proposition 4.15. Let G be a 3-rank-connected graph such that $|V(G)| \geq 13$. Then there exists a sequentially 3-rank-connected vertex-minor H of G such that $|V(H)|=|V(G)|-1$.

Proof. Suppose that no vertex-minor of G on $|V(G)|-1$ vertices is sequentially 3-rank-connected. Let x be a vertex of G. By Lemma 4.3, we can assume that $G \backslash x$ is weakly 3-rank-connected. By Lemma 4.1, $G \backslash x$ is prime. Since $G \backslash x$ is not sequentially 3 -rank-connected, there exists a subset P of $V(G \backslash x)$ such that $\rho_{G \backslash x}(P) \leq 2$ and neither P nor $V(G \backslash x)-P$ is sequential in $G \backslash x$. Since $G \backslash x$ is weakly 3 -rank-connected, we may assume that $|P|=4$. Since $|V(G \backslash x)-P| \geq 4$ and $G \backslash x$ is prime, $\rho_{G \backslash x}(P)=2$. So by Lemma 4.5, P is a quad of $G \backslash x$. Then by Lemma 4.10, we can assume the following.
(1) $G \backslash v$ is weakly 3-rank-connected for each vertex v of $P \cup\{x\}$.
(2) P is a quad of $G \backslash x$.
(3) There exist a 2-element subset S of P and a quad X_{u} of $G \backslash u$ for each u in S such that $x \in X_{u},\left|X_{u} \cap P\right|=1$, and $V(G \backslash u)-X_{u}$ is not sequential in $G \backslash u$.

Let p and q be distinct vertices of S. By Lemma 4.13, $x \in X_{p} \cap X_{q} \subseteq P \cup\{x\}$. By Lemma 4.11, $\left|X_{p} \cap X_{q}\right| \leq 2$.

If $\left|X_{p} \cap X_{q}\right|=1$, then, by Lemma 4.14, $q \in X_{p}$ and $p \in X_{q}$. Then, since $X_{p} \cap X_{q}=\{x\}$, $X_{p} \cap P=\{q\}$, and $X_{q} \cap P=\{p\}$, by Proposition 4.6, $G * x \backslash x$ or G / x is sequentially 3-rankconnected, contradicting the assumption.

So $\left|X_{p} \cap X_{q}\right|=2$. Let $r \in X_{p} \cap X_{q}-\{x\}$. Since r does not satisfy (Q1), by Lemma 4.8, (Q2) or (Q3) holds for r.

If (Q2) holds, there is a subset R of $V(G \backslash r)$ such that $\rho_{G \backslash r}(R) \leq 2, R \cap P \neq \emptyset,(V(G \backslash$ $r)-R) \cap P \neq \emptyset$, and neither R nor $V(G \backslash r)-R$ is sequential in $G \backslash r$. By symmetry, we may assume that $|P \cap R|=1$ by replacing R by $V(G \backslash r)-R$. Then by (K2) of Lemma 4.9, R is a quad of $G \backslash r$ containing x. By Lemma 4.11, $\left|R \cap X_{p}\right|,\left|R \cap X_{q}\right| \leq 2$.

Suppose that $\left|R \cap X_{p}\right|=2$ and $\left|R \cap X_{q}\right|=2$. Then by applying Lemma 4.12 twice, we deduce that R contains both p and q, contradicting our assumption that $|P \cap R|=1$. So by symmetry, we can assume that $\left|R \cap X_{p}\right|=1$. Then by Lemma 4.14, $p \in R$. Since $R \cap X_{p}=\{x\}$, $P \cap R=\{p\}$, and $X_{p} \cap P=\{r\}$, by Lemma 4.6, we deduce that $G * x \backslash x$ or G / x is sequentially 3 -rank-connected, contradicting our assumption.

If (Q3) holds, then there is a quad of R of $G \backslash r$ containing x such that $R \cap P=\emptyset$. By Lemma 4.11, $\left|R \cap X_{p}\right| \leq 2$. Since $p \notin R$, by Lemma 4.12, $\left|R \cap X_{p}\right|=1$. Then Lemma 4.14 implies that $p \in R$, contradicting the assumption.

5 Treating internally 3-rank-connected graphs

In this section, we prove Theorem 1.2 for internally 3 -rank-connected graphs.
A graph G is internally 3-rank-connected if G is prime and for each subset X of $V(G)$, either $|X| \leq 3$ or $|V(G)-X| \leq 3$ whenever $\rho_{G}(X) \leq 2$. A 3 -element set T of vertices of a graph G is a triplet of G if $\rho_{G}(T)=2$ and $\rho_{G \backslash x}(T-x)=2$ for each $x \in T$.

Here is a rough overview of our approach in this section. If G is an internally 3 -rankconnected counterexample of Theorem 1.2 and $|V(G)| \geq 13$, then by pivoting, we may assume that G has a triplet $T=\{a, b, c\}$. Next we find a partition $\left(A_{b}, A_{c}\right)$ of $V(G \backslash a)$, a partition $\left(B_{a}, B_{c}\right)$ of $V(G \backslash b)$, and a partition $\left(C_{a}, C_{b}\right)$ of $V(G \backslash c)$ satisfying the following conditions:
(1) $b \in A_{b}, c \in A_{c}$, and neither A_{b} nor A_{c} is sequential in $G \backslash a$.
(2) $a \in B_{a}, c \in B_{c}$, and neither B_{a} nor B_{c} is sequential in $G \backslash b$.
(3) $a \in C_{a}, b \in C_{b}$, and neither C_{a} nor C_{b} is sequential in $G \backslash c$.

We then prove that all of $A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}$ must be small, contradicting the assumption that $|V(G)| \geq 13$.

The following lemma shows that if a graph is internally 3 -rank-connected but not 3 -rankconnected, then we can apply pivoting to obtain a graph with a triplet.

Lemma 5.1 (Oum [8, Lemma 5.1]). Let G be a prime graph and A be a 3 -element subset of $V(G)$ such that $\rho_{G}(A)=2$. Then there is a graph G^{\prime} pivot-equivalent to G such that A is a triplet of G^{\prime}.
Lemma 5.2 (Oum [8, Lemma 5.2]). Let G be an internally 3-rank-connected graph and $T=$ $\{a, b, c\}$ be a triplet of G. Then $G \backslash a, G \backslash b$, and $G \backslash c$ are prime.

Lemma 5.3. Let T be a triplet of an internally 3-rank-connected graph G and $a \in T$. Let (X, Y) be a partition of $V(G)-\{a\}$ such that $\rho_{G \backslash a}(X) \leq 2$ and neither X nor Y is sequential in $G \backslash a$. Then there exist $b \in X \cap T$ and $c \in Y \cap T$ such that $\rho_{G \backslash b}(X-\{b\})=\rho_{G \backslash c}(Y-\{c\})=3$.
Proof. Since neither X nor Y is sequential in $G \backslash a,|X| \geq 4$ and $|Y| \geq 4$. So $\rho_{G \backslash a}(X)=2$ because $G \backslash a$ is prime by Lemma 5.2. Since T is a triplet of G, we have $\rho_{G \backslash a}(T-\{a\})=\rho_{G}(T)$. If $T \subseteq X \cup\{a\}$, then by Lemma 2.14, $\rho_{G}(X \cup\{a\})=\rho_{G \backslash a}(X)=2$, contradicting the assumption that G is internally 3 -rank-connected.

Hence $T-\{a\} \nsubseteq X$ and similarly $T-\{a\} \nsubseteq Y$. Therefore, there exist $b \in X \cap T$ and $c \in Y \cap T$. Then $T=\{a, b, c\}$.

By (i) of Lemma 2.8, $\rho_{G}(X) \leq \rho_{G \backslash a}(X)+1 \leq 3$. So by (ii) of Lemma 2.8, we have $\rho_{G \backslash b}(X-\{b\}) \leq 3$ and similarly, $\rho_{G \backslash c}(Y-\{c\}) \leq 3$.

Suppose that $\rho_{G \backslash c}(Y-\{c\})<3$. Since T is a triplet of G, by Lemma 2.9,

$$
\begin{aligned}
\rho_{G}(\{a, b\}, Y-\{c\})+2 & =\rho_{G}(\{a, b\}, Y-\{c\})+\rho_{G}(\{a, b, c\}, V(G)-\{a, b, c\}) \\
& \geq \rho_{G}(\{a, b, c\}, Y-\{c\})+\rho_{G}(\{a, b\}, V(G)-\{a, b, c\}) \\
& =\rho_{G}(\{a, b, c\}, Y-\{c\})+2,
\end{aligned}
$$

and therefore $\rho_{G}(\{a, b, c\}, Y-\{c\}) \leq \rho_{G}(\{a, b\}, Y-\{c\})$. Then by Lemma 2.9, we have

$$
\rho_{G}(X \cup\{a\}, Y-\{c\})+\rho_{G}(\{a, b, c\}, Y-\{c\}) \geq \rho_{G}(X \cup\{a, c\}, Y-\{c\})+\rho_{G}(\{a, b\}, Y-\{c\}) .
$$

Hence $\rho_{G \backslash a}(X \cup\{c\}) \leq \rho_{G}(X \cup\{a, c\}, Y-\{c\}) \leq \rho_{G}(X \cup\{a\}, Y-\{c\})=\rho_{G \backslash c}(Y-\{c\})<$ 3. Therefore, $\rho_{G \backslash a}(X \cup\{c\}) \leq 2=\rho_{G \backslash a}(X)$. Since $|Y-\{c\}| \geq 3$ and $G \backslash a$ is prime, we have $\rho_{G \backslash a}(X \cup\{c\})=2$. Since Y is not sequential in $G \backslash a$, by Lemma 3.1, $Y-\{c\}$ is not sequential in $G \backslash a$ and therefore $|Y-\{c\}| \geq 4$. Since $T \subseteq X \cup\{a, c\}$, by Lemma 2.14, $\rho_{G}(X \cup\{a, c\})=\rho_{G \backslash a}(X \cup\{c\})=2$, contradicting the assumption that G is internally 3-rankconnected. Therefore $\rho_{G \backslash c}(Y-\{c\})=3$. By symmetry, we deduce that $\rho_{G \backslash b}(X-\{b\})=3$.

Lemma 5.4. Let G be an internally 3-rank-connected graph with $|V(G)| \geq 12$ and $T=\{a, b, c\}$ be a triplet of G such that $G \backslash c$ is not sequentially 3-rank-connected. Let X be a subset of $V(G \backslash a \backslash b)$ such that $|X| \geq 3,|V(G \backslash a \backslash b)-X| \geq 2$, and $c \notin X$. Then $\rho_{G \backslash a \backslash b}(X) \geq 2$.
Proof. Suppose that $\rho_{G \backslash a \backslash b}(X) \leq 1$. Let $Y=V(G \backslash a \backslash b)-X$. Since $\{a, b, c\}$ is a triplet of G, we have $\rho_{G \backslash a}(\{b, c\})=\rho_{G}(\{a, b, c\})$. By Lemma 2.14, $\rho_{G}(Y \cup\{a, b\})=\rho_{G \backslash a}(Y \cup\{b\})$. Hence $\rho_{G}(Y \cup\{a, b\})=\rho_{G \backslash a}(Y \cup\{b\}) \leq \rho_{G \backslash a \backslash b}(Y)+1=\rho_{G \backslash a \backslash b}(X)+1 \leq 2$. So $|X| \leq 3$ because G is internally 3-rank-connected and $|Y \cup\{a, b\}| \geq 4$.

Since $G \backslash c$ is not sequentially 3-rank-connected, there exists a partition (C_{a}, C_{b}) of $V(G \backslash c)$ such that $\rho_{G \backslash c}\left(C_{a}\right) \leq 2$ and neither C_{a} nor C_{b} is sequential in $G \backslash c$.

Suppose that $|X|=3$. By symmetry, we may assume that $\left|C_{a} \cap X\right| \geq 2$ by swapping C_{a} and C_{b} if necessary. If $\left|C_{a} \cap X\right|=2$, then let x be the element in $C_{b} \cap X$. By Lemma 5.2, $G \backslash c$ is prime. Since $|(Y \cup\{a, b\})-\{c\}| \geq 2$, we have $2 \leq \rho_{G \backslash c}(X) \leq \rho_{G}(X)=2$. Since $|X-\{x\}|=2$ and $G \backslash c$ is prime, we also have $\rho_{G \backslash c}(X-\{x\})=2$. So by Lemma 2.10,

$$
\rho_{G \backslash c}\left(C_{a}\right)+\rho_{G \backslash c}(X) \geq \rho_{G \backslash c}\left(C_{a} \cup\{x\}\right)+\rho_{G \backslash c}(X-\{x\}) .
$$

Therefore, $\rho_{G \backslash c}\left(C_{a} \cup\{x\}\right) \leq \rho_{G \backslash c}\left(C_{a}\right) \leq 2$. Since $\left|C_{b}-\{x\}\right| \geq 3$ and by Lemma 5.2, $G \backslash c$ is prime, we have $\rho_{G \backslash c}\left(C_{a} \cup\{x\}\right)=\rho_{G \backslash c}\left(C_{a}\right)=2$. So by Lemma 3.1, neither $C_{a} \cup\{x\}$ nor $C_{b}-\{x\}$ is sequential in $G \backslash c$. By replacing $\left(C_{a}, C_{b}\right)$ with $\left(C_{a} \cup\{x\}, C_{b}-\{x\}\right)$, we may assume that $\left|C_{a} \cap X\right|=3$.

By Lemma 5.3, there is a unique element $t \in\{a, b\}$ of $C_{b} \cap T$. Then $X \subseteq C_{a}$ and $C_{b}-\{t\} \subseteq$ $Y-\{c\} \subseteq Y$. Since $|V(G)| \geq 12$ and G is internally 3-rank-connected, we have $\rho_{G}(Y \cup\{t\}) \geq 3$. Since $\rho_{G \backslash t}(Y) \leq \rho_{G \backslash a \backslash b}(Y)+1 \leq 2<\rho_{G}(Y \cup\{t\})$ and $t \in C_{b} \subseteq Y \cup\{t\}$, by Lemma 2.14, $\rho_{G \backslash t}\left(C_{b}-\{t\}\right)<\rho_{G}\left(C_{b}\right) \leq 3$, contradicting Lemma 5.3.

Lemma 5.5. Let G be an internally 3-rank-connected graph with $|V(G)| \geq 12$ and $T=\{a, b, c\}$ be a triplet of G. Let $\left(A_{b}, A_{c}\right)$ be a partition of $V(G \backslash a)$ such that $b \in A_{b}, c \in A_{c}, \rho_{G \backslash a}\left(A_{b}\right) \leq 2$, and neither A_{b} nor A_{c} is sequential in $G \backslash a$ and let $\left(B_{a}, B_{c}\right)$ be a partition of $V(G \backslash b)$ such that $a \in B_{a}, c \in B_{c}, \rho_{G \backslash b}\left(B_{a}\right) \leq 2$, and neither B_{a} nor B_{c} is sequential in $G \backslash b$. If $G \backslash c$ is not sequentially 3-rank-connected, then the following hold.

$$
\begin{equation*}
\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{c}\right)=\rho_{G}\left(A_{b} \cap B_{c}\right) . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{G \backslash a \backslash b}\left(A_{c} \cap B_{a}\right)=\rho_{G}\left(A_{c} \cap B_{a}\right) . \tag{2}
\end{equation*}
$$

3) $\rho_{G \backslash a \backslash b}\left(A_{c} \cap B_{c}\right)=\rho_{G}\left(A_{c} \cap B_{c}\right)$.

Proof. Since none of A_{b}, A_{c} is sequential in $G \backslash a$ and none of B_{a}, B_{c} is sequential in $G \backslash b$, we have $\left|A_{b}\right|,\left|A_{c}\right|,\left|B_{a}\right|,\left|B_{c}\right| \geq 4$. By Lemma 5.2, $G \backslash a$ is prime and so $\rho_{G \backslash a}\left(A_{c}\right)=2$. Since $c \notin A_{b}-\{b\}$ and $\left|A_{b}-\{b\}\right| \geq 3$, by Lemma 5.4, we have $\rho_{G \backslash a \backslash b}\left(A_{c}\right)=\rho_{G \backslash a \backslash b}\left(A_{b}-\{b\}\right) \geq 2$. So by Lemma 2.8(i), we have $\rho_{G \backslash \backslash \backslash b}\left(A_{c}\right)=\rho_{G \backslash a}\left(A_{c}\right)=2$. Similarly, $\rho_{G \backslash a \backslash b}\left(B_{c}\right)=\rho_{G \backslash b}\left(B_{c}\right)=2$.

Since $\rho_{G \backslash \backslash \backslash b}\left(B_{c}\right)=\rho_{G \backslash b}\left(B_{c}\right)=2$ and $A_{b} \cap B_{c} \subseteq B_{c}$, by Lemma 2.13, we have $\rho_{G \backslash b}\left(A_{b} \cap B_{c}\right)=$ $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{c}\right)$.

Since $\{a, b, c\}$ is a triplet of G, we have $\rho_{G}(\{a, b, c\})=\rho_{G \backslash b}(\{a, c\})$. Observe that $\rho_{G \backslash b}\left(A_{b} \cap\right.$ $\left.B_{c}\right)=\rho_{G \backslash b}\left(A_{c} \cup B_{a}\right)$ and $\rho_{G}\left(A_{b} \cap B_{c}\right)=\rho_{G}\left(A_{c} \cup B_{a} \cup\{b\}\right)$. Since $\{a, b, c\} \subseteq A_{c} \cup B_{a} \cup\{b\}$, by Lemma 2.14, $\rho_{G \backslash b}\left(A_{b} \cap B_{c}\right)=\rho_{G \backslash b}\left(A_{c} \cup B_{a}\right)=\rho_{G}\left(A_{c} \cup B_{a} \cup\{b\}\right)=\rho_{G}\left(A_{b} \cap B_{c}\right)$.

Hence $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{c}\right)=\rho_{G}\left(A_{b} \cap B_{c}\right)$ and (1) holds. By symmetry, (2) also holds.
Now let us prove (3). Since $\rho_{G \backslash a \backslash b}\left(B_{c}\right)=\rho_{G \backslash b}\left(B_{c}\right)=2$ and $A_{c} \cap B_{c} \subseteq B_{c}$, by Lemma 2.13, we have $\rho_{G \backslash a \backslash b}\left(A_{c} \cap B_{c}\right)=\rho_{G \backslash b}\left(A_{c} \cap B_{c}\right)$.

By (A1) of Lemma 2.16,

$$
\begin{aligned}
2+\rho_{G \backslash b}\left(A_{c} \cap B_{c}\right) & =\rho_{G \backslash a}\left(A_{c}\right)+\rho_{G \backslash b}\left(A_{c} \cap B_{c}\right) \\
& \geq \rho_{G \backslash a \backslash b}\left(A_{c}\right)+\rho_{G}\left(A_{c} \cap B_{c}\right)=2+\rho_{G}\left(A_{c} \cap B_{c}\right),
\end{aligned}
$$

which implies that $\rho_{G \backslash b}\left(A_{c} \cap B_{c}\right) \geq \rho_{G}\left(A_{c} \cap B_{c}\right)$. By (i) of Lemma 2.8, $\rho_{G \backslash b}\left(A_{c} \cap B_{c}\right) \leq \rho_{G}\left(A_{c} \cap B_{c}\right)$ and so $\rho_{G \backslash b}\left(A_{c} \cap B_{c}\right)=\rho_{G}\left(A_{c} \cap B_{c}\right)$. Hence $\rho_{G}\left(A_{c} \cap B_{c}\right)=\rho_{G \backslash \backslash \backslash b}\left(A_{c} \cap B_{c}\right)$.
Lemma 5.6. Let G be an internally 3-rank-connected graph with $|V(G)| \geq 12$ and $T=\{a, b, c\}$ be a triplet of G. Let $\left(A_{b}, A_{c}\right)$ be a partition of $V(G \backslash a)$ such that $b \in A_{b}, c \in A_{c}, \rho_{G \backslash a}\left(A_{b}\right) \leq 2$, and neither A_{b} nor A_{c} is sequential in $G \backslash a$ and let $\left(B_{a}, B_{c}\right)$ be a partition of $V(G \backslash b)$ such that $a \in B_{a}, c \in B_{c}, \rho_{G \backslash b}\left(B_{a}\right) \leq 2$, and neither B_{a} nor B_{c} is sequential in $G \backslash b$. If $G \backslash c$ is not sequentially 3 -rank-connected, then the following hold.
(i) $\rho_{G}\left(A_{c} \cap B_{a}\right) \leq 2$ and $2 \leq\left|A_{c} \cap B_{a}\right| \leq 3$.
(ii) $\rho_{G}\left(A_{b} \cap B_{c}\right) \leq 2$ and $2 \leq\left|A_{b} \cap B_{c}\right| \leq 3$.
(iii) $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \leq 2$.
(iv) $\left|A_{c} \cap B_{c}\right| \geq 2$.
(v) If $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \geq 2$, then $\rho_{G}\left(A_{c} \cap B_{c}\right) \leq 2$ and $\left|A_{c} \cap B_{c}\right| \leq 3$.

Proof. Since none of A_{b}, A_{c} is sequential in $G \backslash a$ and none of B_{a}, B_{c} is sequential in $G \backslash b$, we have $\left|A_{b}\right|,\left|A_{c}\right|,\left|B_{a}\right|,\left|B_{c}\right| \geq 4$. Let us prove the following, which prove the lemma.
(1) If $\left|A_{b} \cap B_{c}\right| \geq 2$, then $\rho_{G}\left(A_{c} \cap B_{a}\right) \leq 2$ and $\left|A_{c} \cap B_{a}\right| \leq 3$.
(2) If $\left|A_{c} \cap B_{a}\right| \geq 2$, then $\rho_{G}\left(A_{b} \cap B_{c}\right) \leq 2$ and $\left|A_{b} \cap B_{c}\right| \leq 3$.
(3) If $\left|A_{c} \cap B_{c}\right| \geq 2$, then $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \leq 2$.
(4) If $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \geq 2$, then $\rho_{G}\left(A_{c} \cap B_{c}\right) \leq 2$ and $\left|A_{c} \cap B_{c}\right| \leq 3$.
(5) $\left|A_{b} \cap B_{c}\right| \geq 2$.
(6) $\left|A_{c} \cap B_{a}\right| \geq 2$.
(7) $\left|A_{c} \cap B_{c}\right| \geq 2$.

To prove (1), suppose that $\left|A_{b} \cap B_{c}\right| \geq 2$. Since G is prime and $\left|V(G)-\left(A_{b} \cap B_{c}\right)\right| \geq\left|A_{c}\right| \geq 4$, by (1) of Lemma 5.5, $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{c}\right)=\rho_{G}\left(A_{b} \cap B_{c}\right) \geq 2$. Since $G \backslash b$ is prime and $\left|A_{b} \cap B_{c}\right| \geq 2$, we have $\rho_{G \backslash b}\left(A_{c} \cup B_{a}\right)=\rho_{G \backslash b}\left(A_{b} \cap B_{c}\right) \geq 2$. Since $\rho_{G \backslash \backslash \backslash b}\left(A_{c}\right)=2$, by (S1) of Lemma 2.12,

$$
\begin{aligned}
2+2 & =\rho_{G \backslash a \backslash b}\left(A_{c}\right)+\rho_{G \backslash b}\left(B_{a}\right) \\
& \geq \rho_{G \backslash a \backslash b}\left(A_{c} \cap B_{a}\right)+\rho_{G \backslash b}\left(A_{c} \cup B_{a}\right) \geq \rho_{G \backslash a \backslash b}\left(A_{c} \cap B_{a}\right)+2 .
\end{aligned}
$$

Therefore, by (2) of Lemma 5.5, $\rho_{G}\left(A_{c} \cap B_{a}\right)=\rho_{G \backslash a \backslash b}\left(A_{c} \cap B_{a}\right) \leq 2$. Since G is internally 3-rank-connected and $\left|V(G)-\left(A_{c} \cap B_{a}\right)\right| \geq\left|A_{b}\right| \geq 4$, we deduce that $\left|A_{c} \cap B_{a}\right| \leq 3$. So this proves (1). By symmetry between a and $b,(2)$ also holds.

Now we show (3). Suppose that $\left|A_{c} \cap B_{c}\right| \geq 2$. Since G is prime and $\left|V(G)-\left(A_{b} \cup B_{a}\right)\right| \geq$ $\left|A_{c}\right| \geq 4$, we have $\rho_{G}\left(A_{b} \cup B_{a}\right) \geq 2$. By (A3) of Lemma 2.16,

$$
4 \geq \rho_{G \backslash a}\left(A_{b}\right)+\rho_{G \backslash b}\left(B_{a}\right) \geq \rho_{G}\left(A_{b} \cup B_{a}\right)+\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right)
$$

and therefore $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \leq 2$.
Now let us prove (4). Suppose that $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \geq 2$. By (A3) of Lemma 2.16,

$$
4 \geq \rho_{G \backslash a}\left(A_{b}\right)+\rho_{G \backslash b}\left(B_{a}\right) \geq \rho_{G}\left(A_{b} \cup B_{a}\right)+\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \geq \rho_{G}\left(A_{b} \cup B_{a}\right)+2 .
$$

Hence $\rho_{G}\left(A_{b} \cup B_{a}\right)=\rho_{G}\left(A_{c} \cap B_{c}\right) \leq 2$. Since G is internally 3-rank-connected and $\mid V(G)-$ $\left(A_{c} \cap B_{c}\right) \mid \geq 4$, we conclude that $\left|A_{c} \cap B_{c}\right| \leq 3$.

To prove (5), suppose that $\left|A_{b} \cap B_{c}\right| \leq 1$. Then $4 \leq\left|A_{b}\right|=|\{b\}|+\left|A_{b} \cap B_{c}\right|+\left|A_{b} \cap B_{a}\right| \leq$ $2+\left|A_{b} \cap B_{a}\right|$ and so $\left|A_{b} \cap B_{a}\right| \geq 2$.

If $\left|A_{b} \cap B_{a}\right| \geq 3$, then, since $c \in A_{c} \cap B_{c}$, by Lemma 5.4, $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \geq 2$. If $\left|A_{b} \cap B_{a}\right|=2$, then $\left|A_{b}\right|=4$ and by Lemma 4.5, A_{b} is a quad of $G \backslash a$. Then by (ii) of Lemma 2.8, $\rho_{G \backslash a \backslash b}\left(A_{b} \cap\right.$ $\left.B_{a}\right) \geq \rho_{G \backslash a}\left(\left(A_{b} \cap B_{a}\right) \cup\{b\}\right)-1=2$. So, in both cases, we deduce that $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \geq 2$.

Hence, by (4), $\rho_{G}\left(A_{c} \cap B_{c}\right) \leq 2$ and $\left|A_{c} \cap B_{c}\right| \leq 3$. Since $4 \leq\left|B_{c}\right|=\left|A_{b} \cap B_{c}\right|+\left|A_{c} \cap B_{c}\right| \leq$ $1+\left|A_{c} \cap B_{c}\right| \leq 4$, we have $\left|A_{c} \cap B_{c}\right|=3$ and $\left|B_{c}\right|=4$. By (i) of Lemma 2.8, $\rho_{G \backslash b}\left(A_{c} \cap B_{c}\right) \leq$ $\rho_{G}\left(A_{c} \cap B_{c}\right) \leq 2$. So B_{c} is sequential in $G \backslash b$, contradicting our assumption. So this proves that $\left|A_{b} \cap B_{c}\right| \geq 2$ and by symmetry between a and $b,\left|A_{c} \cap B_{a}\right| \geq 2$ and (6) holds.

Now let us prove (7). Suppose that $\left|A_{c} \cap B_{c}\right| \leq 1$. Then $4 \leq\left|A_{c}\right|=1+\left|A_{c} \cap B_{c}\right|+\left|A_{c} \cap B_{a}\right| \leq$ $2+\left|A_{c} \cap B_{a}\right|$ and so $2 \leq\left|A_{c} \cap B_{a}\right|$. Then by (2), we have $\rho_{G}\left(A_{b} \cap B_{c}\right) \leq 2$ and $\left|A_{b} \cap B_{c}\right| \leq 3$. Since $4 \leq\left|B_{c}\right|=\left|A_{b} \cap B_{c}\right|+\left|A_{c} \cap B_{c}\right| \leq\left|A_{b} \cap B_{c}\right|+1 \leq 4$, we have $\left|A_{b} \cap B_{c}\right|=3$ and $\left|B_{c}\right|=4$. By (i) of Lemma 2.8, $\rho_{G \backslash b}\left(A_{b} \cap B_{c}\right) \leq \rho_{G}\left(A_{b} \cap B_{c}\right) \leq 2$. So B_{c} is sequential in $G \backslash b$, contradicting our assumption.

Lemma 5.7. Let G be an internally 3 -rank-connected graph with $|V(G)| \geq 12$ and $T=\{a, b, c\}$ be a triplet of G. Let $\left(A_{b}, A_{c}\right)$ be a partition of $V(G \backslash a)$ such that $b \in A_{b}, c \in A_{c}, \rho_{G \backslash a}\left(A_{b}\right) \leq 2$, and neither A_{b} nor A_{c} is sequential in $G \backslash a$, let $\left(B_{a}, B_{c}\right)$ be a partition of $V(G \backslash b)$ such that $a \in B_{a}, c \in B_{c}, \rho_{G \backslash b}\left(B_{a}\right) \leq 2$, and neither B_{a} nor B_{c} is sequential in $G \backslash b$, and let (C_{a}, C_{b}) be a partition of $V(G \backslash c)$ such that $a \in C_{a}, b \in C_{b}, \rho_{G \backslash c}\left(C_{a}\right) \leq 2$, and neither C_{a} nor C_{b} is sequential in $G \backslash c$. Then the following hold.
(1) If $\left|A_{c} \cap B_{c}\right| \geq 3$ and $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right)>1$, then $\left|A_{c} \cap B_{c}\right|=3$, $\rho_{G}\left(A_{c} \cap B_{c}\right)=2$, and $\left|A_{c} \cap B_{c} \cap C_{a}\right|=\left|A_{c} \cap B_{c} \cap C_{b}\right|=1$.
(2) If $\left|A_{c} \cap B_{c}\right| \geq 3$ and $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \leq 1$, then either

- $A_{b} \cap B_{a}=\emptyset$, or
- $1 \leq\left|A_{b} \cap B_{a}\right| \leq 2$ and $\rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a, b\}\right)=3$.

Proof. (1) Since $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right)>1$, we have $\left|A_{b} \cap B_{a}\right| \geq 2$ and by (v) of Lemma 5.6, $\rho_{G}\left(A_{c} \cap\right.$ $\left.B_{c}\right) \leq 2$ and $\left|A_{c} \cap B_{c}\right| \leq 3$. Hence $\left|A_{c} \cap B_{c}\right|=3$. Since G is prime and $\left|V(G)-\left(A_{c} \cap B_{c}\right)\right| \geq 3$, we have $\rho_{G}\left(A_{c} \cap B_{c}\right)=2$. Now we prove that $\left|A_{c} \cap B_{c} \cap C_{a}\right|=\left|A_{c} \cap B_{c} \cap C_{b}\right|=1$. Suppose not. Then, by symmetry, we may assume that $\left|A_{c} \cap B_{c} \cap C_{a}\right|=2$ and $\left|A_{c} \cap B_{c} \cap C_{b}\right|=0$. Since $\left|\left(A_{c} \cap B_{c}\right)-\{c\}\right|=2$ and $G \backslash c$ is prime, $\rho_{G \backslash c}\left(\left(A_{c} \cap B_{c}\right)-\{c\}\right) \geq 2$. By (ii) of Lemma 2.8, $\rho_{G \backslash c}\left(\left(A_{c} \cap B_{c}\right)-\{c\}\right)=\rho_{G}\left(A_{c} \cap B_{c}\right)=2$. Since $A_{c} \cap B_{c} \subseteq C_{a} \cup\{c\}$, by Lemma 2.14, $\rho_{G}\left(C_{a} \cup\{c\}\right)=$ $\rho_{G \backslash c}\left(C_{a}\right) \leq 2$. Since G is internally 3-rank-connected and $\left|C_{a} \cup\{c\}\right| \geq 5$, we have $\left|C_{b}\right| \leq 3$, contradicting our assumption.
(2) By Lemma 5.4, $\left|A_{b} \cap B_{a}\right| \leq 2$. Suppose that $\left|A_{b} \cap B_{a}\right| \geq 1$. We can observe that $\rho_{G}\left(\left(A_{b} \cap\right.\right.$ $\left.\left.B_{a}\right) \cup\{a, b, c\}\right) \geq 3$ because G is internally 3-rank-connected, $\left|\left(A_{b} \cap B_{a}\right) \cup\{a, b, c\}\right| \geq 4$, and $\left|V(G)-\left(\left(A_{b} \cap B_{a}\right) \cup\{a, b, c\}\right)\right| \geq 12-5=7$. Since $\{a, b, c\}$ is a triplet of G, we have $\rho_{G}(\{a, b, c\})=$ $\rho_{G \backslash c}(\{a, b\})=2$. Since $\{a, b, c\} \subseteq\left(A_{b} \cap B_{a}\right) \cup\{a, b, c\}$, by Lemma 2.14, $\rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a, b\}\right)=$ $\rho_{G}\left(\left(A_{b} \cap B_{a}\right) \cup\{a, b, c\}\right) \geq 3$. By (i) and (ii) of Lemma 2.8, $\rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a, b\}\right) \leq \rho_{G}\left(\left(A_{b} \cap\right.\right.$ $\left.\left.B_{a}\right) \cup\{a, b\}\right) \leq 2+\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \leq 3$ and we conclude that $\rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a, b\}\right)=3$.

Proposition 5.8. Let T be a triplet of an internally 3-rank-connected graph G. If $|V(G)| \geq 12$, then there exists $t \in T$ such that $G \backslash t$ is sequentially 3-rank-connected.
Proof. Let $T=\{a, b, c\}$. Suppose that none of $G \backslash a, G \backslash b$, and $G \backslash c$ is sequentially 3-rankconnected. Then there exist partitions $\left(A_{b}, A_{c}\right)$ of $V(G)-\{a\},\left(B_{a}, B_{c}\right)$ of $V(G)-\{b\}$, and $\left(C_{a}, C_{b}\right)$ of $V(G)-\{c\}$ such that $\rho_{G \backslash a}\left(A_{b}\right) \leq 2, \rho_{G \backslash b}\left(B_{a}\right) \leq 2, \rho_{G \backslash c}\left(C_{a}\right) \leq 2$, neither A_{b} nor A_{c} is sequential in $G \backslash a$, neither B_{a} nor B_{c} is sequential in $G \backslash b$, and neither C_{a} nor C_{b} is sequential in $G \backslash c$. Then $\left|A_{b}\right|,\left|A_{c}\right| \geq 4,\left|B_{a}\right|,\left|B_{c}\right| \geq 4$, and $\left|C_{a}\right|,\left|C_{b}\right| \geq 4$.

By Lemma 5.3, we may assume that $b \in A_{b}, c \in A_{c}, a \in B_{a}, c \in B_{c}, a \in C_{a}$, and $b \in C_{b}$.
By Lemma 5.6, we have $\left|A_{b} \cap B_{c}\right| \leq 3,\left|A_{c} \cap B_{a}\right| \leq 3$, and $\rho_{G}\left(A_{b} \cap B_{c}\right) \leq 2$. By symmetry between b and c, we have that $\left|A_{c} \cap C_{b}\right| \leq 3$ and $\left|A_{b} \cap C_{a}\right| \leq 3$. By symmetry between a and c, we have that $\left|B_{c} \cap C_{a}\right| \leq 3$ and $\left|B_{a} \cap C_{b}\right| \leq 3$. Now we show that we can assume the following.
(B1) If $\left|A_{b} \cap B_{c}\right|=3$, then $A_{b} \cap B_{c} \subseteq C_{a}$ or $A_{b} \cap B_{c} \subseteq C_{b}$.
(B2) If $\left|A_{c} \cap B_{a}\right|=3$, then $A_{c} \cap B_{a} \subseteq C_{a}$ or $A_{c} \cap B_{a} \subseteq C_{b}$.
(B3) If $\left|A_{c} \cap C_{b}\right|=3$, then $A_{c} \cap C_{b} \subseteq B_{a}$ or $A_{c} \cap C_{b} \subseteq B_{c}$.
(B4) If $\left|A_{b} \cap C_{a}\right|=3$, then $A_{b} \cap C_{a} \subseteq B_{a}$ or $A_{b} \cap C_{a} \subseteq B_{c}$.
(B5) If $\left|B_{c} \cap C_{a}\right|=3$, then $B_{c} \cap C_{a} \subseteq A_{b}$ or $B_{c} \cap C_{a} \subseteq A_{c}$.
(B6) If $\left|B_{a} \cap C_{b}\right|=3$, then $B_{a} \cap C_{b} \subseteq A_{b}$ or $B_{a} \cap C_{b} \subseteq A_{c}$.
We choose ($A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}$) such that $b \in A_{b}, c \in A_{c}, a \in B_{a}, c \in B_{c}, a \in C_{a}, b \in C_{b}$, and it satisfies the maximum number of (B1)-(B6). Then we claim that all of (B1)-(B6) hold. Suppose not. Then by symmetry, we can assume that (B1) does not hold. Then $\left|A_{b} \cap B_{c}\right|=3$, $A_{b} \cap B_{c} \nsubseteq C_{a}$, and $A_{b} \cap B_{c} \nsubseteq C_{b}$. Then either $\left|A_{b} \cap B_{c} \cap C_{a}\right|=2$ and $\left|A_{b} \cap B_{c} \cap C_{b}\right|=1$ or $\left|A_{b} \cap B_{c} \cap C_{a}\right|=1$ and $\left|A_{b} \cap B_{c} \cap C_{b}\right|=2$.
(i) Suppose that $\left|A_{b} \cap B_{c} \cap C_{a}\right|=2$ and $\left|A_{b} \cap B_{c} \cap C_{b}\right|=1$. Let x be the element of $A_{b} \cap B_{c} \cap C_{b}$. We have $\rho_{G \backslash c}\left(A_{b} \cap B_{c}\right) \leq \rho_{G}\left(A_{b} \cap B_{c}\right) \leq 2$. Since $\left|\left(A_{b} \cap B_{c}\right)-\{x\}\right|=2$ and $G \backslash c$ is prime, $\rho_{G \backslash c}\left(\left(A_{b} \cap B_{c}\right)-\{x\}\right) \geq 2$. So by Lemma 2.10,

$$
\begin{aligned}
2+2 & \geq \rho_{G \backslash c}\left(C_{a}\right)+\rho_{G \backslash c}\left(A_{b} \cap B_{c}\right) \\
& \geq \rho_{G \backslash c}\left(\left(A_{b} \cap B_{c}\right)-\{x\}\right)+\rho_{G \backslash c}\left(C_{a} \cup\{x\}\right) \geq 2+\rho_{G \backslash c}\left(C_{a} \cup\{x\}\right) .
\end{aligned}
$$

Therefore, $\rho_{G \backslash c}\left(C_{a} \cup\{x\}\right) \leq \rho_{G \backslash c}\left(C_{a}\right) \leq 2$. Since $G \backslash c$ is prime and $\left|V(G \backslash c)-\left(C_{a} \cup\{x\}\right)\right|=$ $\left|C_{b}\right|-1 \geq 3$, we have $\rho_{G \backslash c}\left(C_{a} \cup\{x\}\right)=\rho_{G \backslash c}\left(C_{a}\right)=2$. Hence by Lemma 3.1, neither $C_{a} \cup\{x\}$ nor $C_{b}-\{x\}$ is sequential in $G \backslash c$. We deduce that $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a} \cup\{x\}, C_{b}-\{x\}\right)$ satisfies (B1). Since $x \notin A_{c} \cap B_{a}$, if $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}\right)$ satisfies (B2), then $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a} \cup\right.$ $\left.\{x\}, C_{b}-\{x\}\right)$ satisfies (B2). Since $A_{c} \cap C_{b}=A_{c} \cap\left(C_{b}-\{x\}\right)$, if $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}\right)$ satisfies (B3), then $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a} \cup\{x\}, C_{b}-\{x\}\right)$ satisfies (B3). Since $B_{a} \cap\left(C_{b}-\{x\}\right)=B_{a} \cap C_{b}$, if $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}\right)$ satisfies (B6), then $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a} \cup\{x\}, C_{b}-\{x\}\right)$ satisfies (B6). Since $x \in A_{b}$, we have $\left|A_{b} \cap C_{a}\right|+1=\left|A_{b} \cap\left(C_{a} \cup\{x\}\right)\right| \leq 3$ by applying Lemma 5.6(i) with $\left(A_{c}, A_{b}\right)$ and $\left(C_{a} \cup\{x\}, C_{b}-\{x\}\right)$. So $\left|A_{b} \cap C_{a}\right| \leq 2$. Since $\left|A_{b} \cap B_{c} \cap C_{a}\right|=2$ we have $A_{b} \cap C_{a} \subseteq B_{c}$. So $A_{b} \cap\left(C_{a} \cup\{x\}\right) \subseteq B_{c}$ because $x \in B_{c}$. Hence $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a} \cup\{x\}, C_{b}-\{x\}\right)$ satisfies (B4).

Since $x \in B_{c}$, we have $\left|B_{c} \cap C_{a}\right|+1=\left|B_{c} \cap\left(C_{a} \cup\{x\}\right)\right| \leq 3$ by applying Lemma 5.6(ii) with $\left(B_{c}, B_{a}\right)$ and $\left(C_{b}-\{x\}, C_{a} \cup\{x\}\right)$. So $\left|B_{c} \cap C_{a}\right| \leq 2$. Since $\left|A_{b} \cap B_{c} \cap C_{a}\right|=2$ we have $B_{c} \cap C_{a} \subseteq A_{b}$. So $B_{c} \cap\left(C_{a} \cup\{x\}\right) \subseteq A_{b}$ because $x \in A_{b}$. Hence $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a} \cup\{x\}, C_{b}-\{x\}\right)$ satisfies (B5). Therefore, the number of (B1)-(B6) which $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a} \cup\{x\}, C_{b}-\{x\}\right)$ satisfies is larger than the number of (B1)-(B6) which $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}\right)$ satisfies, contradicting our assumption.
(ii) Suppose that $\left|A_{b} \cap B_{c} \cap C_{a}\right|=1$ and $\left|A_{b} \cap B_{c} \cap C_{b}\right|=2$. Let y be the element of $A_{b} \cap B_{c} \cap C_{a}$. Since $\left|\left(A_{b} \cap B_{c}\right)-\{y\}\right|=2$ and $G \backslash c$ is prime, $\rho_{G \backslash c}\left(\left(A_{b} \cap B_{c}\right)-\{y\}\right) \geq 2$. So by Lemma 2.10,

$$
\begin{aligned}
2+2 & \geq \rho_{G \backslash c}\left(C_{b}\right)+\rho_{G \backslash c}\left(A_{b} \cap B_{c}\right) \\
& \geq \rho_{G \backslash c}\left(\left(A_{b} \cap B_{c}\right)-\{y\}\right)+\rho_{G \backslash c}\left(C_{b} \cup\{y\}\right) \geq 2+\rho_{G \backslash c}\left(C_{b} \cup\{y\}\right)
\end{aligned}
$$

Therefore, $\rho_{G \backslash c}\left(C_{b} \cup\{y\}\right) \leq \rho_{G \backslash c}\left(C_{b}\right) \leq 2$. Since $G \backslash c$ is prime and $\left|V(G \backslash c)-\left(C_{b} \cup\{y\}\right)\right|=$ $\left|C_{a}\right|-1 \geq 3$, we have $\rho_{G \backslash c}\left(C_{b} \cup\{y\}\right)=\rho_{G \backslash c}\left(C_{b}\right)=2$. Hence by Lemma 3.1, neither $C_{a}-\{y\}$ nor $C_{b} \cup\{y\}$ is sequential in $G \backslash c$. We deduce that $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}-\{y\}, C_{b} \cup\{y\}\right)$ satisfies (B1). Since $y \notin A_{c} \cap B_{a}$, if ($A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}$) satisfies (B2), then $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}-\{y\}, C_{b} \cup\{y\}\right)$ satisfies (B2). Since $y \in A_{b} \cap C_{a}$, by applying Lemma 5.6(i) with $\left(A_{c}, A_{b}\right)$ and $\left(C_{a}, C_{b}\right)$, we have $\left|A_{b} \cap\left(C_{a}-\{y\}\right)\right|=\left|A_{b} \cap C_{a}\right|-1 \leq 3-1=2$. Hence $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}-\{y\}, C_{b} \cup\{y\}\right)$ satisfies (B4). Since $y \in B_{c} \cap C_{a}$, by applying Lemma 5.6(ii) with (B_{c}, B_{a}) and (C_{b}, C_{a}), we have $\left|B_{c} \cap\left(C_{a}-\{y\}\right)\right|=\left|B_{c} \cap C_{a}\right|-1 \leq 3-1=2$. Hence ($\left.A_{b}, A_{c}, B_{a}, B_{c}, C_{a}-\{y\}, C_{b} \cup\{y\}\right)$ satisfies (B5).

Since $A_{c} \cap\left(C_{b} \cup\{y\}\right)=A_{c} \cap C_{b}$, if $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}\right)$ satisfies (B3), then $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}-\right.$ $\left.\{y\}, C_{b} \cup\{y\}\right)$ satisfies (B3). Since $B_{a} \cap\left(C_{b} \cup\{y\}\right)=B_{a} \cap C_{b}$, if $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}\right)$ satisfies (B6), then $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}-\{y\}, C_{b} \cup\{y\}\right)$ satisfies (B6). Therefore, the number of (B1)-(B6) which $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}-\{y\}, C_{b} \cup\{y\}\right)$ satisfies is larger than the number of (B1)-(B6) which $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}\right)$ satisfies, contradicting our assumption.

Therefore, the claim is proved and $\left(A_{b}, A_{c}, B_{a}, B_{c}, C_{a}, C_{b}\right)$ satisfies (B1)-(B6).
Claim 5.9. $\left|A_{b} \cap B_{a} \cap C_{a}\right| \leq 1$.
Proof. Suppose that $\left|A_{b} \cap B_{a} \cap C_{a}\right| \geq 2$. If $\left|A_{b} \cap C_{a}\right|=2$, then $A_{b} \cap C_{a} \subseteq B_{a}$ and so $A_{b} \cap B_{c} \cap C_{a}=\emptyset$. If $\left|A_{b} \cap C_{a}\right|=3$, then by $(\mathrm{B} 4), A_{b} \cap B_{c} \cap C_{a}=\emptyset$. Since $2 \leq\left|A_{b} \cap C_{a}\right| \leq 3$, we deduce that $A_{b} \cap B_{c} \cap C_{a}=\emptyset$.

By applying Lemma 5.6(ii) with $\left(B_{c}, B_{a}\right)$ and (C_{b}, C_{a}), we have that $\left|B_{c} \cap C_{a}\right| \geq 2$. Since $A_{b} \cap B_{c} \cap C_{a}=\emptyset$, we have $\left|A_{c} \cap B_{c} \cap C_{a}\right|=\left|B_{c} \cap C_{a}\right| \geq 2$ and so $\left|A_{c} \cap B_{c}\right| \geq|\{c\}|+\left|A_{c} \cap B_{c} \cap C_{a}\right| \geq 3$. Since $\left|A_{c} \cap B_{c} \cap C_{a}\right| \geq 2$, by Lemma 5.7(1), $\rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right) \leq 1$. So by Lemma 5.7(2),

$$
\left|A_{b} \cap B_{a}\right|=2 \text { and } \rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a, b\}\right)=3
$$

because $\left|A_{b} \cap B_{a}\right| \geq\left|A_{b} \cap B_{a} \cap C_{a}\right| \geq 2$. Hence $A_{b} \cap B_{a} \subseteq C_{a}$.

By Lemma 5.2, $G \backslash a$ is prime and so $\rho_{G \backslash a}\left(A_{b} \cap B_{a}\right)=2$. By (ii) of Lemma 2.8, we have $\rho_{G \backslash a}\left(\left(A_{b} \cap B_{a}\right) \cup\{b\}\right) \leq \rho_{G \backslash a \backslash b}\left(A_{b} \cap B_{a}\right)+1 \leq 2$. So by (A2) of Lemma 2.16,

$$
\begin{aligned}
\rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a\}\right)+2 & \geq \rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a\}\right)+\rho_{G \backslash a}\left(\left(A_{b} \cap B_{a}\right) \cup\{b\}\right) \\
& \geq \rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a, b\}\right)+\rho_{G \backslash a}\left(A_{b} \cap B_{a}\right)=3+2,
\end{aligned}
$$

which implies that $\rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a\}\right) \geq 3$. Therefore, by Lemma 2.11,

$$
\begin{aligned}
3+2 & \geq \rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a, b\}\right)+\rho_{G \backslash c}\left(C_{b}\right) \\
& \geq \rho_{G \backslash c}\left(\left(A_{b} \cap B_{a}\right) \cup\{a\}\right)+\rho_{G \backslash c}\left(C_{b}-\{b\}\right) \geq 3+\rho_{G \backslash c}\left(C_{b}-\{b\}\right) .
\end{aligned}
$$

Therefore, $\rho_{G \backslash c}\left(C_{b}-\{b\}\right) \leq 2$. By Lemma 5.2, $G \backslash c$ is prime. Since $\left|C_{b}-\{b\}\right| \geq 3$, we have $\rho_{G \backslash c}\left(C_{b}-\{b\}\right)=2$. So by Lemma 3.1, neither $C_{a} \cup\{b\}$ nor $C_{b}-\{b\}$ is sequential in $G \backslash c$, contradicting Lemma 5.3 because $\{a, b\} \subseteq C_{a} \cup\{b\}$.

Hence, by symmetry, we have $\left|A_{b} \cap B_{a} \cap C_{a}\right| \leq 1,\left|A_{c} \cap B_{a} \cap C_{a}\right| \leq 1,\left|A_{b} \cap B_{a} \cap C_{b}\right| \leq 1$, $\left|A_{b} \cap B_{c} \cap C_{b}\right| \leq 1,\left|A_{c} \cap B_{c} \cap C_{a}\right| \leq 1$, and $\left|A_{c} \cap B_{c} \cap C_{b}\right| \leq 1$.
Claim 5.10. $\left|A_{b} \cap B_{c} \cap C_{a}\right| \leq 1$.
Proof. Suppose that $\left|A_{b} \cap B_{c} \cap C_{a}\right| \geq 2$. If $\left|A_{b} \cap B_{c}\right|=2$, then $A_{b} \cap B_{c} \subseteq C_{a}$ and $A_{b} \cap B_{c} \cap C_{b}=\emptyset$. If $\left|A_{b} \cap B_{c}\right|=3$, then by (B1), $A_{b} \cap B_{c} \cap C_{b}=\emptyset$. By Lemma 5.6(i), we have $2 \leq\left|A_{b} \cap B_{c}\right| \leq 3$. So we deduce that $A_{b} \cap B_{c} \cap C_{b}=\emptyset$.

By symmetry between (a, b, c) and (c, a, b), we deduce that $C_{a} \cap A_{b} \cap B_{a}=\emptyset$. By symmetry between (a, b, c) and (b, c, a), we deduce that $B_{c} \cap C_{a} \cap A_{c}=\emptyset$. By Lemma 5.6(iv), $\left|A_{c} \cap B_{c}\right| \geq 2$. So we deduce that

$$
1 \leq\left|A_{c} \cap B_{c}\right|-|\{c\}|-\left|A_{c} \cap B_{c} \cap C_{a}\right|=\left|A_{c} \cap B_{c} \cap C_{b}\right| \leq 1,
$$

and therefore $\left|A_{c} \cap B_{c} \cap C_{b}\right|=1$.
If $\left|A_{c} \cap C_{b}\right|=3$, then by (B3), $\left|A_{c} \cap B_{a} \cap C_{b}\right|=0$. If $\left|A_{c} \cap C_{b}\right| \leq 2$, then $\left|A_{c} \cap B_{a} \cap C_{b}\right|=$ $\left|A_{c} \cap C_{b}\right|-\left|A_{c} \cap B_{c} \cap C_{b}\right| \leq 2-1=1$. Since $\left|A_{c} \cap C_{b}\right| \leq 3$, in both cases, we deduce that $\left|A_{c} \cap B_{a} \cap C_{b}\right| \leq 1$. Then we have

$$
\begin{aligned}
|V(G)|= & \left|A_{b} \cap B_{a} \cap C_{a}\right|+\left|A_{b} \cap B_{a} \cap C_{b}\right|+\left|A_{b} \cap B_{c} \cap C_{a}\right|+\left|A_{b} \cap B_{c} \cap C_{b}\right| \\
& +\left|A_{c} \cap B_{a} \cap C_{a}\right|+\left|A_{c} \cap B_{a} \cap C_{b}\right|+\left|A_{c} \cap B_{c} \cap C_{a}\right|+\left|A_{c} \cap B_{c} \cap C_{b}\right|+|\{a, b, c\}| \\
= & 0+\left|A_{b} \cap B_{a} \cap C_{b}\right|+\left|A_{b} \cap B_{c} \cap C_{a}\right|+0 \\
& +\left|A_{c} \cap B_{a} \cap C_{a}\right|+\left|A_{c} \cap B_{a} \cap C_{b}\right|+0+\left|A_{c} \cap B_{c} \cap C_{b}\right|+|\{a, b, c\}| \\
\leq & 0+1+\left|A_{b} \cap B_{c}\right|+0+1+1+0+1+3 \leq 10,
\end{aligned}
$$

contradicting our assumption.
By symmetry, we have $\left|A_{c} \cap B_{a} \cap C_{b}\right| \leq 1$. Therefore, we have

$$
\begin{aligned}
|V(G)|= & \left|A_{b} \cap B_{a} \cap C_{a}\right|+\left|A_{b} \cap B_{a} \cap C_{b}\right|+\left|A_{b} \cap B_{c} \cap C_{a}\right|+\left|A_{b} \cap B_{c} \cap C_{b}\right| \\
& +\left|A_{c} \cap B_{a} \cap C_{a}\right|+\left|A_{c} \cap B_{a} \cap C_{b}\right|+\left|A_{c} \cap B_{c} \cap C_{a}\right|+\left|A_{c} \cap B_{c} \cap C_{b}\right|+|\{a, b, c\}| \leq 11,
\end{aligned}
$$

contradicting our assumption.

6 Completing the proof

A set X of vertices of a graph G is fully closed if $\rho_{G}(X \cup\{v\})>\rho_{G}(X)$ for all $v \in V(G)-X$.
Lemma 6.1 (Oum [8, Proposition 3.1]). Let G be a prime graph with $|V(G)| \geq 8$. Suppose that G has a fully closed set A such that $\rho_{G}(A) \geq 2$. Then there is a vertex v of A such that $G \backslash v$ or G / v is prime.

Lemma 6.2. Let G be a sequentially 3 -rank-connected graph and $a_{1}, a_{2}, \ldots, a_{k}$ be distinct vertices of G such that $k \geq 4$ and $\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right) \leq 2$ for each $i \leq k$. For each $1 \leq i \leq k$, if $G \backslash a_{i}$ is prime, then $G \backslash a_{i}$ is sequentially 3-rank-connected.
Proof. Since G is prime, we know that $\rho_{G}\left(\left\{a_{1}, \ldots, a_{j}\right\}\right)=\min \{2,|V(G)|-j\}$ for each $2 \leq j \leq k$. So $\rho_{G}\left(\left\{a_{1}, \ldots, a_{j-1}\right\}\right) \geq \rho_{G}\left(\left\{a_{1}, \ldots, a_{j}\right\}\right)$ for each $2 \leq j \leq k$. For each $3 \leq j \leq i-1$, by (S2) of Lemma 2.12, we have

$$
\rho_{G}\left(\left\{a_{1}, \ldots, a_{j}\right\}\right)+\rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{j-1}\right\}\right) \geq \rho_{G}\left(\left\{a_{1}, \ldots, a_{j-1}\right\}\right)+\rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{j}\right\}\right)
$$

and therefore $\rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{j-1}\right\}\right) \geq \rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{j}\right\}\right)$.
Suppose that $G \backslash a_{i}$ is prime and not sequentially 3 -rank-connected.
Let us first consider the case when $i>3$. By Lemma 3.2, there is a subset X of $V\left(G \backslash a_{i}\right)$ such that $\rho_{G \backslash a_{i}}(X) \leq 2$, neither X nor $V\left(G \backslash a_{i}\right)-X$ is sequential in $G \backslash a_{i}$, and $\left\{a_{1}, a_{2}, a_{3}\right\} \subseteq X$. We may assume that X is maximal among all such sets.

We claim that $\left\{a_{1}, \ldots, a_{i-1}\right\} \subseteq X$. Suppose not. Let $j \leq i-1$ be the minimum index such that $a_{j} \notin X$. Then $\left\{a_{1}, \ldots, a_{j-1}\right\} \subseteq X$. Note that $j \geq 4$. Let $Y=V\left(G \backslash a_{i}\right)-X$. Since neither X nor Y is sequential in $G \backslash a_{i}$, we have $|X|,|Y| \geq 4$. Since $\rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{j-1}\right\}\right) \geq$ $\rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{j}\right\}\right)$, by Lemma 2.10,

$$
\rho_{G \backslash a_{i}}(X)+\rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{j}\right\}\right) \geq \rho_{G \backslash a_{i}}\left(X \cup\left\{a_{j}\right\}\right)+\rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{j-1}\right\}\right),
$$

and therefore $\rho_{G \backslash a_{i}}\left(X \cup\left\{a_{j}\right\}\right) \leq \rho_{G \backslash a_{i}}(X) \leq 2$. Since $G \backslash a_{i}$ is prime and $\left|Y-\left\{a_{i}\right\}\right| \geq 3$, we have $\rho_{G \backslash a_{i}}\left(X \cup\left\{a_{j}\right\}\right)=\rho_{G \backslash a_{i}}(X)=2$. Hence by Lemma 3.1, neither $X \cup\left\{a_{j}\right\}$ nor $Y-\left\{a_{j}\right\}$ is sequential in $G \backslash a_{i}$, contradicting the maximality of X. Hence $\left\{a_{1}, \ldots, a_{i-1}\right\} \subseteq X$.

Then by (S1) of Lemma 2.12,

$$
\rho_{G \backslash a_{i}}(X)+\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right) \geq \rho_{G}\left(X \cup\left\{a_{i}\right\}\right)+\rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{i-1}\right\}\right) .
$$

Since $G \backslash a_{i}$ is prime and $i>3$, we have $\rho_{G \backslash a_{i}}\left(\left\{a_{1}, \ldots, a_{i-1}\right\}\right) \geq \min \{2,|V(G)|-i\}=\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right)$. So $\rho_{G}\left(X \cup\left\{a_{i}\right\}\right) \leq \rho_{G \backslash a_{i}}(X) \leq 2$. Since G is sequentially 3-rank-connected, $X \cup\left\{a_{i}\right\}$ or Y is sequential in G. Then by (i), (ii) of Lemma 2.8, X or Y is sequential in $G \backslash a_{i}$, contradicting our assumption.

Now we consider the case when $i \leq 3$. By permuting a_{1}, a_{2}, a_{3}, we can assume that $i=3$. Suppose that $G \backslash a_{3}$ is prime. By Lemma 2.8(ii), we have $\rho_{G \backslash a_{3}}\left(\left\{a_{1}, a_{2}, a_{4}\right\}\right) \leq$ $\rho_{G}\left(\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right) \leq 2$. Since $a_{1}, a_{2}, a_{4}, a_{3}$ is another sequence satisfying all the requirements, we conclude that $G \backslash a_{3}$ is sequentially 3 -rank-connected because we proved the statement for $i>3$.

Lemma 6.3. Let G be a sequentially 3-rank-connected graph with $|V(G)| \geq 8$ and $a_{1}, a_{2}, \ldots, a_{k}$ be distinct vertices of G such that $k \geq 4, k \neq|V(G)|-1$, and $\rho_{G}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right) \leq 2$ for each $i \leq k$. If $\left\{a_{1}, \ldots, a_{k}\right\}$ is a fully closed set of G, then there exists $i \in\{1, \ldots, k\}$ such that $G \backslash a_{i}$ or G / a_{i} is sequentially 3-rank-connected.
Proof. By Theorem 1.1 and Lemma 6.2, we may assume that $k \neq|V(G)|$ and therefore $k \leq$ $|V(G)|-2$. Since G is prime, we have $\rho_{G}\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)=2$ and so, by Lemma 6.1, there is a vertex a_{i} of G such that $G \backslash a_{i}$ or G / a_{i} is prime. By pivoting, we may assume that $G \backslash a_{i}$ is prime. Then, by Lemma 6.2, $G \backslash a_{i}$ is sequentially 3-rank-connected.

Proof of Theorem 1.2. By Proposition 4.15, we may assume that G is not 3-rank-connected. So there is a subset A of $V(G)$ such that $\rho_{G}(A) \leq 2,|A| \geq 3$, and $|V(G)-A| \geq 3$. If G is internally 3 -rank-connected, then we may assume that $|A|=3$. By Lemma 5.1, we can assume that A is a triplet of G by pivoting. By Proposition 5.8, there is a vertex $a \in A$ such that $G \backslash a$ is sequentially 3 -rank-connected. Hence we may assume that G is not internally 3 -rank-connected.

Therefore, we may assume that $|A| \geq 4$ and $|V(G)-A| \geq 4$. Since G is sequentially 3-rankconnected, A or $V(G)-A$ is sequential in G. Therefore there exists a sequential set with at least 4 elements.

Let X be a maximum sequential set of G. Then X is a fully closed set of G. Furthermore, $|X| \neq|V(G)|-1$ because otherwise $V(G)$ is sequential in G. Since $|X| \geq 4$, we conclude the proof by Lemma 6.3.

Acknowledgements The authors would like to thank the anonymous reviewers for their careful reading and useful comments. In particular, the paragraph following Theorem 1.3 was suggested by one of the anonymous reviewers.

References

[1] Loïc Allys, Minimally 3-connected isotropic systems, Combinatorica 14 (1994), no. 3, 247262. MR 1305894
[2] André Bouchet, Reducing prime graphs and recognizing circle graphs, Combinatorica 7 (1987), no. 3, 243-254. MR 918395
[3] __ Graphic presentations of isotropic systems, J. Combin. Theory Ser. B 45 (1988), no. 1, 58-76. MR 953895
[4] Jim Geelen and Sang-il Oum, Circle graph obstructions under pivoting, J. Graph Theory 61 (2009), no. 1, 1-11. MR 2514095
[5] Jim Geelen and Geoff Whittle, Matroid 4-connectivity: a deletion-contraction theorem, J. Combin. Theory Ser. B 83 (2001), no. 1, 15-37. MR 1855794
[6] , Inequivalent representations of matroids over prime fields, Adv. in Appl. Math. 51 (2013), no. 1, 1-175. MR 3056744
[7] Sang-il Oum, Rank-width and vertex-minors, J. Combin. Theory Ser. B 95 (2005), no. 1, 79-100. MR 2156341
[8] Sang-il Oum, Rank connectivity and pivot-minors of graphs, European J. Combin. 108 (2023), 103634.
[9] James Oxley, Charles Semple, and Geoff Whittle, An upgraded wheels-and-whirls theorem for 3-connected matroids, J. Combin. Theory Ser. B 102 (2012), no. 3, 610-637. MR 2900807
[10] Klaus Truemper, A decomposition theory for matroids. I. General results, J. Combin. Theory Ser. B 39 (1985), no. 1, 43-76. MR 805456
[11] William T. Tutte, A theory of 3-connected graphs, Nederl. Akad. Wetensch. Proc. Ser. A 64 Indag. Math. 23 (1961), 441-455. MR 0140094

[^0]: *Supported by the Institute for Basic Science (IBS-R029-C1), the National Research Foundation of Korea(NRF) grant funded by the Korea government (NRF-2022M3J6A1063021), and the KAIST Starting Fund (KAIST-G04220016).
 ${ }^{\dagger}$ Supported by the Institute for Basic Science (IBS-R029-C1).

